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Abstract

Despite widespread adoption, the WireGuard tunneling mech-
anism available in the Linux kernel is unable to provide high-
speed connectivity in a site-to-site setup when routing through
a standard single-tunnel configuration. In fact, its capability to
scale with the number of available CPU cores is limited, even
in the presence of a software architecture that is intrinsically
parallel.
In this paper we investigate the multi-core scalability proper-
ties of WireGuard, identifying current limitations and propos-
ing an improved design that aids effective scaling, reaching a
near-linear throughput increase depending on the number of
involved CPU cores. Furthermore, we propose a multi-tunnel
approach to parallelize stages of the WireGuard pipeline lim-
ited to a single core per tunnel and propose a modified architec-
ture tailored to multi-tunnel support. This architecture shows
an almost 2x performance improvement over a multi-tunnel
deployment of vanilla WireGuard, and supports 18x times the
throughput of a single tunnel setup on our machines.
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Introduction
WireGuard [2] is one of the most common tunneling tech-
nologies used in Linux, thanks to its simplicity and excellent
integration in the kernel. Despite its widespread adoption,
it is unable to provide high-speed connectivity between two
sites when adopting a standard single-tunnel configuration;
this represents a significant limitation when a secure, high-
capacity interconnection is required. In fact, the capability to
scale WireGuard performance with the number of available
CPU cores is somehow limited, even in presence of a soft-
ware architecture that is intrinsically parallel.

In this paper we investigate the multi-core scalability
properties of WireGuard, identifying current limitations and
proposing an improved design that aids effective scaling,
reaching a near-linear throughput increase depending on the
number of involved CPU cores. We first analyze the archi-
tecture of a single tunnel setup, underlining how — despite
its capability to parallelize encryption and decryption stages
— the presence of serial per-tunnel logic creates a bottle-
neck on the use of additional resources. Hence, we attempt
to spread flows over multiple tunnels, in order to overcome

this limitation. Our analysis reveals how simply leveraging
multiple tunnels can end up not scaling at all, due to a sub-
tle “black hole” condition related to the use of the standard
softirq-based NAPI. We overcome this limitation by enabling
the threaded NAPI on WireGuard interfaces, however, despite
being able to leverage all the resources of our nodes, the ap-
proach still shows far from ideal scaling characteristics. To
push things further, we propose a modified architecture which
— for each flow — handles all WireGuard stages inline, in
a single-threaded signal processing context, thus eliminating
the costs of task and cache synchronization. This improved
architecture, tailored for multi-tunnel support, shows an al-
most 2x performance improvement over a multi-tunnel de-
ployment based on the vanilla WireGuard implementation, as
well as being able to support 18x times the throughput of a
single tunnel setup on our machines. Despite limitations in
handling elephant flows, the presented approach represents a
starting point for further discussion and a first step towards a
more scalable WireGuard architecture.

Background
Wireguard operates by creating a virtual network device [1].
The device can handle multiple tunnels, each one towards a
different peer. The routing table on the host is in charge of
forwarding packets that need encapsulation on the Wireguard
interface, which then encrypts the packets, locates the proper
peer and adds the external headers of the tunnel. When a
wireguard-encapsulated packet is received it is decapsulated,
decrypted, and the inner, original packet is reinjected into the
network stack by the WireGuard interface.

The next sections detail the processing involved in these
two directions, when the encapsulation and decapsulation are
performed by two gateway nodes in a site-to-site configura-
tion.

Encapsulation
Traffic needing encapsulation can originate from a local ap-
plication socket or a network device, in case this host behaves
as a VPN gateway performing only forwarding. In both cases
the routing layer of Linux will decide to forward the packet on
the Wireguard interface, based on the destination address or
other policies. Encapsulation is composed of the three main
steps depicted in Figure 1, which operate in different execu-
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Figure 1: WireGuard processing on CPU cores on the encap-
sulation side in the single tunnel scenario.

tion contexts and are subject to different parallelization ap-
proaches:

1. Peer selection. This process occurs in the same context
in which the original packet was processed. It might be a
softirq if the packet comes from an interface, or a syscall if
the packet originates from an application socket. Once the
peer is selected and a nonce computed, the packet is tagged
as unencrypted and enqueued in two different queues. The
first queue is a per-device multi-producer multi-consumer
(MPMC) ring buffer. Its purpose is to hold all the pack-
ets awaiting encryption directed to all the peers associated
with the wg device. This queue is drained by the encryp-
tion workers running, by default, on all the CPU cores of
the machine. The second is a per-peer queue and is drained
in a serial manner by a single CPU core when transmission
occurs. Its purpose is to preserve the order of transmission.
After enqueuing, an encryption worker is woken on a CPU
chosen in a round-robin manner.
Parallelism level: 1 CPU core per original flow.

2. Encryption. This step occurs in the CPU core that has
been selected to execute the worker. The worker pulls
packets from the ring buffer until the buffer is empty, en-
crypting them and marking them accordingly. It optionally
wakes the per-peer TX worker if not already running.
Parallelism level: all the CPU cores of the node.

3. Transmission. This step is performed on a dedicated ker-
nel worker thread assigned to each peer. This worker al-
ways executes on the same CPU core, selected during the
handshake phase. The worker pulls packets from the serial
queue until it is empty or until an unencrypted packet is en-
countered. These packets are encapsulated and transmitted
on the physical NIC, following all necessary routing steps.
Parallelism level: 1 CPU core per peer.

Decapsulation
The three asynchronous steps depicted in Figure 2 take part
in the decapsulation process:

1. Reception. The NIC directs traffic to different CPU cores
through Receive Side Scaling (RSS) or another core selec-
tion mechanism, such as flow steering rules. These tech-
niques allow for traffic steering with a maximum granular-
ity of flow level. Given that a single tunnel between two
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Figure 2: WireGuard processing distribution on CPU cores
on the decapsulation side in the single tunnel scenario.
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Figure 3: Testbed setup for scalability tests.

WireGuard devices corresponds to a single UDP flow, the
processing of this step (Reception) is confined to one core
per tunnel, even if it encapsulates multiple flows. Traffic
flows up the TCP/IP stack and is directed to a UDP socket
registered by WireGuard. Upon socket reception, the peer
is identified and the appropriate key pair is selected for de-
cryption. Similar to encapsulation, the packet is enqueued
in both a per-device MPMC queue for decryption and a
per-peer queue for serial reception. A decryption worker is
selected in round-robin.
Parallelism level: 1 CPU core per tunnel.

2. Decryption. This step is symmetric to the encapsulation
phase, with the selected worker draining the queue, de-
crypting each packet and updating its status accordingly.
Parallelism level: all the CPU cores of the node.

3. Forwarding (to application or on another interface).
Each peer is associated to a NAPI structure which estab-
lishes the appropriate callback function executed for pack-
ets received on the WireGuard interface. If the NAPI poll
callback of a peer is not already running, the worker sched-
ules it after packet decryption by raising a softirq on the
current CPU core. The function drains all decrypted pack-
ets from the per-peer queue, handing them over to the upper
layers of the network stack where they can be forwarded to
an application or an output interface.
Parallelism level: 1 CPU core per peer.

Scaling WireGuard
Testbed
Our testbed (Figure 3) is composed of four machines run-
ning on CloudLab [3], equipped with dual Intel Xeon Sil-
ver 4314 16-core processors and interconnected through 100
Gbps links with Mellanox ConnectX-6 DX NICs. One ma-
chine acts as the source of the traffic and another as the drain
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Figure 4: Aggregate throughput and CPU usage for an in-
creasing number of TCP flows in a single tunnel setup.
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Figure 5: Per-core CPU usage on gw1 and gw2 in the single
tunnel setup when handling 31 flows.

of the traffic/final receiver. In between them, the remaining
machines operate as VPN gateways (gw1 and gw2), solely
involved in forwarding the traffic on a variable number of
WireGuard tunnels.

We use iperf3 to exchange TCP data between source and
drain. To generate multiple flows without being limited by
the single-core performance of the source and drain machines
we leverage multiple iperf3 client-server pairs. Since the
iperf3 test is unbalanced in a single direction, with the bulk of
data moving from source to drain and only a few ACKs flow-
ing in the opposite direction, we are able to focus only on the
impact of the encapsulation procedure on gw1 and decapsu-
lation on gw2, being the processing of ACKs negligible. We
disable hyperthreading and idle states on all nodes to avoid
inconsistent measurements. All tests are repeated 10 times
and the average is reported.

Single tunnel evaluation
We start by analyzing the maximum performance achievable
in the single tunnel scenario, typically used to interconnect
two data centers. To this end, we generate an increasing
number of TCP flows between source and drain, all encap-
sulated in a single tunnel established between gw1 and gw2.
To evaluate the maximum throughput in a best-case scenario,
we configure flow steering rules on the source-facing NIC of
gw1 so that the reception of different flows happens on dis-
tinct cores, and doesn’t overlap with the TX worker of the
tunnel when possible (i.e., when n flows <= n cores
- 1, on our setup, up to 31 flows). As depicted in Fig-
ure 4, the global throughput remains constant, unaffected by
the number of sessions encapsulated within the same tunnel.
This is due to the fact that while multiple flows allow to lever-
age multiple cores in the Peer-Selection stage of Encapsula-
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Figure 6: Aggregate throughput and CPU usage for an in-
creasing number of TCP flows and corresponding WireGuard
tunnels.

tion, the per-peer stages (Transmission for Encapsulation,
Reception and Forwarding for Decapsulation) are still lim-
ited to a single core. Figure 5 shows the per-core CPU usage
on the two gateways in the 31-flows test case (though a simi-
lar behavior applies to other flow counts). CPU core 0 of gw2,
where the traffic of the tunnel is received (Reception stage),
is the bottleneck, limiting all other stages.

Scaling to Multiple Tunnels and the Problem of the
NAPI
One solution to enable parallelization of the per-peer stages
in WireGuard is leveraging multiple tunnels and distributing
traffic uniformly across them [5, 4]. To assess the maximum
throughput achievable with this approach we repeat the pre-
vious test assigning each iperf3 flow to a different tunnel. As
in the previous test, we configure steering rules on the NICs
of gw1 and gw2 so that each distinct flow is processed on a
different core, and there is no overlapping between flows RX
processing and WireGuard TX workers. This allows us to
scale up to 16 tunnels, after which our 32-cores servers re-
quire overlapping (with 16 tunnels, on gw1 16 cores perform
flow reception and 16 cores tunnel transmission). Numbers
in Figure 6 show how we achieve minimal scalability. As the
number of tunnels increases up to 3, we observe a linear trend
in throughput. However, beyond this point, the throughput
stabilizes around 12/14 Gbps, despite increasing the number
of tunnels. This value is accompanied by minor fluctuations.

A deeper analysis allowed us to identify the source of this
behavior in how the NAPI processing of packets received by
the WireGuard interface is handled. Each peer (tunnel) is as-
sociated with a single NAPI context and a matching NAPI
poll() callback in charge of draining its queue. As per
NAPI design, each NAPI context can only be scheduled on
a single core at a time. By default, the NAPI callback is ex-
ecuted inside a softirq, an execution context bound to a spe-
cific core (cannot be migrated), which doesn’t terminate un-
til there’s work to do (i.e., until the napi poll() has pro-
cessed all the packets in the peer queue). If not already run-
ning, a decryption worker schedules the napi poll() on
the softirq of the current core, otherwise, processing proceeds
in the running context. This implies that the napi poll()
is bound to a specific core until it drains its peer’s queue.
Since napi poll()s of different tunnels move to different
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Figure 7: Per-core CPU usage on gw2 when handling 8 flows
spread over 8 tunnels.

cores over time, it is likely to have multiple functions sched-
uled on the same core. This however reduces the amount of
CPU available to each function to drain its queue, making it
more likely not to complete and be stuck on the core. As
more napi poll()s are randomly scheduled on the core
the problem worsens, reducing the likelihood of recovery un-
less the traffic rate is reduced. This can turn the core into
a “black hole”. Figure 7 depicts this behavior with 8 tun-
nels by showing the CPU usage for each core on the gw2
machine. All cores are involved in decryption operations,
which produces a base 10-20% CPU usage, and cores 1 to
8 are involved in receiving traffic of the 8 tunnels pushing us-
age to around 40%. However, the bottleneck is represented
by core 30 where all NAPI contexts are concentrated, sat-
urating the capacity of the core. It is important to notice
how the bottleneck core can change among different tests, be-
ing the result of the overlapping of probabilistically moving
napi poll() functions, however, every test consistently
ended up in the “black hole” condition after some seconds.

A simple solution is to switch to threaded NAPI by chang-
ing a flag associated with the WireGuard interface. With
threaded NAPI, the poll functions run in the context of
preemptible threads, which can be moved among cores by
the scheduler, dynamically avoiding overlapping. This also
means that packets are not always drained in the same core
where encryption occurs, but in our experiments this didn’t
have a detectable impact on performance. Vanilla numbers in
Figure 8 show the results when enabling the threaded NAPI.
This time performance scales with the number of tunnels and
Wireguard can exploit almost all resources available on the
two gateways, however, the scaling is still far from being lin-
ear and we are not able to saturate our 100 Gbps links.

Wireguard Inline
We analyzed the architecture of WireGuard to overcome the
limitations identified in the previous section. To allow scal-
ing parallelizable stages (en/decryption) while keeping other
stages serial, processing is performed in a pipeline of differ-
ent contexts (i.e., syscalls/softirqs and workers), potentially
executed on different cores. This however entails synchro-
nization overheads needed to exchange packets among con-
texts through rings. Additionally, contexts running on dif-
ferent cores lead to cache misses when exchanging a packet,
while contexts on the same core require additional context
switches. Handling core-context mapping is currently not
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Figure 9: WireGuard Inline processing distribution on CPU
cores in a 2 tunnels setup (note that, even if not represented
here, a single core might encapsulate multiple tunnels).

possible, since WireGuard does not provide a mechanism to
set the affinity of TX and en/decryption workers, nor to set
the number of the latter, which defaults to the number of ma-
chine cores. This for example leads to en/decryption workers
overlapping with all other tasks running on the gateway.

On the other hand, leveraging multiple tunnels already pro-
vides a way to achieve multi-core scalability, allowing a sim-
pler processing model for individual tunnels. As a result, we
developed a new version of the WireGuard module, Wire-
Guard Inline.

The main idea behind WireGuard Inline is to handle the
whole lifecycle of a packet, including encryption and decryp-
tion, in a single context on a single core, relying solely on
multiple tunnels to scale on multiple cores. This is achieved
by removing the en/decryption workers as well as the per-
device queue used to distribute packets across them. In the
encapsulation path, removing encryption workers prevents
the reordering of packets within original flows, allowing the
removal of the TX worker and its corresponding per-peer
queue, previously needed to preserve order in transmission.
As a result, in encapsulation, WireGuard Inline encrypts and
transmits packets in the same softirq or syscall context in
which they are received. In the decapsulation path, the per-
peer queue is retained to comply with the NAPI mechanism
that requires a list of packets to poll. Still, the NAPI is sched-



uled on the same softirq that receives UDP traffic of the tun-
nel. Overall, applying these modifications we achieve the ar-
chitecture represented in Figure 9, which follows the same
threading model as the IPsec kernel implementation.

We repeat our test with one TCP flow per tunnel for Wire-
Guard Inline. On each gateway, we have two softirqs for each
tunnel, one receiving non-tunneled traffic from source/drain
and one receiving tunneled traffic. We schedule both on the
same core, so each tunnel occupies a core, and spread the
tunnels on the available cores. Inline numbers in Figure 8
show a trend in the throughput for WireGuard Inline very
close to linearity. The throughput reaches approximately 90
Gbps when 32 tunnels are exploited and all available cores
are fully utilized. When leveraging less than 12 tunnels the
Vanilla version of Wireguard achieves a higher throughput,
albeit at a much higher CPU cost (more than 2x). This un-
derlines how our modifications decrease the throughput for
a single tunnel, as parallelism in en/decryption is no longer
exploited. While this does not represent a problem when a
high number of flows can be spread across multiple tunnels,
it could be a limitation in case we have few elephant flows,
since each flow is limited to a single tunnel, and hence can-
not be parallelized. In this context, we envision a hybrid ap-
proach, which dynamically shifts each tunnel between Vanilla
and Inline processing modes, according to the amount of traf-
fic it is experiencing. We leave the design and evaluation of
this approach as future work.

In addition to its multi-tunnel performance improvement,
the Inline architecture also simplifies allocation of tunnels to
CPU cores (e.g., by managing NIC’s RSS and flow steering
rules), avoiding interference among tunnels.

Conclusions
In this paper we performed a thorough analysis of the multi-
core scalability properties of the WireGuard kernel imple-
mentation, highlighting its limitations and the architectural
choices that prevent it from scaling efficiently. We proposed
an alternative approach to scaling, WireGurard Inline, based
on a multi-tunnel approach and a simplified single-threaded
architecture of the protocol. Our experiments highlight how
our solution is much more CPU efficient than the vanilla im-
plementation and allows to double the throughput that can be
handled by our VPN gateways. Despite not being a one-size-
fits-all solution, due to limitations in handling elephant flows,
our approach provides an interesting starting point for further
discussion and represents a first step towards a more scalable
WireGuard architecture.
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