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A Modular Co-Simulation Platform for Comparing
Flexibility Solutions in District Heating Under

Variable Operating Conditions
Pietro Rando Mazzarino, Martina Capone, Elisa Guelpa, Lorenzo Bottaccioli, Vittorio Verda and Edoardo Patti

Abstract—Integrated modeling and simulation are crucial
for optimizing cities’ energy planning. Existing sector-specific
analyses have implementation limitations in representing
interactions across infrastructures, limiting optimization
potentials. An integrated framework simulating multiple
interacting components from a systemic perspective could
reveal efficiency gains, flexibility, and synergies across urban
energy networks to guide sustainable energy transitions.
Co-simulation approaches are gaining attention for analyzing
complex interconnected systems like District Heating (DH).
Traditional single-discipline models present limitations in fully
representing the interconnectivity between district heating
networks and related subsystems such as those in buildings
and energy generation. Therefore, we propose a co-simulation
based framework to simulate DH system behavior while
easily integrating models of other subsystems and Functional
Mock-up Unit (FMU) simulators. We tested this Plug&Play
modular framework for Demand Side Management (DSM) and
Storage-based strategies, evaluating their effectiveness in peak
reduction while lowering the temperatures of the network.

Index Terms—Co-simulation, Demand Side Management,
Energy flexibility, District Heating, Peak shaving

I. INTRODUCTION

District Heating (DH) is increasingly recognized as a key
technology for the efficient and affordable decarbonization of
the European energy system [1]. The ever-increasing role of
DH in the transition to low-carbon heating strategies is linked
to its ability to make efficient use of energy resources and
facilitate the integration of renewable energy sources such as
solar, geothermal, and waste-to-energy heat, as well as surplus
heat from industrial plants and data centers [2]. Although well-
established, DH systems are nowadays evolving into the fourth
generation to exploit their full potential and meet the challenge
of a future sustainable energy system [3]. Major innovations in
the transition include the reduction of operating temperatures,
which is essential for both renewable integration and reduction
of heat losses [4]–[6], improvement of flexibility and storage
systems [7]–[9], and smart integration of DH with other energy
grids [10], [11].

In the field of district heating (DH) and multi-
energy systems simulations, the integration of multi-domain
approaches becomes very important to effectively address
the growing complexity and heterogeneity inherent in these
systems [12]. Co-simulation methodologies emerge as potent
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tools in managing the diverse domains present, finding
extensive application within the Smart Grid context [13]–[15].
Consider, for instance, a scenario where we aim to simulate a
district heating network together with various energy sources,
different utility networks, and a multitude of prosumers.
Using traditional single-discipline simulation environments to
model the whole system might prove challenging. Herein
lies the advantage of co-simulation: by seamlessly integrating
multiple simulation tools and domains, it enables a more
comprehensive representation of the entire DH system and
the rest of the involved subsystems. Thus, in contrast to
the monolithic nature of traditional simulation frameworks,
co-simulation offers flexibility and modularity, enabling the
incorporation of domain-specific models and simulation tools
tailored to the unique characteristics of each subsystem.
Moreover, co-simulation facilitates a more holistic analysis by
considering the interdependencies and feedback loops between
different components, thus providing insights into system
behavior that may be overlooked in single-domain simulations.
Leveraging co-simulation in scenarios characterized by small-
scale or low complexity may not yield immediate performance
enhancements, which, in our opinion, is an acceptable
tradeoff considering: the inherent flexibility afforded by such
architectures in scenario creation and the innate distributed and
scalable nature of co-simulation tools, benefits that position
co-simulation as an optimal solution for simulating the energy
systems of the future.

To the best of our knowledge, the utilization of proper
co-simulation frameworks for simulating District Heating
(DH) or closely related energy systems is limited. The
predominant approach in DH studies relies on monolithic,
case-specific simulation frameworks. Upon scrutinizing studies
that explicitly exploit the advantages of co-simulation, we have
identified only three notable examples [16]–[18]. Nageler et
al. [16] propose a simulation framework tailored for scalable
scenarios involving DH models and buildings, albeit without
considering storages. Vesaoja et al. [17] demonstrate the
benefits of co-simulation in coupling control and physical
aspects within DH networks; however, their work does not
propose a generalized framework. Nikula et al. [18] present a
co-simulation implementation for a dynamic process simulator
and an event-based control system, tested on a small-scale
case, which may not extrapolate well to larger applications.
While these studies demonstrate the potential of co-simulation
for DH systems, they also illustrate some gaps and limitations
to address: i) Fully representing the complex behavior of
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DH networks and their interactions with storage requires
more sophisticated co-simulation models. ii) Testing such
models on real-world network topologies will provide more
insights into their effectiveness for optimizing practical DH
systems. To address these challenges, a more flexible co-
simulation platform is needed. Thus, the main contribution of
this work is to propose a flexible co-simulation framework
for DH and to apply it to evaluate flexibility strategies.
The approach proposed in this work addresses in a unique
framework different levels of flexibility inherent in DH
systems: the possibility of installing Thermal Energy Storages
(TES) and the implementation of Demand-Side Management
(DSM) are taken into account as two effective solutions to
reduce the thermal peak arising in the morning due to the
attenuation/shutdown of the heating systems during the night,
which is typical in Mediterranean regions and negatively
affects the performance of the entire production system.
After having shown in [19] that these two strategies can
be adopted simultaneously as complementary solutions (and
possibly combined with further flexibility solutions provided
by multi-energy systems) to improve the operation of DH and
of the global energy system as well, in this paper we evaluate
their changing influence under different scenarios of supply
temperature reduction. To summarize, the novel contributions
of this work can be grouped into two macro areas: i) novelty
in the cosimulation platform and ii) novelty in the application
scenario.

Regarding the former contribution we are proposing:
• a modular framework integrating heterogeneous models

as Functional Mock-up Units (FMUs) or code through
well-defined interfaces. The interfaces are tailored
to the specific needs of simulating typical District
Heating components. This contribution consists of major
modifications of our previous work [20];

• a generalized FMU adapter enabling integration of
diverse component models.

Regarding the latter contribution to the application scenarios,
the scientific novelty can be summarized:

• the evaluation of storage-based and demand-side
management (DSM) strategies on a realistic network;

• the evaluation of the impacts of supply temperature
reduction on storage-based and DSM peak shaving
strategies through simulations on a representative district
heating network case study.

The paper is structured as follows. Section II describes the
proposed methodology and the framework structure, analyzing
its layers and components. Section III and Section IV present
the case study used to test the framework and the experimental
results of the performed simulations, respectively. Finally,
Section V provides concluding remarks.

II. CO-SIMULATION FRAMEWORK FOR ENERGETIC
ANALYSES IN DH

The proposed co-simulation framework enables various
energetic analyses in district heating systems. It exploits
MOSAIK as co-simulation engine. Thus, our framework
provides the following main features:

• Plug&Play capability by integrating heterogeneous
models flexibly;

• Modularity through decomposing the system into
independent simulators;

• Scalability in simulating large grids by coupling many
models efficiently;

• Ability in coupling models with different characteristics;
• Distribution of computational effort across multiple

computer systems.
Figure 1 shows the framework architecture, which consists

of two main macro-layers i) the Data Source Layer and ii)
the Co-simulation Layer. The Data Source Layer includes all
the inputs and the tools for Urban energy modelling needed
by the upper layers. The Co-simulation Layer encompasses
the main co-simulation components: i) the models to simulate
physical behaviours, ii) the interfaces to execute models during
simulation, and iii) the orchestration engine to synchronize the
interfaces among them. The following sections will describe
in-depth the whole framework.

A. Data Source Layer

The Data source Layer is responsible for managing
physical information about the system. It exposes two main
functionalities: static databases for Real data inputs and a tool
for Synthetic grid creation (see Figure 1).

In our system, the Data source Layer manages physical
information, offering static databases for Real data inputs
and a tool for Synthetic grid creation (see Figure 1). Real
data inputs encompass District heating topology, Thermal
Power demand, Mass flow demand, and Weather data. If
District heating topology is absent, it can be generated by
the Synthetic Grid creation tool. Figure 2 illustrates a simple
example for the District heating topology, detailing system
actors (Thermal power plant, Thermal storage, and Buildings)
and the network’s structure. The DH network is segmented into
delivery and return sub-networks, both depicted as directed
graphs where pipes are represented as edges and junctions or
interface nodes as nodes (see Figure 2). Delivery and return
sub-networks are topologically identical but with opposite
edge directions (red and blue arrows in Figure 2). Real-world
DH networks form closed circuits, making interface nodes the
connection points between delivery and return sub-networks.
Employing a graph data structure, attributes such as pipe
lengths and diameters are assigned to edges, while nodes store
actor information (Thermal power plant, Thermal storage, or
Building), if applicable.

Thermal Power demand, Mass flow demand, and Weather
data constitute time-series information (see Figure 1). They
represent the thermal power demand from buildings, associated
mass-flow, and outdoor temperature throughout the simulation
period. These inputs can either be static within the Data source
Layer or dynamically generated by dedicated simulators in
the Co-simulation Layer. The Synthetic Grid creation tool is
employed when no District heating topology (see Figure 1)
is provided, necessitating a synthetic one. It utilizes a real-
world Distribution grid archetype as a basis to construct
realistic and intricate heating networks. Multiple replicas of
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Fig. 1: Platform schema

Fig. 2: Example of a DH network

this archetype grid are interconnected to form new topologies,
with configurable parameters such as the number of replicas,
interconnection nodes, and locations of Thermal power plants,
Buildings, and Thermal storage. Pipe design in the new
grids involves determining diameters and lengths to achieve
a target fluid velocity of approximately 2 m/s based on
nominal demand values. This modular and scalable grid
generation approach relies on composing archetype replicas
and dimensioning pipes parametrically based on hydraulic
design principles. The Data source Layer facilitates high
configurability, allowing various usage possibilities. Real data
or simulators can be utilized. The district heating network
topology and components (number of thermal power plants,

storage units, consumers, transport and distribution grids) can
either leverage an external case study or be generated by
using an editable configuration file and a sample of a real
distribution grid. This dual approach confers versatility and
broad applicability of the co-simulation framework.

B. Co-simulation Layer

The Co-simulation Layer is the core of our framework
and, as shown in Figure 1, it consists of the Operational
Layer, the MOSAIK APIs, and the Mosaik Orchestrator. This
configuration is the key enabler for the high modularity and
Plug&Play capabilities of the framework. Indeed, the Mosaik
Orchestrator, along with the MOSAIK APIs, manages only the
co-simulation operations (i.e. Synchronization, data-exchange,
and instantiation), giving high flexibility to the layer below,
the Operational Layer.

The Operational Layer includes physical and control
models of the real-world entities to be simulated (i.e. Thermal
power plant model, DH grid model, Thermal storage model,
the Control strategy model, Weather model and Building
model). The models in this layer can be easily extended,
changed, and replaced because they are separate entities
combined by MOSAIK APIs. Indeed, they only need to
meet the specific input/output requirements specified in the
APIs meta description. The models can be Python software
or a Functional Mock-Up Unit (FMU). The FMU standard
allows integrating models written in any modeling language
or platform compliant with this standard. The models in
the Operational Layer simulate the main components of
a generic DH system, and they are reported in Figure 1
and described in the following. In this platform we have
mainly prepared standardized interfaces for the most important
DH components, then to test them we have encapsulated
physical models as well as real-world data readers or compact
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models. Indeed, regarding Building model and Weather model,
they are simple data readers, outputting respectively, the
external temperature and the building power demand. For
what concerns the Thermal power plant model, it encapsulates
a Python model that performs mass balance calculations to
calculate the mass-flow rate to be supplied to the network.
It is worth noting that in line with the main concept of this
framework, substituting data readers or simple models with
more complex models is easy and configurable.

The DH grid model is a one-dimensional quasi-steady state
model as in [20]. This is a common approach in district
heating applications since pressure perturbations travel within
the network at sound velocity; therefore the time pressure
wave, taken to reach the furthest areas, is much smaller than
the time step considered in the simulations. The same does not
apply to the temperature that travels at the velocity of water
that is small (usually 0.5-4 m/s). In large networks, the water
flow can take up to an hour or more to reach the furthest areas
of the network. For an in-depth description of the model, we
refer to [21] and in the following, we report the set of the
matrix equations used: Equation 1 for computing the mass,
Equation 2 for the momentum and Equation 3 for the energy.
The model has been implemented in Python and takes as inputs
the injected mass-flows and the temperature at the injection
nodes.

The Thermal storage model, represents a buffer water
storage stratified into a configurable number of layers
that are connected to allow heat and flux transfer. The
top layer is coupled with return colder water while the
bottom one with the supply warmer water. The heat transfer
between the layers can be modeled by considering the
conductance or by also including the buoyancy effects
through the AixLib implemented heat transfer model:
HeatTransferBuoyancyWetter. The original model has been
taken from AIXLIB [22], thus its source code is written in
MODELICA language, and it has been enhanced to be used for
simulating both charge and discharge as well as to be exported
in FMU standard. Figure 3 reports all the variables of interest
exported by FMU. These are considered as inputs and outputs
of the model and are the only exchanged variable during a
co-simulation. The modifications only regard the interfaces
for data communication without affecting the validity of
the underlying physical model from AIxLib. The inputs are
explained in the following. The Charging temperature and
the Charging mass-flow fix the temperature and the mass-
flow when the thermal storage is charging. The Discharging
temperature and the Discharging mass-flow are the equivalent
values for the discharging phase. These inputs are used
only when the Thermal storage model is in one of the two
respective states (charging/discharging). For example, if it is in
charging state, it will receive and use the values for Charging
temperature and Charging mass-flow while setting to zero
those related to the discharge phase. The only input that is
sent to the Thermal storage model, regardless of the operating
state, is the External temperature which is needed to calculate
heat losses through the ambient. On the other side, the outputs
are the temperature values of the bottom layer and the top layer
of the water tank, namely the Top temperature and the Bottom

temperature in Figure 3. These are the two needed outputs for
describing the outflow of water from the storage tank. Indeed,
the valves that connect the thermal storage to the heating
network are located at the top and at the bottom of the water
tank. During co-simulation, the only visible variables are the
inputs and the outputs, nevertheless during the initialization of
the model it is possible to configure a series of parameters that
specify both geometrical and thermal properties, such as height
and diameter of the tank, thermal transmission properties of
the material used and number of layers.

A ·G+Gext = 0 (1)

G = Y ·AT · P (2)

M · Ṫ +K · T = g (3)

where:

A = incidence matrix;
AT = transpose incidence matrix
G = vector of mass flow rate within each branch;
Gext = vector of the mass flow rate entering and exiting

each node;
Y = conductance matrix (inverse of the fluid dynamic

resistance);
P = vector of pressures in the nodes;
M = mass matrix;
K = stiffness matrix;
T = vector of temperatures in nodes;
g = known-term vector of the equation.

Fig. 3: Thermal Storage FMU I/O points

The Control Strategy Model module oversees the
implementation of system management and control within the
framework. This Python-based module orchestrates strategies
for peak reduction, comprising two distinct approaches.
The initial method capitalizes on thermal storage, while
the alternative hinges on the dynamic shifting of combined
building load profiles (DSM). Operationally, the former
generates schedules for thermal storage, delineating periods
of charging, discharging, or idle states. It also governs the
rate of mass-flow entering or exiting the thermal storage,
maintaining a constant flow for charging and a flow rate
proportional to the morning peak’s slope for discharging.
While optimal discharge scheduling is beyond the scope of
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this study, the platform’s modular design facilitates seamless
integration of optimal strategies in a Plug & Play manner.
Conversely, in scenarios where the DSM strategy is invoked,
the Control Strategy Model restructures the thermal power
and mass-flow demand inputs from buildings to preemptively
manage loads and mitigate aggregated demand peaks. A
detailed analysis of the sub-optimal shifting mechanism is
available in [23]. It’s imperative to note that for transparency,
the DSM strategy necessitates the provision of complete
time-series data for thermal power and mass-flow demands
at the simulation’s onset. To enable runtime utilization of the
DSM strategy, where demand data are generated dynamically
by simulators (as detailed in Section II-A), a distinct Control
Strategy Model configuration is required.

The Mosaik Orchestrator and the MOSAIK APIs manage
the pure ICT aspects of co-simulation i.e. the Synchronization
and the data-exchange. Their implementation relies on the
MOSAIK python library, which offers the orchestrator engine
and a high-level APIs base class. In line with the definitions in
MOSAIK documentation [24], the APIs are called simulators.
The simulators instantiate the models and it is possible to
have several model and simulator instances. Our framework
provides a simulator for each model in the Operational Layer,
thus: i) Thermal power plant API, ii) DH grid API, iii) Thermal
storage API, iv) Control strategy API, v) Weather API and vi)
Building API (see Figure 1). The simulators create a number
of instances of the models that are equal to the number of
entities to simulate. For example, if we have to simulate
ten buildings, there will be a unique Building API, which
will instantiate ten instances of the Building model. Each
instance will have a unique id and will be reported to the
Mosaik Orchestrator, during the creation phase. Hence, the
simulators are implemented as pure interfaces between the
model instances and the co-simulation process. The simulators
aggregate outputs and distribute inputs from and to the model
instances. The design is the same for all the simulators except
for the Thermal storage API, which is the only one interfacing
with an FMU model. Due to this exception, a particular effort
has been done to standardize a Mosaik API for FMU models,
resulting into two different standards of simulators, for Python
models and for FMU models.

Finally, the role of Mosaik Orchestrator is to manage the
simulation process by connecting and timing all the simulators.
Its main role is to act as an intermediary for the data exchange
between the simulators. Similarly, the simulators manage
inputs and outputs for their model instances. The Mosaik
Orchestrator keeps track of all the relationships between
simulators and model instances in the simulated environment.
It routes the data-flow thanks to a dictionary data structure
in which is kept the knowledge of time, connections, and
data to be exchanged. Thanks to this knowledge it distributes
information to each simulator and finally allows them to
advance through time.

C. Co-simulation workflow

This section presents the communication workflow of
all the simulators involved in our solution. As shown in

Figure 4 they are: Thermal power plant, DH grid, Thermal
storage, Control strategy, Weather, and Building. Simulators
can have multiple instances and instantiate one model multiple
times, for simplicity the image reports only the general
data exchange workflow between simulators typologies. The
simulation process includes all time-based simulators that
interact through a cyclic data-flow [24]. In a single time-step,
each simulator can receive and send information to multiple
others before or after having performed its own calculation.

Figure 4 schematizes the co-simulation workflow for a
single time-step. The blocks on the temporal lines for each
simulator represent the simulator task, while the numbered
arrows represent the performed data-exchange. The workflow
is divided into a Preliminary stage and a Calculation stage as
described in the following.

Preliminary stage: Control strategy communicates either the
schedule to Thermal storage or the anticipated load profile to
Building, according to the chosen strategy. Thermal storage
checks if it is in idle or in charge/discharge state. Thermal
power plant fixes the supply temperature.

Fig. 4: Schema of the co-simulation workflow

Calculation stage: The Building sends the mass-flow
demand to both DH grid and Thermal power plant to perform
the mass balance (see 1 in Figure 4). Weather sends the
outdoor temperature to Thermal storage (see T external and
2 in Figure 4). Thermal storage performs the following

consecutive tasks: i) it sends its mass flow demand to both
Thermal power plant and DH grid, if it is in charging state
(see 3 in Figure 4); ii) it performs its core computation as
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described in the previous Section II-B, which is represented by
the Storage calculation box in Figure 4; iii) it communicates
the discharging mass-flow to both Thermal power plant and
DH grid, if it is in discharging state (see 4 in Figure 4).
Once all the information required is received, the Thermal
power plant calculates the mass flow to be injected into the
network and it sends this result to DH grid (see calculate G
in tot box and 5 in Figure 4). DH grid, receiving all its
inputs, computes the thermo-fluid dynamics for the delivery
(see calculate for Delivery box). The results of this calculation
are all the temperatures of both junctions and nodes in the
delivery network. DH grid sends the proper temperature values
to both Building and Thermal storage (see T users, 6 , T
storage in, 7 in Figure 4).

Building can now calculate the temperature of the water
after the thermal power extraction (see Calculate T return),
it injects the water into the return network and it sends these
values to DH grid (see 8 in Figure 4). DH grid performs the
thermo-fluid dynamics calculation for the return sub-network
and provides the resulting temperatures to Thermal power
plant and Thermal storage (see 9 in Figure 4). Finally, given
the fixed supply temperature and the incoming temperature of
the return network, Thermal power plant computes the final
thermal power to heat up the water that will be injected into
the delivery sub-network in the next simulation time-step.

III. EXPERIMENTAL SETUP

The ability of our framework and models to scale up and
create synthetic grids has been presented in [20]. Thus, in this
work, we focus on showing modular flexibility by integrating
new models and performing a comparative case study analysis.
In this Section, the case study is explained. Thus, the
proposed analysis focuses on peak reduction strategies in the
context of supply temperature reduction. Testing strategies,
integrating models, and shifting the analysis perspective are all
features enabled by the co-simulation platform. Indeed, we can
assess different peak reduction strategies (as well as general
flexibility strategies) and simulate them simultaneously as well
as separately. The second case is the one we implement in this
paper which allows us to propose a fair comparison between
different strategies as well as analyze the effects of each one
on the different components of a DH infrastructure and under
varying boundary conditions (e.g. the supply temperature
reduction).

The simulated environment is a distribution grid, supplying
pressurized water and located in a city in Northern Italy.
The network topology as well as thermal power demand and
mass flow data belongs to this real-world case scenario. The
DH delivery sub-network is a radial network without loops
composed of 202 nodes and 201 edges. It supplies 47 buildings
and is populated with one thermal storage with a capacity of
around 26150 liters and one thermal power plant. In this way,
the analyzed grid portion is isolated from the transport grid for
which we have no data. The simulations are performed using
demand data and weather conditions of a typical winter day of
consumption, the demand data are well representative of the
problem we want to analyze and for which we tested the peak

reduction strategies. In particular, thermal power demand and
mass flow data come from real-world measurements for what
concern the operations at 120°C supply temperature, while for
the other scenarios at lower temperatures, they have been taken
from [21].

Figure 5 shows the aggregated load profile of the chosen
case study at the thermal power plant. This graph clearly
reports an early-morning peak, approximately between 6:00
and 7:00 a.m. This depends, especially in less harsh areas,
on heating devices being switched off (or attenuated) during
night hours. Indeed, the used data are mainly representative
of residential central heating systems which, by the Italian
custom, are switched off during the night. From the perspective
of smart energy management, load peaks must be avoided to
reduce prices and keep the thermal power level of production
plants as constant as possible. A straightforward method for
reducing peaks is integrating thermal storage systems. Another
possible solution involves acting on the demand load profiles
by shifting some of the users’ consumption peaks to other time
slots.

Fig. 5: Load profile of the given network at the Thermal power
plant node

Accordingly, we propose two different peak reduction
strategies, which are implemented as two alternatives in the
Control strategy model in Figure 1. The first one is based on
the usage of thermal storage which is scheduled according to
the needs of the load profile of the case study. The second
one, instead, exploits Demand Side Management (DSM), thus
it modifies the building’s load profiles by shifting them in
time, particularly advancing the demand of some minutes. The
analysis focuses on understanding the behavior of both these
strategies under the effects of reducing the supply temperature
in the district heating network. As the supply temperature
decreases, the performance of the peak reduction strategies
is investigated to reveal how the thermal storage strategy is
impacted compared to the DSM strategy and how sensitive
each approach is. Comparing the absolute effectiveness of the
strategies is beyond the scope of this work and would depend
on several implementation details. The aim is to gain insights
into how each approach responds differently to lower supply
temperatures.
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TABLE I: number of buildings and the relative thermal power
demand advance in minutes

number of buildings time advance [min.]

35 30
3 25
4 20
1 5
4 not shifted

The thermal storage control strategy follows a semi-
optimized schedule: It charges the storage from 3:00 to 5:20
with a fixed mass flow rate of around 3.094 kg/s and discharges
during the peak hour (6:00 to 7:00) with a variable mass flow
rate that follows the steep increase in demand during that hour.
By charging overnight when demand is low and discharging
during the peak hour, the storage helps flatten the load and
reduce the peak demand placed on the grid.

On the other side, for the DSM based strategy, we
anticipated some buildings’ load profiles, resulting in an
aggregated load curve with a reduced morning peak. Table I
shows the number of buildings that experienced a load shift
and the amount of shift in minutes. A majority of buildings
saw a 30 min advance in their load, while some saw 20-
25 min shifts, only one was shifted by 5 minutes, and
four experienced no shifting. This configuration, as well
as the storage schedules, are not mathematically optimized
but chosen based on the authors’ experience and qualitative
assessment, especially for what concerns the DSM shiftings
which in reality are strictly dependent on users’ preferences
and thus subjected to high uncertainty.

In summary, the simulations aim to study the effects of
both the storage and the demand side management (DSM)
strategies with a constant decrease in the inlet temperature.
The simulations were performed as follows:

• A base simulation with no peak reduction strategy;
• A simulation using the DSM strategy;
• A simulation using the storage strategy.
This process was repeated for each of the supply

temperature values (120/110/100/90 °C), allowing
comparisons of the base case, DSM strategy, and storage
strategy to be made at each temperature.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of the performed
simulations. Figure 6 shows the resulting load profiles for each
simulation, for better visualization only snapshots focused on
the morning period (3:00-9:00) are presented. The resulting
load profiles are the thermal power that is withdrawn from the
thermal power plant plus the network losses. The reported four
graphs are one for each tested supply temperature Figure 6-a
120° C, Figure 6-b 110° C, Figure 6-c 100° C, Figure 6-d
90° C, and the line color schema is the same for all. The
solid blue line reports the thermal power curve without any
peak reduction strategy, the dot-dashed green line the thermal
power curve under the DSM strategy, and the dashed orange
line the thermal power curve under the storage-based strategy.

Figure 6 shows that both DSM and storage strategies flatten
the peak to some extent. This is visible in the mismatch
of the curves under the peak of the baseline. In order to
compensate for the peak reduction between 6:00 and 7:00
both the DSM and the storage profiles consume more than the
baseline in other periods. For both strategies, these periods are
visible before the peak, indeed the storage is charged during
the night and the DSM has anticipated the loads. Comparing
the absolute effectiveness of the two strategies is beyond the
scope of this work and would depend on implementation
details. However, the results show that as supply temperature
decreases, the DSM strategy is less affected in terms of peak
reduction compared to the storage-based strategy. In summary,
for the same DSM and storage configurations, reducing supply
temperatures has a greater impact on the performance of the
storage strategy in flattening load peaks compared to the DSM
strategy.

To better understand the results from a quantitative
perspective, we have reported in Table II the peak reduction
percentages for both strategies for each simulated supply
temperature. The chosen index to evaluate the effectiveness of
the peak reduction is the Relative Peak thermal power demand
reduction taken from [25] and reported in Equation 4, where
Pflex represents the peak thermal power when a flexibility
strategy is applied and Pmax the original thermal power peak
of the baseline.

∆P% = 1− Pflex

Pmax
(4)

The results in Table II indicate that: The storage solution
becomes less effective at reducing the peak demand as the
inlet temperature decreases. The percentage of peak reduction
achieved by the storage strategy drops from 18.04% at 120°C
inlet temperature to 14.95% at 90°C. This suggests that lower
inlet temperatures reduce the effectiveness of the storage in
flattening load peaks. In contrast, the DSM solution is able to
maintain a more constant level of peak reduction, ranging from
around 33% to 34% across the different inlet temperatures.
Indeed, the relationship between DSM strategy effectiveness
and the lowering of supply temperatures is not linear, small
casual oscillations are present. Nevertheless, the maximum
variation in performance is around 1.22 percentage points
which can be seen as a negligible improvement leading to
consider the DSM performance rather constant. This implies
that shifting and adjusting users’ demand loads can achieve
similar levels of peak reduction, regardless of changes in the
inlet supply temperature. The trends in the data, therefore,
show that DSM presents a solution for reducing peaks that is
less sensitive to variations of the inlet temperature, while the
impacts of storage are more dependent on the temperature of
the water entering the distribution grid.

A. Thermal Storage results

Co-simulation allows us to perform different analyses by
coupling simulators. We can choose which perspective and
attributes to examine. In this section, we present the evolution
of thermal storage temperatures during the simulation. Figure 7
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Fig. 6: Snapshots of the withdrawn thermal power from the Thermal Power plant for the performed simulations, focusing on the
morning peak. a) case with supply temperature 120°C b) case with supply temperature 110°C c) case with supply temperature
100°C d) case with supply temperature 90°C

TABLE II: Results of peak reduction for both DSM and
storage strategies for each supply temperature

Supply
temperatures
[°C]

∆P
Storage

[%]

∆P
DSM
[%]

120 18.0 33.3
110 17.2 33.5
100 16.8 34.5
90 14.9 33.4

shows the temperatures of the top (T top) and bottom
(T bottom) layers of the storage along with the average
temperature (T avg). The graph is extracted for the simulation
with 90° C of supply temperature. The two highlighted
areas correspond to charging and discharging periods. During
charging, all temperatures increase at different rates due to
their positions and proximity to the inlet valve.

During discharging, we see a drastic decrease in the bottom
temperature. Indeed, during the discharge phase, the water
leaves the storage from the top layer and colder water enters
from the bottom one. The cold water entering comes from the
return sub-network, which is much colder than the water in
the storage, causing the temperature to drop. Whilst, the top
temperature is only slightly affected, being the temperature
of the last layer before the outlet valve for hot water. In idle
periods the curves slightly converge, illustrating the effects
of mixing and heat losses (see from the end of discharging
period to 15:00). In particular, we can see that in idle periods

the temperature changes are small meaning that mixing is slow
and also heat losses are small. The first aspect depends on the
fact that there is a very slow fluid exchange between layers.
Whilst, the second aspect depends on the high insulating
properties of the chosen tank and on the not extreme outdoor
temperatures of the used weather file, given as input to the
simulation.

Fig. 7: Temperature profiles of upper, middle and lower layers
in the thermal storage during charge/discharge phases
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B. Execution graph

In this section, we address the resulting data-exchange
workflow of the simulated entities. The execution graph in
Figure 8 reports each simulator state over time and their
interactions. The colored dots represent simulator entities
states and the arrows represent data exchanged between
entities. The graph shows a 60 second time step and the
beginning of the next one, with time on the x-axis and entity
names on the y-axis. This graph is the real implementation of
the data workflow previously explained in Section II-C. The
involved simulators are shown on the y-axis in Figure 8. The
DH grid simulator has been divided into DH grid return and
DH grid delivery only for better visualization. The Database
results simply collects the outputs of all the simulators every
time step to store them in hdf5 databases. We never cited it
due to its marginality, but it is reported in this execution graph
because it still takes part in the actual data-exchange process
by receiving data every time-step. Then, besides these two
differences, the other simulators are the same as described
in Section II. Figure 8 shows that each simulator advances
through time sending and receiving data. There are two types
of data-exchange between simulators: i) instantaneous and ii)
time-shifted. The first kind of exchange is the one represented
by the vertical arrows between simulator states (e.g. at t = 0), in
this case, the data are sent between each simulator following
a defined order at the beginning of the time-step execution.
The second kind of exchange is represented by the inclined
arrows that connect states at different times (from which
”time-shifted”). The time-shifted exchange is a common way
to resolve cyclic data-flows (see MOSAIK documentation [24])
in the co-simulation domain. Indeed, it is needed when two
simulators need to perform multiple data-exchange in the same
time-step. Shifting in time these messages is an approximation
that can be resolved with some initialization to obtain the
correct alignment between simulators. In conclusion, it is
worth noticing that the Thermal storage simulators presents
six states in a single time-steps. Indeed, due to its own model,
the Thermal storage simulator has a different time resolution
with respect to the other simulators, it is stepped every 10
seconds while the rest of the involved simulators every 1
minute. This shows the flexibility of the platform that allows
to couple simulators with different time-resolutions.

V. CONCLUSION

The co-simulation framework demonstrates the potential
to optimize district heating systems through a holistic view
that integrates models from different domains. By coupling
simulators in a flexible Plug&Play fashion, the framework
shows it can simulate realistic scenarios with various
perspectives. In the context of our manuscript, it is important
to acknowledge that a performance comparison of our co-
simulation framework with traditional platforms like Modelica
may not be entirely fair. These platforms serve distinct
purposes and offer different capabilities. Our framework
offers the possibility of integrating diverse simulation tools
(e.g. Modelica, Eplus, Simulink etc.), and programming
languages, in particular custom Python models. This approach

Fig. 8: Co-simulation execution graph for 2 time-steps

supports the implementation of complex control strategies
on top of diverse systems with increased levels of detail,
complexity, and scalability. Achieving this on traditional
monolithic platforms (e.g. Modelica or Matlab) can be
challenging especially when the need for multidisciplinarity,
scalability, and complexity increases. Therefore, rather than
conducting direct comparisons with traditional platforms, our
manuscript emphasizes the unique advantages of our co-
simulation approach by showing its implementation and usage
on a DH system. The simulations conducted to compare
demand-side management and storage-based peak reduction
strategies reveal that DSM performs more reliably under
lower supply temperatures. This is crucial for the future of
District heating networks which, to be more efficient and
to integrate renewable technologies, will inevitably lower
their supply temperatures. Indeed, understanding the limits
of peak reduction strategies for future DH scenarios is
important to direct research efforts in the right direction, in
this regard, DSM strategies seem very promising. Interesting
future analyses could include models for optimal thermal
storage scheduling as well as optimal DSM shiftings, in
addition focusing on DSM will need the integration of some
consideration on people’s behaviors and choices or on new
contractual strategies to actually verify the feasibility of the
shiftings. To conclude, the platform’s modularity enables
easier benchmarking and exploration of opportunities not only
for District heating systems but more in general for what
will be our main focus: multi-energy system analyses. This
demonstrates its potential usefulness for studying complex
urban energy systems and informing efficient solutions.
With further development and refinement, this co-simulation
approach holds promise for identifying flexibility options and
optimal operating strategies to minimize costs and emissions
for future sustainable heating networks that exploit synergies
across infrastructures.
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