
21 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Adaptive Model Predictive Control with online parameter learning during spacecraft proximity operations / Stesina,
Fabrizio; D'Ortona, Antonio; Lovaglio, Lucrezia. - ELETTRONICO. - 58:(2024), pp. 235-240. (Intervento presentato al
convegno 2nd IFAC Workshop on Aerospace Control Education tenutosi a Bertinoro (Italy) nel 22-24 Luglio 2024)
[10.1016/j.ifacol.2024.08.492].

Original

Adaptive Model Predictive Control with online parameter learning during spacecraft proximity operations

Publisher:

Published
DOI:10.1016/j.ifacol.2024.08.492

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992035 since: 2024-08-29T10:09:55Z

International Federation of Automatic Control



IFAC PapersOnLine 58-16 (2024) 235–240

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2024.08.492

10.1016/j.ifacol.2024.08.492 2405-8963

Adaptive Model Predictive Control with
Online Parameter Learning during
Spacecraft Proximity Operations

D’ORTONA Antonio, LOVAGLIO Lucrezia,
STESINA Fabrizio

Politecnico di Torino, Turin, Corso Duca Degli Abruzzi 24, 10129 ITA
(e-mail: antonio.dortona@polito.it).

Politecnico di Torino, Turin, Corso Duca Degli Abruzzi 24, 10129 ITA
(e-mail: lucrezia.lovaglio@studenti.polito.it).

Politecnico di Torino, Turin, Corso Duca Degli Abruzzi 24, 10129 ITA
(e-mail: fabrizio.stesina@polito.it).

Abstract: This paper presents a novel Model Predictive Control (MPC), developed by PhD
students, that integrates online parameter learning to manage dynamic systems. In this adaptive
MPC, system parameters are continuously updated using a custom gradient-based function.
This function makes real-time adjustments to critical parameters based on current state errors
and system feedback, enabling a dynamic adaptation to changes. Simulation are conducted on a
simulator developed over the years by students of different grade Results show the effectiveness of
this approach, in terms of control accuracy, robustness, and adaptability in evolving conditions,
making it a promising solution for real-time control applications in complex and uncertain
environments.
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1. INTRODUCTION

Spacecraft rendezvous and docking (RVD) maneuvers are
critical tasks for on-orbit servicing, assembly, and explo-
ration missions. In recent years, small satellites have also
been increasingly involved in such missions,(Corpino Cor-
pino et al. (2022) (2022), (Botta Votta et al. (2022),Roscoe
et al. (2018)). In these scenarios, the final approach before
docking is notably challenging not only for strict safety
constraints but also for the smaller size of small satel-
lites and their docking mechanisms. Additionally, the used
technology is generally less advanced than the one used
for larger satellites, necessitating higher accuracy with
lower-performance equipment. To improve the success of
such maneuvers, several strategies have been proposed
to control the relative distance between the target and
the chaser. Traditionally, these approaches rely on pre-
planned control strategies based on high-fidelity models.
However, uncertainties in the spacecraft dynamics and the
space environment can lead to performance degradation or
even mission failure. To address these challenges, various
algorithms have been proposed. Adaptive control laws for
spacecraft rendezvous and docking are presented in Pirat
et al. (2021), considering measurement uncertainty, such
as aggregation of sensor calibration parameters, systematic
bias, or some stochastic disturbances.Ventura et al. (2017)
propose a guidance scheme for autonomous docking where
the trajectory components of the controlled spacecraft
are imposed by using polynomial functions determined
through optimization processes. In Botta Votta et al.
(2022), the authors show an optimized state-dependent

MPC that integrates a pulse width pulse frequency mod-
ulation model: the results highlight a good accuracy at
the final state minimizing the control efforts and ap-
proaching time. A model predictive solution is also im-
plemented by Stesina et al. (2022) with details on the
applied constraints. Pirat et al. (2019) present an H-
infinity controller taking care of the robust stability and
performance through the mu-synthesis. Mammarella et al.
(2018) propose and validate on a test-bench a sampling-
based stochastic model predictive control (SMPC) algo-
rithm with off-line determination of the controller weights
for discrete-time linear systems subject to both parametric
uncertainties and additive disturbances. Stesina (2021)
proposes a Tracking Model Predictive Control stressing
the importance of the achievement of terminal point con-
ditions and trajectory holding. In recent times, online
learning has been used to enhance the performance of
Model Predictive Control (MPC) by continuously up-
dating model parameters and control laws in real-time.
This allows MPC to effectively handle uncertainties and
changing conditions. Kostadinov and Scaramuzza (2020)
have proposed an online weight-adaptive approach that
dynamically updates state and control weights, enabling
MPC to dynamically respond to new data.

This paper presents an innovative approach that integrates
Model Predictive Control (MPC) with online learning to
enhance the robustness of Rendezvous and Docking (RVD)
maneuvers, particularly for small satellite missions. In the
context of RVD for small satellites, MPC can be employed
to guide a chaser spacecraft (e.g. a 12U CubeSat) towards
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a target spacecraft while ensuring safety and fuel efficiency.
The introduction of online learning enables the MPC con-
troller to dynamically adapt its model of the CubeSat’s
dynamics in real-time, based on sensor data collected dur-
ing the RVD maneuver. This continuous learning process
allows the controller to compensate for uncertainties and
improve performance over time, highlighting the advanced
AI aspects of the strategy.

The structure of this paper is organized as follows. Sec-
tion 2 details the orbital model, control strategy, and
online learning adaptation. Section 3 presents numerical
evaluation of the proposed control approach. It presents
simulation results and discusses performance metrics to
assess the efficacy of the adaptive MPC strategy. Lastly,
Section 4, concludes the paper by summarizing the key
findings and contributions of the presented study.

2. METHODS

The relative motion between two spacecraft is described
by a system of nonlinear differential equations. Assuming
that the orbit of the chaser is circular and the orbit of the
target is just slightly elliptic or inclined with respect to
it, the motion of the two spacecraft looks very similar and
the system of equations can be simplified, obtaining the
linear Hill-Clohessy-Wiltshire equations (1960) described
in 1.

ẍ− 3ω2x− 2ωẏ =
Fx

mc

ÿ + 2ωẋ =
Fy

mc

z̈ + ω2z =
Fz

mc

(1)

ω =


µ/R3 represents the mean angular motion of the
target spacecraft and Fx, Fy, Fz are the components of
the external force vector (excluding gravity) acting on
the spacecraft, composed by the thrust generated by the
propulsion system and the forces due to the interaction
of the external environment. The equations are expressed
with respect to the local orbiting reference frame RIC
(Radial InTrack CrossTrack) centered on the target CoM
(Center of Mass). The RIC reference system consists of a
local tangent plane coordinate system that is defined with
respect to the target spacecraft. The origin coincides with
the target center of mass. The radial axis XRIC is aligned
with the radial direction (positive outwards). The InTrack
YRIC axis coincides with the direction of the target’s
motion. The CrossTrack ZRIC completes the right-hand
coordinates system and it is parallel to the orbit angular
momentum vector (positive in the orbit normal direction).
The frame is shown in Fig. 1.
The relative dynamics described in 1 can be rewritten as
the following state space model:

ẋ = Ax+Bu+ δ (2)

where x = [x, y, z, ẋ, ẏ, ż] is the state vector, A ∈ R6×6 is
the state (or system) matrix, B ∈ R6×3 is the input matrix
and can be written as follows:

A =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2 0 0 0 2ω 0
0 0 0 −2ω 0 0
0 0 −ω2 0 0 0




(3)

B =




0 0 0
0 0 0
0 0 0

1/mc 0 0
0 1/mc 0
0 0 1/mc




(4)

u ∈ R3 is the control input associated to the activation
of the thrusters calculated with a Model Predictive Con-
trol (MPC) discussed in 2.2, and δ ∈ R6 represent the
disturbances entering the system that consider environ-
mental effects and model uncertainties. Particularly, the
considered ones can be broadly categorized into distur-
bance forces and disturbance torques. The disturbance
forces include aerodynamic drag due to the residual atmo-
sphere, geopotential anomalies (specifically J2 perturba-
tions), and differential drag. The disturbance torques en-
compass aerodynamic drag-induced torques, gravitational
gradient torques resulting from the uneven gravitational
pull on different parts of the spacecraft and residual mag-
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2.1 Actuator Models

The propulsion module is based on 8 cold gas thrusters
using ON-OFF-control as shown in Fig. 1. The configura-
tion provides a 6DoF (Degree of Freedom) maneuvrability
by means indipendently controlled nozzles. As depicted in
Fig. 1 each nozzle axis is inclined with respect to the body
reference frame of the angle α with the XBYB plane of
the body reference frame, β represents the angle between
the ZB axis and the direction of the angle α. The thrust
generated by the single nozzle can be calculated in the
body reference system as:

tx = t cosα sinβ

ty = t sinα sinβ

tz = t sinβ

(5)

in which t is the thrust generated by each nozzle. In consid-
eration of the spatial arrangement within the propulsion
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a target spacecraft while ensuring safety and fuel efficiency.
The introduction of online learning enables the MPC con-
troller to dynamically adapt its model of the CubeSat’s
dynamics in real-time, based on sensor data collected dur-
ing the RVD maneuver. This continuous learning process
allows the controller to compensate for uncertainties and
improve performance over time, highlighting the advanced
AI aspects of the strategy.

The structure of this paper is organized as follows. Sec-
tion 2 details the orbital model, control strategy, and
online learning adaptation. Section 3 presents numerical
evaluation of the proposed control approach. It presents
simulation results and discusses performance metrics to
assess the efficacy of the adaptive MPC strategy. Lastly,
Section 4, concludes the paper by summarizing the key
findings and contributions of the presented study.

2. METHODS

The relative motion between two spacecraft is described
by a system of nonlinear differential equations. Assuming
that the orbit of the chaser is circular and the orbit of the
target is just slightly elliptic or inclined with respect to
it, the motion of the two spacecraft looks very similar and
the system of equations can be simplified, obtaining the
linear Hill-Clohessy-Wiltshire equations (1960) described
in 1.

ẍ− 3ω2x− 2ωẏ =
Fx

mc

ÿ + 2ωẋ =
Fy

mc

z̈ + ω2z =
Fz

mc

(1)

ω =

µ/R3 represents the mean angular motion of the

target spacecraft and Fx, Fy, Fz are the components of
the external force vector (excluding gravity) acting on
the spacecraft, composed by the thrust generated by the
propulsion system and the forces due to the interaction
of the external environment. The equations are expressed
with respect to the local orbiting reference frame RIC
(Radial InTrack CrossTrack) centered on the target CoM
(Center of Mass). The RIC reference system consists of a
local tangent plane coordinate system that is defined with
respect to the target spacecraft. The origin coincides with
the target center of mass. The radial axis XRIC is aligned
with the radial direction (positive outwards). The InTrack
YRIC axis coincides with the direction of the target’s
motion. The CrossTrack ZRIC completes the right-hand
coordinates system and it is parallel to the orbit angular
momentum vector (positive in the orbit normal direction).
The frame is shown in Fig. 1.
The relative dynamics described in 1 can be rewritten as
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ẋ = Ax+Bu+ δ (2)

where x = [x, y, z, ẋ, ẏ, ż] is the state vector, A ∈ R6×6 is
the state (or system) matrix, B ∈ R6×3 is the input matrix
and can be written as follows:

A =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2 0 0 0 2ω 0
0 0 0 −2ω 0 0
0 0 −ω2 0 0 0




(3)
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2.1 Actuator Models

The propulsion module is based on 8 cold gas thrusters
using ON-OFF-control as shown in Fig. 1. The configura-
tion provides a 6DoF (Degree of Freedom) maneuvrability
by means indipendently controlled nozzles. As depicted in
Fig. 1 each nozzle axis is inclined with respect to the body
reference frame of the angle α with the XBYB plane of
the body reference frame, β represents the angle between
the ZB axis and the direction of the angle α. The thrust
generated by the single nozzle can be calculated in the
body reference system as:

tx = t cosα sinβ

ty = t sinα sinβ

tz = t sinβ

(5)

in which t is the thrust generated by each nozzle. In consid-
eration of the spatial arrangement within the propulsion

module, the control force components among the eight
thrusters is delineated as follows:

Table 1. Thrust components in body axis

Thruster n. Thrust components

Thruster 1 tx ty tz
Thruster 2 −tx ty tz
Thruster 3 tx −ty tz
Thruster 4 −tx −ty tz
Thruster 5 tx ty −tz
Thruster 6 −tx ty −tz
Thruster 7 tx −ty −tz
Thruster 8 −tx −ty −tz

The Equation 4 can be rewritten considering the thruster
configuration:

ẋ = Ax+BLRIC B TTu (6)

where LRIC B ∈ R3×3 is the rotation matrix from body to
RIC reference frame, T is:

T =




tx ty tz
−tx ty tz
tx −ty tz
−tx −ty tz
tx ty −tz
−tx ty −tz
tx −ty −tz
−tx −ty −tz




(7)

The components of u ∈ R8×1 can be either 0 or 1 based
on the thruster activation.

2.2 Model Predictive Control formulation

The considered Model Predictive Control solves a finite-
horizon optimization problem. At a time instant t the
following optimization is solved:

u = min
u:[0,N ]→Rm

J(x, u) (8)

The objective is to minimize the cost function J with
respect to the control input u over a prediction horizon
N , subject to state-input constraints and state only con-
straints. The quadratic cost function J is:

J(x, u) = ∆xT
NP∆xN +

N−1
k=1

∆xT
kQ∆xk + uT

kRuk (9)

where Q ∈ Rn×n and R ∈ Rm×m are the state and control
weight matrices, P is the state weight matrix for theN−th
step calculated as the solution of the discrete algebraic
Riccati equation since it guarantees closed-loop stability.
∆x = xr,k−xk is the difference between the reference state
and the spacecraft state at the k − th step. Considering
xk = [pR,k pI,k pC,k vR,k vI,k vC,k]

T with pi,k the relative
position and vi,k the relative velocity in RIC reference
frame (the subscript i stands for the corresponding Radial,
Intrack or CrossTrack component), the entire problem can
be rewritten as:

u = min
u


∆xT

NP∆xN +

N−1
k=1

∆xT
kQ∆xk + uT

kRuk



subject to 1. xk,k=1 = x̃k,k=1

2. xk+1 = xkÃ+ B̃uk

3.


p2R,k + p2C,k < pI,k tan(θ/2)

4. vI,k < 0.1

5. 0 < uk < 1
(10)

with τ representing the MPC sampling time. The con-
straint 10.1 sets the initial condition for the prediction
by setting xk,k=1 to match the latest estimate of the
spacecraft state x̃k,k=1. The state and control predictions
are subject to the system model in constraint 10.2 through
the forward Euler method. Considering

Ã = I + τA (11)

with I ∈ R6 × 6 the identity matrix, and

B̃ = τBLRIC BT
T (12)

and

F =




Ã

Ã2

Ã3

...

ÃN



G =




B̃ 0 0 . . . 0

ÃB̃ B 0 . . . 0

Ã2B̃ ÃB̃ B̃ . . . 0
...

...
...

...
...

ÃN−1B̃ ÃN−2B̃ . . . ÃB̃ B̃



u =




u1

u2

u3

...
uN




r =




r1
r2
r3
...
rN



Q̃ =




Q 0 . . . 0
0 Q . . . 0
...

...
...

...
0 0 . . . P


 R̃ =




R 0 . . . 0
0 R . . . 0
...

...
...

...
0 0 . . . R




Equation 9 can be rewritten in matrix form:

J = (Fxk,k=1+Gu−r)T Q̃(Fxk,k=1+Gu−r)+uTRu (13)

where r represents the reference trajectory to be followed
during the Rendezvous approach. The constraint 10.3
defines a cone-shaped region that the chaser must stay
within for safety reasons, ensuring it does not cross the
designated boundaries as shown in Fig. 2, where the chaser
is represented as a green square and the target as a black
dot.

Fig. 2. Control loop architecture
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The constraint 10.4 limits the maximum velocity to meet
mission requirements in this phase of the final approach.
Constraint 10.5 ensures the control input stays within the
range that spans from 0 to 1 to comply with the thruster’s
ON-OFF functionality.

2.3 Online Parameter Update

The study introduces an adaptive control algorithm de-
signed to dynamically update key parameters based on
current state errors and system inputs. In particular, the
focus is on the minimization of a loss function defined as

L =
1

2
xT
err xerr (14)

with

xerr = xest − xpr (15)

representing the squared error between the estimated state
xest, provided by the Extended Kalman Filter (EKF), and
the predicted one, xpr computed by the Model Predictive
Control (MPC) and defined as

xpr = Ãxk-1 + B̃uk-1 (16)

To minimize this function, two main varying parameters
are taken into account: the spacecraft’s mass, here defined
as mc, and the thrust, here defined as t, generated by
the thrusters. During the mission, the spacecraft’s mass
decreases due to fuel consumption, while the thrust varies
with the changing pressure in the fuel tank, affecting noz-
zle thrust. Considering Equation 16, a modification to the
chaser’s mass induces an equivalent effect on the system
dynamics as an opposite modification to the maximum
thrust, and vice versa. To efficiently incorporate the influ-
ence of both force and mass, the update strategy utilizes
the derivative of the loss function with respect to w, where
w represents the thrust-to-mass ratio t/mc.

To minimize this function, gradient descent approach is
used:

• Initialization: both thrust t and mass mc values are
set up from previous iterations. If first iteration is
considered, the initial values are taken into account;

• Gradient calculation: The gradient of the loss
function is computed with respect to the change of
w;

• Parameter update: the direction along which the
loss function decreases the most is the negative gradi-
ent. In order to minimize it, the value of w is updated
by taking a small step in the negative gradient direc-
tion, setting them a little close to the minimum.

wk+1 = wk − ηα

(
∂L
∂w

)

k

(17)

where η can be regulated depending on how small
the step is decided to be taken. In the present ap-
proach, η is equal to 0.1.

The chosen loss function is quadratic, and therefore con-
vex. This implies that the gradient changes linearly from
one point to another, providing a smooth and predictable
gradient descent path, and that the local minimum is also
the global minimum. For each iteration, the gradient of L
with respect to w is calculated as:

xerr = xest −
(
Ãxk−1 +

t

mc

[
03×3

I3×3

]
LRIC BT

T
normuk−1

)

∂L
∂w

= xT
err

(
−τ

[
03×3

I3×3

]
LRIC BT

T
normuk−1

)

(18)

where Tnorm is 1
tT . After the calculation of the gradient

the system and computing Equation 17 the matrix B̃ can
be updated as:

B̃ = τwk+1

[
03×3

I3×3

]
LRIC BT

T
normuk−1 (19)

B̃ can be updated inside the MPC formulation of Equation
10 to adjust its prediction.

Fig. 3. Control loop architecture

3. SIMULATOR

The controller’s effectiveness is evaluated using a Guid-
ance, Navigation, and Control (GNC) simulator, which is
entirely developed within an academic context by students.
The simulator architecture consists of main environment
were the user can setup the simulation in terms of models
and simulation parameters. A graphical user interface fa-
cilitates to surface on the simulator and user can 1) setup
the simulation flow and generate the code for the simu-
lation, 2) select the models for the representation of the
dynamics and kinematics, the system models (i.e. sensors
and actuators, filters and control logic), the disturbance
and the uncertainties due to the space environment 2)
setup the outputs (in terms of number and type of graphs
and table), 3) execute the simulation and follow the trends
in real time, 4) manage the results and prepare the final
documentation. The contribution of the students is vital
and they are organised in this way:

• PhD students bear the responsibility for maintaining
the entire Matlab/Simulink architecture and manag-
ing its use for didactic purposes or thesis projects,
providing support to master’s degree and bachelor’s
Degree students in the activities that involve the
simulator. Their role is to ensure the robustness and
accuracy of the simulation environment, thereby fa-
cilitating the integration or validation of new com-
ponents into a satellite system. This encompasses
hardware-level aspects, such as creating a simulation
model of a real sensor, and software-level aspects,
such as developing new control algorithms and filters.
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The constraint 10.4 limits the maximum velocity to meet
mission requirements in this phase of the final approach.
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ON-OFF functionality.
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current state errors and system inputs. In particular, the
focus is on the minimization of a loss function defined as

L =
1
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xT
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xerr = xest − xpr (15)

representing the squared error between the estimated state
xest, provided by the Extended Kalman Filter (EKF), and
the predicted one, xpr computed by the Model Predictive
Control (MPC) and defined as

xpr = Ãxk-1 + B̃uk-1 (16)

To minimize this function, two main varying parameters
are taken into account: the spacecraft’s mass, here defined
as mc, and the thrust, here defined as t, generated by
the thrusters. During the mission, the spacecraft’s mass
decreases due to fuel consumption, while the thrust varies
with the changing pressure in the fuel tank, affecting noz-
zle thrust. Considering Equation 16, a modification to the
chaser’s mass induces an equivalent effect on the system
dynamics as an opposite modification to the maximum
thrust, and vice versa. To efficiently incorporate the influ-
ence of both force and mass, the update strategy utilizes
the derivative of the loss function with respect to w, where
w represents the thrust-to-mass ratio t/mc.

To minimize this function, gradient descent approach is
used:

• Initialization: both thrust t and mass mc values are
set up from previous iterations. If first iteration is
considered, the initial values are taken into account;

• Gradient calculation: The gradient of the loss
function is computed with respect to the change of
w;

• Parameter update: the direction along which the
loss function decreases the most is the negative gradi-
ent. In order to minimize it, the value of w is updated
by taking a small step in the negative gradient direc-
tion, setting them a little close to the minimum.

wk+1 = wk − ηα

(
∂L
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)

k

(17)

where η can be regulated depending on how small
the step is decided to be taken. In the present ap-
proach, η is equal to 0.1.

The chosen loss function is quadratic, and therefore con-
vex. This implies that the gradient changes linearly from
one point to another, providing a smooth and predictable
gradient descent path, and that the local minimum is also
the global minimum. For each iteration, the gradient of L
with respect to w is calculated as:

xerr = xest −
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mc
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LRIC BT
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normuk−1
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∂w

= xT
err
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LRIC BT
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normuk−1
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where Tnorm is 1
tT . After the calculation of the gradient

the system and computing Equation 17 the matrix B̃ can
be updated as:

B̃ = τwk+1
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normuk−1 (19)

B̃ can be updated inside the MPC formulation of Equation
10 to adjust its prediction.
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3. SIMULATOR

The controller’s effectiveness is evaluated using a Guid-
ance, Navigation, and Control (GNC) simulator, which is
entirely developed within an academic context by students.
The simulator architecture consists of main environment
were the user can setup the simulation in terms of models
and simulation parameters. A graphical user interface fa-
cilitates to surface on the simulator and user can 1) setup
the simulation flow and generate the code for the simu-
lation, 2) select the models for the representation of the
dynamics and kinematics, the system models (i.e. sensors
and actuators, filters and control logic), the disturbance
and the uncertainties due to the space environment 2)
setup the outputs (in terms of number and type of graphs
and table), 3) execute the simulation and follow the trends
in real time, 4) manage the results and prepare the final
documentation. The contribution of the students is vital
and they are organised in this way:

• PhD students bear the responsibility for maintaining
the entire Matlab/Simulink architecture and manag-
ing its use for didactic purposes or thesis projects,
providing support to master’s degree and bachelor’s
Degree students in the activities that involve the
simulator. Their role is to ensure the robustness and
accuracy of the simulation environment, thereby fa-
cilitating the integration or validation of new com-
ponents into a satellite system. This encompasses
hardware-level aspects, such as creating a simulation
model of a real sensor, and software-level aspects,
such as developing new control algorithms and filters.

• MSc students, primarily engaged in their thesis work
or participating in student team projects, can cre-
ate new blocks within the simulator’s three macro
areas. For instance, they might focus on implementing
Navigation algorithms for pose estimation or design
Control algorithms for different mission phases. They
utilize the simulator to perform dedicated software-
in-the-loop simulations, which are critical for validat-
ing their designs and ensuring they meet the required
performance criteria. On the other hand.

• BSc students may utilize the developed simulator
to implement new features for already existing algo-
rithms and validate their models through simulation.
For example, they might work on sensor fusion algo-
rithms or implement a first and ideal version of an
onboard sensor. Through the usage and development
of the GNC simulator, students gain practical, hands-
on experience in systems engineering, enhancing their
proficiency in simulation modeling, control systems,
and algorithm development. This project deepens
students’ understanding of the intricate relationship
between hardware and software within satellite sys-
tems, thereby preparing them to address the com-
plexities inherent in real-world aerospace engineering
challenges.

4. RESULTS

The following details outline the initial conditions and
parameter variations considered in the simulations:

• Initial Relative Position: The simulations focus on
the final approach phase of the rendezvous maneu-
ver, assuming the chaser spacecraft starts at a rel-
ative position of [−1.46, 58.88, 1.032]RIC m in the
reference frame (RIC) with a relative velocity of
[0.0137,−0.004,−0.0197]RIC m/s.

• Randomized Mass and Thrust: To analyze the ef-
fectiveness of the proposed adaptation logic of the
control system, both the chaser’s mass (mc) and
its maximum thrust capability (t) are subjected to
random variations at the beginning of the maneuver.
These variations occur within a range of ±20% of
their nominal values.

A total of 6 iterations were performed with different
values of the thrust-to-mass ratio t/mc as reported in the
following table.

Table 2. Thrust-to-mass ratio at the beginning
of simulation

t/mc

3.2905e-04
3.3778e-04
2.9529e-04
3.4249e-04
2.6363e-04
2.6560e-04

Fig. 4. Thrust-to-mass ratio over time

Fig. 3 shows that in all the cases analyzed the t/mc

converges towards the real value represented by the black
horizontal line. The convergence time to achieve a 0.3%
error in the force-to-mass ratio (f/m) varied between 400
and 500 seconds. Notably, a coarse 1% error level was
reached much faster, after 70 seconds. The entire approach
maneuver are reported in the Fig. 4.

Fig. 5. Trajectory of the final approach maneuver in all
cases studied

5. CONCLUSION

The proposed online learning MPC strategy has demon-
strated its effectiveness in achieving the initial objective of
a successful spacecraft rendezvous maneuver. This success
is attributed to the controller’s ability to adapt its model
of the spacecraft dynamics in real-time based on sensor
measurements. This adaptation capability allows the MPC
to compensate for uncertainties and disturbances that are
present in the actual spacecraft system, which may not be
perfectly captured by the initial system model.
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The online learning aspect of the MPC continuously refines
the model parameters based on the real-time measured
data from the plant provided by the state observer. This
ongoing refinement enables the controller to maintain
accurate predictions despite the presence of uncertainties
of the control model. As a result, the control strategy
can adjust the thrust application to ensure the spacecraft
follows the desired trajectory and achieves a successful
rendezvous with the target. While the current online
learning approach has proven successful, One potential
area for further development is the introduction of a
variable learning rate. A fixed learning rate determines the
step size by which the model parameters are updated based
on the learning algorithm. However, a variable learning
rate can potentially improve the convergence speed of
the learning process. During the initial stages of the
maneuver, when the model has significant deviations from
the actual system, a high learning rate can be beneficial.
This allows the controller to rapidly adjust its model
parameters and improve its prediction accuracy. As the
learning process progresses and the model becomes more
accurate, a reduced learning rate can be implemented.
By incorporating a variable learning rate strategy, the
convergence time of the learning process could be reduced
avoiding not reaching the global minimum.

From the educational point of view this work again rep-
resents a valid test bench for GNC simulator developed
by the students beyond the importance of the technical
results. The novel adaptive MPC is completely studied and
designed by a PhD student that focuses his thesis on the
GNC for RVD of smallsats. In this context, he could count
on the support of MSc that develop parts of the simulator
in terms of subsystems and equipment models, such as
the propulsion system, the navigation and the filtering
with all the uncertainties, the disturbance introduced by
the space environment. Moreover, two bachelors students
provide new versions of the models for sensors. All this
contribution enlarges the capability of the simulator that
now is enriched of new model and elements that give
simulation activities easier and, even, allow to improve
the confidence in the obtained results. Other important
aspect is that all the new elements will result useful for
the teaching activities on the courses because through
the simulator was possible the validation on models, only
theoretically described in the course, at the moment. The
actual availability of the models simplifies and/or improves
the practice exercise in course of avionics system design
and space mission and system design where a reduced
version of the simulator is adopted.
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