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A B S T R A C T

Road irregularities affect vehicle comfort by causing vertical and longitudinal acceleration os-
cillations. While the current ride comfort enhancement solutions are based on the compensation
of the vertical acceleration of the sprung mass, the compensation of the longitudinal dynamics
excited by road irregularities has been successfully explored only for in-wheel powertrains. The
scope of this study is to demonstrate that also on-board electric powertrains with torsional dy-
namics of the half-shafts have the potential for effective compensation, thanks to the road profile
preview. This paper presents a proof-of-concept nonlinear model predictive controller (NMPC)
with road preview, which is assessed with a validated simulation model of an all-wheel drive
electric vehicle. Three powertrain layouts are considered, with four in-wheel, four on-board, and
two on-board electric machines. The control function is evaluated along multiple manoeuvres,
through comfort-related key performance indicators (KPIs) that, for the four on-board layout
along a road step test at 40 km/h, highlight >80% improvements. Finally, the real-time imple-
mentability of the algorithms is demonstrated, and preliminary experiments are conducted on an
electric quadricycle prototype, with more than halved oscillations of the relevant variables.

1. Introduction

Vehicle drivability describes the complex interactions between the driver and the vehicle regarding the longitudinal acceleration
aspects in terms of vibration transmissibility and fast response to driver inputs, and therefore relates to the perceived safety and
comfort [1]. Road irregularities play a key role in ride comfort, as they involve undesirable variations in the magnitude and direction of
the force applied to the rolling wheel [2,3]. Such tyre force vibrations are transmitted to the unsprung mass, and then to the sprung
mass, through the suspension arms and bushings, as explained in [4–6], which causes vertical and longitudinal accelerations of the
unsprung and sprung masses [7]. While extensive literature deals with the attenuation of the effect of road irregularities on the vertical
sprung mass acceleration by means of active and semiactive suspension controllers [8–11], the longitudinal acceleration component
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List of Symbols

a, b Front and rear semi-wheelbases
a1, b1/2, c1/2,d1/2 Constant tuneable coefficients of the vertical suspension force of the shock absorbers
ac, bc Horizontal and vertical semi-axes of the ellipses of the enveloping model
Acar Frontal area of the vehicle
ad Shape factor of the exponential function expressing the stiffness and damping contributions of the half-shaft torque
c Ellipse shape parameter of the tyre enveloping model
Cd Aerodynamic drag coefficient
chs,ij Equivalent torsional damping of the half-shafts
cr,i Radial damping coefficient of the tyre
ct,i Tangential damping coefficient of the tyre
cx,i Longitudinal damping coefficient of the suspension
die Bottom profile of the ie ellipse of the enveloping model
f1,exp,ij, f2,exp,ij Exponential functions in the stiffness and damping contributions of the half-shaft torque
f1,ij, f2,ij Switching functions for the stiffness and damping contributions of the half-shaft torque
fa,ij, fb,ij Linear functions in the stiffness contribution of the half-shaft torque
fc,ij Linear function in the damping contribution of the half-shaft torque
Fc,x,ij Damping force contribution of the suspension bushings
Fc,z,ij Vertical suspension force caused by the shock absorber
fd() Prediction model function
Fdrag Aerodynamic drag force
Fk,x,ij Stiffness force contribution of the suspension bushings
Fk,z,ij Vertical suspension force of the spring
Fr,ij Radial force related to the tyre structure behaviour
Fr,x,ij, Fr,z,ij Longitudinal and vertical components of the radial force related to the tyre structure behaviour
froll, froll,0, froll,2 Rolling resistance coefficients
Froll,i Rolling resistance force
Ft,ij Tangential force related to the tyre structure behaviour
Ft,x,ij, Ft,z,ij Longitudinal and vertical components of the tangential force related to the tyre structure behaviour
Fx,ij Traction/braking tyre force
Fx,x,ij, Fx,z,ij Longitudinal and vertical components of the traction/braking tyre force
Fz,ap,ij Longitudinal load transfer contribution of the unsprung mass caused by the suspension anti-properties
Fz,b,i Equivalent vertical force of the sprung mass associated with the suspension anti-properties
Fz,b,ij Equivalent sprung mass force of the individual corner associated with the suspension anti-properties
g Gravitational acceleration
gd() System output function
hg Centre of gravity height
i = F,R Index or subscript indicating the front or rear axles
ie = F,R Index or subscript indicating the front or rear ellipses
ip Transmission ratio between the side gears and planetary gears of the differential
it Transmission gear ratio
J Cost function
j = L/R Index or subscript indicating the left or right sides
jc Initial time step of the prediction within the nonlinear optimal control problem
Jhs,ij Mass moment of inertia of the half-shaft
Jeq,1,i , Jeq,2,i Equivalent mass moment of inertia of the front drivetrain
Jeq,ij Equivalent mass moment of inertia of the drivetrain for the ‘4 on-board’ configuration
Jm Mass moment of inertia of the rotor of the electric motor (EM)
Jmgd,i Equivalent mass moment of inertia of the rotating parts of the motor, gearbox and differential case
Jp,i Mass moment of inertia of the planetary gears
Js,i Mass moment of inertia of the side gears
Jstage Stage cost contribution
Jterminal Terminal cost contribution
Ju,y,i Mass moment of inertia of the rotating parts of the unsprung mass of the individual corner
JWT Weight tuning cost function
k Discretisation step along the prediction horizon
khs,ij Equivalent torsional stiffness of the half-shafts
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kr,i Radial stiffness of the tyre
kt,i Tangential stiffness of the tyre
kx,i Longitudinal suspension stiffness
kz,i Vertical suspension stiffness
LbTm , UbTm Lower and upper motor torque limits
ls Relative horizontal distance between the cams of the enveloping model
mapp,i Apparent mass used in the prediction model of the ‘2 on-board’ configuration
mapp,ij Apparent mass used in the prediction model of the ‘4 on-board’ and ‘In-wheel’ configurations
mb Sprung mass
mm Individual EM mass
Mroll,ij Rolling resistance moment
mtot Total vehicle mass
mu,i Unsprung mass of the individual corner
Nh Number of steps of the prediction horizon
Niter Number of solver iterations
Np Number of steps of the preview horizon
P0 Effective road profile position of the enveloping model
pij Parameter vector
pk Parameter or external disturbance vector
pT Front-to-total anti-properties distribution factor
Q, Qi, Qij Weight matrices of the stage cost on the system outputs
Qmax, Qmin Matrices including the maximum and minimum values of the stage cost weights on the system outputs
Qt , Qt,i, Qt,ij Weight matrices of the terminal cost on the system outputs
R,Ri,Rij Weight matrices on the control inputs
Rlad,ij Laden wheel radius
Rmax, Rmin Matrices including the maximum and minimum values of the cost function weights on the control inputs
RMSȧx,b Root mean square error value of the longitudinal jerk of the vehicle
RMSẍb Root mean square error value of the longitudinal vehicle acceleration with respect to (w.r.t.) its steady-state reference
Rroll,i Rolling wheel radius
th Prediction horizon
Ths,c,ij Damping contribution of the half-shaft torque
Ths,ij Half-shaft torque
Ths,k,ij Stiffness contribution of the half-shaft torque
Ths,req,ij Requested half-shaft torque
Tm,corr,i, Tm,corr,ij Corrected motor torque
Tm,i, Ṫm,i Electro-magnetic EM torque and its time derivative for the ‘2 on-board’ configuration
Tm,ij, Ṫm,ij Electro-magnetic EM torque and its time derivative for the ‘4 on-board’ configuration
Tm,max, Tm,min Maximum and minimum values of the EM torque
Tm,req,i, Tm,req,ij Reference EM torque
tp Preview time
ts Sampling time
Tw,req,ij Reference wheel torque
U Control input sequence
uk Control input at the k-th optimal control problem step
umax, umin Upper and lower bounds of the control actions
VDVẍb Fourth power longitudinal acceleration vibration dose value
w1,WT Weight tuning cost function weight associated with RMSẍb
w2,WT Weight tuning cost function weight associated with VDVẍb
Wij Equivalent road displacement
wij, ẇij Effective road height of the enveloping model and its time derivative
x State vector
x0 Initial states of the nonlinear optimal control problem (OCP)
xb, ẋb, ẍb Longitudinal displacement, speed and acceleration of the sprung mass
ẋb,in Initial vehicle speed
xe,ie , ze,ie Longitudinal and vertical position of the ie ellipse of the enveloping model
xin Initial value of the state vector
xu, ẋu, ẍu Longitudinal displacement, speed and acceleration of the unsprung mass
zb, żb, z̈b Vertical displacement, speed and acceleration of the sprung mass
Ze,ie Vertical coordinates of the centre of the cam of the enveloping model in the global reference system
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and related compensation strategies are rarely mentioned. Although smaller than the vertical acceleration oscillations, the longitudinal
acceleration dynamics are not negligible, and have significant impact on comfort [12].

Because of their slow dynamics, internal combustion engines cannot quickly adjust the torque to counteract the effects of rough
roads. However, electric powertrains, in both their in-wheel and on-board set-ups, offer more responsive and accurate wheel torque
control performance [13]. In this respect, shaft-less drivetrains, i.e., with in-wheel machines, are the optimal solution, as they are not
subject to any form of torsional dynamics. This improves the performance of wheel slip and direct yaw moment controllers [14,15].
Nevertheless, a certain amount of vibration due to the electro-mechanical/magnetic coupling is inevitable during torque generation
[16–18]. The torque ripple of in-wheel machines, which is directly transmitted to the wheels, can also affect comfort on smooth road
surfaces [19,20], and can be attenuated through appropriate electric motor (EM) designs or control strategies [21–23]. In addition to
the vibration aspects of in-wheel machines, described in [24], the associated increase in the unsprung mass can result in a ride comfort
and road holding decay [25–28].

Only a few authors have discussed the option of using the powertrain torque to smoothen the longitudinal acceleration oscillations
excited by road irregularities, and all the applications are limited to internal combustion engines or in-wheel motors. In Bakirci et al. in
[29], the use of a proportional integral controller brings negligible benefit, due to the slow internal combustion engine response. In
[30], Fukudome presents a proportional controller based on the difference in longitudinal speed between the unsprung and sprung
masses in a vehicle with in-wheel powertrains. In [31] and [32], Walz et al. propose a feedforward controller that reduces the lon-
gitudinal acceleration oscillation over a known step-like road profile, only at less than 10 km/h of vehicle speed. A controller consisting

Fig. 1. Simplified schematic of the simulation and control environment for the three considered cases.

zk Predicted outputs along the prediction horizon
zNh Terminal value of the predicted outputs
zr Road height
zref ,Nh Terminal value of the reference outputs
zref ,k Value of the reference outputs along the prediction horizon
zu, żu, z̈u Vertical displacement, speed and acceleration of the unsprung mass
α Half of the equivalent torsional backlash of the half-shafts
Bij Equivalent road gradient
βy,ij Effective road slope of the enveloping model
ΔJhs,i Difference between the mass moments of inertia of the right and left half-shafts
ΔTm Motor torque correction
Δẍb,max Maximum longitudinal acceleration error
Δxr Longitudinal distance corresponding to the asymmetry in the step road profile application
Δθ̇s,i,Δθ̈s,i Angular speed and acceleration difference between the side gears
ηt Transmission efficiency
θ̇df , θ̈df Angular speed and acceleration of the differential case
θs, θ̇s, θ̈s Angular half-shaft displacement, speed and acceleration
θu, θ̇u, θ̈u Angular wheel displacement, speed and acceleration
ρair Air density
τm EM time constant
ϕij Angle associated with the suspension arm, related to the suspension anti-property coefficient
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of feedforward and feedback contributions is proposed in [33], tuned through the model in [6], and experimentally validated in [34].
Neither control contribution considers the current or expected road profile. The feedforward contribution is based on the longitudinal
acceleration demand and an inverse vehicle model. The feedback term includes a deadtime compensator observer to provide
robustness against communications delays. A promising methodology to enhance performance is represented by controller formula-
tions considering the preview information on the road profile ahead, which is already successfully used in production vehicles for the
operation of controlled suspension systems [35,11]. In this respect, the previous work of our research team [36] includes a nonlinear
model predictive controller (NMPC) of the longitudinal vehicle dynamics, based on the road profile preview, for electric vehicles (EVs)
with in-wheel motors. The results highlight that in-wheel powertrains, in conjunction with the knowledge of the road irregularities
ahead, can significantly reduce the longitudinal acceleration oscillations compared to benchmarking controllers, such as the one in
[30].

In summary, the compensation of the longitudinal vehicle dynamics induced by irregular roads has not been explored for the case of
on-board electric powertrains yet, in which the powertrain is part of the EV sprung mass. Since on-board solutions currently cover
almost the entire EV market, this is an important gap from the practical perspective. The reason is the complex torsional dynamics
caused by the half-shafts [37], and accentuated by the backlash in the transmission gears and driveline components [38,39]. Despite
the drivetrain dynamics can be attenuated by the anti-jerk controllers [40], they significantly affect the responsiveness and accuracy of
any wheel torque control algorithm, including the road preview controller in [36], whose prediction model considers the EM speed to
be the same as the wheel speed, and therefore is suitable only for in-wheel powertrain applications.

The scope of this study is to demonstrate that it is possible to achieve a significant attenuation of the longitudinal acceleration
oscillations caused by road irregularities also in case of on-board powertrains, by using NMPC algorithms concurrently embedding
road preview and consideration of the drivetrains dynamics. To this purpose, novel proof-of-concept NMPC formulations are presented
and evaluated for three four-wheel-drive EV architectures, including: i) four in-wheel direct drive EMs, referred to as ‘In-wheel’ in the
remainder, where the EMs are part of the unsprung mass; ii) four on-board powertrains, referred to as ‘4 on-board’, where the indi-
vidual EMs are mounted on the chassis, and connected to the respective wheel through a single-speed transmission system, outer and
inner constant velocity joints, and a half-shaft; and iii) two on-board – one per axle – EMs, connected to the wheels through a single-
speed gearbox and an open mechanical differential (‘2 on-board’).

The remainder is organized as follows: Section 2 describes the simulation environment; Section 3 deals with the novel NMPC
formulations; Section 4 discusses the selected road profiles and performance indicators; Section 5 analyses the simulation results;
Section 6 presents the real-time implementations and proof-of-concept experiments; finally, Section 7 summarises the main
conclusions.

2. Simulation and control environment

2.1. Simulation and control architecture

The simulation and control environment is reported in Fig. 1, and includes:

• The driver model, which, in the context of the purely longitudinal dynamics analyses of this study, defines the accelerator pedal
position, APP.

• The drivability map, which computes the reference wheel torque at the EV level, Tw,req, as a function of APP and vehicle speed.

Fig. 2. Considered EV powertrain architectures: (a) ‘In-wheel’; (b) ‘4 on-board’; and (c) ‘2 on-board’.
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• The front-to-total torque distribution controller, which determines, based on drivability, vehicle dynamics and powertrain effi-
ciency requirements, the individual reference motor torque values, Tm,req,i, for the ‘2 on-board’ case, or Tm,req,ij for the ‘In-wheel’ or
‘4 on-board’ configurations, where the subscript i indicates the front (F) or rear (R) axle, and j refers to the left (L) or right (R)
vehicle side. In the specific implementation, given the focus on the dynamic compensation of the longitudinal acceleration os-
cillations induced by road irregularities, a 50:50 reference front-to-rear motor torque distribution was selected for simplicity, since
– in case of identical front and rear powertrains – such torque ratio is energy-efficient for a broad range of operating conditions, see
the analyses in [41] and [42]. Future studies will generalise the assessment of the proposed controllers for varying torque dis-
tribution conditions.

• The longitudinal controllers, which are the focus of the analysis, and consist of: i) the enveloping model, which approximates the
tyre filtering capability when rolling over irregular roads. Starting from the vector of the vertical displacement of the road ahead in
points discretised according the NMPC prediction horizon, resulting from the road scanning sensor measurements, the enveloping
model provides the corresponding vectors with the equivalent road displacement, Wij, and road gradient, Bij, at the considered
corner; ii) two or four NMPC algorithms – one per EM – based on the considered powertrain architectures, according to a
distributed control approach. In fact, when the ‘2 on-board’ case is selected, two controllers, one per axle, provide the corrected EM
torque, Tm,corr,i, which corresponds to the ‘Front NMPC’ and ‘Rear NMPC’ blocks in Fig. 1. Vice versa, when the ‘In-wheel’ or ‘4 on-
board’ configurations are selected, four controllers, one per EV corner, provide the modified EM torque, Tm,corr,ij, see the grey NMPC
blocks in Fig. 1; and iii) weight scheduling blocks, which select the optimal NMPC cost function weights, Qi or Qij, Qt,i or Qt,ij, and
Ri or Rij, depending on the current operating conditions, e.g., in terms of vehicle speed, driving torque, and road profile ahead.

• The high-fidelity nonlinear vehicle model for control system assessment. The longitudinal vehicle dynamics model, implemented in
Matlab/Simulink, includes 15 degrees of freedom, i.e., the longitudinal, vertical, and rotational dynamics of each unsprung mass,
and the longitudinal, vertical, and pitch dynamics of the sprungmass. The nonlinearities of suspension springs and dampers, as well
as the compliance properties of the suspension bushings, which are especially relevant in the longitudinal direction, are also
considered for the specific controller assessment. A transfer function formulation simulates the electromagnetic EM torque

Table 1
Main vehicle and drivetrain parameters for the considered configurations.

Parameter Symbol Value Unit

Front semi-wheelbase a 1.473 [m]
Rear semi-wheelbase b 1.455 [m]
Centre of gravity height hg 0.631 [m]
Aerodynamic drag coefficient Cd 0.28 [-]
Frontal area Acar 2.65 [m2]

In-wheel

Sprung mass mb 2593 [kg]
Unsprung mass of the individual corner mu,F/R 65 [kg]
Mass moment of inertia of the rotating parts of the unsprung mass of the individual corner Ju,y,F/R 1.60 [kgm2]
Individual EM mass mm 35 [kg]
EM time constant τm 5.7 [ms]
EM rotor inertia Jm 0.210 [kgm2]
Maximum EM torque Tm,max 1500 [Nm]

4 on-board

Sprung mass mb 2789 [kg]
Unsprung mass of the individual corner mu,F/R 30 [kg]
Mass moment of inertia of the rotating parts of the unsprung mass of the individual corner Ju,y,F/R 1.39 [kgm2]
Equivalent gear ratio of the mechanical transmission it 4.5 [-]
Equivalent transmission efficiency ηt 0.96 [-]
Equivalent transmission backlash referred to the wheels 2α 1.26 [deg]
Individual EM mass mm 49 [kg]
EM time constant τm 5.7 [ms]
EM rotor inertia Jm 0.067 [kgm2]
Maximum EM torque Tm,max 350 [Nm]

2 on-board

Sprung mass mb 2707 [kg]
Unsprung mass of the individual corner mu,F/R 30 [kg]
Mass moment of inertia of the rotating parts of the unsprung mass of the individual corner Ju,y,F/R 1.39 [kgm2]
Equivalent gear ratio of the mechanical transmission it 8.0 [-]
Equivalent transmission efficiency ηt 0.96 [-]
Equivalent transmission backlash referred to the wheels 2α 3.44 [deg]
Individual EM mass mm 57 [kg]
EM time constant τm 25 [ms]
EM rotor inertia Jm 0.086 [kgm2]
Maximum EM torque Tm,max 400 [Nm]
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dynamics. The drivetrain model varies depending on the selected configuration, and includes the torsional dynamics of the relevant
components, e.g., half-shafts when present, and the driveline backlash [43]. An extensively experimentally validated
semi-empirical tyre model for ride comfort analysis, i.e., MF-Swift [44], has been interfaced with the vehicle model. MF-Swift
conjugates the Pacejka magic formula model for tangential tyre force computation, with appropriate enveloping and tyre struc-
ture model. In particular, the rigid ring option was selected for the simulations of the study, which adds 6 degrees of freedom for
each tyre, and describes the primary vibration modes of the tyre belt. These features enable accurate, fast and robust tyre-road
contact force and moment simulations for frequencies up to ~100 Hz. During the simulation activity, it was verified that the ef-
fect of the EM torque ripple is negligible, to the purpose of assessing the proposed algorithms, see also [40].

2.2. Case study electric vehicle configurations

The case study EV of the simulations of this study is a sport utility vehicle, used as one of the demonstrators of the European Horizon
2020 EVC1000 project [45]. In the remainder, the same EV is simulated with the drivetrain architectures in Fig. 2, where, for clarity of
representation, only the front axle is shown, since the rear one is identical. For the on-board powertrain configurations, the notations it
and ηt denote the transmission gear ratio and efficiency; khs and chs refer to the equivalent torsional stiffness and damping values of the
half-shafts; and the backlash parameter α is the half of the equivalent torsional clearance between the mating drivetrain components.
The nominal values of the main vehicle parameters for the different powertrain configurations are summarized in Table 1. The
in-wheel EM parameters are from the plate data of units considered within EVC1000, while the powertrain parameters for ‘4 on-board’
and ‘2 on-board’ are from the datasheets of the production units HVH250-090 and HVH250-115 by Cascadia Motion. As ‘2 on-board’
also includes the open differential model, a greater equivalent backlash is considered with respect to (w.r.t.) the ‘4 on-board’ layout.

The baseline version of the considered EV, i.e., with one independent on-board motor per axle, was equipped with: a) four
monoaxial accelerometers to measure the vertical acceleration of the unsprung masses; b) four 3-axis accelerometers installed on the
sprung mass at each corner of the vehicle; and c) a 3-axis gyroscope to capture the accelerations and angular velocities of the sprung
mass. All the sensors are from the Bosch Motorsport series. This setup was experimentally tested on a standard ride comfort road, as
shown in Fig. 3. The time domain results were converted into the frequency domain, and are expressed in terms of power spectral
densities (PSDs) in Fig. 4, which reports the measured vertical and longitudinal accelerations of the sprung mass, in proximity of one of
the front suspension strut attachments, as well as the corresponding and well-matching profiles from the high-fidelity vehicle model.
The in-wheel powertrain dynamics are those experimentally validated on an EM test rig in [36]. The on-board drivetrain model
embedded in the high-fidelity model is the same presented by Scamarcio et al. in [46], which has been experimentally validated along
tip-in manoeuvres, for multiple initial vehicle speeds and torque demands (see the original paper for the validation plots).

To highlight the different dynamic response of the nominal parametrisations of the three considered drivetrain configurations,
Fig. 5 reports the simulated time profiles of the longitudinal acceleration along a tip-in / tip-out test [47], implying positive and
negative steps of torque demand, Tw,req,ij, at each wheel, with a 1500 Nm amplitude. Because of its greater EM time constant and
equivalent backlash, ‘2 on-board’ exhibits the slowest time response. On the other end of the spectrum, ‘In-wheel’, thanks to the
smaller time constant of its electric machines as well as its shaft-less architecture, i.e., without transmission backlash and torsional
dynamics, exhibits the most reactive response, despite being characterised by greater mass and mass moment of inertia of the unsprung
masses.

2.3. Preliminary simulations: impact of road irregularities

To analyse the effects of uneven road surfaces on the vertical and longitudinal acceleration oscillations of the sprung mass, the
passive configurations (i.e., without any controller intervention being applied to the driver torque demand) of the considered EV
architectures – namely, ‘In-wheel’, ‘4 on-board’, and ‘2 on-board’ – were assessed on a typical uneven road for ride comfort assessment,
corresponding to scenario 2 in Section 4.2. The results in Fig. 6 indicate that the ratio between the peaks of the vertical and longitudinal
accelerations ranges approximately from 1 to 2, where the highest values are observed for the ‘In-wheel’ configuration, due to the
increased ratio between the unsprung and sprung masses. This highlights the significance of the longitudinal acceleration oscillations,
which, although being smaller in magnitude compared to the vertical acceleration oscillations, have a non-negligible impact on the

Fig. 3. The case study demonstrator vehicle at the Lommel proving ground (Belgium).
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vehicle ride comfort. The currently available ride comfort enhancement solutions primarily address the compensation of the vertical
dynamics of the sprung mass. On the contrary, the study of this paper focuses on the longitudinal vehicle dynamics excited by road
irregularities, through the control of on-board powertrains, thus offering potentially broad benefits, since the on-board solutions
dominate the electric vehicle market. The outcome is a new control functionality for on-board powertrain architectures, which can
complement the more conventional anti-jerk [48] and traction [49] controllers.

3. Nonlinear model predictive control formulation

3.1. Enveloping model

The vertical profile of the road can be obtained through road scanning sensors, which are beyond the scope of this study and already
equip production passenger cars with suspension controllers based on road preview, e.g., see the Magic Body Control system by
Mercedes-Benz. However, many significant ride events involve excitations generated by irregularities having similar dimension to the
tyre contact patch. In such conditions, the road profile measurements from the preview sensor cannot be directly considered as the

Fig. 4. Experimental validation of the simulation plant along the realistic road profile: PSDs of vertical and longitudinal accelerations of the sprung
mass at the front axle.

Fig. 5. Profiles of the longitudinal acceleration of the sprung mass for the three nominal parametrisations of the considered powertrain archi-
tectures, along a torque tip-in / tip out test, defined by the reference wheel torque profile at the individual corner, Tw,req,ij.
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Fig. 6. Road elevation profile (zr) and the related vertical and longitudinal accelerations of the sprung mass (z̈b and ẍb ), for ‘In-wheel’, ‘4 on-board’,
and ‘2 on-board’, on a considered ride comfort road, at a vehicle speed of ~40 km/h.

Fig. 7. Schematic of the two-cam tandem configuration of the selected tyre enveloping model, generating the effective road profiles for the NMPCs.
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inputs for the simplified dynamic model of the tyre structure, embedded in the NMPCs, especially considering the need – peculiar to the
proposed control function – for estimating the longitudinal component of the force excitation associated with the road irregularity.
Indeed, a further model describing the geometric filtering behaviour of the tyre contact patch is required. To this purpose, the tandem
enveloping model with elliptical cams proposed by Schmeitz in [50] is used to process the raw road profile data, within the online
algorithm of the controller. The algorithmwas calibrated based on theMF-Swift model embedded in the high-fidelity nonlinear vehicle
model for control system assessment, i.e., the plant, and represents a good trade-off between accuracy and computational effort. The
enveloping model adopts a geometric formulation that does not imply any numerical integration in the time domain, and outputs the
effective road profile variables, namely the effective road height w and slope βy, provided as external inputs to the NMPCs. The
tyre-road contact interface consists of two moving, rigid and identical ellipses, see Fig. 7. Such elliptical cams move longitudinally
without rotating, while they independently translate vertically according to the road profile, and maintain a constant relative hori-
zontal distance ls.

The effective road profile is determined at Po, which has the same longitudinal coordinate as the wheel centre. w and βy are
functions of the longitudinal wheel position xu, and depend on the vertical coordinates, Ze,F and Ze,R, of the centres of the front and rear
cams in the global reference system:

w(xu) =
Ze,F + Ze,R

2
− bc

tanβy(xu) =
Ze,F − Ze,R

ls
(1)

where bc is the vertical semi-axis of the ellipses. The front ellipse formulation is:
[
xe,F
ac

]c

+

[
ze,F
bc

]c

= 1 (2)

where ac is the horizontal semi-axis of the ellipse; c is the ellipse shape parameter; and xe,F and ze,F are the axes of the reference system
associated with the front ellipse. The bottom profile of the front ellipse, dF, can be described as a function of xe,F ∈ [ − ac, ac]:

Fig. 8. Comparison of the effective road profiles from the MF-Swift tyre model and the simplified enveloping tandem model, receiving as inputs
(Reference) the profiles of: (a) a 20 mm positive step; and (b) an uneven ride comfort assessment road.
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dF
(
xe,F

)
= bc

{

1 −

[⃒⃒xe,F
⃒
⃒

ac

]c}1
c

(3)

The corresponding distance for the rear ellipse, dR, is calculated with the same method. Ze,F and Ze,R are obtained as the highest
values of the sum of the road height zr and the distances dF and dR over the feasible range for xe,F, with xe,R ∈ [ − ac, ac], for a given
longitudinal position of the wheel xu:

Ze,F = max
(
zr
(
xu, xe,F

)
+ dF

(
xe,F

))

Ze,R = max
(
zr
(
xu, xe,R

)
+ dR

(
xe,R

))
(4)

where zr depends on the longitudinal position of the wheel and the local longitudinal coordinate in the ellipse reference system.
The two-cam algorithm is calibrated based on the MF-Swift model integrated in the high-fidelity nonlinear vehicle model, which

represents the control system assessment plant. The calibration strikes a balance between accuracy and computational efficiency. To
assess the reliability of the simplified enveloping model, Fig. 8 displays the road elevation profile from a look-up table (the acquisition
method of the road scanning sensor information is outside the scope of this research), indicated as Reference (corresponding to the

Fig. 9. (a) Three-dimensional schematic of the prediction model of the front axle dynamics of the ‘2 on-board’ configuration; and (b) Side view of an
individual unsprung mass model, including the tyre structure model.
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road scanning sensor output before the filtering carried out by the selected tyre model formulation), along with the outputs of the MF-
Swift model (i.e., the plant) and the two-cam enveloping model (i.e., the formulation within the control structure), in terms of effective
road profile for two scenarios: (a) the 20 mm positive step, referred to as scenario 1 in the results; and (b) the uneven ride comfort
assessment road, referred to as scenario 2 in the remainder. The excellent match between the two-cam enveloping model and the MF-
Swift model confirms the reliability and accuracy of the two-cam enveloping model in absence of road profile variations in the
transversal direction of the contact patch.

3.2. Prediction models for ‘2 on-board’

The prediction models of ‘2 on-board’ are an upgrade of those for in-wheel powertrains in [36], where the enhancement focuses on
embedding the torsional drivetrain dynamics typical of the on-board architecture. Each prediction model – see the schematic for the
front half of the vehicle in Fig. 9 – of the ‘2 on-board’ case includes: a) the rotational dynamics of the two involved wheels, the
longitudinal and vertical dynamics of the two unsprung masses, and the vertical dynamics of the sprung mass, all of them for the
relevant front or rear half of the vehicle; b) the longitudinal dynamics of the remaining portion of the whole vehicle, i.e., corresponding
to the total sprung mass and the unsprung masses of the other axle w.r.t. the one of the considered prediction model; and c) the axle
drivetrain and differential dynamics. Hence, from a mechanical viewpoint, the system is characterized by two degrees of freedom
(DoFs) for the sprung mass, six DoFs for the unsprung masses, and two DoFs for the differential dynamics.

For computational efficiency, since the focus of the prediction is to compute the longitudinal dynamics of the unsprung and sprung
masses of the considered axle, the model neglects the roll, pitch and yaw dynamics, as well as the longitudinal, vertical and rotational
dynamics of the unsprung masses of the other axle. Focusing solely on the dynamics of a single axle or corner within the prediction
model markedly decreases the number of states, control inputs, and parameters required for the individual controller, compared to a
centralized architecture. This streamlined approach enhances computational efficiency, thereby facilitating the real-time imple-
mentation of the resulting implicit NMPCs. Nevertheless, the reference wheel torque values of the other axle are provided to the
prediction model of the considered EV half as external inputs, to ensure the realism of the predicted average longitudinal acceleration
profile, while the high-frequency disturbances related to the road irregularities are considered only for the two corners of the involved
axle. The torsional drivetrain dynamics are included, through the consideration of: i) the electro-magnetic torque dynamics of the EM
via a first-order transfer function; ii) a formulation of the open differential behaviour; and iii) appropriate mass moments of inertia
linked by torsionally compliant elements [37], including stiffness, damping, and equivalent mechanical backlash. Thus, the system
model also considers the typical drivetrain shocks associated with abrupt changes in the delivered torque.

The dynamics of the tyre structure are modelled through two couples of spring-damper systems, the first one radial, with stiffness
kr,F and damping coefficient cr,F , and the second one tangential, with stiffness kt,F and damping coefficient ct,F. The elements of the tyre
structure, which transmit their forces directly to the non-rotating part of the unsprungmass, are supposed to be in contact with the road
through a frictionless roller system. The longitudinal tyre force caused by the longitudinal tyre slip is independently applied to the
rotating part of the unsprung mass, and then to its non-rotating part through a bearing system, see Fig. 9(b). This set-up not only
provides acceptable accuracy but also significantly simplifies the formulations in comparison with the MF-Swift tyre model embedded
in the high-fidelity vehicle model for control system assessment.

The following equations describe the prediction model dynamics for the front half of the vehicle.

• Vertical force balance of the front sprung mass:

z̈b,F =
[
− Fk,z,FL − Fc,z,FL − Fk,z,FR − Fc,z,FR + Fz,b,F

] 1
mb

a+ b
b

(5)

where z̈b,F is the vertical acceleration of the front sprung mass; and Fk,z,Fj and Fc,z,Fj are the vertical suspension forces of the spring
and shock absorber. Fk,z,Fj is linearised as:

Fk,z,Fj = kz,F
[
zb,F − zu,Fj

]
(6)

where kz,F is the vertical suspension stiffness; and zb,F and zu,Fj are the vertical displacement of the front sprung and unsprung
masses. Fc,z,Fj is approximated with a continuous nonlinear function:

Fc,z,Fj = a1 + b1atan
(

c1
[

żb,F − żu,Fj
]

+ d1
)

+ b2atan
(

c2
[

żb,F − żu,Fj
]

+ d2
)

(7)

with a1, b1, b2, c1, c2, d1 and d2 are constant tuneable coefficients. Fz,b,F is the equivalent vertical force on the sprungmass associated
with the suspension anti-properties (e.g., anti-lift, anti-dive, and anti-squat) contributions, and is calculated as:

Fz,b,F = Fz,b,FL + Fz,b,FR = mtotẍb
hg

a+ b
− Fz,ap,FL − Fz,ap,FR (8)

where mtot = mb + 2mu,F + 2mu,R is the total vehicle mass; ẍb,F is the longitudinal acceleration of the sprung mass; and Fz,ap,FL and
Fz,ap,FR are the longitudinal load transfer contributions on the unsprung masses caused by the suspension anti-properties, which are
calculated as:
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Fz,ap,Fj =
1
2
pTmtot ẍbtanϕFj (9)

where pT is the front-to-total distribution ratio of the wheel torque; ϕFj is the angle associated with the suspension arm, which is
related to the suspension anti-property (-dive, -squat, etc..) coefficient.

• Vertical force balance of each front unsprung mass:

z̈u,Fj =
[
Fc,z,Fj+ Fk,z,Fj + Fr,z,Fj − Ft,z,Fj+ Fx,z,Fj + Fz,ap,Fj

] 1
mu,F

(10)

where mu,F is the unsprung mass of the considered front corner; Fx,z,Fj (see also Fig. 9(b)) is the vertical component of the traction/
braking tyre force Fx,Fj, computed through version 5.2 of the Magic Formula [51] for zero slip angle conditions in this
proof-of-concept implementation; Fr,z,Fj and Ft,z,Fj are the vertical components of the radial and tangential forces, Fr,Fj and Ft,Fj,
related to the tyre structure behaviour. By neglecting the time derivative of βy,Fj, Fr,z,Fj and Ft,z,Fj are calculated as:

Fr,z,Fj = Fr,Fjcosβy,Fj = kr,F
[
wFj − zu,Fj

]
cosβy,Fj + cr,F

[

ẇFj − żu,Fj
]

cosβy,Fj

Ft,z,Fj = Ft,Fjsinβy,Fj = kt,F
[
wFj − zu,Fj

]
sinβy,Fj + ct,F

[

ẇFj − żu,Fj
]

sinβy,Fj (11)

where kr,F and kt,F are the radial and tangential stiffness of the tyre; and cr,F and ct,F are the respective damping coefficients.
• Longitudinal force balance of the sprung mass of the whole EV, computed from the viewpoint of the front prediction model, hence
the notation ẍb,F for the acceleration:

ẍb,F =

[

− Fk,x,FL − Fc,x,FL − Fk,x,FR − Fc,x,FR+
∑

j=L,R

Ths,req,Rj
Rlad,Rj

− Fdrag − Froll,R

]
1

mapp,F
(12)

where Rlad,Rj is the rear laden wheel radius; and Ths,req,Rj is the requested half-shaft torque at the j rear wheel, i.e., Ths,req,Rj =
Tm,req,R ηt it/2, with it,R being the rear transmission ratio. Fk,x,Fj and Fc,x,Fj are the stiffness and damping force contributions of the
front suspension bushings, which transmit the longitudinal forces to the sprung mass:

Fk,x,Fj = kx,F
[
xb,F − xu,Fj

]

Fc,x,Fj = cx,F
[

ẋb,F − ẋu,Fj
]

(13)

Fdrag is the aerodynamic drag force:

Fdrag =
1
2

ρairCdAcarẋ
2
b,F (14)

where ρair is the air density; Cd is the aerodynamic drag coefficient; and Acar is the frontal vehicle area. Froll,R is the rear rolling
resistance force:

Froll,R = frollmtot
a

a+ b
g, with froll = froll,0 + froll,2ẋ2b,F (15)

where froll is the rolling resistance coefficient, given by the sum of a constant term (froll,0) and a contribution (froll,2ẋ2b,F) that is a function
of speed, and g is the gravitational acceleration. In (12), the apparent mass mapp,F is the equivalent mass that includes the effect of the
translating and rotating parts of the vehicle that are not modelled in detail within the individual prediction model, i.e., the other
wheels. Hence, mapp,F accounts for the unsprung masses as well as the mass moments of inertia (Ju,y,R) of the rotating parts of the rear
corners;

mapp,F = mb + 2mu,R + 2
Ju,y,R
R2
R

(16)

where RR is the rolling radius of the rear wheels.

• Longitudinal force balance of each front unsprung mass:
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ẍu,Fj =
[
Fc,x,Fj + Fk,x,Fj − Fr,x,Fj − Ft,x,Fj+ Fx,x,Fj

] 1
mu,F

(17)

where Fr,x,Fj, Ft,x,Fj, and Fx,x,Fj are the longitudinal components of Fr,Fj, Ft,Fj, and Fx,Fj.
• Moment balance of each front wheel:

θ̈u,Fj =
[
Ths,Fj − Fx,FjRlad,Fj − Mroll,Fj

] 1
Ju,y,F

(18)

where θ̈u,Fj is the angular wheel acceleration; and Mroll,Fj is the rolling resistance moment. The half-shaft torque Ths,Fj is modelled
through stiffness and damping contributions, Ths,k,Fj and Ths,c,Fj:

Ths,Fj = Ths,k,Fj + Ths,c,Fj (19)

To account for the effect of the equivalent angular drivetrain backlash, the spring and damper torque expressions are approximated
as:

Ths,k,Fj = fa,Fjf1,Fj + fb,Fjf2,Fj

Ths,c,Fj = fc,Fjf1,Fj + fc,Fjf2,Fj (20)

where fa,Fj, fb,Fj and fc,Fj are linear functions:

fa,Fj = khs,Fj
[
θs,Fj − θu,Fj+ α

]

fb,Fj = khs,Fj
[
θs,Fj − θu,Fj − α

]

fc,Fj = chs,Fj
[

θ̇s,Fj − θ̇u,Fj
]

(21)

where khs,Fj and chs,Fj are the half-shaft stiffness and damping coefficient; α is half of the equivalent angular backlash; and θs,Fj and θu,Fj
are the angular displacement of the half-shafts and wheels. Moreover, f1,Fj and f2,Fj are switching functions described through expo-
nential formulations:

f1,Fj =
1
2

[
1 − f1,exp,Fj
1+ f1,exp,Fj

]

+
1
2

f2,Fj =
1
2

[
1 − f2,exp,Fj
1+ f2,exp,Fj

]

+
1
2

with:

f1,exp,Fj = exp
(
2ad

{
α −

[
θs,Fj − θu,Fj

]})

f2,exp,Fj = exp
(
2ad

{
α+

[
θs,Fj − θu,Fj

]})
(22)

where ad is the shape factor of the function, i.e., the higher is ad, the sharper is the shape of the function. ad is selected according to a
trade-off between an accurate approximation of a linear piecewise function, which would require a high value of ad, and the
requirement of preventing the system from becoming numerically stiff, and generating numerical errors in the solution of the nonlinear
optimal control problem, which would need a low value of ad. The nominal value of the equivalent angular backlash, α, see Table 1, is
taken from the literature [52]. The angular displacement θs,Fj of the sun gears of the mechanical differential is computed through the
Willis equations:

θ̇s,FL = θ̇df ,F −
1
2

Δθ̇s,F

θ̇s,FR = θ̇df ,F +
1
2

Δθ̇s,F (23)

where θ̇df ,F is the angular speed of the differential case; and Δθ̇s,F is the angular speed difference between the sun gears.

• Moment balance equations of the front drivetrain with open differential [40,53]:
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θ̈df ,F =

[

4Jeq,2,FitntTm,F −
∑

j=L,R
4Jeq,2,FThs,Fj + ΔJhs,FThs,FR − ΔJhs,FThs,FL

]
2

8Jeq,1,F Jeq,2,F − ΔJ2hs,F
(24)

Δθ̈s,F =

[

− 2Jeq,1,FThs,FR+ 2Jeq,1,FThs,FL − ΔJhs,FitntTm,F +
∑

j=L,R
ΔJhs,FThs,Fj

]
4

8Jeq,1,FJeq,2,F − ΔJ2hs,F
(25)

where ΔJhs,F is the difference between the mass moments of inertia of the front right and front left half-shafts; it,F is the front trans-
mission ratio; and nt,F is the front transmission efficiency. The equivalent mass moments of inertia of the front drivetrain, Jeq,1,F and
Jeq,2,F, are calculated as:

Jeq,1,F = Jmgd,F + 2Js,F +
∑

j=L,RJhs,Fj
2

Jeq,2,F = Js,F +
∑

j=L,RJhs,Fj
4

+ i2pJp,F (26)

where Jhs,FR and Jhs,FL are the moments of inertia of the front right and front left half-shafts; Js,F and Jp,F are the moments of inertia of the
sun gears and planetary gears of the front differential; ip is the transmission ratio between sun gear and planetary gear; and Jmgd,F is the
equivalent moment of inertia of the rotating parts of the front motor, gearbox and differential case.

• Electro-magnetic torque dynamics of the EM:

Ṫm,F =
[
Tm,corr,F − Tm,F

] 1
τm,F

(27)

where Tm,F is the actual electro-magnetic motor torque; and τm,F is the time constant of the EM.
In this and the following prediction model formulations, the longitudinal relaxation dynamics of the tyres are neglected, to reduce

the computational effort without significantly compromising performance.

3.3. Prediction model for ‘4 on-board’

The prediction models of ‘4 on-board’ are similar to those of ‘2 on-board’, with the following differences: a) the individual pre-
diction model considers the dynamics of only one corner, rather than those of the two corners of the same axle; and b) the absence of
the mechanical differential dynamics. As a consequence, the system is characterised by two DoFs for the sprung mass, three DoFs for
the unsprung mass of the considered corner, and one DoF for the drivetrain dynamics. Given the reduced number of meshing gears and
coupling elements compared to ‘2 on-board’, a smaller nominal value of the equivalent backlash is considered, see Table 1. For
conciseness, only the equations that significantly change w.r.t. the ‘2 on-board’ case are explicitly reported for the front left corner.

• Vertical force balance of the sprung mass:

z̈b,FL =
[
− Fk,z,FL − Fc,z,FL

] 2
mb

a+ b
b

(28)

which considers the contributions of the single corner.

• Longitudinal force balance of the sprung mass:

ẍb,FL =
[

− Fk,x,FL − Fc,x,FL+
Ths,req,FR
Rlad, FR

+
Ths,req,RL
Rlad,RL

+
Ths,req,RR
Rlad,RR

− Fdrag − Froll,R −
Froll,F
2

]
1

mapp,FL
(29)

in which mapp accounts for the other three corners:

mapp,FL = mb + 2mu,R +mu,F + 2
Ju,y,R
R2
R

+
Ju,y,F
R2
F

(30)
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and Froll,F is the rolling resistance force of the front axle:

Froll,F = frollmtot
b

a+ b
g (31)

• Moment balance of the drivetrain:

θ̈s,FL =
[
it,Fnt,FTm,FL − Ths,FL

] 1
Jeq,FL

(32)

where θ̈s,FL is the angular acceleration of the front left transmission output shaft; Jeq,FL is the equivalent mass moment of inertia of the
drivetrain, including the contributions from the EM rotor and transmission shafts; and Tm,FL is the actual electro-magnetic motor
torque. The wheel moment balance and EM torque dynamics formulations are the same as for ‘2 on-board’.

3.4. Prediction model for ‘In-wheel’

The prediction model of the ‘In-wheel’ case is the same as for ‘4 on-board’, with the exception of the torsional drivetrain dynamics,
which are absent, since the EM rotor can be considered rigidly connected to the wheel. Hence, (18) is modified by replacing the half-
shaft torque Ths directly with the actual electromagnetic motor torque Tm:

θ̈u,Fj =
[
Tm,Fj − Fx,FjRlad,Fj − Mroll,Fj

] 1
Ju,y,F

(33)

The detailed description of the formulation is reported in [36].

3.5. Nonlinear optimal control problem

At each time step jc, the NMPC algorithm computes an optimal control input sequence U that minimizes a cost function J, ac-
counting for the prediction of the system dynamics over a predefined horizon th, while considering system constraints. The discrete
form of the optimal control problem (OCP) formulation is:

argmin
U

J := Jterminal + Jstage =
1
2
‖ zNh − zref ,Nh ‖

2
Qt +

1
2

∑jc+Nh − 1

k=jc

[
‖ zk − zref ,k ‖2Q+‖ uk ‖2R

]

s.t.

x0 = xin

xk+1 = fd(xk, uk, pk)

zk = gd(xk, uk, pk)

umin ≤ uk ≤ umax (34)

where J consists of a terminal cost, Jterminal, which aims to minimise the response error at the end of th, and a stage cost contribution,
Jstage, which aims to optimise the response along th; k indicates a step along the prediction horizon th;Nh is the number of steps of th, i.e.,
th = Nh ts, with ts being the sampling time used for discretising the OCP; z is the vector of the predicted system outputs, whose cor-
responding reference vector is zref ; Q, Qt and R are positive diagonal weighting matrices; x is the state vector; u is the control input

vector; U =
[
ujc ujc+1… ujc+Nh − 1

]T is the decision variable vector; p is the parameter or external disturbance vector; xin is the initial
value of the state vector; fd is the vector field describing the discretised version of the prediction models in Sections 3.2-3.4, which are
arranged in a nonlinear state-space form; gd is the function expressing the system outputs; and umin and umax are the bounds on the
control action u.

In the specific implementations, z consists of ẍb , which is the main variable related to the longitudinal vehicle comfort level:

zk =
[

ẍb,k
]

(35)

while its reference value zref is:
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zref ,k =
[

ẍb,ref ,jc
]

(36)

where ẍb,ref ,k is the target value of the longitudinal acceleration of the vehicle body at each time step, calculated from the longitudinal
force balance at the vehicle level:

ẍb,ref =

[
∑

i=F,R

∑

j=R,L

Tw,req,ij
Rlad,ij

− Froll − Fdrag

]
1

mtot + 2 Ju,y,R
R2R

+ 2 Ju,y,F
R2F

(37)

where Tw,req,ij is the reference wheel torque (Tw,req,ij = Ths,req,ij for the on-board cases). The effect of road irregularities on the reference
longitudinal acceleration profile is purposely neglected, i.e., the resulting acceleration is the longitudinal acceleration the vehicle
would have in absence of road irregularities, which, given the scope of the controller, is the required acceleration value. The control
action u(t) is the correction of the motor torque, i.e., ΔTm. The modified reference EM torque, Tm,corr,ij , is the sum of the driver torque
demand contribution at the motor level, and ΔTm, i.e., Tm,corr,ij = Tm,req,ij + ΔTm. The constraints of the control action are expressed as:

LbTm ≤ Tm,req,ij + ΔTm ≤ UbTm (38)

where LbTm and UbTm are the lower and upper motor torque limits.
With reference to Fig. 1, the complexity of the prediction model increases from ‘In-wheel’ to ‘2 on-board’, passing through ‘4 on-

board’, which represents an intermediate case, see the formulations in Sections 3.2-3.4. For example, the state vector for the front left
‘In-wheel’ prediction model is:

xFL,In− wheel =
[

żb,FL zb,FL żu,FL zu,FL ẋb,FL xb,FL ẋu,FL xu,FL θ̇u,FL Tm,FL
]T

(39)

The inclusion of the torsional half-shaft dynamics in the ‘4 on-board’ prediction model requires two additional states compared to
‘In-wheel’, i.e., the angular velocity and displacement of the differential side gears, θ̇s,ij and θs,ij:

xFL,4 on− board =

[

żb,FL zb,FL żu,FL zu,FL ẋb,FL xb,FL ẋu,FL xu,FL θ̇u,FL θu,FL θ̇s,FL θs,FL Tm,FL
]T

(40)

In the ‘2 on-board’ model, 8 additional states are required to account for the dynamics of both wheels on the same axle (the front
one is considered here), the angular velocity θ̇df ,F of the open differential case, and the difference Δθ̇s,F between the angular velocities of
the left and right differential side gears:

xF,2 on− board =

[

żb,F zb,F żu,FL zu,FL żu,FR zu,FR ẋb,F xb,F ẋu,FL xu,FL ẋu,FR xu,FR θ̇u,FL θu,FL θ̇u,FR θu,FR θs,FL θs,FR θ̇df ,F Δθ̇s,F Tm,F
]T

(41)

For ‘In-wheel’ and ‘4 on-board’, the parameter vector includes the same external inputs, i.e., the expected effective road profile for
the single tyre associated with the predictionmodel, the required EM torque at the considered corner, and the uncorrected wheel motor
torque demands of the other corners. This results into:

pFL,In− wheel = pFL,4 on− board =
[
wFL βy,FL Tm,req,FL Tm,req,FR Tm,req,RL Tm,req,RR

]T (42)

For ‘2 on-board’, the parameter matrix is rearranged by considering the presence of two wheels on the same axle and controlled by
the same EM:

Fig. 10. Schematic of the road preview concept.
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pF,2 on− board =
[
wFL βy,FL wFR βy,FR Tm,req,F Tm,req,R

]T (43)

For the on-board cases, the reference half-shaft torque levels corresponding to the EM torque demands are obtained through the
appropriate gear ratios. Future studies will incorporate additional parameters, such as the estimated tyre-road friction factor, and
develop further road-preview based control functionalities, including anti-jerk and traction controllers, through modifications of the
NMPC cost function.

3.6. Road preview concept

The NMPC prediction model requires the road information from the enveloping model, i.e., the sequence of w and βy values along
the preview time tp = Npts, where Np is the number of preview steps. A simplified schematic of the road preview concept is shown in
Fig. 10.

The preview time is the same or shorter than the prediction horizon th. In this application, th is considered sufficiently short to
assume absence of vehicle speed variation. By making this assumption, the wheel positions along the prediction steps can be obtained
as xu,k = xu,0 + ẋu,0tsk, where xu,0 and ẋu,0 represent the initial vehicle position and longitudinal speed. If th > tp, the effective road
profile is kept constant and equal to the last measured value for the portion of the prediction in which t > tp:

W =
[
w0,w1,…, wNp − 1, wNp , …wNp

]

By =
[
βy,0, βy,1,⋯, βy,Np − 1, βy,Np , ⋯, βy,Np

]
(44)

4. Controller implementation and assessment

4.1. Controller implementation

The nonlinear optimal control problem of the NMPC formulations in Section 3 was solved online – through an implicit approach –
by using the ACADO Toolkit, i.e., an open-source tool focused on nonlinear and multi-objective optimal control problems. The dis-
cretized nonlinear optimal control problem is converted into a Quadratic Programming (QP) problem, which is solved by the qpOASES
3 solver. The Matlab interface allows to directly export, compile, and use autogenerated C code for NMPCs, also enabling real-time
implementation [54]. Unless otherwise specified, in the remainder the controller sampling time, ts, i.e., the time step at which the
algorithm generates the sequence of control inputs, is set to 1 ms, which is equal to the discretization time, td, used for the integration of
the prediction model along the prediction horizon; and the number of iterations, Niter, carried out by the solver for the computation of
the control solution at each sampling time, is set to 3. Such parametrisations are consistent with the proof-of-concept nature of the
study, focused on preliminary simulations to explore the performance potential of the controllers, and with the expected future
improvement of the computational capabilities of automotive control hardware. Nevertheless, to highlight currently implementable
solutions, the following Section 6 will also discuss the parametrisations of real-time set-ups of the proposed algorithms with available
control hardware. In the simulations, the pure time delays associated with signal transmission and processing are neglected, since the
relevant sensors are going to be hard wired on the control unit, given the highly dynamic nature of the involved phenomena. In the
results, the versions of the controllers embedding road preview are referred to as NMPC(prev), while those excluding preview are
indicated as NMPC(w/o prev).

4.2. Considered road profiles

The performance assessment of the proposed NMPCs has been carried out for the following scenarios:

• Scenario 1, corresponding to a 20 mm positive step of the road profile, with absence or presence of an offset Δxr between the
longitudinal coordinate of the step applied to the right and left wheels, which implies a symmetric or asymmetric road input.

• Scenarios 2-5, based on sections of uneven ride comfort assessment roads, normally used as references by the industrial partner
involved in the project.

• An experimentally implemented scenario, consisting of a speed bump measuring 3 cm in height and 25 cm in width.

4.3. Key performance indicators

The considered key performance indicators (KPIs) are based on the typical objective metrics to assess ride comfort [55], and are:

• RMSẍb , i.e., the root mean square error value of the longitudinal acceleration ẍb of the vehicle w.r.t. its steady-state reference value,
ẍb,ref :
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RMSẍb =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T2 − T1

∫T2

T1

[

ẍb − ẍb,ref
]2

dt

√
√
√
√
√ (45)

• VDVẍb , i.e., the fourth power longitudinal acceleration vibration dose value, which accounts for the impulsive nature of the
involved phenomena, and thus tends to amplify the significance of the peak values of ẍb − ẍb,ref , w.r.t. RMSẍb :

VDVẍb =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫T2

T1

[

ẍb − ẍb,ref
]4

dt
4

√
√
√
√
√ (46)

• RMSäx,b , i.e., the root mean square value of the longitudinal jerk of the vehicle, x
⃛
b, i.e., the time derivative of the longitudinal

acceleration:

RMSȧx,b =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T2 − T1

∫T2

T1

x
⃛
b
2dt

√
√
√
√
√ (47)

• Δẍb,max , i.e., the maximum longitudinal acceleration error:

Δẍb,max = max
(⃒
⃒
⃒
⃒ẍb − ẍb,ref

⃒
⃒
⃒
⃒

)

(48)

where T1 and T2, for all KPIs, are the initial and final times of the relevant part of the test.

4.4. Weight optimisation routine

In the simulation analyses of Section 5, a brute force optimisation routine is repeatedly used for the computation of the cost function
weights Q, Qt and R in (34). The routine is based on iteratively and automatically running the simulation and control environment in
Fig. 1, by independently varying the individual values of the components of Q, Qt and R, within a reasonable a priori defined and
appropriately discretised parameter space. The weights are selected to minimise the weight tuning cost function JWT, according to:

argmin
Q,Qt ,R

JWT := w1,WT RMSẍb + w2,WT VDVẍb

s.t.

Q, Qt ∈ [Qmin,Qmax]

R ∈ [Rmin,Rmax] (49)

Fig. 11. Sensitivity analysis of the effect of the prediction horizon th on the NMPC(prev) performance for the ‘4 on-board’ configuration, during a
symmetric road step test at zero torque demand, from 40 km/h. (a) KPI percentage reduction w.r.t. the passive vehicle, for different th values; and
(b) nondimensional computational time, Tc, as a function of th.
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where w1,WT and w2,WT are the JWT weights associated with RMSẍb and VDVẍb , while Qmin, Qmax, Rmin, and Rmax are the matrices
containing the boundaries of the NMPC cost function weights.

5. Simulation results

5.1. Sensitivity analysis on prediction horizon

The target is to identify the most suitable prediction horizon th for the proposed NMPC(prev) algorithms, applied to the three
considered powertrain architectures. The sensitivity w.r.t. th is carried out for a localized road input event, i.e., the step of scenario 1
with Δxr = 0, at zero total torque demand, Tw,req, and from an initial longitudinal speed, ẋb,in, of 40 km/h. The cost function weight
matrices, i.e.,Q,Qt and R, are maintained constant when varying th, and are optimized for each drivetrain configuration for th = 30ms,
through the routine in Section 4.4. For fairness of comparison, the road preview horizon, tp, is kept constant and equal to 10 ms for all
the th sensitivity simulations. Both th and tp are discretized at 1 ms.

The effect of th is evaluated in terms of: i) percentage reduction of the selected KPIs w.r.t. the passive configuration (subplots (a) of
Figs. 11 and 12); and ii) computational effort, expressed by the nondimensional computational time, Tc, i.e., the average time required
to obtain the solution of the nonlinear optimal control problem, which is normalised w.r.t. the average computational time for the
lowest considered prediction horizon (subplots (b) of the same figures). The analysis has already been presented for the ‘In-wheel’ case
in [36], while Fig. 11 and Fig. 12 extend it to the dedicated controllers for the ‘4 on-board’ and ‘2 on-board’ configurations. The
performance of ‘4 on-board’ progressively improves as the prediction horizon increases. On the contrary, ‘2 on-board’ reaches
maximum performance at th = 40 ms, after which all the KPIs are characterised by a decay. The reason for the performance loss at high
prediction horizons was mainly identified in the increase of the cumulative error caused by the mismatch between plant and prediction
model, see similar observations for different NMPC applications in [56,57]. Instead, the same approximately linearly increasing trend
for the two configurations can be observed in terms of Tc, see Fig. 11(b) and Fig. 12(b). In summary, th = 30 ms and th = 40 ms
represent a good trade-off between performance and computational effort for ‘4 on-board’ and ‘2 on-board’, respectively. Hence, these
prediction horizon values are used for the following simulations. Moreover, in the remainder, the ‘In-wheel’ controllers will adopt the
same prediction horizon as ‘4 on-board’.

A similar sensitivity analysis was run for tp, based on which the preview time is set to tp = 25 ms in the NMPC(prev) implementations
for ‘In-wheel’ and ‘4 on-board’, while for the slower ‘2 on-board’ the selection is tp = 30 ms.

5.2. Controller evaluation along scenario 1 at zero torque demand

The objective is to explore the potential performance of the preview-based NMPCs when their calibrations for each powertrain
layout are optimized for the test conditions in Figs. 11-12. In fact, in road preview implementations, it would be possible to identify the
road profile typology in advance, and switch the controller tuning, i.e., the set of cost function weights, to be the most appropriate one
for the input ahead.

Fig. 13 includes the profiles of the main variables as a function of the travelled distance, for the three powertrain architectures, for
the passive vehicle and the vehicle controlled by the NMPCs including and excluding preview. The top subplots show the longitudinal
acceleration, ẍb . The second row of graphs reports the reference EM torque profiles after the correction carried out by the proposed
longitudinal controllers, when present. Given the symmetry of the selected road inputs, the response is identical on the left and right
vehicle sides. Hence, for ‘In-wheel’ and ‘4 on-board’, the graphs plot only the left torque profiles, while for ‘2 on-board’ they report the
torque of the central motor of each axle. The bottom plots show the effective powertrain torque at the wheel, Tw, for the ‘In-wheel’
case, including consideration of the electric drive dynamics, and the left half-shaft torque, Ths, for the on-board cases. The related KPIs
are in Table 2. The results highlight that the road preview has an evident effect for a localized event such as the considered step, as it
allows to significantly reduce the first acceleration peak by requesting a timely motor torque increase, which prevents the vehicle

Fig. 12. Sensitivity analysis of the effect of th on the NMPC(prev) performance for the ‘2 on-board’ configuration, during a symmetric road step test at
zero torque demand, from 40 km/h. (a) KPI percentage reduction w.r.t. the passive vehicle, for different th values; and (b) Tc as a function of th.
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Fig. 13. Performance comparison of the passive, NMPC(w/o prev), and NMPC(prev) settings, for ‘In-wheel’, ‘4 on-board’, and ‘2 on-board’, along the considered symmetric road step test at zero torque
demand, from an initial speed of 40 km/h.
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Table 2
KPI values for the considered controllers and powertrain configurations. The bold fonts refer to the real-time capable controller settings, see Section 6.1.

In-wheel 4 on-board 2 on-board

Tw,req Configuration RMSẍb VDVẍb RMSȧx,b Δẍb,max RMSẍb VDVẍb RMSȧx,b Δẍb,max RMSẍb VDVẍb RMSȧx,b Δẍb,max
[Nm] [m/s2] [m/s1.75] [m/s3] [m/s2] [m/s2] [m/s1.75] [m/s3] [m/s2] [m/s2] [m/s1.75] [m/s3] [m/s2]

ẋb,in = 20 km/h

0 Passive 0.373 0.702 31.3 1.662 0.327 0.595 32.0 1.488 0.324 0.562 31.4 1.377
NMPC(w/o prev) 0.217 0.514 19.9 1.310 0.283 0.592 26.6 1.492 0.316 0.634 32.1 1.599
NMPC(prev) 0.059 0.101 9.5 0.241 0.084 0.160 8.7 0.442 0.228 0.403 22.6 0.967

ẋb,in = 40 km/h

0 Passive 0.419 0.581 44.6 1.547 0.370 0.561 47.0 1.612 0.382 0.574 48.8 1.684
NMPC(w/o prev) 0.316 0.504 44.6 1.375 0.331 0.574 49.1 1.650 0.399 0.627 52.6 1.751
NMPC(prev) 0.099 0.135 16.4 0.345 0.045 0.063 8.1 0.178 0.293 0.440 42.6 1.231

1200 Passive 0.385 0.544 42.0 1.467 0.318 0.502 41.9 1.475 0.305 0.495 41.6 1.480
NMPC(w/o prev) 0.343 0.535 40.5 1.486 0.297 0.476 46.4 1.420 0.274 0.482 39.6 1.435
NMPC(prev) 0.103 0.147 18.1 0.448 0.131 0.173 19.0 0.507 0.204 0.330 33.5 0.989

2400 Passive 0.335 0.536 37.1 1.545 0.299 0.479 40.1 1.465 0.312 0.469 43.9 1.465
NMPC(w/o prev) 0.295 0.513 35.6 1.488 0.273 0.444 43.2 1.376 0.301 0.478 42.9 1.463
NMPC(prev) 0.116 0.161 17.5 0.451 0.173 0.225 25.6 0.709 0.230 0.326 37.4 0.954

ẋb,in = 40 km/h with real-time implementation settings

0 NMPC(w/o prev) 0.344 0.540 46.5 1.453 0.343 0.597 49.5 1.698 0.421 0.631 53.8 1.751
NMPC(prev) 0.142 0.173 22.9 0.421 0.124 0.201 21.9 0.602 0.369 0.533 51.7 1.371

ẋb,in = 80 km/h

0 Passive 0.387 0.436 42.1 1.249 0.385 0.398 55.1 1.058 0.351 0.428 49.7 1.144
NMPC(w/o prev) 0.262 0.346 40.1 0.965 0.366 0.424 57.4 1.177 0.365 0.446 51.3 1.202
NMPC(prev) 0.081 0.099 13.6 0.278 0.105 0.097 21.9 0.265 0.326 0.398 47.8 1.043
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deceleration caused by the initial impact with the road irregularity. While the preview benefit has already been explored for the ‘In-
wheel’ case, see [36], the new simulations of this section show that the preview controllers can effectively work for the on-board
configurations as well, thanks to the inclusion of the torsional drivetrain dynamics and equivalent drivetrain backlash in the pre-
diction model formulations. In fact, the NMPC(prev) set-ups bring a generalized improvement in terms of longitudinal acceleration
response, by reducing the associated KPIs by >82% for ‘4 on-board’, and from ~12% to >26% for ‘2 on-board’, see Table 2. On the
other hand, NMPC(w/o prev) only causes a minor response enhancement for ‘In-wheel’, and no improvement at all for the on-board
cases, due to the purely reactive nature of the algorithm and the inherent response delay caused by the torsional drivetrain dy-
namics and EM characteristics.

5.3. Effect of initial speed and torque demand

The scenario 1 simulations have been extended to verify the controller performance along a wider range of initial speeds and torque
demands, i.e., the test at zero torque demand has been carried out also from 20 and 80 km/h, while the manoeuvre from 40 km/h has
been performed for additional wheel torque demands of 1200 and 2400 Nm. In the meantime, the cost function weight matrices of
NMPC(prev) have been optimised to vary as a function of speed and torque in the form of maps, for each powertrain configuration. The
same look-up tables of the weights are used for NMPC(w/o prev).

Similarly to the test of Section 5.2, w.r.t. the passive case, the purely reactive NMPC(w/o prev) guarantees a marginal performance
improvement for ‘In-wheel’, while for the on-board layouts NMPC(w/o prev) implies a marginal performance decay in some cases, e.g.,
for zero torque demand and 80 km/h, in which all indicators are worse with the exception of RMSẍb , and for ẋb,in = 40 km/h and Tw,req
= 2400 Nm, in which for ‘2 on-board’ VDVẍb is higher than for the passive setting, see Table 2. On the contrary, NMPC(prev) enhances
the performance for all powertrains. This is especially evident with the ‘In-wheel’ architecture, e.g., with RMSẍb reductions exceeding
79% and 65% w.r.t. the passive case, respectively for the previous two testing conditions (ẋb,in = 80 km/h and Tw,req = 0 Nm; ẋb,in = 40
km/h and Tw,req = 2400 Nm) that are especially critical for NMPC(w/o prev). The ‘4 on-board’ results denote a progressive decrease of the
performance improvement brought by NMPC(prev), for increasing values of vehicle speed and torque demand, which are respectively
associated with faster drivetrain dynamics and lower magnitude of the initial EM torque increase applicable by the controller, to
compensate the effect of the road step. Nevertheless, NMPC(prev) still guarantees a generalized and evident improvement of the ‘4 on-
board’ acceleration related indicators, which exceeds 72% at 80 km/h and 42% at Tw,req = 2400 Nm. At 80 km/h, the slow response of
the ‘2 on-board’ motors implies marginal attenuation of the longitudinal acceleration oscillations w.r.t. the passive EV, e.g., amounting
to ~7% in terms of RMSẍb and VDVẍb , and ~9% in terms of Δẍb,max . It was verified that the adoption of a more performing EM would
guarantee a trend in line with the one of the ‘4 on-board’ architecture.

In summary, the important and novel conclusion is that the proposed road preview-based controller formulations can achieve
tangible comfort improvements at low-to-medium torque demands for a wide range of vehicle speeds, regardless the powertrain and
drivetrain architecture.

5.4. Sensitivity analysis on powertrain and drivetrain parameters for ‘4 on-board’

The scope of this analysis is to understand the effect of the main powertrain and drivetrain parameters on the potential NMPC(prev)

performance with the ‘4 on-board’ configuration, for the test condition in Section 5.1. The sensitivity is carried out w.r.t.: i) the electric
drive time constant τm; ii) the equivalent inertia Jeq of the motor rotor and drivetrain components referred to the wheels; iii) the torsion
half-shaft stiffness khs; and iv) the equivalent drivetrain backlash 2α.

Fig. 14 reports the KPIs as functions of τm, Jeq, and khs, for simulations in which the cost function weights have been optimized for
the corresponding parameter set. A very wide range of EM time constants, extending beyond the limit of the industrially available
solutions, is considered. As τm increases, which corresponds to slower EM response, the NMPC(prev) KPIs progressively worsen ac-
cording to a logarithmic trend, but still guarantee a benefit w.r.t. the passive case, also for τm > 100 ms. From 6 to 25 ms, where the
latter value corresponds to the time constant of the ‘2 on-board’ case, RMSẍb and Δẍb,max range from 0.049 to 0.138 m/s2 and from
0.182 to 0.621 m/s2 respectively, corresponding to improvements in excess of 60% w.r.t. the passive set-up. As the equivalent inertia
Jeq increases, the KPIs have an approximately linearly increasing trend. Despite this, also for a very high inertia, i.e., Jeq = 2.8 kgm2,
NMPC(prev) still improves all the indicators by>60%. For the analysis of the half-shaft stiffness, a range from 5000 to 12500 Nm/rad is
considered, which includes the typical values for production cars. The increase in stiffness reduces the half-shaft torsion, and therefore
brings quicker wheel torque response, with better overall performance.

Fig. 15 deals with a dedicated sensitivity analysis on the equivalent drivetrain backlash at the wheels, which is carried out for four
combinations of system parameters, among those in Fig. 14, namely: i) τm = 6 ms, khs = 7700 Nm/rad, and Jeq = 1.4 kgm2, referred to
as ‘Variant A’ in the figure; ii) a configuration with increased EM time constant, i.e., with τm = 25 ms, khs = 7700 Nm/rad, and Jeq =
1.4 kgm2 (‘Variant B’); iii) a configuration with the same EM time constant as in ii) and reduced half-shaft stiffness, i.e., with τm = 25
ms, khs = 6500 Nm/rad, and Jeq = 1.4 kgm2 (‘Variant C’); and iv) a configuration also including an increased powertrain inertia,
corresponding to τm = 25 ms, khs = 6500 Nm/rad, and Jeq = 2.8 kgm2 (‘Variant D’).

The figure reports the percentage reduction of the KPIs w.r.t. the passive case. The controller cost function weights are optimized
for each variant in the condition with low equivalent backlash, i.e., 2α = 1.2 deg, for a total of four control settings. Each variant is then
assessed for a wide range of values of 2α, i.e., 2α = 1.2, 3.5, 6.0, and 10 deg. These can occur during the vehicle lifetime, because of
drivetrain component wear. In the sensitivity, the increased backlash value is included both in the plant model and the prediction
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Fig. 14. KPI profiles for NMPC(prev) and the passive EV, as a function of the motor time constant τm, the equivalent inertia Jeq, and the torsion half-shaft stiffness khs, for ‘4 on-board’, along the
considered symmetric road step test at zero torque demand, from an initial speed of 40 km/h.
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Fig. 15. KPI percentage reduction w.r.t. the passive case as a function of the backlash 2α, for variants A-D of the ‘4 on-board’ configuration.

Fig. 16. Performance comparison of the passive, NMPC(w/o prev), and NMPC(prev) configurations, for ‘2 on-board’, along the considered symmetric
road step test at zero torque demand, from an initial speed of 40 km/h, and for an EM time constant τm = 5.7 ms.
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model, since effective drivetrain backlash estimation algorithms are available from the literature [58,59]. On the contrary, the
controller cost function weights are kept constant as a function of the backlash magnitude.

The results highlight that: i) although the passive versions behave very similarly in terms of KPIs, with variations that are less than
15% across the parameter range, which is also evident from the results in Fig. 14, the controlled configurations are characterised by
significant variability of the KPIs; ii) the proposed preview controller brings tangible benefits up to 2α = 6 deg, which corresponds to a
meaningful range of drivetrain backlash for practical applications; iii) for a given value of backlashmagnitude, apart from an exception
for a single indicator (Δẍb,max ) for 2α = 6 deg, variants A to D order themselves according to the performance enhancement brought by
NMPC(prev). In particular, the selected half-shaft stiffness variation is less influential on controller performance than the variations of
the torque generation time constant and drivetrain inertia; iv) the ranking in iii) is confirmed by the dimensional values of the comfort
indicators, e.g., for 2α = 1.2 deg, RMSẍb with NMPC(prev) ranges from 0.049 m/s2 for ‘Variant A’ to 0.251 m/s2 for ‘Variant D’; and v) at
2α = 10 deg, which represents an extreme and sub-optimal value of backlash, although not being able to generate benefits w.r.t. to the
corresponding passive set-up because of the unmodeled dynamics of the simplified prediction model, NMPC(prev) does not imply any
evident performance decrease for any considered drivetrain variant. This outcome – together with the observation in ii) – re-assures
about the robustness of the implementation.

It was verified that the optimization of the cost function weights for each backlash magnitude – rather than for the minimum
backlash value of the considered range – would not have provoked any substantial improvement of the results. However, these would
have been characterised by a more linear behaviour, especially for 2α = 6 and 10 deg, i.e., with better KPI values for 6 deg backlash
rather than 10 deg, while Fig. 15 – obtained with constant cost function weights – shows the opposite. The assumption of keeping the
cost function weights constant along the vehicle operation – which brings a progressively increasing backlash value – is deemed to be
the most realistic option, as in real vehicles the controller calibration is not currently varied according to the state of wear of the
individual car.

In conclusion, the sensitivity analyses demonstrate the extent to which NMPC(prev) is effective, for a reasonably broad choice of on-
board powertrain and drivetrain parameters, and therefore can be adapted to industrially available solutions.

5.5. Effect of the electric motor time constant for ‘2 on-board’

The objective is to assess how the ‘2 on-board’ performance is influenced by the EM time constant, which has been demonstrated to
have the highest impact among the considered parameters for the ‘4 on-board’ configuration, see Fig. 14. The evaluation is conducted
along the same road step test as in Section 5.2, which is repeated for ‘2 on-board’ with the same time constant as for the nominal ‘4 on-
board’ case, i.e., τm = 5.7 ms. The resulting profiles are depicted in Fig. 16, confirming the pre-emptive action capability to further
mitigate the longitudinal acceleration oscillations, when coupled to faster EM response. Fig. 17 presents the percentage improvement
of the KPIs for NMPC(prev) w.r.t. the passive case, for τm = 5.7 ms and 25 ms. With the faster EM, all the longitudinal acceleration KPIs
(RMSẍb , VDVẍb , and Δẍb,max ) experience >59% reductions, while the root mean square value of the longitudinal jerk decreases by
~33%. In conclusion, by considering the likely advancements in EM actuation technology, it is reasonable to anticipate future per-
formance improvements of the proposed control function, leveraging the most technologically advanced actuators.

5.6. Asymmetric step road profile applied to ‘4 on-board’ and ‘2 on-board’ with equivalent parametrisations

The simulations of this subsection investigate scenarios with an asymmetric road profile on the left and right EV sides. In the
specific examples, the step profile of scenario 1 is shifted by Δxr = 0.25 and 0.5 m between the right and left vehicle corners, from an
initial speed ẋb,in = 40 km/h, at a total torque demand Tw,req = 0 Nm. To quantify the performance effect of the powertrain layout, the
‘4 on-board’ and ‘2 on-board’ cases are compared by assuming the same values (τm = 6 ms, Jeq = 2.8 kgm2, and 2α = 3.5 deg) of the
parameters that are mainly responsible for the system dynamics. For fairness of comparison, the Jeq values have been computed at the

Fig. 17. KPI percentage reductions brought by NMPC(prev) w.r.t. the passive configuration for the ‘2 on-board’ case. The analysis is conducted for
two EM time constant values, for the symmetric road step test at zero torque demand, from an initial speed of 40 km/h.
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Fig. 18. Performance comparison of the passive and NMPC(prev) cases of the ‘4 on-board’ and ‘2 on-board’ configurations, along the considered asymmetric road step test (Δxr = 0.25 m) at zero torque
demand, from an initial speed of 40 km/h.
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axle level, i.e., by considering the different number of powertrains per axle. The calibration weights have been optimized for each
powertrain parametrization and road input scenario.

Fig. 18 plots the profiles of the main variables for Δxr = 0.25 m, while Table 3 reports the KPIs in case of symmetric and asymmetric
road excitations, for both powertrain configurations. For the same test cases, the KPI percentage reductions w.r.t the passive
configuration are illustrated in Fig. 19. For all drivetrains and EM torque control set-ups, the acceleration-based KPIs are the highest for
the symmetric road input test, followed – in order – by Δxr = 0.5 m and Δxr = 0.25 m. Through its independent wheel torque control,
‘4 on-board’ with NMPC(prev) guarantees a rather consistent compensation level of the oscillations across the Δxr values, with KPI
reductions amounting to ~50%, see Fig. 19, with the exception of RMSȧx,b , which – although being more difficult to limit than the other
indicators – decreases by at least 35%.

The reduction of the control performance benefit associated with the asymmetric input is more evident in ‘2 on-board’. In fact,
because of the presence of a single motor per axle, the differential output torque is the same on the right and left side gears, and thus the
central EM cannot tailor its response to the dynamics provoked by the asynchronous road excitations. For Δxr = 0.5 m, the dynamics
due to the right wheel excitations are almost exhausted before the left wheel excitations take over. Hence, when the distance shift is
smaller, there is a greater overlap of the dynamics, and therefore the central motor struggles compensating for the effects of both
excitations. Nevertheless, all reductions of the indicator values exceed 20% also for Δxr = 0.25 m.

5.7. Controller evaluation on scenario 2

This section presents the results for scenario 2, i.e., the uneven profile of a typical ride comfort road, from an initial speed ẋb,in = 40
km/h, and a total torque demand Tw,req = 0 Nm. The cost function weights have been optimized for NMPC(prev) and the specific
manoeuvre, while the tyre structure parameters of the prediction model have been modified to achieve a better match with the MF-
Swift model along the considered road, rather than the step of Sections 5.1-5.5.

The resulting longitudinal acceleration and front and rear motor torque profiles are shown in Fig. 20, while the percentage
improvement of the KPIs for NMPC(w/o prev) and NMPC(prev) w.r.t. the passive case are in Fig. 21. For ‘In-wheel’ and ‘4 on-board’,
NMPC(prev) achieves a significant enhancement w.r.t. the passive EV, e.g., see the accelerations immediately before and after 15 m,
where the pre-emptive action on the motor torque brings a major attenuation of the peaks. However, also NMPC(w/o prev) still provides
evident benefits, especially for the ‘In-wheel’ configuration. For ‘2 on-board’, the slowness in the drivetrain system response to such
aggressive road profile makes the improvement associated with NMPC(prev) marginal and evident only in terms of attenuation of the
acceleration peaks, e.g., see those between 34 m and 39 m. From the KPI perspective, NMPC(w/o prev) reduces the acceleration-related
indicators from ~25% to >40% for the ‘In-wheel’ and ‘4 on-board’ configurations, while for ‘2 on-board’ no improvement can be

Table 3
KPI values for the considered controllers and powertrain configurations, for symmetric and asymmetric road excitations.

4 on-board 2 on-board

Configuration RMSẍb VDVẍb RMSȧx,b Δẍb,max RMSẍb VDVẍb RMSȧx,b Δẍb,max
[m/s2] [m/s1.75] [m/s3] [m/s2] [m/s2] [m/s1.75] [m/s3] [m/s2]

Symmetry

Passive 0.408 0.558 52.4 1.645 0.419 0.574 53.4 1.687
NMPC(prev) 0.151 0.207 26.1 0.573 0.162 0.223 27.9 0.639

Asymmetry Δxr = 0.5 m

Passive 0.282 0.344 36.6 0.878 0.303 0.372 39.7 0.940
NMPC(prev) 0.118 0.147 18.4 0.453 0.145 0.193 23.5 0.565

Asymmetry Δxr = 0.25 m

Passive 0.210 0.282 28.4 0.813 0.234 0.306 31.4 0.898
NMPC(prev) 0.091 0. 119 18.6 0.365 0.141 0.187 23.6 0.513

Fig. 19. KPI reductions brought by NMPC(prev) w.r.t the passive configuration, for: (a) ‘4 on-board’; and (b) ‘2 on-board’.
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Fig. 20. Controller performance comparison on a typical ride comfort road profile starting from an initial speed of 40 km/h.

P.Stano
etal.



Mechanism and Machine Theory 202 (2024) 105759

30

Fig. 21. KPI reductions brought by (a) NMPC(w/o prev) and (b) NMPC(prev) w.r.t. the passive configuration for the test in Fig. 15.

Fig. 22. Comparison of the actual road profiles (Reference), MF-Swift tyre model filtered profiles (MF-Swift), and control-oriented enveloping
tandem model profiles (Enveloping model) for (a) scenario 3; (b) scenario 4; and (c) scenario 5.
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observed w.r.t. the passive case (on the contrary, RMSẍb and Δẍb,max very slightly worsen), except for RMSȧx,b that is reduced by ~15%.
On the contrary, NMPC(prev) consistently improves the KPIs for all configurations by~15 to 25%w.r.t. NMPC(w/o prev), and thus implies
that also the controlled ‘2 on-board’ case performs consistently better than the passive EV.

5.8. Sensitivity analysis on different road profiles for ‘4 on-board’

The scope of this analysis is to highlight the capability of the NMPC for the ‘4 on-board’ configuration to operate effectively on a
selection of road profiles. Hence, additional simulations are conducted on the ride comfort road profiles illustrated in Figs. 22(a)-(c),
referred to as scenarios 3-5. These profiles are categorized in accordance with ISO 8608 [60], based on the power spectral density of the
vertical road displacement, denoted as G(Ω0), where Ω0 is the reference spatial frequency (Ω0 = 1 rad/m for a frequency n0 = 1/2π
cycles/m with wavelength L0 = 6.28 m) [61]. Based on this classification, scenarios 2 (Gd(Ω0) = 5 10− 6 m3/rad) and 5 (Gd(Ω0) = 3
10− 6 m3/rad) fall within the road class B, while scenarios 3 (Gd(Ω0) = 0.8 10− 6 m3/rad) and 4 (Gd(Ω0) = 1.5 10− 6 m3/rad) within
category A. Road classes A and B represent typical road profiles, and are largely used for ride comfort analyses [61]. The KPI values for
scenarios 3-5, presented in Table 4, confirm the trends already observed for Scenario 2, i.e., NMPC(prev) consistently outperforms the
other configurations.

6. Real-time implementation and preliminary proof-of-concept experiments

6.1. Preliminary real-time implementation

To verify their capability to run in real-time with currently available control hardware, the proposed proof-of-concept NMPCs were
deployed on a rapid control prototyping unit, i.e., a dSPACE MicroAutoBox III system (1.4 GHz, 64 Mb flash memory), see Fig. 23
(more powerful control units are already on the market, and further significant progress is expected soon). The selected combinations

Table 4
KPI percentage improvement w.r.t. the passive configurations for the ‘4 on-board’ case along different road profiles.

4 on-board

Scenario Road class Configuration RMSẍb VDVẍb RMSȧx,b Δẍb,max
[m/s2] [m/s1.75] [m/s3] [m/s2]

ẋb,in = 40 km/h
3 Class A

Gd(Ω0) = 0.8 10− 6 m3/rad
Passive 0.179 0.247 14.1 0.960
NMPC(w/o prev) 0.148 0.203 12.8 0.878
NMPC(prev) 0.120 0.143 12.9 0.482

4 Class A
Gd(Ω0) = 1.5 10− 6 m3/rad

Passive 0.169 0.203 18.8 0.740
NMPC(w/o prev) 0.136 0.169 18.7 0.697
NMPC(prev) 0.119 0.147 17.4 0.565

5 Class B
Gd(Ω0) = 3 10− 6 m3/rad

Passive 0.320 0.398 36.1 1.365
NMPC(w/o prev) 0.232 0.274 32.4 0.912
NMPC(prev) 0.206 0.246 31.7 0.819

Fig. 23. Real-time implementation of the proposed controllers on a dSPACE MicroAutoBox III unit.
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of sampling time ts, number of prediction steps Nh, and solver iterations Niter that ensure real-time operation are: i) ts = 3 ms, Nh = 9,
andNiter = 2, for ‘In-wheel’; ii) ts = 4ms,Nh = 7, andNiter = 2, for ‘4 on-board’; and iii) ts = 6ms,Nh = 7, andNiter = 1, for ‘2 on-board’.
In i)-iii), the discretization time of the prediction models were set to be half of the corresponding sampling time, which ensures a good
trade-off between numerical stability and computational effort.

The real-time settings of the controllers were assessed through simulations along the test of Section 5.2. The corresponding KPIs are
reported in bold in Table 2. Despite the larger sampling time and lower number of prediction steps w.r.t. the previous simulation-
oriented NMPC versions, for all three drivetrain layouts the real-time NMPC(prev) configuration ensures an evident improvement w.
r.t. the passive case. For example, RMSẍb , VDVẍb , Δẍb,max , and RMSȧx,bof NMPC(prev) are reduced by a factor>2 for ‘4 on-board’. For the
slower ‘2 on-board’ configuration, the results highlight a general enhancement of the KPIs, with the exception of RMSȧx,b , which,

Fig. 24. (a) The ZEBRA vehicle of the University of Surrey equipped with a Racelogic VBOX3i dual GPS system; (b) wire suspension displacement
and wheel speed sensors installed at the rear-left corner; and (c) the dSPACE MicroAutoBox II rapid control prototyping unit of the vehicle.

Fig. 25. Profiles of the reference motor torque (Demanded), modelled motor torque (Model), and actual motor torque obtained from the experi-
mentally measured motor current (Measured) along a torque step test.
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however, was not part of the optimisation associated with the calibration cost function JWT . It was also verified that a more responsive
set-up of the ‘2 on-board’ powertrain configuration, with τm = 5.7 ms, would have enabled an evident jerk indicator reduction for the
real-time setting of the controller. The promising results of the real-time algorithms highlight the potential of the proposed proof-of-
concept preview-based solution to be implemented at a higher technology readiness level in follow-up studies.

6.2. Experimental vehicle testing set-up

Preliminary experimental vehicle tests were conducted on the prototype Zero Emission test Bed for Research on Autonomous
driving (ZEBRA) of the University of Surrey. ZEBRA is a modified Renault Twizy, i.e., an L7e rear-wheel-drive electric quadricycle with
a centralized on-board electric powertrain with single-speed transmission and open differential. The vehicle is equipped with: i) a set of
conventional vehicle dynamics sensors, e.g., wheel speed sensors; ii) wire displacement sensors to measure the suspension travel of
each corner; iii) a Racelogic VBOX3i dual GPS (global positioning system) with a fixed base location for precise localisation; and iv) a
dSPACE MicroAutoBox II system – significantly less powerful than the one used in Section 6.1 – for the rapid prototyping of the
proposed comfort-oriented control function. Fig. 24 shows the vehicle testing set-up, i.e., the ZEBRA vehicle and its associated
equipment in testing conditions. The transient response of the ZEBRA powertrain was validated through tip-in tests, i.e., step-like
torque demand tests, see Fig. 25. The validation plot highlights the extremely slow motor torque response, which can be well
approximated by a pure time delay of ~100 ms, followed by a first order model with a time constant τm of ~160 ms, see the ‘Model’
line in the figure.

The controller formulation of Section 3.2 was adapted to the specific rear-wheel-drive EV architecture, and simplified for the real-
time operation with the available control hardware. The implemented simplifications involved: i) considering a rigid direct drive
powertrain design in the prediction model, which neglects the behaviour of the open differential internals, and the torsional dynamics
of the half-shafts; and ii) using a prediction horizon of 200 ms with a variable discretization approach, i.e., including 4 prediction steps
at 10 ms, followed by 4 steps at 50 ms. The relatively long prediction horizon is required to meaningfully account for the low pow-
ertrain responsiveness within the prediction. To address the pure time delay, the preview information of the effective road profile was
supplied to the algorithm with an offset equal to the pure time delay of the powertrain torque response.

6.3. Preliminary proof-of-concept experimental results

The preliminary proof-of-concept experimental tests were performed in the autonomous driving mode of the ZEBRA vehicle. The
maximum torque request was applied to accelerate the vehicle up to the target speed of 30 km/h; subsequently, the traction torque
demand was released, down to a marginally negative value, and the vehicle traversed a 3 cm high and 25 cm long speed bump. Fig. 26
shows photographic frames from the implemented experimental scenario. The plots of the experimental results, focusing on the section
of the test in which the rear wheels encounter the speed bump (indicated by the grey area in the subplots), are presented in Fig. 27,
which includes the profiles of the longitudinal acceleration and speed of the vehicle (computed from the measured speed of the front
left undriven wheel, hence the notations ẍb,ωFL and ẋb,ωFL ), the rear left suspension travel, and the NMPC(prev) torque correction, as a
function of the travelled distance, s. Despite the extremely slow motor response, the road preview information allows the controller to
more than halve the longitudinal acceleration and speed oscillations, by requesting a control action well in advance, with a signifi-
cantly increased damping level. The benefit is also evident in the third subplot, where the vertical component of the driving force
reduces the rear left suspension travel. In summary, these results are very promising, especially when considering the very slow dy-
namics of the specific electric powertrain, which would suggest an even more evident performance benefit of the proposed control
function with more performing powertrains.

7. Conclusions

This study presented novel proof-of-concept nonlinear model predictive control (NMPC) algorithms to attenuate the longitudinal
acceleration oscillations caused by irregular road profiles. Based on the road preview information, the NMPC(prev) strategies modulate
the reference torque sent to the inverters of the on-board electric powertrains of the considered four-wheel-drive electric vehicle
configurations with one or two electric machines per axle, respectively referred to as ‘2 on-board’ and ‘4 on-board’. The preliminary
results, obtained through simulations with an experimentally validated vehicle model, and including comparisons with those asso-
ciated with a more reactive in-wheel direct drive powertrain configuration, referred to as ‘In-wheel’, bring the following conclusions:

• If optimized for the considered symmetric positive step input test, NMPC(prev) achieves excellent compensation of the longitudinal
acceleration oscillations, by reducing the related key performance indicators (KPIs) by>82% for the ‘4 on-board’ configuration, w.
r.t. the passive case. Also in the more challenging ‘2 on-board’ layout with slower motor response and larger drivetrain backlash,
NMPC(prev) achieves a ~24% improvement of the acceleration-related indicators. The algorithm is effective for a wide range of
vehicle speeds and motor torque demands.

• The sensitivity analyses along the step test with different system parameters, i.e., motor time constant, equivalent drivetrain inertia,
half-shaft stiffness, and equivalent drivetrain backlash, demonstrate the controller ability to perform well for a wide range of
industrially available electric powertrain solutions, with different bandwidths and dynamic torque response characteristics, for
localized and symmetric road inputs. For example, when quadrupling the torque generation time constant of the electric machine of
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Fig. 26. Frames of the ZEBRA vehicle captured during the speed bump test.
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‘4 on-board’, NMPC(prev) still guarantees a ~65% attenuation of the root mean square value of the longitudinal acceleration error w.
r.t. the passive case.

• The step test with asymmetric road inputs demonstrates that the solutions with independent torque control on the single wheel, i.e.,
‘In-wheel’ and ‘4 on-board’, can achieve rather consistent performance independently from the difference between the road profiles
on the left and right sides. On the contrary, although still providing evident benefits, ‘2 on-board’ is affected by the left-to-right
profile difference, since such powertrain architecture can inherently generate only a torque profile that is a compromise among
the requirements on the two vehicle sides.

• Although with dedicated retuning, the NMPC formulations confirm their potential on the selected ride comfort road. For the ‘In-
wheel’ and ‘4 on-board’ configurations, the controller version without road preview, i.e., NMPC(w/o prev), reduces the KPIs from
~25% to>40%, while no evident benefit is achieved for the more critical ‘2 on-board’ set-up. The inclusion of road preview further
improves all indicators by ~20%, which makes NMPC(prev) a convenient solution for all considered architectures, including ‘2 on-
board’.

• In spite of the proof-of-concept nature of the simulation-based analysis, NMPC(prev) is real-time implementable on currently
available control hardware, and its real-time settings imply only marginal performance decrease w.r.t. the optimised simulation-
oriented controller parametrisations.

Despite the slow time response of the electric motor torque in the selected demonstrator vehicle, proof-of-concept experimental
results confirm the capability of NMPC(prev) to significantly reduce the longitudinal acceleration oscillations, underscoring its versa-
tility as an effective solution for on-board drivetrain architectures.

Future developments will include: i) comprehensive experimental demonstrations of the algorithms on physical vehicle demon-
strators with in-wheel and on-board powertrains; ii) the implementation of the state estimation and sensing system required to
experimentally deploy the controllers at higher technology readiness levels; iii) the design and evaluation of alternative data-driven
prediction models, e.g., using deep neural networks, to replace the physics-based formulations, and target enhanced matching with the
plant dynamics as well as lower computational effort; and iv) the development of further road-preview based control functionalities, e.
g., anti-jerk and traction controllers, based on the prediction model of this research.

CRediT authorship contribution statement

Pietro Stano: Writing – original draft, Validation, Software, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization.Davide Lazzarini:Writing – original draft, Visualization, Validation, Software, Methodology, Investigation. Silvio
Santoro: Writing – original draft, Visualization, Validation, Software, Formal analysis. Mario Mihalkov: Validation, Data curation.
Umberto Montanaro: Writing – review & editing, Supervision, Investigation, Formal analysis, Conceptualization. Alessandro

Fig. 27. Experimental comparison of the passive and NMPC(prev) configurations of the ZEBRA vehicle, along the considered speed bump test from an
initial speed of ~30 km/h (the grey area approximately indicates when the rear axle encounters the speed bump).

P. Stano et al.



Mechanism and Machine Theory 202 (2024) 105759

36

Vigliani: Writing – review & editing, Supervision, Methodology, Funding acquisition, Formal analysis, Data curation, Conceptuali-
zation. Antonella Ferrara: Writing – review & editing, Supervision, Methodology, Funding acquisition, Conceptualization. Miguel
Dhaens: Writing – review & editing, Validation, Resources, Funding acquisition, Data curation, Conceptualization. Aldo Sorniotti:
Writing – review & editing, Writing – original draft, Supervision, Resources, Project administration, Methodology, Investigation,
Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests:

Aldo Sorniotti reports financial support was provided by European Commission. If there are other authors, they declare that they
have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this
paper.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the Horizon 2020 Programme of the European Commission under Grant agreement numbers 824250
(EVC1000 project), 872907 (OWHEEL project), and 101096083 (EM-TECH project).

References

[1] L. Castellazzi, A. Tonoli, N. Amati, Piu, E Galliera, Vehicle Driveability: Dynamic Analysis of Powertrain System Components, SAE Technical Papers (2016),
https://doi.org/10.4271/2016-01-1124.

[2] R. Burdzik, Identification of structure and directional distribution of vibration transferred to car-body from road roughness, J. Vibroengineering 16 (1) (2014)
324–333.
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