
03 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Assessing the Effectiveness of Software-Based Self-Test Programs for Static Cell-Aware Test / Cantoro, Riccardo;
Grosso, Michelangelo; Guglielminetti, Iacopo; Khoshzaban, Reza; Reorda, Matteo Sonza. - (2024). (Intervento
presentato al convegno 2024 IEEE European Test Symposium (ETS) tenutosi a The Hague (NL) nel 20-24 May 2024)
[10.1109/ets61313.2024.10567198].

Original

Assessing the Effectiveness of Software-Based Self-Test Programs for Static Cell-Aware Test

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ets61313.2024.10567198

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992030 since: 2024-08-28T22:28:38Z

IEEE

Assessing the Effectiveness of Software-Based

Self-Test Programs for Static Cell-Aware Test

Riccardo Cantoro∗, Michelangelo Grosso†, Iacopo Guglielminetti†, Reza Khoshzaban∗, Matteo Sonza Reorda∗

∗ Politecnico di Torino, DAUIN — Turin, Italy † STMicroelectronics — Turin, Italy

Abstract—Software-Based Self-Test (SBST) is vastly adopted
as a hardware safety mechanism for the in-field test of safety-
critical systems in the form of Software Test Libraries (STLs).
Typically, an STL’s diagnostic coverage is evaluated on the stuck-
at fault model. As various defect-oriented fault models exist and
are used for manufacturing testing, such as the popular cell-
aware test (CAT), there is a need to evaluate the effectiveness of
SBST when such models are targeted. This work targets static
CAT faults. We evaluated the fault coverage of open-available
STLs for a RISC-V SoC. We used results stemming from stuck-
at fault simulation and gate-exhaustive simulation to elaborate
on the obtained results.

I. INTRODUCTION

Modern electronics in safety-critical systems must meet

strict quality requirements. Manufacturing tests are crucial to

detect and mitigate hardware defects. Defect-oriented fault

models, such as cell-aware testing (CAT)[1]–[3] and small

delay defects (SDDs)[4]–[6], are increasingly used in auto-

matic test pattern generation (ATPG) flows to reduce defective

parts per million (DPPM) in production[7]. Functional safety

standards like ISO26262 mandate a certain quality level,

quantified through diagnostic coverage (DC), in the field[8],

[9]. However, fault models for fault injection campaigns to

quantify coverage metrics are not explicitly referenced in

these standards. In-field test solutions still rely mainly on

the stuck-at fault model[10], [11]. Functional approaches like

software test libraries (STLs) are often adopted in functional

safety when hardware solutions are not an option[12]. STLs

are based on the well-known software-based self-test (SBST)

paradigm [13], which is the main focus of this work. STLs

are collections of test programs, often developed by the

manufacturing company, that, when run by the CPU inside

the Circuit Under Test, allow the detection of a given number

of faults by observing the results that are produced. Few works

can be found in the literature going in this direction [14], [15].

This work aims to assess the effectiveness of STLs devel-

oped for stuck-at faults in detecting static cell-aware faults.

As the static CAT fault model is a superset of the stuck-at

fault model, we aim to show whether the typical redundancy

introduced by test engineers during STL generation is ben-

eficial for detecting cell-aware faults. We present results on

a RISC-V core using previously developed and open-source

STLs [16]. In our study, we group faults according to the

number of input combinations to be applied to the cell to excite

and propagate those faults to the cell output(s). As a result,

we can identify groups of fault that are potentially harder to

test. We analyze the same profile on gate-exhaustive [17] and

stuck-at faults to show the peculiar characteristics of CAT. As

commercial functional fault simulators that implement CAT

in sequential circuits require some pre- and post-processing

of the fault lists to assess the CAT fault coverage correctly, in

this work, we also present the details of our fault simulation

flow. Our experiments show that STLs developed for stuck-

at faults provide comparable fault coverage values on static

CAT. Moreover, the paper contributes to defining an analysis

methodology to understand better the faults that are harder to

test using STLs.

II. BACKGROUND

A. Cell-Aware Test

Traditional fault models like stuck-at, transition delay,

bridges, or small-delay defects enumerate faulty locations in

the circuit by simply considering the boundary of the standard

cells. Such faults are excited by bringing proper logical values

(or transitions, in the case of dynamic fault models) toward

the faulty locations. Subsequently, the fault differences are

propagated through one or more paths by forcing the off-

path signals to transparent values (e.g., 1s for AND, 0s for

OR gates), until reaching an observable point (e.g., a flip-

flop or a primary output). Contrarily, the CAT methodology

targets electrical-level defects occurring within the cells, which

patterns generated targeting traditional fault models may fail

in detecting [1]–[3]. The intra-cell analysis requires working at

the electrical level. However, the CAT methodology requires

that such extra work is done by characterizing each cell of the

technology library independently. Once all cells are analyzed,

one can import the resulting cell-aware library in the ATPG or

fault simulation flows However, the extra complexity required

for CAT ATPG and fault simulation can severely affect the

performance. Most commercial Electronic Design Automation

(EDA) tools support CAT ATPG and fault simulation for scan

design, while the support for functional fault simulation is

currently very limited.

Cell-aware characterization begins with layout extraction for

each cell. A tool analyzes the cell’s transistor-level netlist with

layout information and extracts a list of possible defects such

as parasitic resistors, coupling capacitors, resistive bridges,

shorts, or opens. Depending on the EDA vendor, it produces a

user-defined fault model (UDFM) or a Cell Test Model (CTM).

In our experiments, we have used the CTM format. The

CTM file includes static and dynamic defect matrices for each

Table I: Example of static defect matrix of a full-adder cell

A B CI CO S D1 D2 D3 D4 D5 ...

0 0 1 0 1 0 0 1 2 3 ...
0 1 0 0 1 3 1 1 2 1 ...
1 0 1 1 0 0 2 0 2 0 ...
1 1 0 1 0 0 1 0 0 3 ...
...

cell. Table I shows a snippet of the static defect matrix of

a full-adder cell. In the three groups of columns, for each

row, the table reports the input values, the expected values on

the outputs in the defect-free cell, and a bit-string in decimal

format for each defect (D1 to D5), respectively. The dynamic

defect matrices have a similar structure. Still, each line may

include dynamic values in the input and output signals (i.e.,

R and F , for the rising and falling transitions, other than 0
and 1). The bit-string is used to specify whether the defect

manifests itself on the corresponding output. In the example,

1 means the defect can be detected on the first output (CO), 2
on the second output (S), and 3 on both. For example, when

D1 is present in the circuit and the values [0, 1, 0] are applied

to the [A,B,CI] inputs of the full-adder, the values on both

CO and S are inverted ([1, 0] instead of [0, 1]). Using the same

input value but injecting D2 makes only C0 invert its value

(i.e., the values on the two outputs are [1, 1] instead of [0, 1]).
Finally, each defect can be detected by more than one input

combination. In the example, D2 can be detected by any of

the last three test vectors.

B. Software-Based Self-Test

Alternative testing methods have been created to expand

testing options for designers and engineers. One such method

is SBST, which applies functional stimuli to a microprocessor

to detect structural faults. This approach can detect faults

without additional power consumption or DfT features.

Previous works addressed SBST generation targeting var-

ious fault models such as stuck-ats [18], transition delays

[19]–[22], small delays [14], [23] and path delays [24]–[27],

while the use of CAT is relatively new [15]. Regarding the

methodology for generating test programs, manual approaches,

and partly or fully automated techniques have been used based

on ATPGs, SAT-solvers, and evolutionary algorithms [13].

III. FAULT SIMULATION FLOW

The SBST fault grading requires simulating the top-level

circuit in functional mode while injecting faults and observing

their effects on the observable points (e.g., memory elements,

the external bus, or specific primary outputs of the target

circuit). Fault simulators for functional safety assurance exist,

but the native support to CAT is limited. The fault simulator

used in our flow supports the extraction of conditional stuck-

at faults (SAFs) from the static defect matrices of CTM files

— more specifically, SAFs on the output pins of a cell with

constraints on the cell’s inputs. However, such conditional

SAFs are specific to a single cell’s output and have a fixed

polarity (stuck-at-0 or stuck-at-1). As each defect can be

excited by some patterns that excite both stuck-at-0 and stuck-

at-1 (e.g., D4 in the example in Table I), possibly on multiple

gate’s outputs (e.g., D1 in the same example), the fault grading

process must consider the defect as tested if any of the multiple

conditional SAFs is tested.

The fault simulation approach we propose is based on fault

simulating a set of conditional SAFs for each defect identified

by the CAT characterization process and then post-processing

the resulting fault list to map the stuck-at fault coverage on

the CAT defect coverage.

In the technology library used for our experiments (the

Silvaco Open-Cell 45nm FreePDK [28]), the cells have only

one or two output ports, and the maximum number of faults

to inject per defect is four. The cells with only one output port

have up to two faults.

The fault simulation produces a fault list that must be

post-processed and mapped on the CAT defects. The post-

processing phase splits the fault list into sets of conditional

SAFs, each one implementing a defect, and checks whether

one of the SAFs is marked as detected. In that case, the defect

is also marked as detected. If none of the faults is marked as

detected, we need to check if any fault is potentially detected;

otherwise, the defect is marked as not detected. In more

complex fault grading processes (e.g., for functional safety

assurance), where additional tags can be used to mark faults,

one can adapt the post-processing flow by adding additional

conditions.

IV. EXPERIMENTAL RESULTS

We have assessed the effectiveness of SBST programs con-

cerning static CAT faults on the RI5CY processor, a 4-stage

32-bit RISC-V in-order RISC-V processor core embedded in

the PULPino SoC [29]. We synthesized the design using the

Silvaco Open-Cell 45nm FreePDK [28]. We used Synopsys

Design Compiler for the logic synthesis, Synopsys CMGen

for the CAT characterization process, Siemens QuestaSim for

logic simulation, and Synopsys Z01X for fault simulation. All

the experiments have been run on an Intel Xeon CPU E5-2680

v3 machine. As we have experienced some issues simulating

faults affecting sequential cells due to some limitations of the

available tools, we have restricted our analysis to the defects

affecting the combinational cells. For the sake of comparison,

the results of the stuck-at fault (SAF) and gate-exhaustive (GE)

models do not include faults in the sequential cells.

Table II reports the number of SAFs (column 2), conditional

SAFs mapping the CAT defects before the post-processing

(Cond, column 3), CAT defects after the post-processing

(column 4), and gate-exhaustive (GE, column 5) for the main

modules of the core. GE faults have been implemented using

conditional SAFs, similar to what was done for CAT defects.

The number of CAT defects is three to four times that of SAFs.

The significant differences between pre- and post-processing

are visible on the ALU, the multiplier, and the load/store unit.

The post-processing step has collapsed the total number of

faults by almost 15%.

Table II: Faults in the RI5CY core (combinational cells only)

Module #SAF #Cond #CAT #GE

CS regs 6,158 17,537 17,537 8,010
Debug 2,596 7,093 7,093 3,268
EX/ALU 25,754 88,611 81,075 34,438
EX/MUL 30,930 204,525 144,682 48,116
ID/Control 1,322 3,593 3,593 1,454
ID/Decoder 3,422 9,219 9,219 3,870
ID/HW loop regs 3,332 12,714 12,714 4,100
ID/INT control 92 379 379 110
ID/regs 33,324 97,880 97,880 49,520
IF/compr, dec, 1,476 3,959 3,959 1,694
IF/HW loop control 1,628 4,449 4,446 2,636
IF/Prefetch buffer 9,648 27,134 27,133 13,270
Load Store 4,054 16,069 13,488 6,354
CPU (TOP LEVEL) 141,990 554,118 480,362 206,718

Our analysis uses a set of open-available stuck-at STLs [16].

The cell-aware fault simulation lasts much longer than the

stuck-at fault simulation, ranging from 75x runtime for STL6

(5 hrs against 4 mins) to 422x for STL5 (204 hrs against 29

mins).

Our experiments show that STLs can achieve significant

fault coverage values on static CAT, even when the target

fault model is SAF (see Table III). Remarkably, all STLs can

detect more than 80% of static CAT faults, with a maximum

of almost 87% reached by STL5. Moreover, as shown by the

results, the fault coverage would be overestimated without the

post-processing step. It is interesting to note that STLs are

not as effective as on CAT faults when evaluating them on

GE faults, with a fault coverage between 43% and 47%. This

was expected, as testing each GE fault requires a specific input

to be applied to a logic gate, while each CAT defect often has

multiple detection conditions.

To deeply understand the reasons behind the high fault

coverage, we have performed an accurate analysis on the CAT

fault lists, aimed at verifying if there are correlations between

the number of lines in a cell’s truth table that can be used to

detect the fault and the actual fault coverage obtained by the

STLs. We also performed the same analysis on SAF and GE

faults. We grouped all faults in the fault list detectable by the

same percentage of lines in their relative cell’s truth table (e.g.,

all faults detected by one out of four lines). We denoted this

percent figure as table test% (TT%). Then, we computed the

size of each group and the fault coverage values. The results

for CAT have been reported in Table IV, ordered by TT%.

The analysis shows that groups with low TT% for CAT are

smaller than the SAF ones. In general, CAT groups have more

variability in size than SAF groups.

The analysis shows that defects with low TT% are harder

to test. This was expected, but we can now quantify the impact

of these faults on the final coverage. As a significant result,

we observed how the impact on the final fault coverage of the

critical groups is lower on CAT faults than on SAFs.

V. CONCLUSIONS

This paper presented an analysis to assess the effectiveness

of some existing STLs in detecting static defects modeled

according to the popular cell-aware test (CAT) approach. We

first described the challenges to be faced for implementing

a correct fault grading process, such as (i) simulating static

CAT defects by resorting to a functional fault simulator able

to extract conditional stuck-at faults (SAFs) from a CAT defect

matrix and (ii) post-processing the fault simulation results to

map faults on the corresponding defects. Experimental results

on a RISC-V core have shown that a fault grading process

can be successfully implemented at the cost of a considerable

penalty in performance. Interestingly, the evaluated STLs were

able to cover up to 87% of CAT faults on the CPU module

in our experiments. We also proposed a metric able to predict

which cells and defects are harder to test, thus paving the way

to devising solutions able to guide the improvement of existing

STLs in order to enhance the achieved CAT FC. In the future,

we plan to extend our work to also consider dynamic CAT

faults.

ACKNOWLEDGMENT

This publication is part of the project PNRR-NGEU which

has received funding from the MUR – DR 117/2023

REFERENCES

[1] F. Hapke et al., “Defect-oriented cell-aware atpg and fault simulation
for industrial cell libraries and designs,” in IEEE Int’l Test Conf.,
2009.

[2] F. Hapke et al., “Defect-oriented cell-internal testing,” in IEEE Int’l

Test Conf., 2010.
[3] F. Hapke et al., “Cell-aware analysis for small-delay effects and

production test results from different fault models,” in IEEE Int’l Test

Conf., 2011.
[4] M. Yilmaz et al., “Test-pattern grading and pattern selection for small-

delay defects,” in IEEE VLSI Test Symp., 2008.
[5] S. K. Goel et al., “Effective and efficient test pattern generation for

small delay defect,” in IEEE VLSI Test Symp., 2009.
[6] S. K. Goel et al., Testing for Small-Delay Defects in Nanoscale CMOS

Integrated Circuits, 1st. USA: CRC Press, Inc., 2013.
[7] F. Hapke et al., “Introduction to the defect-oriented cell-aware test

methodology for significant reduction of dppm rates,” in IEEE Euro-

pean Test Symp. (ETS), 2012.
[8] ISO/TC 22/SC 32, “Road vehicles – functional safety – Part 1-12,” en,

International Organization for Standardization, Geneva, Switzerland,
Standard ISO 26262-1:2018, 2018.

[9] A. Nardi et al., “Functional safety methodologies for automotive
applications,” in IEEE/ACM Int’l Conf. on Computer-Aided Design,
2017.

[10] A. Nardi et al., “Design-for-safety for automotive ic design: Chal-
lenges and opportunities,” in IEEE Custom Integrated Circuits Con-

ference, 2019.
[11] F. A. da Silva et al., “An automated formal-based approach for

reducing undetected faults in iso 26262 hardware compliant designs,”
in IEEE Int’l Test Conf., 2021.

[12] F. Pratas et al., “Measuring the effectiveness of iso26262 compliant
self test library,” in Int’l Symp. on Quality Electronic Design (ISQED),
2018.

[13] M. Psarakis et al., “Microprocessor software-based self-testing,” IEEE

Design & Test of Computers, vol. 27, no. 3, 2010.
[14] A. Riefert et al., “An effective approach to automatic functional

processor test generation for small-delay faults,” in Automation &

Test in Europe Conference & Exhibition (DATE), 2014.
[15] P. Bernardi et al., “Recent trends and perspectives on defect-oriented

testing,” in IEEE Int’l Symp. on On-Line Testing and Robust System

Design, 2022.
[16] CAD Group, Politecnico di Torino, Stuck-At STLs for pulpino-ri5cy,

https://github.com/cad-polito-it/pulpino_ri5cy_stls, 2023.
[17] K. Y. Cho et al., “Gate exhaustive testing,” in IEEE Int’l Conf. on

Test, 2005.
[18] D. Gizopoulos et al., “Systematic software-based self-test for

pipelined processors,” IEEE Transactions on Very Large Scale In-

tegration (VLSI) Systems, vol. 16, no. 11, 2008.

Table III: Fault simulation results

Module
STL3 FC% STL4 FC% STL5 FC% STL6 FC% STL7 FC%

SAF Cond CAT GE SAF Cond CAT GE SAF Cond CAT GE SAF Cond CAT GE SAF Cond CAT GE

CS regs 66.3 71.5 71.5 36.5 46.2 52.4 52.4 20.6 62.6 69.3 69.3 32.1 72.7 74.0 74.0 34.6 54.6 63.9 63.9 27.3
Debug 16.1 25.8 25.8 8.6 16.5 25.8 25.8 8.9 16.7 26.0 26.0 9.1 16.5 25.8 25.8 8.9 18.4 25.8 25.8 10.9
EX/ALU 78.6 79.2 79.9 43.0 82.3 86.0 84.7 47.1 91.4 92.7 92.2 53.8 84.0 84.3 84.5 47.0 87.5 90.2 89.0 53.7
EX/MUL 93.8 88.3 90.1 51.1 95.6 96.9 95.1 67.8 96.2 96.3 94.9 68.4 96.3 95.2 94.4 59.8 98.5 98.7 97.0 66.8
ID/Control 53.8 57.9 57.9 28.0 44.3 47.5 47.5 22.4 54.2 58.5 58.5 28.6 54.0 58.4 58.4 28.2 51.8 56.1 56.1 26.7
ID/Decoder 81.2 81.4 81.4 48.0 73.0 73.7 73.7 42.0 83.5 83.7 83.7 49.8 82.5 82.9 82.9 49.4 81.3 81.3 81.3 48.3
ID/HW loop regs 63.6 58.5 58.5 35.5 79.3 83.2 83.2 52.8 71.3 70.3 70.3 46.6 77.7 65.2 65.2 44.0 46.1 46.2 46.2 28.7
ID/INT control 20.7 25.6 25.6 9.1 10.9 15.8 15.8 4.5 20.7 25.6 25.6 9.1 20.7 25.6 25.6 9.1 10.9 15.8 15.8 4.5
ID/regs 91.3 97.0 97.0 47.1 84.8 91.2 91.2 47.1 84.2 90.4 90.4 46.8 82.7 95.0 95.0 47.3 82.2 87.0 87.0 46.4
IF/compr. dec. 40.8 46.7 46.7 21.1 49.6 54.5 54.5 27.3 75.8 76.8 76.8 45.7 68.7 71.6 71.6 40.1 41.1 46.8 46.8 21.3
IF/HW loop contr. 51.2 55.4 55.4 16.4 53.4 58.3 58.3 17.4 57.2 61.6 61.6 19.6 49.2 52.5 52.5 14.6 50.6 54.0 54.0 14.7
IF/Prefetch buf. 67.6 70.9 70.9 34.7 73.4 76.0 76.0 39.6 74.3 76.3 76.3 39.9 72.3 74.8 74.8 38.2 73.1 75.5 75.5 36.0
Load Store 77.4 85.7 82.1 41.7 84.6 92.0 89.6 47.1 85.0 92.6 90.3 47.6 77.8 84.7 80.9 41.5 70.6 82.4 78.2 40.1
CPU (TOP LEVEL) 80.7 82.9 83.1 42.6 80.1 86.6 84.8 47.4 82.9 88.2 86.7 49.3 81.4 86.7 85.7 45.8 80.2 86.7 84.5 47.3

Table IV: Fault simulation results on groups of CAT faults. Each group includes the faults with the same percentage of lines in a faulty
cell’s truth table able to test them at the cell level (TT%). For each group of faults, we report the fault coverage within the group (Fault
coverage / grouped faults) — which gives an idea about how easy it is to cover faults in that group — and the fault coverage over all faults
(Fault coverage / all faults) — which represents the delta value added to the fault coverage when including faults in that group. Cumulative
sum (cumsum) values are reported for grouped faults’ size and fault coverage over all faults. The reader can refer to the Size% cumsum value
to know the percentage of faults considered up to that line (until 100% in the last line) and read the corresponding cumulative fault coverage
reported on the last group of columns (Fault coverage % cumsum). The last lines on those columns report the fault coverage reached by the
STL on the full fault lists.

Grouped faults info Fault coverage / grouped faults (%) Fault coverage / all faults (%) Fault coverage / all faults (% cumsum)

TT% Size%
Size%

cumsum
STL3 STL4 STL5 STL6 STL7 STL3 STL4 STL5 STL6 STL7 STL3 STL4 STL5 STL6 STL7

Cell-Aware Test

6.25 3.81 3.81 81.42 82.77 89.19 83.68 82.77 3.10 3.15 3.40 3.19 3.15 3.10 3.15 3.40 3.19 3.15
9.38 1.20 5.01 58.73 59.48 67.16 60.61 63.87 0.70 0.71 0.80 0.73 0.77 3.81 3.87 4.20 3.91 3.92

12.50 10.14 15.14 68.33 77.64 79.24 73.48 77.71 6.93 7.87 8.03 7.45 7.88 10.73 11.74 12.24 11.36 11.80
14.06 2.25 17.40 83.00 90.08 89.66 84.52 84.78 1.87 2.03 2.02 1.91 1.91 12.60 13.77 14.26 13.27 13.71
18.75 22.08 39.48 81.25 78.68 80.19 82.89 75.90 17.94 17.37 17.71 18.30 16.76 30.55 31.14 31.96 31.57 30.47
25.00 17.20 56.68 79.09 83.75 85.62 84.36 85.09 13.60 14.40 14.73 14.51 14.63 44.15 45.54 46.69 46.08 45.10
28.13 0.70 57.38 79.90 84.13 86.07 86.91 77.75 0.56 0.59 0.60 0.61 0.54 44.70 46.13 47.29 46.69 45.64
32.81 0.06 57.44 70.59 89.62 98.27 61.94 58.48 0.04 0.05 0.06 0.04 0.04 44.75 46.18 47.35 46.72 45.68
37.50 6.43 63.87 86.03 89.24 93.31 90.23 91.91 5.53 5.74 6.00 5.80 5.91 50.28 51.93 53.35 52.53 51.59
40.63 0.17 64.04 73.76 75.74 79.21 72.77 79.70 0.12 0.13 0.13 0.12 0.13 50.41 52.05 53.48 52.65 51.72
42.19 1.69 65.73 97.66 98.69 98.18 97.92 97.92 1.65 1.67 1.66 1.66 1.66 52.06 53.72 55.14 54.31 53.38
43.75 0.80 66.53 86.21 85.20 88.09 84.49 83.55 0.69 0.68 0.70 0.67 0.67 52.75 54.40 55.85 54.98 54.05
50.00 15.00 81.53 86.88 87.20 88.32 87.61 87.53 13.03 13.08 13.25 13.14 13.13 65.78 67.48 69.10 68.12 67.18
56.25 11.64 93.17 97.56 96.45 98.16 97.97 97.29 11.36 11.23 11.43 11.41 11.33 77.14 78.71 80.53 79.53 78.51
57.81 0.10 93.27 75.71 91.90 98.38 70.85 61.13 0.08 0.09 0.10 0.07 0.06 77.21 78.81 80.63 79.60 78.57
62.50 1.23 94.50 83.60 90.86 94.52 89.90 87.63 1.03 1.12 1.16 1.11 1.08 78.24 79.92 81.79 80.71 79.65
68.75 0.10 94.60 93.83 91.49 90.21 95.53 82.13 0.09 0.09 0.09 0.09 0.08 78.33 80.01 81.88 80.80 79.73
71.88 0.47 95.07 77.91 84.29 84.43 80.37 81.35 0.36 0.39 0.39 0.37 0.38 78.70 80.41 82.27 81.18 80.11
75.00 2.00 97.07 89.95 87.60 90.78 91.50 90.33 1.80 1.75 1.82 1.83 1.81 80.50 82.16 84.09 83.01 81.91
81.25 0.99 98.06 84.19 86.23 89.20 88.64 90.72 0.83 0.85 0.88 0.88 0.90 81.33 83.01 84.97 83.88 82.81
87.50 0.78 98.84 81.69 85.03 86.12 86.34 82.99 0.64 0.66 0.67 0.67 0.65 81.97 83.68 85.64 84.56 83.46
93.75 1.16 100.00 94.61 93.47 94.41 96.19 86.34 1.10 1.09 1.10 1.12 1.00 83.07 84.76 86.74 85.68 84.46

[19] R. Cantoro et al., “Effective techniques for automatically improving
the transition delay fault coverage of self-test libraries,” in IEEE

European Test Symp., 2022.
[20] R. Cantoro et al., “Self-test libraries analysis for pipelined processors

transition fault coverage improvement,” in IEEE Int’l Symp. on On-

Line Testing and Robust System Design, 2021.
[21] M. Grosso et al., “Software-based self-test for transition faults: A

case study,” in IFIP/IEEE Int’l Conf. on Very Large Scale Integration

(VLSI-SoC), 2019.
[22] K.-H. Chen et al., “Automatic test program generation for transition

delay faults in pipelined processors,” in IEEE Int’l Test Conf. in Asia,
2021.

[23] M. Grosso et al., “Software-based self-test for delay faults,” in
VLSI-SoC: New Technology Enabler, C. Metzler et al., Eds., Cham:
Springer International Publishing, 2020.

[24] Singh et al., “Software-based delay fault testing of processor cores,”
in Test Symp., 2003.

[25] K. Christou et al., “A novel sbst generation technique for path-delay
faults in microprocessors exploiting gate- and rt-level descriptions,”
in IEEE VLSI Test Symp., 2008.

[26] C.-P. Wen et al., “On a software-based self-test methodology and its
application,” in IEEE VLSI Test Symp., 2005.

[27] L. Anghel et al., “Self-test library generation for in-field test of path
delay faults,” IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, 2023.
[28] Silvaco, Open-Cell 45nm FreePDK, https://si2.org/open-cell-library/.
[29] ETH Zurich and Università di Bologna, PULPino microcontroller

system, https://github.com/pulp-platform/pulpino, 2022.

