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Abstract
In this manuscript, we present a collective multigrid algorithm to solve efficiently the large
saddle-point systems of equations that typically arise in PDE-constrained optimization under
uncertainty, and develop a novel convergence analysis of collective smoothers and collective
two-level methods. The multigrid algorithm is based on a collective smoother that at each
iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-
point system whose size is proportional to the number N of samples used to discretized
the probability space. We show that this reduced system can be solved with optimal O(N )

complexity. Themultigridmethod is tested both as a stationarymethod and as a preconditioner
forGMRESon three problems: a linear-quadratic problem, possiblywith a local or a boundary
control, forwhich themultigridmethod is used to solve directly the linear optimality system; a
nonsmooth problem with box constraints and L1-norm penalization on the control, in which
the multigrid scheme is used as an inner solver within a semismooth Newton iteration; a
risk-averse problem with the smoothed CVaR risk measure where the multigrid method is
called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits
excellent performances and robustness with respect to the parameters of interest.
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1 Introduction

In this work, we present a multigrid method to solve the saddle point system

Sx = f, (1)

where x = (y,u,p) = (y1, . . . , yN ,u,p1, . . . ,pN )�, S has the block structure

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 A�
1

. . .
. . .

CN A�
N

G D1 . . . DN

A1 E1
. . .

...

AN EN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

and all submatrices involved represent the discretization of some differential operators. More
details on each block are provided in Sect. 2. Matrices such as (2) are often encountered while
solving PDE-constrained optimization problems under uncertainty of the form

min
u∈U R [Q(y(ω), u)]

s.t. y(ω) ∈ V satisfies

〈e(y(ω), u, ω), v〉 = 0 ∀v ∈ V , a.e. ω ∈ �,

(3)

where u is the unknown deterministic control, y(ω) is the state variable which satisfies a
random PDE constraint expressed by e(·, ·, ω) for almost every realization ω of the random-
ness, Q is a real-valued quantity of interest (cost functional) and R is a risk measure. The
vectors

{
y j

}N
j=1 and

{
p j

}N
j=1 are the discretizations of the state and adjoint variables y(ω)

and p(ω) at the N samples in which the random PDE constraint is collocated. The vector u
is the discretization of the deterministic control u. Problems of the form (3) are increasingly
employed in applications. The PDE constraints typically represent some underlying physi-
cal model whose behaviour should be optimally controlled, and the randomness in the PDE
allows one to take into account the intrinsic variability or lack of knowledge on some param-
eters entering the model. The introduction of a risk measure in (3) allows one to construct
robust controls that take into account the distribution of the cost over all possible realizations
of the random parameters. Therefore, the topic has received a lot of attention in the last years,
see, e.g. [1–9].

However, few works have focused on efficient solvers for the optimality systems (1). A
popular approach is to perform a Schur complement on u and solve the reduced system
with a Krylov method (possibly with Conjugate Gradient), despite each iteration would then
require the solution of 2N PDEs, with A j and A�

j for j = 1, . . . , N [10]. For a full-space
formulation, block diagonal preconditioners have been proposed in [11] and analyzed in
[12], using both an algebraic approach based on Schur complement approximations and an
operator preconditioning framework.

In thismanuscript, we design amultigridmethod to solve general problems of the form (1),
present a detailed convergence analysis which, although in a simplified setting, is nontrivial
and requires technical arguments, and show how this strategy can be used for the efficient
solution of three different Optimal Control Problems Under Uncertainty (OCPUU). First,
we consider a linear-quadratic OCPUU and use the multigrid algorithm directly to solve the
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linear optimality system. Second, we consider a nonsmooth OCPUU with box constraints
and L1 regularization on the control. To solve such problem, we use the collective multigrid
method as an inner solver within an outer semismooth Newton iteration. Incidentally, we
show that the theory developed for the deterministic OCPs with L1 regularization can be
naturally extended to the class of OCPUU considered here. Third, we study a risk-averse
OCPUU involving the smoothed Conditional Value at Risk (CVaR) and test the performance
of the multigrid scheme in the context of a nonlinear preconditioned Newton method.

The multigrid algorithm is based on a collective smoother [13–15] that, at each iteration,
loops over all nodes of the computational mesh (possibly in parallel), collects all the degrees
of freedom related to a node, and updates them collectively by solving a reduced saddle-
point problem. For classical (deterministic) PDE-constrained optimization problems with a
distributed control, this reduced system has size 3× 3, thus its solution is immediate [14]. In
our context, the reduced problem has size (2N + 1) × (2N + 1), which can be large when
dealing with a large number of samples. Fortunately, we show that it can be solved with
optimal O(N ) complexity.

From the theoretical point of view, there are very few convergence analyses of collective
smoothers even in the deterministic setting, namely [14] based on a local Fourier analysis,
and [15] which relies on an algebraic approach. Notably, the presence of a low-rank block
matrix in the reduced optimality system (obtained by eliminating the control) as well as the
need to have stiffness and mass matrices with specific structure make it difficult to extend the
analysis of [15]. We therefore present in this manuscript a fully new convergence analysis
of collective smoothers and two-level collective multigrid methods in a simplified setting,
which also covers the deterministic setting as a particular instance.

Let us remark that collective multigrid strategies have been applied to OCPUU in [16,
17] and in [18]. This manuscript differs from the mentioned works since, on the one hand,
[16, 17] considers a stochastic control u, therefore for (almost) every realization of the
random parameters a different control u(ω) is computed through the solution of a standard
deterministic OCP. On the other hand, [18] considers a stochastic Galerkin discretization,
and hence the corresponding optimality system has a structure which is very different from
(2).

The multigrid algorithm presented here assumes that all state and adjoint variables are
discretized on the same finite element mesh. The control can instead live on a subregion of
the computational mesh, so that the algorithm is applicable also to optimization problems
with local or boundary controls.

Finally, we remark that the multigrid solver proposed is based on a hierarchy of spatial
discretizations corresponding to different levels of approximation, but the discretization of
the probability space remains fixed, that is, the number of samples remains constant across
the multigrid hierarchy. The extension of the multigrid algorithm to coarsening procedures
also in the probability space will be the subject of future endeavours. We hint at possible
approaches and challenges in Sect. 3 (seeRemark 1).Nevertheless,we stress that themultigrid
algorithm can already be incorporatedwithin outer optimization routines that take advantange
of different levels of approximations of the probability space, see, e.g., [7, 10, 19].

The rest of the manuscript is organized as follows. In Sect. 2 we introduce the notation, a
classical linear-quadratic OCPUU, and interpret (2) as the matrix associated to the optimality
system of a discretized OCPUU. Section3 presents the collective multigrid algorithm, dis-
cusses implementation details and develops the convergence analysis. Further, the algorthm
is numerically tested on the linear-quadratic OCPUU. In Sect. 4, we consider a nonsmooth
OCPUU with box constraints and a L1 regularization on the control. Section5 deals with a
risk-averse OCPUU. For each of these cases, we first show how the multigrid approach can
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be integrated into the solution process, by detailing concrete algorithms, and then we present
extensive numerical experiments to show the efficiency of the proposed framework. Finally,
we draw our conclusions in Sect. 6.

2 A Linear-Quadratic Optimal Control ProblemUnder Uncertainty

Let D ⊂ R
d be a Lipschitz bounded domain, V ⊂ L2(D) a Sobolev space (e.g. H1(D)

equipped with suitable boundary conditions), and (�,F,P) a complete probability space.
Given a function u belonging to a Hilbert space U , we consider the linear elliptic random
PDE

aω(y, v) = 〈Bu, v〉,∀v ∈ V , P-a-e. ω ∈ �, (4)

where aω(·, ·) : V × V → R is a bilinear form and 〈·, ·〉 denotes the duality between V and
V ′. B : U → V ′ is a continuous control operator allowing possibly for a local control (i.e.
a control acting only on a subset D0 ⊂ D) or a boundary control (i.e. a control acting as
Neumann condition on a subset of ∂D). To assure uniqueness and sufficient integrability of
the solution of (4), we make the following additional assumption.

Assumption 1 There exist two random variables amin(ω) and amax(ω) such that

0 < amin(ω)‖v‖2V ≤ aω(v, v) ≤ amax(ω)‖v‖2V , ∀v ∈ V , P-a.e. ω ∈ �,

and further a−1
min and amax are in L p(�) for some p ≥ 4.

Under Assumption 1, it is well-known (see, e.g., [20, 21]) that (4) admits a solution in V for
P-a.e. ω, and the solution y, interpreted as a V -valued random variable y : ω ∈ � 
→ y(ω) ∈
V , lies in the Bochner space Lq(�; V ), q ≤ p, [22]. We often use the shorthand notation
yω = y(·, ω) when the dependence on x is not needed, or yω(u) if we wish to highlight the
dependence on the control function u.

In this manuscript, we consider the minimization of functionals constrained by (4). Let
us first focus on the linear-quadratic problem

min
u∈U ,y∈L2(�;V )

1

2
E

[
‖Iyω − yd‖2L2(D)

]
+ ν

2
‖u‖2U ,

subject to

aω(yω, v) = 〈Bu + f , v〉, ∀v ∈ V , P-a.e. ω ∈ �,

(5)

where yd ∈ L2(D) is a target state, f ∈ V ′, E : L1(�) → R is the expectation operator,
ν > 0, and I is the embedding operator from V to L2(D). Introducing the linear control-to-
state map S : g ∈ V ′ → yω(g) ∈ L2(�; V ), the reduced formulation of (5) is

min
u∈U

1

2
E

[
‖IS(Bu + f ) − yd‖2L2(D)

]
+ ν

2
‖u‖2U . (6)

Existence and uniqueness of the minimizer of (6) follows directly from standard variational
arguments [1, 23–25]. Furthermore, due to Assumption 1, the optimal control u satisfies the
variational equality

(νu − �UB�S�I�(yd − S(Bu + f )), v)U = 0, ∀v ∈ U , (7)

123



Journal of Scientific Computing           (2024) 101:13 Page 5 of 31    13 

where �U is the Riesz operator of U . The adjoint operator S� : L2(�; V ′) → V is charac-
terized by S�z = E [p] where p = pω(x) is the solution of the adjoint equation

aω(v, pω) = 〈z(ω), v〉, ∀v ∈ V , P-a-e. ω ∈ �. (8)

The optimality condition (7) can thus be formulated as the optimality system

aω(yω, v) = 〈Bu + f , v〉, ∀v ∈ V , P-a-e. ω ∈ �,

aω(v, pω) = 〈I�(yd − yω), v〉, ∀v ∈ V , P-a-e. ω ∈ �,

(νu − �UB�
E [pω] , v)U = 0, ∀v ∈ U .

(9)

To solve numerically (5), we replace the exact expectation operator E of the objective func-
tional by a quadrature formula Êwith N nodes {ωi }Ni=1 and positive weights {ζi }Ni=1, namely

E [X ] ≈ Ê [X ] :=
N∑
i=1

ζi X(ωi ), with
N∑
i=1

ζi = 1.

Common quadrature formulae are Monte Carlo, Quasi-Monte Carlo and Gaussian formulae.
The latter requires that the probability space can be parametrized by a (finite or countable)
sequence of random variables

{
χ j

}
j , each with distribution μ j , and the existence of a com-

plete basis of tensorized L2
μ j
-orthonormal polynomials. Hence for the semi-discrete OCP,

the P-a.e. PDE-constraint is naturally collocated onto the nodes of the quadrature formula.
Concerning the space domain, we consider a family of regular triangulations {Th}h>0 of

D, and a Galerkin projection onto a conforming finite element space V h ⊂ V of continuous
piecewise polynomial functions of degree r overTh . Nh is the dimension ofV h and {φi }Nh

i=1 is a
nodalLagrangian basis.Wediscretize the state and adjoint variables on the samefinite element
space. The control variable is discretized on the finite element space Uh = span {ψi }Nu

i=1,
where Nu is possibly strictly smaller than Nh in case of a local or a boundary control.

Once fully discretized, (9) can be expressed as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M A�
1

. . .
. . .

M A�
N

νMU −ζ1B� . . . −ζN B�
A1 −B

. . .
...

AN −B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
...

yN
u
p1
...

pN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Myd
...

Myd
0
Mf
...

Mf

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

where A j are the stiffness matrices associated to the bilinear forms aω j (·, ·), M and MU are
mass matrices corresponding to the finite element spaces Vh andUh , B is the discretization of
the control operator, yd and f are the finite element discretizations of yd and f respectively,
while y j and p j are the discretizations of yω j and pω j . Notice that the matrix in (10) could
be symmetrized by multipling the first and the last N rows by the weights {ζi }Ni=1. This
would be also consistent with the theoretical interpretation of the blocks of the saddle point
system as discretizations of continuous inner products. From the numerical point of view, we
have not observed relevant advantanges in maintaining the weights. Since for more general
problems (see, e.g., Sec. 4) the symmetry of the saddle point system cannot be recovered by
multiplying some equations by the quadrature weights, we do not consider the symmetrized
version in this work.
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3 Collective Multigrid Scheme

In this section, we describe the multigrid algorithm to solve the full space optimality system
(10). First, we consider a distributed control, so that u lives on the whole computational mesh
and B = M . Local and boundary controls are discussed at the end of the section. Second,
for the sake of generality, we consider the more general matrix (2), so that our discussion
covers also the different saddle-point matrices obtained in Sects. 4 and 5.

For each node of the triangulation, let us introduce the vectors ỹi and p̃i ,

ỹi =
⎛
⎜⎝

(y1)i
...

(yN )i

⎞
⎟⎠ ∈ R

N , p̃i =
⎛
⎜⎝

(p1)i
...

(pN )i

⎞
⎟⎠ ∈ R

N , i = 1, . . . , Nh,

which collect the degrees of freedom associated to the i-th node, the scalar ui = (u)i , and
the restriction operators Ri ∈ R

(2N+1)×((2N+1)Nh) such that

Ri

⎛
⎝
y
u
p

⎞
⎠ =

⎛
⎝
ỹi
ui
p̃i

⎞
⎠ =: xi . (11)

The prolongation operators are Pi := R�
i , while the reduced matrices S̃i := Ri SPi ∈

R
(2N+1)×(2N+1) represent a condensed saddle-point matrix on the i-th node, and satisfy

S̃i =
⎛
⎝
diag(ci ) 0 diag(ai )

0 (G)i,i d�
i

diag(ai ) ei 0

⎞
⎠

with ci := ((C1)i,i , . . . , (CN )i,i )
�, ai := ((A1)i,i , . . . , (AN )i,i )

�, ei = ((E1)i,i , . . . ,

(EN )i,i )
�, di = ((D1)i,i , . . . , (DN )i,i )

�, where diag(v) denotes a diagonal matrix with
the components of v on the main diagonal.

Given an initial vector x0, a Jacobi-type collective smoothing iteration computes for n =
1, . . . , n1,

xn = xn−1 + θ

Nh∑
i=1

Pi S̃
−1
i Ri

(
f − Sxn−1) , (12)

where θ ∈ (0, 1] is a damping parameter. Gauss-Seidel variants can straightforwardly be
defined.Next, we consider a sequence ofmeshes

{
Th


}
max

=
min

, whichwe assume for simplicity

to be nested, and restriction and prolongator operators R


−1, P




−1 which map between grids

Th
−1 and Th

. In the numerical experiments, the coarse matrices are defined recursively

in a Galerkin fashion starting from the finest one, namely S
 := R
+1

 S
+1P


+1

 for 
 ∈

{1, . . . , 
max − 1}. Nevertheless it is obviously possible to define S
 as the discretization of the
continuous saddle-point system onto the mesh Th


. With this notation, the V-cycle collective
multigrid is described byAlgorithm 1, which can be repeated until a certain stopping criterion
is satisfied. We used the notation Collective_Smoothing(·, ·, ·) to denote possible variants of
(12) (e.g. Gauss-Seidel).

Notice that (12) requires to invert the matrices Si for each computational node. We now
show that this can be done with optimal O(N ) complexity. Indeed, performing a Schur
complement on ui , the system S̃ixi = fi , with fi = (fpi , bui , fyi )

� can be solved exclusively
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Algorithm 1 V-cycle Collective Multigrid Algorithm - V-cycle(x0,f ,
)
1: if 
 = 
min, then
2: set x0 = S−1


min
f . (direct solver)

3: else
4: xn1=Collective_Smoothing(x0, S
, n1) (n1 steps of coll. smoothing)
5: r = f − S
xn1 (compute the residual)
6: ec =V-cycle(0, R



−1r, 
 − 1). (recursive call)

7: x0 = xn1 + P


−1ec (coarse correction)

8: xn2=Collective_Smoothing(x0, S
, n2) (n2 steps of coll. smoothing)
9: Set x0 = xn2 (update)
10: end if
11: return x0.

computing inverses of diagonal matrices and scalar products between vectors through

ui = bui + d�
i (diag(ai )−1diag(ci )diag(ai )−1fyi − diag(ai )−1fpi )

(G)i,i + d�
i diag(ai )

−1diag(ci )diag(ai )−1ei
,

ỹi = (diag(ai ))−1(fyi − ei ui ),

p̃i = (diag(ai ))−1(fpi − diag(ci )̃yi ).

(13)

Notice that we should guaranteee that diag(ai ) admits an inverse and that (G)i,i +
d�
i diag(ai )

−1diag(ci )diag(ai )−1ei �= 0. This has to be verified case by case, so we now
focus on the specific matrix (10). On the one hand, the vectors ai are strictly positive compo-
nentwise, since (ai ) j = aω j (φi , φi ) > 0 ∀i = 1, . . . , Nh , j = 1, . . . , N (due to Assumption
1). On the other hand, (G)i,i = ∫

D ψ2
i (x) dx > 0, while a direct calculation shows that

d�
i diag(ai )

−1diag(ci )diag(ai )−1ei = (M)3i,i

N∑
j=1

ζ j (A j )
−2
i,i > 0,

which implies that the denominator in the first equation of (13) is strictly positive.
The collective smoother can be easily adjusted to accomodate local or boundary controls

as discussed in [26] for deterministic OCPs. For all nodes i for which a control basis function
is present, the smoothing procedure remains that of (13). For all others computational nodes
for which there is not a control basis function associated, the smoothing procedure becomes

ỹi = (diag(ai ))−1fyi ,

p̃i = (diag(ai ))−1(fpi − diag(ci )̃yi ),

which is consistently obtained from (13) setting ui = 0.
To conclude this section, we remark that the computational complexity of the smoothing

procedure is of order O(NhN ), thus linear with respect to the size of the saddle point-system.
Provided that the V-cycle algorithm requires a constant number of iterations to converge as
the number of levels increases, and that N is not too large (so that the cost of the coarse
solver is not dominant), the complexity of the multigrid algorithm can also be considered
linear. In the next numerical experiments sections (Sects. 3.2, 4.1, 5.2), we show indeed that
the number of iterations remains constant for several test cases.

Remark 1 (Extension to a hierarchy of samples) The multigrid algorithm presented is based
on a hierarchy of spatial discretizations. However, the sample to discretize the probability
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space remains fixed among the levels. If one relies on the stochastic collocation method to
discretize the probability space, it is possible to envisage a multigrid algorithm that also
involves a coarsening of the sample size, since for each sample set one could consider the
associated stable interpolator which can then be evaluated onto a coarser or finer set of
samples. Nevertheless, it is not clear at the moment the interplay between the smoothing
and coarsening procedures, which is key for the efficient behaviour of a multigrid scheme.
Future endeavours will investigate this interesting direction. For the rest of the manuscript we
restrict oursevels to a hierarchy of spatial discretizations since on the one hand, the multigrid
algorithm can already be embedded in other outer optimization algorithms that involve a
hierarchy of samples [7, 10, 19, 27]. On the other hand, the reduced system can be solved
with optimal O(N ) linear complexity, so that a coarsening in the number of samples may be
superfluous.

3.1 Convergence Analysis

In this subsection, we present a convergence analysis of the collective multigrid algorithm in
a simplified setting. Let D = (0, 1), and consider the random PDE

η(ω)

∫ 1

0
∂x y(x, ω)∂xv(x) dx =

∫ 1

0
( f (x) + u(x))v(x) dx,∀v ∈ V , P-a.e. ω ∈ �,(14)

where η : � → R
+ is a positive valued random variable such that E

[
η−2

]
< ∞. Our goal is

to minimize the objective functional of (5) constrained by (14). A discretization using finite
differences and with N Monte Carlo samples leads to the optimality system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ĩ
N

η1(ω)
N A

. . .
. . .

Ĩ
N

ηN (ω)
N A

ν Ĩ − Ĩ
N . . . − Ĩ

N
η1(ω)
N A − Ĩ

N
. . .

...
ηN (ω)
N A − Ĩ

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
...

yN
u
p1
...

pN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yd
N
...
yd
N
0
f
N
...
f
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where A is the tridiagonal matrix associated with the 1D Laplacian, with 2/h2 on the main
diagonal, and −1/h2 on the two adjacent diagonals, h being the mesh size, Ĩ ∈ R

Nh×Nh

is the identity matrix, and, compared to (10), the first and last blocks of N equations are
divided by 1

N to get a symmetric system. Despite the simplifying assumptions on the spatial
discretization and on the random coefficient, the setting considered is illustrative as system
(15) preserves the main features of (10), namely the specific block structure and the presence
of random stiffness matrices.
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To perform our analysis, we first eliminate the variable u, and obtain the reduced matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ĩ
N

η1(ω)
N A

. . .
. . .

Ĩ
N

ηN (ω)
N A

η1(ω)
N A − Ĩ

νN2 · · · · · · − Ĩ
νN2

. . .
...

...
...

...
ηN (ω)
N A − Ĩ

νN2 · · · · · · − Ĩ
νN2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
...

yN
p1
...

pN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

yd
N
...
yd
N
f
N
...
f
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

Next, let z = (z1, . . . , zNh )
� ∈ R

(2NNh)×1, where z j = ((y1) j , . . . , (yN ) j , (p1) j ,
. . . , (pN ) j ))

� ∈ R
2N×1. Notice that z j corresponds to the application of Ri to x (see (11)),

except for ui which has been previously eliminated. By reordering the unknowns as in z, (16)
can be written as Sz = b̃ for a suitable b̃ and

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B̃ B
B B̃ B

B B̃ B
. . .

. . .
. . .

B B̃ B
B B̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= Ĩ ⊗ B̃ + H ⊗ B,

B̃ :=
(

I
N D

D − 11�
νN2

)
, B :=

(
0 − D

2− D
2 0

)
, H =

⎛
⎜⎜⎜⎜⎜⎝

0 1
1 0 1

. . .
. . .

. . .

1 0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

,

where I ∈ R
N×N is the identity matrix, D is a diagonal matrix with d j := 2η j (ω)

h2N
on the

diagonal, and 1 = (1, . . . , 1)� ∈ R
N×1. In particular, a direct calculation verifies that the

iteration matrix of (12) with θ = 1 and with this new order of unknowns is equal to

G = I − ( Ĩ ⊗ B̃−1)( Ĩ ⊗ B̃ + H ⊗ B) = −H ⊗ C,

withC := B̃−1B, and I ∈ R
(2NhN )×(2NhN ) being the identity matrix.Wewill next character-

ize precisely the spectrum of G, which in turns gives an exact description of the convergence
on the one-level collective smoother. To do so, we first study the spectrum of C denoted by
σ(C).

Lemma 2 (Spectrum of C) The matrix C has the spectrum

σ(C) = −1

2

{
1, 1 − r ± i

√
(1 − r)r

}
,

with r = Ê
[̃
d−2

]
ν+Ê

[̃
d−2

] , d̃ ∈ R
N×1, (̃d) j = Nd j , and Ê

[̃
d−2

] := 1
N

∑N
j=1(̃d)−2

j . The eigenvalue

λ = − 1
2 has algebraic multiplicity 2N − 2 and geometric multiplicity N − 1.
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Proof Since I
N and D are non singular, to computeC we use the exact formula for the inverse

of B̃. Setting � := 1

νN2+1� D−2
N 1

= 1
νN2+N2Ê

[̃
d−2

] , with (̃d) j = 2η j (ω)

h2
, we obtain

C = B̃−1B = 1

2

(
−I + �

N D−111�D−1 −�D−111�
D−1

N − �
N2 D

−211�D−1 −I + �
N D−211�

)

= 1

2

( −I 0
D−1

N −I

)
+ �N

2

(
d̃−1d̃−� −d̃−11�

−d̃−2d̃−� d̃−21�
)

.

For simplicity, we focus on Ĉ := −2C , which can be written as

Ĉ =
(

I 0

− D−1

N I

)

︸ ︷︷ ︸
L

+ac�, with a := �N

(−d̃−1

d̃−2

)
, c :=

(
d̃−1

−1

)
,

that is, Ĉ is the sum of a lower triangular matrix plus a rank-one perturbation. Notice that
L has eigenvalue λ = 1 with algebraic multiplicity 2N and geometric multiplicity N . The
eigenspace associated to λ = 1 is Eλ=1(L) := span

{
e j , j = N + 1, . . . , 2N

}
, e j being

the j-th canonical vector. Next, if N > 2, Ĉ has still eigenvalue λ = 1 since for any vector
v = (0, v2), v2 ∈ R

N×1, such that 1�v2 = 0, we have

(L + ac�)v = Lv = v.

Therefore, λ = 1 is an eigenvalue of Ĉ with geometric multiplicity N − 1.
To find the remaining eigenvalues, we take a λ �= 1 and consider

det(L − λI2N×2N + ac�) = det(L − λI2N×2N ) det(I2N×2N + (L − λI2N×2N )−1ac�)

= (1 − λ)2N
(
1 + c�(L − λI2N×2N )−1a

)
.

A direct calculation leads to

c�(L − λI2N×2N )−1a = (c1, c2)�
(

I
1−λ

0
D−1

N (1−λ)2
I

1−λ

)(
a1
a2

)
, (17)

so that

det(L − λI2N×2N + ac�) = (1 − λ)2N−2
(

λ2 − (2 + a�c)λ + 1 + a�c + c�
2
D−1

N
a1

)
,

from which we conclude that λ = 1 has algebraic multiplicity 2(N − 1). The remaining
eigenvalues must be solutions of the second order equation. Using a�c = −2�N

∑N
i= j d̃

−2
j ,

c�
2

D−1

N a1 = �N
∑N

j=1 d̃
−2
j , recalling the definition of � and r , and dividing by − 1

2 , one

obtains the solutions λ2N−1,2N = − 1
2

{
1 − r ± i

√
(1 − r)r

}
, and the claim follows.

Remark 2 (Dependence on the regularization parameter) The regularization parameter ν

enters into our convergence analysis only in the definition of r . In particular as ν → 0,
r → 1 and |λ2N−1,2N | → 0, and the convergence of the collective multigrid does not deteri-
orate (see Lemma 2). The robustness of the algorithm with respect to the (often troublesome)
ν → 0 limit will be observed in the numerical experiments.
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From Lemma 2, we deduce that C admits the Jordan decomposition CV = V J , with

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.5 1
−0.5

−0.5 1
−0.5

. . .
. . .

λ2N−1

λ2N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V = [v1, v̂1, v2, v̂2, . . . , v2N−1, v2N ],

(18)

where v j , j = 1, . . . , N − 1, are the eigenvectors of C , v̂ j , j = 1, . . . , N − 1, are the gen-
eralized eigenvectors satisfying (C − λ j I )̂v j = v j , and v2N−1 and v2N are the eigenvectors
associated to the two remaining eigenvalues λ2N−1,2N .

Exploiting the Kronecker structure of G, we obtain immediately the following two corol-
laries.

Corollary 3 (Similarity transformation of G) For i = 1, . . . , Nh and j = 1, . . . 2N, let

δi, j := −μ jλi , where λi is an eigenvalue of C, and μ j = 2 cos
(

jπ
Nh+1

)
. Then, G satisfies

GY = Y J̃ , where J̃ is an upper triangular matrix with δi, j on the diagonal, and the k-th
column of Y , with k = i + j − 1 for some i and j , is Yk = ϕ j ⊗ Vi , Vi being the i-th column

of V defined in (18), and (ϕ j )i := sin
(

i jπ
Nh+1

)
.

Proof We first notice that H is a tridiagonal Toeplitz matrix, and it is well-known (see [28])

that has eigenvalues μ j = 2 cos
(

jπ
Nh+1

)
and eigenvectors of the form (ϕ j )i = sin

(
i jπ
Nh+1

)
.

Due to the properties of the Kronecker product, it is trivial to verify that

G(ϕ j ⊗ vi ) = −(Hϕ j ) ⊗ (Cvi ) = −μ jλi (ϕ j ⊗ vi ).

If instead we consider a generalized eigenvector v̂i , using the Jordan decomposition, we have

G(ϕ j ⊗ v̂i ) = −(Hϕ j ) ⊗ (C v̂i ) = −μ jλi (ϕ j ⊗ v̂i ) − μ j (ϕ j ⊗ vi ),

and the claim follows.

Corollary 4 (Spectral radius of G) The spectral radius of G is strictly smaller than 1, and

satisfies ρ(G) ≤ 1 − O
(

1
N2
h

)
. Therefore, the collective smoothing iteration converges.

Proof Corollary 3 shows that G is similar to the upper triangular matrix J̃ . Thus, its eigen-

values are equal to δi, j = −μ jλi . Observing that |μ j | < 2|cos
(

π
Nh+1

)
| and |λi | ≤ 0.5 for

any j, i , the claim follows.

Remark 3 (Damping) The analysis has been carried out for the relaxation parameter θ = 1.
It is trivial to consider θ �= 1, since the iteration matrix is then Gθ := (1 − θ)I + θG.
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We next study the spectrum of the two-level collective multigrid algorithm, and assume
that Nh = 2
 − 1 and NC

h = 2
−1 − 1 for a 
 ∈ N. As maps between the fine and coarse
meshes, we choose the full weighting restriction matrix,

R̃ := 1

2

⎛
⎜⎜⎝

1
2 1 1

2
1
2 1 1

2· · ·
1
2 1 1

2

⎞
⎟⎟⎠ ∈ R

NC
h ×Nh ,

and the linear interpolation operator P̃ := 2R̃�. In particular, the action of R̃ and P̃ on
the frequencies ϕ j can be characterized rigorously (see, e.g., [29, Lemma 4.17]). Let φ j ∈
R

NC
h ×1 with (φ j )i = sin

(
2i jπ
Nh+1

)
, j = 1, . . . , Nh and i = 1, . . . , NC

h . Further define

c j := cos
(

jπ
2(Nh+1)

)
and s j := sin

(
jπ

2(Nh+1)

)
. Then, for any e j , e j̃ ∈ R,with j̃ := Nh+1− j

and j = 1, . . . , Nh+1
2 − 1,

R̃
(
ϕ j ϕ j̃

) (e j
e j̃

)
= R̃

(
e jϕ j + e j̃ϕ j̃

)
= (e j c

2
j − e j̃ s

2
j )φ j = φ j

(
c2j −s2j

)(
e j
e j̃

)
,

P̃φ j = (c2jϕ j − s2jϕ j̃ ) = (
ϕ j ϕ j̃

) ( c2j
−s2j

)
.

(19)

Furthermore, Rϕ j = 0 for j := Nh+1
2 . The iteration matrix of the two-level algorithm with

one-step of presmoothing and no post-smoothing is

T := (I − RS−1
c PS)G,

where R = R̃ ⊗ I , P = P̃ ⊗ I , and SC = RSP .

Lemma 5 The two-level operator T is similar to a block diagonal matrix whose diagonal
blocks are:

1 The matrices Tji := G j i − R�
j �−1

j i R j S jiG j i ∈ R
4×4 for j = 1, . . . , Nh+1

2 − 1 and
i = 1, . . . , N − 1, with

G j i :=

⎛
⎜⎜⎝

δ j i −μ j

δ j̃ i −μ j̃
δ j i

δ j̃ i

⎞
⎟⎟⎠ , S ji :=

⎛
⎜⎜⎝

(1 − δ j i ) −μ j

(1 − δ j̃ i ) −μ j̃
(1 − δ j i )

(1 − δ j̃ i )

⎞
⎟⎟⎠ ,

R j :=
(
c2j −s2j

c2j −s2j

)
, Pj = R�

j , � j i := R j S ji R
�
j .

2 The matrices G j i =
(

δ j i −μ j
δ j i

)
∈ R

2×2 for j = Nh+1
2 , and i = 1, . . . , N − 1.

3 The matrices T̂ ji := Ĝ j i − R̂�
j �̂−1

i j R̂ j Ŝ j i Ĝi j ∈ R
2×2 for j = 1, . . . , Nh+1

2 − 1 and
i = 2N − 1, 2N, with
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Ĝ j i :=
(

δ j i
δ j̃ i

)
, Ŝ j i :=

(
(1 − δ j i )

(1 − δ j̃ i )

)
,

R̂ j :=
(
c2j −s2j

)
, P̂j = R̂�

j , �̂ j i := c4j (1 − δ j i ) + s4j (1 − δ j i ).

4 The matrices Ĝ j i =
(

δ j i
δ j i

)
∈ R

2×2 for j = Nh+1
2 , and i = 2N − 1, 2N.

Proof The proof follows closely the arguments presented in [30, 31] for the study of
two-level iterative methods. It consists in studying the action of T onto suitably defined
subspaces, showing that these subspaces are invariant, and finally deriving a matrix rep-
resentation of T into a new basis. We start with the four dimensional subspaces V j i :=
span

{
ϕ j ⊗ vi , ϕ j̃ ⊗ vi , ϕ j ⊗ v̂i , ϕ j̃ ⊗ v̂i

}
, for j = 1, . . . , Nh+1

2 − 1, i = 1, . . . , N − 1.

For any quadruple of real numbers e j , e j̃ , ê j , ê j̃ , using Hϕ j = μ jϕ j and the Jordan decom-
position of C , we obtain

G
(
ϕ j ⊗ vi ϕ j̃ ⊗ vi ϕ j ⊗ v̂i ϕ j̃ ⊗ v̂i

)
⎛
⎜⎜⎝

e j
e j̃
ê j
ê j̃

⎞
⎟⎟⎠

= (
ϕ j ⊗ vi ϕ j̃ ⊗ vi ϕ j ⊗ v̂i ϕ j̃ ⊗ v̂i

)
⎛
⎜⎜⎝

δ j i −μ j

δ j̃ i −μ j̃
δ j i

δ j̃ i

⎞
⎟⎟⎠

⎛
⎜⎜⎝

e j
e j̃
ê j
ê j̃

⎞
⎟⎟⎠ .

Next, since v̂i satisfies (C − λi I )̂vi = vi , it holds Bv̂i = B̃(vi + λi v̂i ), hence,

SG (
ϕ j ⊗ vi ϕ j̃ ⊗ vi ϕ j ⊗ v̂i ϕ j̃ ⊗ v̂i

)
⎛
⎜⎜⎝

e j
e j̃
ê j
ê j̃

⎞
⎟⎟⎠

= (
ϕ j ⊗ vi ϕ j̃ ⊗ vi ϕ j ⊗ v̂i ϕ j̃ ⊗ v̂i

)
⎛
⎜⎜⎝

(1 − δ j i ) −μ j

(1 − δ j̃ i ) −μ j̃
(1 − δ j i )

(1 − δ j̃ i )

⎞
⎟⎟⎠G ji

⎛
⎜⎜⎝

e j
e j̃
ê j
ê j̃

⎞
⎟⎟⎠ ,

and recalling (19),

RSG
(
ϕ j ⊗ vi ϕ j̃ ⊗ vi ϕ j ⊗ v̂i ϕ j̃ ⊗ v̂i

)
⎛
⎜⎜⎝

e j
e j̃
ê j
ê j̃

⎞
⎟⎟⎠

= (
φ j ⊗ vi φ j ⊗ v̂i

) (c2j −s2j
c2j −s2j

)
S jiG ji

⎛
⎜⎜⎝

e j
e j̃
ê j
ê j̃

⎞
⎟⎟⎠ .
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We now consider the coarse correction.

Sc
(
φ j ⊗ vi φ j ⊗ v̂i

) (ecj
êcj

)
= RSP

(
φ j ⊗ vi φ j ⊗ v̂i

) (ecj
êcj

)

= RS
(
ϕ j ⊗ vi ϕ j̃ ⊗ vi ϕ j ⊗ v̂i ϕ j̃ ⊗ v̂i

)
R�
j

(
ecj
êcj

)

= (
φ j ⊗ vi φ j ⊗ v̂i

)
R j S ji R

�
j

(
ecj
êcj ,

)
= (

φ j ⊗ vi φ j ⊗ v̂i
)
� j i

(
ecj
êcj ,

)

which implies

S−1
c

(
φ j ⊗ vi φ j ⊗ v̂i

) = (
φ j ⊗ vi φ j ⊗ v̂i

)
�−1

i j .

Putting all together, we get

T
(
ϕ j ⊗ vi ϕ j̃ ⊗ vi ϕ j ⊗ v̂i ϕ j̃ ⊗ v̂i

)
⎛
⎜⎜⎝

e j
e j̃
ê j
ê j̃

⎞
⎟⎟⎠

= (
ϕ j ⊗ vi ϕ j̃ ⊗ vi ϕ j ⊗ v̂i ϕ j̃ ⊗ v̂i

) (
G j i − R�

j �−1
j i R j S jiG j i

)
︸ ︷︷ ︸

Tji

⎛
⎜⎜⎝

e j
e j̃
ê j
ê j̃

⎞
⎟⎟⎠ .

This conclude the first part of the proof. We now consider the subspaces spanned by ϕ j ⊗vi ,
ϕ j ⊗ v̂i for i = 1, . . . , N − 1. Since Rϕ j = 0, we immediately have

T
(
ϕ j ⊗ vi ϕ j ⊗ v̂i

) (e j
ê j

)
= (

ϕ j ⊗ vi ϕ j ⊗ v̂i
)
G j i

(
e j
ê j

)
, G j i :=

(
δ j i −μ j

δ j i

)
,

and this proves the second claim. As third set of subspaces, we consider those spanned by
respectively (ϕ j ⊗ v2N−1,ϕ j̃ ⊗ v2N−1), and (ϕ j ⊗ v2N ,ϕ j̃ ⊗ v2N ). Following the same
calculations of the first part of the proof we obtain for i = 2N − 1 and i = 2N ,

T
(
ϕ j ⊗ vi ϕ j̃ ⊗ vi

) (e j
e j

)

= (
ϕ j ⊗ vi ϕ j̃ ⊗ vi

) (
Ĝ j i − R̂�

j �̂−1
j i R̂ j Ŝ j iG j i

)(
e j
e j

)

The proof of the fourth claim is identical to that of the second part and it is skipped for
the sake of brevity. By considering a matrix V that has column-block wise the basis for the
subspaces we considered, it is immediate to deduce that T V = V T̃ , where T̃ is a block
diagonal matrix with the blocks we computed.
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Remark 4 (Generalization to arbitrary pre- and post-smoothing steps) Lemma (5) can be
readily generalized to cover n1 pre-smoothing steps and n2 post-smoothing steps, but taking
suitable powers of the matrices G j i , Ĝ j i , Ĝ j i and Ĝ j i . For instance, the matrix Tji of part one
becomes

Tji := Gn2
j i (I4×4 − R�

j �−1
j i R j S ji )Gn1

j i .

Theorem 6 (Spectrum and convergence of the two-level algorithm) The spectrum of the
matrix T = Gn2(I − RS−1

c PS)Gn1 is

σ(T ) = {0} ∪⎧⎨
⎩
c4j (1 − δ j i )δ

n1+n2
j̃ i

+ s4j (1 − δ j̃ i )δ
n1+n2
j i

c4j (1 − δ j i ) + s4j (1 − δ j̃ i )
, j = 1, . . . ,

Nh + 1

2
− 1, i = 1, . . . , 2N

⎫⎬
⎭ .

(20)

Further, the spectral radius of T is strictly smaller than 1, hence the two-level collective
multigrid algorithm converges.

Proof Since T is similar to a block diagonal matrix, with blocks defined in Lemma 5, it
is sufficient to compute the spectrum of each block. Further, the spectrum of T is equal
to that of (I − RS−1

c PS)Gn1+n2 . Hence, we start considering the blocks Tji = (I4×4 −
R�
j �−1

j i R j S ji )Gn1+n2
j i . Direct calculations show that

(I4×4 − R�
j �−1

j i R j S ji ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − c4j (1−δ j i )

γ

c2j s
2
j (1−δ j̃ i )

γ
c2j s

2
j (1−δ j i )

γ
1 − s4j (1−δ j̃ i )

γ

X

1 − c4j (1−δ j i )

γ

c2j s
2
j (1−δ j̃ i )

γ
c2j s

2
j (1−δ j i )

γ
1 − s4j (1−δ j̃ i )

γ

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(21)

where the expression of X ∈ R
4×4 will not be needed in the following and γ := c4j (1 −

δ j i )+ s4j (1− δ j̃ i ). Since the product of two upper triangular matrices is still upper triangular,
it follows that

(I4×4 − R�
j �−1

j i R j S ji )Gn1+n2
j i =

(
K X̃

K

)
,

with

K := 1

γ

(
s4j (1 − δ j̃ i )δ

n1+n2
j i c2j s

2
j (1 − δ j̃ i )δ

n1+n2
j̃ i

c2j s
2
j (1 − δ j i )δ

n1+n2
j i c4j (1 − δ j i )δ

n1+n2
j̃ i

)
,

andwhose eigenvalues are κ
j i
1 = c4j (1−δ j i )δ

n1+n2
j̃ i

+s4j (1−δ j̃ i )δ
n1+n2
j i

c4j (1−δ j i )+s4j (1−δ j̃ i )
and κ2 = 0.Next,Gn1+n2

j i
and

Ĝn1+n2
j i

have trivially eigenvalues equal to δ
n1+n2
j i

, which are all equal to zero since μ j̄ = 0.
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Fig. 1 Top row: graphical representation of the spectrum of T for Nh = 31, N = 10, ν = 10−2 and
n1 = n2 = 1. The blue circles are obtained by computing numerically the eigenvalues of T . The red
crosses are obtained through the formulae of Theorem 6. Bottom row: comparison between the numerical and
theoretical convergence of the two-level algorithm

Further, direct calculations show that T̂ j i has also two eigenvalues equal, again, to κ
j i
1

and κ2. Taking into account the range of the indices of j and i for each blocks, we obtain
the characterization of the spectrum, and since |δ j i | < 1 and |δ j̃ i | < 1, we conclude that the
spectral radius of T is smaller than one.

Figure1 shows the spectrum of T where, for visualization purposes, we set Nh = 31 and
N = 10. In particular, the right panel shows that the spectrum is grouped into Nh−1

2 clusters,
in which each eigenvalue is repeated approximately 2N times (approximately, becauseC has
two eigenvalues, λ2N−1,2N slightly different from 0.5.)

Remark 5 (Extension of the analysis to the deterministic setting) Our analysis also represents
a novel approach to study the convergence of collective smoothing iterations in the case of
a deterministic PDE constraint by setting N = 1. Retracing the analysis, we observe that C
has only two eigenvalues equal to λ2N−1,2N and G is diagonal. T can then be diagonalized
more easily, and its spectrum is still characterized by (20), where the index i assumes only
the values 2N − 1 and 2N .
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Remark 6 (Extension to the two and three dimensional physical space) The analysis could be
extended to square or cube domains. Due to the Kronecker product structure between spatial
and probability quantities, only the matrix H would have to change, and its eigenvectors
would be the tensorized product of sine functions. Similarly, the action of the operators R̃
and P̃ would be represented by more complicated matrices.

This concludes our theoretical study of the convergence of the two-level collective multi-
grid algorithm. The next sections will focus on analyzing its numerical performances in
different cases.

3.2 Numerical Experiments

We now show the performance of Algorithm 1 and its robustness with respect to several
parameters for the solution of (10). We first consider the state equation

aω(yω, v) =
∫
D

κ(x, ω)∇ y(x, ω) · ∇v(x) dx

=
∫
D
u(x)v(x) dx, ∀v ∈ V , P-a.e. ω ∈ �, (22)

in the L-shaped domain D = (0, 1)2 \ (0.5, 1)
2
discretized with a regular mesh of squares

of edge h
 = 2−
, which are then decomposed into two right triangles. We choose κ(x, ω)

as an approximated log-normal diffusion field

κ(x, ω) = eσ
∑M

j=1

√
λ j b j (x)N j (ω) ≈ eg(x,ω), (23)

where g(x, ω) is a mean zero Gaussian field with Covariance function Covg(x, y) =
σ 2e

−‖x−y‖22
L2 . The parameter σ 2 tunes the variance of the random field, while L denotes the

correlation length. The pairs (b j (x), σ 2λ j ) are the eigenpairs of T : L2(D) → L2(D),

(T f )(x) = ∫
D Covg(x, y) f (y) dy, and N j

iid∼ N (0, 1). Assumption 1 is satisfied since
amin(ω) = (ess infx∈D κ(x, ω))−1 and amax(ω) = ‖κ(·, ω)‖L∞(D) are in L p(�) for every

p < ∞ [32]. The target state is yd = ey
2
sin(2πx) sin(2π y).

Table 1 shows the number of V-cycle iterations (Algorithm 1) and of GMRES itera-
tions preconditioned by the V-cycle to solve (10) up to a tolerance of 10−9 on the relative
(unpreconditioned) residual. Inside the V-cycle algorithm, we use n1 = n2 = 2 pre- and post-
smoothing iterations based on the Jacobi relaxation (12) with a damping parameter θ = 0.5
(the same value will be used for all numerical experiments in this manuscript). Numerically,
we observed that Gauss-Seidel relaxations lead to very similar results. The number of levels
of the V-cycle hierachy is denoted with NL . The size of the largest linear system solved per
sub-table is denoted by Nmax = (2N + 1)Nh .
The first four sub-tables are based on a discretization of the probability space using the
Stochastic Collocation method [33] on Gauss-Hermite tensorized quadrature nodes, since
for L2 = 0.5, setting M = 3 into (23) is enough to preserve 99% of the variance. In the
fifth sub-table we set L2 = 0.1 and use the Monte Carlo method, since we need M = 15
random variables to preserve 99% of the variance of the random field, and the Stochastic
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Table 1 Number of V-cycle (left) and preconditioned GMRES (right) iterations to solve (10) for a linear

quadratic problem on the L-shaped domain D = (0, 1)2\(0.5, 1)2 with a distributed control

ν 10−2 10−4 10−6 10−8

It. 18 | 11 19 | 13 19 | 15 19 | 15
Nh = 705, N = 125, NL = 3, σ 2 = 0.5, L2 = 0.5, Nmax = 1.77105.

σ 2 0.1 0.5 1 1.5

It. 19 | 13 19 | 13 20 | 13 20 | 13
Nh = 705, N = 125, NL = 3, ν = 10−4, L2 = 0.5, Nmax = 1.77105.

Nh (NL ) 161 (2) 705 (3) 2945 (4)

It. 19 | 13 19 | 13 20 | 13
N = 125, ν = 10−4, σ 2 = 0.5, L2 = 0.5, Nmax = 7.39105.

N 8 27 64 125

It. 19 | 13 19 | 13 19 | 13 19 | 13
Nh = 705, NL = 3, ν = 10−4, σ 2 = 0.5, L2 = 0.5, Nmax = 1.77105.

N 100 500 1000 2000

It. 22 | 16 22 | 15 22 | 15 22 | 15
Nh = 705, ν = 10−4, NL = 3, σ 2 = 1.5, L2 = 0.1, Nmax = 2.82106 .

Collocation method suffers the curse of dimensionality. Remark that the multigrid algorithm
is robust with respect to all parameters considered, namely the regularization parameter, the
variance of the random field, the number of levels as the fine grid is refined, and the number
of samples to discretize the probability space.

Wemention that a family of block diagonal preconditioners for saddle-point matrices such
as (2) were recently proposed in [11]. A detailed theoretical analysis was developed in [12]
for distributed controls, in a more general setting than the one considered in this manuscript
that covers a general finite element discretization of a d-dimensional domain, a general ellip-
tic bilinear form, and an additional variance term in the cost functional. Their main attractive
feature is the possibility to precondition fully in parallel the 2N PDEs. Nevertheless, their
convergence deteriorates as ν → 0 (as several preconditioners built on the same technique
see, e.g., [34, 35]), so that these preconditioners are hardly effective when ν is smaller than,
say, 10−3/10−4. The robustness of the multigrid algorithm as ν → 0 is definitely one of its
most interesting properties. In terms of mesh refinement, both approaches are robust, pro-
vided that the 2N PDEs constraints are suitable preconditioned (e.g., with multigrid) in the
approach of [11, 12]. Concerning the refinement of the discretization of the probability space,
both methods are robust, and interestingly, both convergence analyses show a dependence on
the approximated expected value of the square inverse of the coercivity constants of the stiff-
ness matrices. One current disadvantage of the multigrid algorithm is the lack of coarsening
with respect to the number of samples N , since the solution of the coarse problem might
represent a bottleneck for very fine discretizations. In these circumstances, the capability of
[11, 12] to handle the PDE constraints in parallel may be beneficial.
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Table 2 Number of V-cycle (left)
and preconditioned GMRES
(right) iterations to solve (10) for
a linear quadratic problem on the
square domain D = (0, 1)2 with
a local control acting on
D0 = (0.25, 0.75)2

ν 10−2 10−4 10−6 10−8

It. 17 | 11 20 | 13 26 | 16 26 | 18
Nh = 961, N = 125, NL = 3, σ 2 = 0.5, L2 = 0.5.

σ 2 0.1 0.5 1 1.5

It. 20 | 13 20 | 13 20 | 13 19 | 13
Nh = 961, N = 125, NL = 3, ν = 10−4, L2 = 0.5.

Nh (NL ) 225 (2) 961 (3) 3969 (4)

It. 19 | 12 20 | 13 20 | 13
N = 125, ν = 10−4, σ 2 = 0.5, L2 = 0.5.

N 8 27 64 125

It. 20 | 13 20 | 13 20 | 13 20 | 13
Nh = 961, NL = 3, ν = 10−4, σ 2 = 0.5, L2 = 0.5.

N 100 1000 2000

It. 20 | 14 21 | 15 21 | 14
Nh = 961, ν = 10−4, NL = 3, σ 2 = 1.5, L2 = 0.1.

Next,we consider the same problem (22)-(23) posed in the unit square domainD = (0, 1)2

with either a local control acting on the subsetD0 = (0.25, 0.75)2 ⊂ D, or aNeumannbound-
ary control acting on � = (0, 1) × {0} ⊂ ∂D. Tables 2 and 3 report the performances of the
multigrid algorithm for these two cases. We stress once more the excellent robustness and
efficiency of the multigrid algorithm in all regimes.

4 An Optimal Control ProblemUnder Uncertainty with Box-constraints
and L1 Penalization

In this section, we consider the nonsmooth OCPUU1

min
u∈Uad

1

2
E

[
‖yω(u) − yd‖2L2(D)

]
+ ν

2
‖u‖2L2(D)

+ β‖u‖L1(D),

subject to

aω(yω(u), v) = (u + f , v)L2(D), ∀v ∈ V , P-a-e. ω ∈ �,

Uad := {
v ∈ L2(D) : a ≤ u ≤ b almost everywhere in D

}
,

(24)

with a < 0 < b and ν, β > 0. Deterministic OCPs with a L1 penalization lead to optimal
controls which are sparse, i.e. they are nonzero only on certain regions of the domain D [36,
37]. Sparse controls can be of great interest in applications, because it is often not desirable,
or even impossible, to control the system over the whole domain D. For sparse OCPUU, we
mention [38] where the authors considered both a simplified version of (24) in which the
randomness enters linearly into the state equation as a force term, and a different optimization
problem whose goal is to find a stochastic control u(ω) which has a similar sparsity pattern

1 To keep a light notation, we omitted the continuous embedding operator from L2(�; V ) to L2(�; L2(D))

and from L2(D) to V ′, see Sect. 2 and, e.g., [25, Sect. 2.13].
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Table 3 Number of V-cycle (left)
and preconditioned GMRES
(right) iterations to solve (10) for
a linear quadratic problem on the
square domain D = (0, 1)2 with
a boundary control acting on
� = (0, 1) × {0}

ν 10−2 10−4 10−6 10−8

It. 17 | 14 22 | 15 23 | 17 21 | 16
Nh = 992, N = 125, NL = 3, σ 2 = 0.5, L2 = 0.5.

σ 2 0.1 0.5 1 1.5

It. 16 | 13 17 | 14 17 | 14 17 | 14
Nh = 992, N = 125, NL = 3, ν = 10−4, L2 = 0.5.

Nh (NL ) 240 (2) 992 (3) 4032 (4)

It. 16 | 12 17 | 14 21 | 16
N = 125, ν = 10−4, σ 2 = 0.5, L2 = 0.5.

N 8 27 64 125

It. 16 | 13 17 | 14 17 | 14 17 | 14
Nh = 992, NL = 3, ν = 10−4, σ 2 = 0.5, L2 = 0.5.

N 100 1000 2000

It. 18 | 15 19 | 16 20 | 16
Nh = 992, ν = 10−4, NL = 3, σ 2 = 1.5, L2 = 0.1.

regardless of the realization ω. Note further that the assumption ν > 0 does not eliminate
the nonsmoothness of the objective functional, but it regularizes the optimal solution u, and
is needed to use the fast optimation algorithm described in the following.

The well-posedness of (24) follows directly from standard variational arguments [24,
25], being Uad a convex set, ϕ(u) := β‖u‖L1(D) a convex function and the objective func-
tional coercive. In particular, the optimal solution u satisfies the variational inequality ([39,
Proposition 2.2])

(νu − S�(yd − S(u + f )), u − v) + ϕ(u) − ϕ(v) ≥ 0, ∀v ∈ Uad . (25)

Through a pointwise discussion of the box constraints and an analysis of a Lagrange
multiplier belonging to the subdifferential of ϕ in u, [36] showed that (25) can be equivalently
formulated as the nonlinear equation F(u) = 0, with F : L2(D) → L2(D) defined as

F(u) := u − 1

ν

(
max(0, T u − β) + min(0, T u + β)

−max(0, T u − β − νb) − min(0, T u + β − νa)

)
, (26)

where T : L2(D) � u → −S�(Su) + S�(yd − S f ) ∈ L2(D). Notice that F is nonsmooth
due to the presence of the Lipschitz functions max(·) and min(·). Nevertheless, F can be
shown to be semismooth [24], provided that T is continuously Fréchet differentiable, and
further Lipschitz continuous interpreted as map from L2(D) to Lr (D), with r > 2 [24,
40]. These conditions are satisfied also in our settings since T is affine and further the
adjoint variable pω, solution of (8) with z = yd − S(u + f ), lies in L2(�, H1

0 (D)) so that
T u = E [pω] ∈ H1

0 (D) ⊂ Lr (D), where r > 2 follows from Sobolev embeddings.
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Hence, to solve (26) we use the semismooth Newton method whose iteration reads for
k = 1, 2, . . . until convergence,

uk+1 = uk + duk, with G(uk)duk = −F(uk), (27)

G(u) : L2(D) → L2(D) being the generalized derivative of F . Using the linearity of T and
considering the supports of the weak derivatives of max(0, x) and min(0, x), we obtain that

G(u)[v] = v + 1

ν
χ(I+∪I−)S

�Sv,

where χ is the charateristic function of the union of the disjoint sets

I+ = {x ∈ D : 0 ≤ T u − β ≤ νb} and I− = {x ∈ D : νa ≤ T u + β ≤ 0} .

It is possible to show that the generalized derivativeG(u) is invertiblewith bounded inverse
for all u, the proof being identical to the deterministic case treated in [41]. This further implies
that the semismooth Newton method (27) converges locally superlinearly [40]. We briefly
summarize these results in the following proposition.

Proposition 7 Let the initialization u0 be sufficiently close to the solution u of (24). Then
the iterates uk generated by (27) converge superlinearly to u ∈ L2(D).

Introducing the supporting variables dykω and dpkw in L2(�; H1
0 (D)), the semismooth

Newton equation G(uk)duk = −F(uk) may be rewritten as the equivalent saddle point
system

aω(dykω, v) − (duk, v) = 0, ∀v ∈ V , P-a-e. ω ∈ �,

aω(v, dpkω) + (dykω, v) = 0, ∀v ∈ V , P-a-e. ω ∈ �,

(ν duk − χ(I+∪I−)E

[
dpkω

]
, v)L2(D) = −F(uk), ∀v ∈ L2(D).

(28)

Further, if we set y0 = S( f + u0) and p0 = S�(yd − y0), due to the linearity of S and S�, it
holds yk+1 = S(uk+1) = yk + dyk and similarly pk+1 = pk + dpk . Once fully discretized
and using the notation Ê [pω] = ∑N

j=1 ζ jp j , the optimality condition (26) can be expressed

through the nonlinear finite-dimensional map F : RNh → R
Nh ,

F(u) =u − 1

ν

(
max(0, Ê

[
pω

] − β) + min(0, Ê
[
pω

] + β)

− max(0, Ê
[
pω

] − β − νb) − min(0, Ê
[
pω

] + β − νa)
)
,

where the max(·) and min(·) functions act componentwise. Equation (28) leads to the saddle
point system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M A�
1

. . .
. . .

M A�
N

M −ζ1MHk . . . −ζN MHk

A1 −M
. . .

...

AN −M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dyk1
...

dykN
duk

dpk1
...

dpkN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
−F(uk)

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (29)
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where Hk ∈ R
Nh×Nh is a diagonal matrix representing the charateristic function χI+

k ∪I−
k
,

namely

(Hk)i,i = 1

ν
if i ∈ I+

k ∪ I−
k and (Hk)i,i = 0 if i /∈ I+

k ∪ I−
k ,

with

I+
k =

{
i : 0 ≤ Ê

[
pk

]
− β ≤ νb

}
and I−

k =
{
i : νa ≤ Ê

[
pk

]
+ β ≤ 0

}
. (30)

To derive the expression of H , we assumed that a Lagrangian basis is used for the finite
element space. Notice that (29) fits into the general form (2), and thus we use the collective
multigrid algorithm to solve it. Further, with the notation of (2), it holds

(G)i,i + d�
i diag(ai )

−1diag(ci )diag(ai )
−1ei = (M)i,i + (M)3i,i

N∑
j=1

ζ j (A j )
−2
i,i > 0

if i ∈ I+ ∪ I−, and

(G)i,i + d�
i diag(ai )

−1diag(ci )diag(ai )
−1ei = (M)i,i > 0,

if i /∈ I+ ∪ I−. The collective multigrid iteration is then well-defined.
The overall semismooth Newton Algorithm is summarized in Algorithm 2. At each itera-

tion we solve (29) using the collective multigrid algorithm (line 4) and update the active sets
given the new iteration (line 10). Notice that in order to globalize the convergence, we con-
sider a line-search step (lines 6-8) performed on the merit function φ(u) = √

F(u)�MF(u)

[42].

Algorithm 2 Globalized semismooth Newton Algorithm to solve F(u) = 0

Require: u0, Tol ∈ R
+, σ, ρ ∈ (0, 1).

1: y0j = A−1
j (M(f + u0)), p0j =

(
A�
j

)−1
(M(yd − y0j )), j = 1, . . . , N .

2: Set k = 0 and define I+0 and I−0 using (30).

3: while φ(uk ) > Tol do
4: Solve (29) calling Alg. 1 until convergence.
5: Set γ = 1
6: while φ(uk + γduk ) − φ(uk ) > −σφ(uk ) do
7: γ = ργ .
8: end while
9: Update uk+1 = uk + γduk , yk+1

j = ykj + γdykj , p
k+1
j = pkj + γdpkj , j = 1, . . . , N .

10: Update I+k and I−k using (30).
11: Set k = k + 1.
12: end while
13: return uk , ykj and p

k
j , j = 1, . . . , N .

4.1 Numerical Experiments

In this section we test the semismooth Newton algorithm for the solution of (26) and the
collective multigrid algorithm to solve the related optimality system (29). We consider the
random PDE-constraint (22) with the random diffusion coefficient (23) set on the L-squared
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Table 4 Number of semismooth Newton iterations (left), and average number of V-cycle (center) and precon-
ditioned GMRES (right) iterations (in brackets)

σ 2 0.1 0.5 1 1.5

It. 4 | 22.5 | 14 5 | 22.6 | 14.2 8 | 23.0 | 11.8 14.9 | 22.9 | 15.0
Nh = 705, ν = 10−4 β = 10−2, N = 125, NL = 3„ L2 = 0.5, b = 50, a = −50.

Nh (NL ) 161 (2) 705 (3) 2945 (4)

It. 5 | 22.0 | 15.2 5 | 22.6 | 14.2 5 | 22.2 | 14.0
ν = 10−4, β = 10−2, N = 125, σ 2 = 0.5, L2 = 0.5, b = 50, a = −50.

N 8 27 64 125

It. 5 | 21.0 | 13.0 5 | 21.6 | 14.0 5 | 22.0 | 14.0 5 | 22.6 | 14.2
Nh = 705, ν = 10−4, β = 10−2, σ 2 = 0.5, L2 = 0.5, b = 50, a = −50.

β 0 10−4 10−3 10−2

It. 4 | 22.5 | 14.8 4 | 22.5 | 14.5 5 | 22.4 | 14.8 5 | 22.6 | 14.2
Nh = 705, ν = 10−4, N = 125, σ 2 = 0.5, L2 = 0.5, b = 50, a = −50.

Table 5 Number of semismooth Newton iterations, of V-cycle iterations and of preconditioned GMRES
iterations (in brackets). In the second row, the semismooth Newton method starts from a warm-up initial guess
obtained through continuation

ν 10−2 10−4 10−6 10−8

It. 2 | 23.0 | 14.5 5 | 22.7 | 14.2 17 | 25.6 | 15.0 50 | 41.4 | 17.2
It. 2 | 23.0 | 14.5 4 | 22.7 | 14.2 5 | 22.25 | 15.4 8 | 58.8 | 20.9
Nh = 705, N = 125, NL = 3, σ 2 = 0.5, L2 = 0.5, β = 10−2, b = 50, a = −50.

domain. The semismooth iteration is stopped when φ(uk) < 10−9. The inner linear solvers
are stopped when the relative (unpreconditioned) residual is smaller than 10−11.

Table 4 reports the number of semismooth Newton iterations and in brackets the averaged
number of iterations of the V-cycle algorithm used as a solver (left) or as preconditioner for
GMRES (right). Table 4 confirms the effectiveness of themultigrid algorithm, which requires
essentially the same computational effort as in the linear-quadratic case.

More challenging is the limit ν → 0 reported in Table 5. The performance of both the
(globalized) semismooth Newton iteration and the inner multigrid solver deteriorates. The
convergence of the outer nonlinear algorithm can be improved by performing a continuation
method, namely we consider a sequence of ν = 10− j , j = 2, . . . , 8 and we start the j-th
problemusing as initial condition the optimal solution computed for ν = 10− j+1. Concerning
the inner solver, the stand-alone multigrid algorithm struggles since for small values of ν the
optimal control is of bang-bang type, that is satisfies u = a, u = b or u = 0 for almost every
point of the mesh (for ν = 10−8 only five nodes are nonactive at the optimum). The matrices
Hk are then close to zero, and the multigrid hierarchy struggles to capture changes at such
small scale. Nevertheless, the multigrid algorithm remains a very efficient preconditioner for
GMRES even in this challenging limit.

Figure2 shows a sequence of optimal controls for different values of β with and without
box-constraints. The optimal control for β = 0 and without box-constraints corresponds
to the minimizer of the linear-quadratic OCP (5). We observe that L1 penalization indeed
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Fig. 2 From left to right: optimal control computed for β ∈
{
0, 5 · 10−3, 5 · 10−2

}
with (top row) andwithout

(bottom row) box constraints: a = −50, b = 50

induces sparsity, since the optimal controls are more and more localized as β increases.
Numerically we have verified that for sufficiently large β, the optimal control is identically
equal to zero, a property shown in [36].

5 A Risk-Averse Optimal Control ProblemUnder Uncertainty

In this section we consider an instance of risk-averse OCPUU. This class of problems has
recently drawn lot of attention since in engineering applications it is important to compute a
control that minimizes the quantity of interest even in rare, but often troublesome, scenarios
[2, 6, 43, 44]. As a risk-measure [45], we use the Conditional Value-At-Risk (CVaR) of
confidence level λ ∈ (0, 1),

CVaRλ (X) := E [X |X ≥ VaRλ (X)] , ∀X ∈ L1(�;R),

that is, the expected value of a quantity of interest X given that the latter is greater than or
equal to its λ-quantile, here denoted by VaRλ (X). Rockafellar and Uryasev [46] proved that
CVaRλ (X) admits the equivalent formulation

CVaRλ (X) = inf
t∈R

{
t + 1

1 − λ
E
[
(X − t)+

]}
,

where (·)+ := max(0, ·), if the distribution of X does not have an atom at VaRλ (X). In order
to use tools from smooth optimization, we rely on a smoothing approach proposed in [2],
which consists in replacing (·)+ with a smooth function gε , ε ∈ R

+, such that gε → (·)+ in
some functional norm as ε → 0. Specifically, we choose theC2-differentiable approximation

gε(x) =

⎧⎪⎨
⎪⎩

0 if x ≤ − ε
2 ,

(x− 3
2 )3

ε2
− (x− ε

2 )4

2ε3
if x ∈ (− ε

2 ,
ε
2 ),

x if x ≥ ε
2 .
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Then, the smoothed risk-averse OCPUU is

min
u∈L2(D),t∈R

t + 1

1 − λ
E

[
gε

(
1

2
‖yω − yd‖2L2(D)

− t)

)]
+ ν

2
‖u‖2L2(D)

,

subject to

aω(yω, v) = (u + f , v) ∀v ∈ V , P-a.e. ω ∈ �,

(31)

where ν ∈ R
+ and λ ∈ [0, 1). Thewell-posedness of (31), the differentiability of its objective

functional, as well as bounds for the error introduced by replacing (·)+ with gε(·), have been
analyzed in [2]. Further, defining Qω = 1

2‖yω − yd‖2L2(D)
− t , the optimality conditions

form the nonlinear system,

aω(v, pω) − g′
ε(Qω)

1−λ
(yd − yω, v) = 0, ∀v ∈ V , P-a-e. ω ∈ �,

(ν u − E [pω] , v) = 0, ∀v ∈ L2(D),

aω(yω, v) − (u + f , v) = 0, ∀v ∈ V , P-a-e. ω ∈ �,

1 − 1
1−λ

E
[
g′
ε (Qω))

] = 0.

(32)

ApproximatingV andEwithVh and Ê, and letting x̃ = (y,u,p, t), the finite-dimensional dis-
cretization of (32) correponds to the nonlinear system F̃(̃x) = 0, where F̃ : R(2N+1)Nh+1 →
R

(2N+1)Nh+1,

F̃(̃x) =

⎛
⎜⎜⎝
F̃1(̃x)
F̃2 (̃x)
F̃3(̃x)
F̃4(̃x)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

M̃(y − Iyd) + A�p
νMu − MÊ

[
p
]

Ay − M(Iu + f)
1 − 1

1−λ
Ê
[
g′
ε(Qω)

]

⎞
⎟⎟⎠ , (33)

with A = diag(A1, . . . , AN ), I = [INh, . . . , INh] ∈ R
Nh×NhN , Ih being the identity matrix,

yd is the discretization of yd , and

M̃ = diag

(
g′
ε(Qω1)

1 − λ
M, . . . ,

g′
ε(QωN )

1 − λ
M

)
, with Qω j := 1

2
(y j − yd)�M(y j − yd) − t,

for j = 1, . . . , N .
A possible approach to solve (33) is to use a Newton method, which given xk =

(yk,uk,pk, tk) computes the corrections d̃x
k = (dyk,duk,dpk, dtk) solution of J̃k d̃x

k =
−F̃(̃xk), where

J̃k :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1(yk1, t
k) A�

1 −vk1
. . .

. . .
...

CN (ykN , tk) A�
N −vkN

νM −ζ1M . . . −ζN M
A1 −M

. . .
...

AN −M

−ζ1
(
vk1

)� . . . −ζN
(
vkN

)� Ê
[
g′′
ε (Qk

ω)
]

1−λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with

Qk
ωi

:= 1

2
(yki − yd)�M(yki − yd) − tk,
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Ci (yki , t
k) := 1

1 − λ

(
g′
ε(Q

k
ωi

)M + g′′
ε (Qk

ωi
)M(yki − yd)(yki − yd)�M

)
, (34)

vki := 1

1 − λ
g′′
ε (Qk

ωi
)M(yki − yd),

for i = 1, . . . , N . Unfortunately, J̃k can be singular away from the optimum, in particular
whenever Ê

[
g′′
ε (Qk

ω)
] = 0 which implies

g′′
ε

(
1

2
(ykj − yd)�M(ykj − yd) − tk

)
= 0, ∀ j = 1, . . . , N , (35)

which is not unlikely for small ε since supp(g′′
ε ) = (− ε

2 ,
ε
2 ). Splitting strategies have been

proposed (e.g. [47] in a reduced approach), in which whenever (35) is satisfied, an intermedi-
ate value of t is computed by solving F̃4(t; y,u,p) = 0 so to violate (35). In the next section,
we discuss a similar splitting approach. To speed up the convergence of the outer nonlinear
algorithm, we use a preconditioned Newton method based on nonlinear elimination [48]. At
each iteration we will need to invert saddle-point matrices like (2), possibly several times.
To do so, we rely on the collective multigrid algorithm.

5.1 Nonlinear Preconditioned NewtonMethod

Nonlinear elimination is a nonlinear preconditioning technique based on the identification
of variables and equations of F (e.g. strong nonlinearities) that slow down the convergence
of Newton method. These components are then eliminated through the solution of a local
nonlinear problem at every step of an outer Newton. This elimination step provides a better
initial guess for the outer iteration, so that a faster convergence is achieved [48, 49].

In light of the possible singularity of J̃, we split the discretized variables x̃ into x̃ = (x, t),
and we aim to eliminate the variables x to obtain a scalar nonlinear equation only for t . To
do so, we partition (32) as

F̃
(
x
t

)
=

(
F1(x, t)
F2(x, t)

)
=

(
0
0

)
, (36)

where F1 = (̃F1(x, t), F̃2(x, t), F̃3(x, t)) and F2(x, t) = F̃4(x, t). Similarly, J̃ is partitioned
into

J̃ =
(
J1,1 J1,2
J2,1 J2,2

)

whose blocks have dimensions J1,1 ∈ R
(2N+1)Nh×(2N+1)Nh , J1,2 ∈ R

(2N+1)Nh×1, J2,1 ∈
R
1×(2N+1)Nh , and J2,2 ∈ R. Notice that J1,1 is always nonsingular, while J2,1, J1,2 and J2,2

are identically zero if (35) is verified.
ThusF1 allowsus to define an implicitmap h : R → R

(2N+1)Nh , such thatF1(h(t), t) = 0,
so that the first set of nonlinear equations in (36) are satisfied. We are then left to solve the
nonlinear scalar equation

F(t) = 0, where F(t) := F2(h(t), t). (37)

To do so using the Newton method, we need the derivative of F(t) evaluated at t = tk which,
using implicit differentiation, can be computed as

F ′(tk) = J2,2(h(tk), tk) − J2,1(h(tk), tk)
(
J1,1(h(tk), tk)

)−1
J1,2(h(tk), tk).
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The nonlinear preconditioned Newton method is described in Algorithm 3, and consists
in solving (37) with Newton method. However, to overcome the possible singularity of J k2,2,

Jk1,2 and Jk2,1, we check at each iteration k if (35) is satisfied, and in the affirmative case

we update xk by solving F1(xk+1, tk) = 0 using Newton method, and update tk by solving
F2(xk, tk+1) = 0. Notice further, that each iteration of the backtracking line-search requires
to solve F1(h(t), t) = 0 using Newton method, thus additional linear systems with matrix
J1,1 must be solved.

We report thatwe also tried to eliminate t by computing themap l such that F2(x, l(x)) = 0,
while iterating on the variable x. This has the advantage that l can be evaluted very cheaply,
being a scalar equation. However, we needed many more iterations both of the outer Newton
method, and consequently of the inner linear solver. Thus, according to our experience, this
second approach was less efficient and appealing.

Algorithm 3 Nonlinear preconditioned Newton method to solve F̃(̃x) = 0.

Require: t0, Tol ∈ R
+, σ, ρ ∈ (0, 1).

1: Compute x0 = h(t0) solving F1(x0; t0) = 0 using the Newton method.
2: Set k = 0.
3: while |F(tk )| > Tol do
4: if (35) is satisfied then
5: Compute xk+1 and tk+1 solving F1(xk+1; tk ) = 0 and F2(xk+1; tk+1) = 0.
6: else
7: Compute Newton’s direction d = −(F ′(tk ))−1F(tk ).
8: Set γ = 1 and compute x = h(tk + γ d) solving F1(x; tk + d) = 0.
9: while |F(tk + γ d)| − |F(tk )| > −σ |F(tk )| do
10: Set γ = ργ .
11: Compute x = h(tk + γ d) solving F1(x; tk + γ d) = 0.
12: end while
13: Set tk+1 = tk + γ d, xk+1 = x, k = k + 1.
14: end if
15: end while
16: return tk+1 and xk+1.

5.2 Numerical Experiments

In this section we report numerical tests to asses the performance of the preconditioned
Newton algorithm to solve (37), and of the collective multigrid algorithm to invert the
matrix J1,1. We consider the random PDE-constraint (22) with the random diffusion coef-
ficient (23). Table 6 reports the number of outer and inner Newton iterations, and the
average number of V-cycle iterations and of preconditioned GMRES iterations to solve
the linear systems at each (inner/outer) Newton iterations. The outer Newton iteration is
stopped when |F(tk)| ≤ 10−6, the inner Newton method to compute h(·) is stopped
when max

(‖F1,1(xk; t)‖2/‖F1,1(x0; t)‖2, ‖F1,1(xk; t)‖2
) ≤ 10−8, and the linear solvers

are stopped when the relative (unpreconditioned) residual is smaller than 10−9.
In Table 6, the number of outer Newton iterations is stable, while the number of inner

Newton iterations varies between five and fifteen iterations per outer iteration. This is essen-
tially due to how difficult it is to compute the nonlinear map h(t) by solving F1(x; t) = 0 in
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Table 6 For each numerical experiment, we report from the left to the right: the number of outer preconditioned
Newton iterations, the total number of inner Newton iterations, the averaged number of V-cycle iterations and
the averaged number of preconditioned GMRES iterations

Nh (NL ) 161 (2) 705 (3) 2945 (4)

It. 5 | 62 | 23.0 | 13.9 6 | 79 | 28.0 | 15.5 6 | 79 | 26.2 | 14.8
ν = 10−4, N = 500, λ = 0.9, ε = 10−2, σ 2 = 1, L2 = 0.1.

N 500 1000 2000

It. 6 | 63 | 55.4 | 17.5 5 | 66 | 24.4 | 14.0 4 | 51 | 24.4 | 14.0
Nh = 705, ν = 10−4, λ = 0.95, ε = 10−2, σ 2 = 1, L2 = 0.1.

λ 0 0.5 0.95 0.99

It. 0 | 1 | 21.0 | 14.0 5 | 21 | 19.4 | 13.6 5 | 64 | 23.2 | 13.8 8 | 129 | 33.4 | 17.5
Nh = 705, N = 2000, ν = 10−4, ε = 10−2, σ 2 = 1, L2 = 0.1.

ε 10−1 10−2 10−3 10−4

It. 7 | 67 | 22.5 | 17.0 3 | 42 | 29.1 | 14.8 2 | 20 | > 80 | 27.9 1 | 15 | 58.0 | 55.6
Nh = 705, N = 1000, ν = 10−4, β = 0.95, σ 2 = 1, L2 = 0.1.

line (5), (8) and (11) of Algorithm 3. The average number of inner linear solver iterations is
quite stable across all experiments. The most challenging case is the limit ε → 0 in which
we used the solution to the optimization problem as a warmed-up initial guess for the next
smaller value of ε. Further, we emphasize that the top left blocks of J1,1 involve the matrices
Ci (yki , t

k) (see (34)) which contain a dense low-rank term if g′′
ε (Qk

ωi
) �= 0. As ε → 0, g′′

ε (·)
tends to a Dirac delta, so the dense term become dominant. Multigrid methods based on
pointwise relaxations are expected to be not very efficient for these matrices which may not
be diagonally dominant. The standard V-cycle algorithm indeed suffers, however the Krylov
acceleration performs better as it handles these low-rank perturbation with smaller effort. For
ε = 10−4, we sometimes noticed that the GMRES residual stagnates after 20/30 iterations
around 10−7/10−8, due to a loss of orthogonality in the Krylov subspace, and thus resulting
in higher number of iterations. We allowed a maximum number of 80 iterations per linear
system.

Figure3 compares the two optimal controls obtained minimizing either E [Q(yω)] or
CVaR0.99 [Q(yω)], and the cumulative distribution functions of Q(yω j ) computed on 8000
out-of-sample realizations. The risk-averse control indeed minimizes the risk of having large
values of Q(yω). The CVaR of level λ = 0.99 is respectively CVaR0.99 (Q(yω)) = 2.79 for
the risk-neutral control and CVaR0.99 (Q(yω)) = 0.90 for the risk-averse control.

6 Conclusion

We have presented a multigrid method to solve the large saddle point linear systems that
typically arise in full-space approaches to solve OCPUU. We further derived a detailed
convergence analysis that fully characterizes the spectrum of the two-level iteration matrix.
The algorithm has been tested as an iterative solver and as a preconditioner on three test cases:
a linear-quadratic OCPUU, a nonsmooth OCPUU, and a risk-averse nonlinear OCPUU.
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Fig. 3 Solution of the linear-quadratic OCP (top-left), solution of the smoothed risk-averseOCPwith λ = 0.99
(top-right), and cumulative distribution function of the quantity of interest for the controls computed with
λ ∈ {0, 0.5, 0.95, 0.99}

Overall, the multigrid method shows very good performances and robustness with respect to
the several parameters of the problems considered.
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