
03 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluating the Impact of Aging on Path-Delay Self-Test Libraries / Cantoro, Riccardo; Sartoni, Sandro; Reorda, Matteo
Sonza; Anghel, Lorena; Portolan, Michele. - (2023). (Intervento presentato al convegno IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems (DFT) 2023 tenutosi a Juan-Les-Pins (FRA) nel 03-05 October 2023)
[10.1109/dft59622.2023.10313531].

Original

Evaluating the Impact of Aging on Path-Delay Self-Test Libraries

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/dft59622.2023.10313531

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992029 since: 2024-08-28T21:42:35Z

IEEE

Evaluating the Impact of Aging on Path-Delay
Self-Test Libraries

Riccardo Cantoro, Sandro Sartoni and Matteo Sonza Reorda
Politecnico di Torino

{riccardo.cantoro, sandro.sartoni, matteo.sonzareorda}@polito.it

Lorena Anghel*, Michele Portolan
Univ Grenoble Alpes, CNRS, Grenoble INP,

TIMA, *CEA-IRIG, SPINTEC Laboratory, France

Abstract—Self-Test Libraries (STLs) developed for path-delay
faults are crucial to ensure the reliability of modern digital
integrated circuits, since they represent a widely adopted solution
to detect in-field faults occurring during the operational phase,
e.g., due to aging. However, physical parameters may shift over
time, leading to changes in device behavior and potential failures
with respect to end of manufacturing. This is especially crucial in
safety-critical applications such as those adopted in automotive
systems. The main objective of this paper is to assess the quality
of STLs over time by monitoring how critical paths change due
to aging effects and evaluating the fault coverage of STLs. An
automatic framework is proposed to age an integrated circuit
starting from a limited set of physical data related to the adopted
technology. The insights gained from this approach will allow
test engineers to harden STLs and ensure that strict reliability
requirements are always met.

Index Terms—aging, sbst, path delay faults

I. INTRODUCTION

Modern digital integrated circuits are designed and man-
ufactured leveraging on advanced semiconductor technology
and nodes. An empiric law introduced by Gordon Moore
describes how, at a first approximation, the number of tran-
sistors found on microchips doubles every two years circa.
Increasing the number of transistors on an integrated circuit
not only greatly affects the physical size and geometry of each
transistor, but it also has repercussions on the power supply
at which the circuit operates and on its parasitic capacitance
and resistance, thus impacting the power consumption and op-
erating frequency of the integrated circuit. While this enabled
the production of VLSI circuits that are capable of operating
at high frequencies with limited power consumption, it also
impacted the reliability of said devices. Physical phenomenon
that were negligible on larger technology nodes became more
and more relevant with newer technologies, and parameters
shift in time influences the behavior of the device as it ages,
possibly leading to its failure as the circuit is stressed over
time. Given that many fields require safety-critical devices
to correctly behave over a large period of time (e.g., the
automotive field where replacing a faulty device many times
over the operative lifetime of the vehicle is not feasible), it is
crucial to tackle the issue of ensuring the safety and reliability
of integrated circuits as they age.

Indeed, there are several works in the literature that focus
on the study of aging in circuits and how it affects their

timing behavior [1]–[6]. Aging and performance degradation
of an integrated circuit is the consequence of several physical
phenomena that occur concurrently, impacting the device in
different ways. As integrated circuits age, the propagation
delay of each cell in the design increases, with potentially
severe repercussions on the timing behavior of the whole
device. Delay fault models are well suited to study such issues,
particularly the path delay fault model. Path delay fault testing
is typically performed by means of Design-for-Test (DFT)
based techniques or functional techniques. A DFT approach
leverage the capabilities of the test hardware that is added
to the original design under test (DUT), e.g., scan chains, to
apply test vectors generated by means of Automatic Test Patter
Generators (ATPGs) to the circuit to be tested as well as to
monitor its responses, looking for potential errors [7]–[9]. DFT
solutions are mature and allow achieving high fault coverage
figures at the expense of additional hardware that may cause
timing and area overhead, together with test procedures that
may (i) have higher power consumption as the circuit internal
nodes toggle in a non-functional way, and (ii) require a non-
negligible amount of time to execute. Functional solutions,
usually in the form of Software-Based Self-Test (SBST) [10],
revolve around the development of Self-Test Libraries (STLs)
that are launched to test the DUT, usually a processor core or a
peripheral [11]–[17]. As the STL is executed, its instructions
apply to the circuit the test vectors that are required to test
eventual path delay faults within the circuit, and the DUT
responses to such vectors are compacted into signatures that
are compared against the golden circuit’s ones. SBST solutions
are cheap, reliable and time-effective, as they do not require
additional hardware and are applied at the functional clock
frequency, i.e., at the circuit’s nominal speed, a crucial feature
when tackling delay faults. All these properties make SBST a
suitable integration for already existing DFT testing schemes,
allowing to ensure the DUT’s reliability at all times.

Regardless of the approach, all testing solutions for path
delay faults focus on faults that stem out of the set of critical
paths that are found in the fresh circuit. However, aging
impacts the timing behavior of the device, and paths that may
be sub-critical, i.e., paths whose slack is non-negligible but not
large enough to be critical paths, at time zero, may become
critical in time. This can lead to a degradation in fault coverage
figures over time, as well as an overall reduced safety and
reliability of the device.979-8-3503-1500-4/23/$31.00 ©2023 IEEE

This work presents an evaluation flow that allows to easily
assess the impact of aging by generating lists of aged critical
paths, requiring a limited set of input data, starting from an
aging model defined in previous works in literature. Thanks
to an automatic aging tool, it is possible to estimate the
effectiveness of testing solutions such as based on STLs, over
time, also providing test engineers a metric on how STLs for
path delay faults should be developed so that satisfactory fault
coverage figures are ensured throughout the operative lifetime
of the device. The novelty of this work can be summarized
into three main points:

1) an automatic tool that is capable of aging an integrated
circuit with a limited amount of input data, which can be
used in conjunction with any commercial synthesis and
static timing analysis tool, thus making it easily reusable;

2) a flow that allows to generate a list of critical paths given
an aged circuit and to compare the list of critical paths
of the aged circuit with respect to those found in the
fresh circuit;

3) a set of strategies that ensure that a high path delay fault
coverage is achieved throughout the operative lifetime of
the device under test.

This approach is validated on an open-source RISC-V core,
synthesized with a proprietary FDSOI 28nm library. Experi-
mental results provide insights on how critical paths change
over time, and fault coverage figures accordingly.

The article is organized as follows: Section II provides ex-
tensive details on the physical phenomena that cause aging, as
well as mathematical models for delay degradation. Section III
presents the automatic aging tool that allows to obtain a list
of aged critical paths, describing in details each step of the
aging process. Section IV provides details on the DUT used to
validate the proposed approach, while Section V presents data
on the aged critical paths and how they affect the path delay
fault coverage. Finally, Section VI draws the conclusions.

II. BACKGROUND

Several phenomena concur to aging a device, with Bias Tem-
perature Instability (BTI), Hot Carrier Injection (HCI), and
Time-Dependent Dielectric Breakdown (TDDB) being among
the main causes for degradation over time in modern integrated
circuits. BTI is a destructive phenomenon that can be further
divided into Negative Bias Temperature Instability (NBTI)
[18] and Positive Bias Temperature Instability (PBTI). The
former affects PMOS transistors mostly, and it induces a more
significant degradation with respect to the latter, which affects
NMOS transistors mostly. HCI occurs whenever an electron or
a hole gains sufficient kinetic energy to overcome the potential
barrier, thus penetrating the dielectric oxide layer that is found
below the gate plane in a MOSFET [19]–[21]. As transistor
size scales, the voltage at which they operate does not scale
accordingly, which causes large electrical fields inside the
device. The larger such fields, the higher the probability a
hot carrier, may it be electron or hole, is injected in dielectric
films, thus degrading the device over prolonged periods and
impacting its physical properties. Finally, TDDB affects the

dielectric film of transistors, and it is described as a change
in properties of the dielectric due to the presence of electric
fields, shifting from a material with insulating properties to
one with more conductive features [22]. This affects leakage
currents when the device is supposed to be off and threshold
voltage too, and it is a major reliability issue in MOSFETS
[23].

In order to tackle these issues, researchers have worked on
producing a mathematical model that could predict the shift in
propagation delay of any given cell in a circuit. Such model
can be obtained by integrating formulas described in literature
and actual data gathered on logic gates implemented on silicon
wafers. A model for delay estimation on MOSFET devices,
also known as the alpha-power law, was first introduced and
described in [1]. Such a model states that the propagation delay
is proportional to the output capacitance the cell is subjected
to, times the voltage supply at which it operates over its drain
current as follows:

dcell ∝ Cout
V

Id
(1)

Starting from that model, further works have refined the
alpha-power law leading to an equation for evaluating the
propagation delay of an inverter cell with respect to time,
supply voltage, and operating temperature [5], [6], [24]:

dinv(V, T, t) = pβ +
pµ−1(T) · V

(V − (pVth
(T) + ∆pVth

(V, T, t)))pα

(2)
where pβ and pα are constants, while pµ−1(T) is related to
the transistors mobility and pVth

(T), ∆pVth
(V, T, t) are factors

related to the threshold voltage, the latter describing a shift in
threshold voltage depending, among the other parameters, to
time.

Eq. (2), although effective, has some important limitations.
First, it only describes the delay of an inverter gate, while any
integrated circuit worth discussing has several different gates
within its design. Second, it does not factor in the effect of
switching activity, i.e., how much the cell toggles throughout
the device’s operative lifetime. Aging is the result of several
physical phenomena, and while not every phenomenon strictly
depends on the switching activity, e.g., NBTI, others show a
direct dependence on such parameter, e.g., HCI, hence why
it is important to include it into the aging model. For this
reason, the works in [6], [24] also provide a way to generalize
Eq. (2) by adding two more terms: the logical effort [25] —
a parameter that allows to calculate the delay of an arbitrary
cell based on that cell and the inverter’s physical parameters
— and a term based on switching activity, first introduced in
[26]. This leads to the final delay formula:

dgate(V, T, t, SA) = dinv(V, T, t) · d(SA) · LEgate (3)

where dinv(V, T, t) is Eq. (2), d(SA) is the switching activity
contribution and LEgate is the logical effort of a generic gate.

Through Eq. (3), it is finally possible to estimate how the
delay of a gate degrades in time with respect to voltage,
temperature, time and switching activity, closely emulating
what happens in an actual circuit implemented on silicon.
Although effective, this approach needs large quantities of data
that can only be gathered by means of experiments on devices
implemented on silicon. To deal with this issue, the work in
[6] proposes a multiple linear regression algorithm through
which it is possible to create a continuous function [27], i.e.,
the delay of a gate cell, in the form of:

y = α+ β1 · x1 + β2 · x2 + ...+ βn · xn (4)

where y is the delay of a given gate cell, α is the y-intercept
value, (x1, x2, ..., xn) is the set of gate features (voltage,
time, switching activity, temperature), and (β1, β2, ..., βn) the
coefficients of gate parameters. The idea behind this approach
is that, once the parameters are tuned so that the error sum of
squared errors (SSE) between observed and predicted results is
minimized [28], such a model can be used to generate reliable
delay values for aged cells, thus aging the whole circuit.

III. PROPOSED EVALUATION FRAMEWORK

The automatic aging framework proposed in this article aims
at providing a unified and automatic method that is capable of
generating aged delays for each cell in a circuit starting from
data generated by commercial tools currently used in research
and industry. Part of the framework implements the studies
on aging evaluation conducted in Grenoble INP [5], [6], [24].
At its core, the proposed aging framework implements the
set of equations and linear regression model presented in [6],
and provides a wrapper that acts as an interface capable of
parsing input information and generating output information
seamlessly. However, the proposed aging framework can be
easily adapted so that it employs other aging models, e.g.,
for industrial applications. As a result, we implemented an
automatic aging tool, whose structure and the preliminary steps
that are required for it to function correctly are summarized
in Fig. 1.

The very first step that is required for this tool to work is
performing a synthesis of the device under test with a technol-
ogy library for which physical parameters are known or avail-
able. This is an important aspect, as the whole mathematical
model on top of which this approach is built requires that these
parameters are known for calculating the propagation delay for
each cell. No constraint is placed on the synthesis process,
thus leaving the test engineer full freedom in customizing
such step as required. The synthesis step is required to obtain
information on the propagation delay of each cell of design at
time zero, also referred to as fresh delay information, which
will constitute the starting point for calculating the aged delay.
Usually, such an information is automatically generated at the
end of the synthesis process in the form of a Standard Delay
Format (SDF) file, which reports information on the cell name
— i.e., the name of the cell found in the synthesized circuit
— the cell type — i.e., whether it is an AND, INV, OR gate
— and slow, typical and fast propagation delays from each

Preliminary Step 1:

DUT Syntehsis

Preliminary Step 2:

Logic Simulation

Standard Delay

Format (SDF) file

Switching Activity

Interfile Format
(SAIF) file

Fresh Cell Delay

dictionary

Aging Step 1:

Delay Information
Acquisition

Cell Switching

Activity dictionary

Aging Step 2:

SA Information
Acquisition

Aging Step 3:

Aging Model
Generation

Synthesis Library

Physical
parameters

Aged SDF file

Fig. 1. Automatic Aging Tool flow diagram

input to each output, as well as the logic values of the other
inputs. The second preliminary step is the execution of a logic
simulation where the device under test performs its tasks and
activities, as if it was embedded in the environment where it
is supposed to operate throughout its operative lifetime. The
reason for recreating this scenario lies in the fact that aging
depends, among other factors, on how much the circuit is
stressed, i.e., on how much its internal nodes toggle, which
can be easily tracked by evaluating the switching activity on
each cell. Two same circuits, if applied in different scenarios,
may show different aging patterns over time, hence why this
step is required. While the logic simulation unfolds, a Value
Change Dump (VCD) file is recorded, storing information on
the value stored by every cell at each time instant. Such file
is then converted into a Switching Activity Interfile Format
(SAIF) file, which reports for each cell how many toggles
have occurred.

Once the preliminary steps are cleared, the tool can proceed
with the aging process. Initially, the tool parses the information
stored in the SDF and SAIF files so that it can use that data as
a starting point to calculate the aging delay. First, the SDF file
is read, transposing the data stored into the SDF into a fresh
cell delay dictionary where each instance name is associated
to the cell type and the delay data, a sub-dictionary that maps
conditions on input ports to two triples of slow, typical and
fast delays for rising and falling transitions from an input to
the output. In a similar fashion, data from the SAIF file too
is parsed into a cell switching activity dictionary, where for
each cell in the design the correspondent switching activity is
recorded. As the switching activity value ranges in the interval
[0, 1], rather than using the absolute value reported in the SAIF

file, for each cell the tool calculates the normalized switching
activity value with respect to a reference signal, e.g., the clock
signal.

Next, the tool proceeds to generate an aging model for
each cell in the design based on the mathematical equations
introduced in Section II and the switching activity information
stored in the related dictionary. Such models are then used to
calculate the relative increment in delay (RID) for each cell,
defined as:

RID = 1 + (AD − FD)/FD (5)

where AD is the aged delay, and FD is the fresh delay
obtained by applying Eq. (3). The RID is multiplied to the
fresh delay reported in the SDF file so that the final aged
propagation delay for each cell is obtained. Finally, the tool
writes an aged version of the SDF file so that it can be used by
timing analysis tools to generate a list of aged critical paths.
The reason for introducing and using the relative increment
in delay rather than the aged delay generated through the
mathematical formulas itself lies in the fact that in this way it is
possible to achieve more accurate results in predicting the aged
delay. Even though the mathematical model is accurate, errors
are introduced by formulas as they are obtained by fitting
processes over experimental data. Such errors, however, are
mitigated by using the relative values rather than the absolute
ones.

Finally, it is worth highlighting that, even though the equa-
tions used in the construction of the aging model for each
cell are generic and thus can be used with any technology,
the values of the physical parameters that are used in such
equations strictly depend on the technology on top of which a
library of cell gates is defined. This implies that each library
produced by different manufacturers, or even two libraries
defined with different technologies belonging to the same
manufacturer, will have its own set of parameters, thus leading
to different aging models and results.

IV. CASE STUDY

In order to analyze how aging affects a processor core,
the proposed evaluation flow has been validated using the
PULPino SoC [29], which includes an in-order, pipelined
32-bit RISC-V processor, i.e., ri5cy. The ri5cy core was
synthesized with a proprietary FDSOI 28nm library provided
by STMicroelectronics, the same library that has also been
used in [6].

The initial set of critical paths was extracted first, obtaining
a total of 6,683 critical paths with a slack ranging from 0 to
2.5 ns, while the clock signal period is 5 ns. We chose to
group critical paths in three main functional groups, namely,
paths belonging to an adder found within the divider unit of
the ALU, those belonging to an adder belonging to the load-
store unit, and those belonging to an adder that calculates the
address that should be taken after a jump instruction. Table I
shows how many paths belong to each group. Following the
approach described in [15], it was possible to generate an STL
capable of testing all path delay faults stemming from these

TABLE I
PATHS DISTRIBUTION PER MODULES IN THE FRESH CIRCUIT

Module #Paths

ALU_Div Adder 51
LoadStore Adder 2,004
Jump_Addr Adder 4,628

Total 6,683

paths. Such STL constitutes the starting point for evaluating
how much the fault coverage degrades as new critical paths
are introduced with time.

The proposed aging framework requires to provide a SAIF
file that contains switching activity data for each cell in the
processor. For this reason, two programs were chosen so that
switching activity data could be extracted from performing
a logic simulation, giving an insight on how much aging
depends on the switching activity parameter. The two pro-
grams are basicmath_small and qsort from the automotive
section of the MiBench-Embedded benchmark suite [30].
While basicmath_small can be run as is, qsort required a
slight change in the source C code to remove all instances
related to FILE variables, as they take a considerable amount
of instruction RAM: vectors to sort were hence declared and
defined in the code rather than read from a file as originally
intended. Basicmath-small requires 14.73 kB of memory and
1, 743, 500 clock cycles to execute completely, while qsort
requires 16.18 kB of memory and 2, 021, 548 clock cycles to
execute.

V. EXPERIMENTAL RESULTS

All the experiments have been launched on 5 cores of an
Intel Xeon CPU E5-2680 v3 machine. The proposed flow
has been implemented in Python. Generating the aged SDF
file takes no longer than a couple of minutes, provided that
all other input files are already available at the start of the
experimental session. The extraction of aged critical paths, on
the other hand, requires about 12 hours to complete.

Experimental results for the basicmath_small and qsort
programs are reported in Fig. 2 and Fig. 3, respectively. In
both figures the fault coverage trend over time, reported as
the percentage of detected faults, is shown in red, while the
absolute value of critical paths trend over time is reported in
blue. In both cases, the total amount of critical paths grows in
time: this can be explained noting that most of the paths that
are sub-critical at time zero, i.e., paths whose slack is quite
large but not enough for them to be considered critical, slow
with time, thus becoming critical paths. This phenomenon
becomes more accentuated with time, with a steep growth past
the 5 years mark. This reflects on the fault coverage figures as
well, showing an overall decrease from the initial 100% fault
coverage down to 83.14% for the basicmath_small program
and 83.12% for the qsort program.

In order to better understand how critical paths evolve in
time, an additional analysis concerning how many critical
paths in the fresh circuit can still be found after aging the
device under test has been performed, together with one

fresh 1 year 2 years 5 years 10 years

6800

7000

7200

7400

7600

7800

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0# Critical Paths
Fault Coverage [%]

Fig. 2. Critical path and path delay fault coverage evolution over time for
the basicmath_small program

fresh 1 year 2 years 5 years 10 years

6800

7000

7200

7400

7600

7800

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0# Critical Paths
Fault Coverage [%]

Fig. 3. Critical path and path delay fault coverage evolution over time for
the qsort program

investigating how many new paths are introduced with aging.
Such data is reported in Fig. 4 and Fig. 5 for the basic-
math_small program and the qsort program, respectively. As
for the previous set of data, the two programs show a similar
trend over time, both in terms of how many paths remain
unchanged and how many new ones are introduced. With the
exception of the two years mark, the number of critical paths
that never change over time decreases, losing more than 200
paths with respect to the fresh circuit, while the number of new
paths grows, with slightly more than 1,300 paths added after
10 years. Focusing on the new paths introduced by aging, it is
interesting to investigate their ranking, i.e., whether they are
particularly slow or not. After ten years, 10% of the new paths
fall within the top 30% slowest paths for both programs. This
shows that, although the vast majority of paths introduced by
aging are not the slowest ones, there is still a non-negligible
amount of paths whose slack is small enough for them to be
among the slowest critical paths. Finally, it is noted that, for
both programs, every set of new paths introduced by aging
includes that of the antecedent time mark, e.g., all new paths
introduced after one year are found after two years, all paths
introduced after two years are found after five years and all
paths introduced after five years are found after ten years.
Moreover, all paths introduced by aging can still be grouped

1 year 2 years 5 years 10 years
6400
6450
6500
6550
6600
6650
6700

Or

ig
in
al
 P
at
hs

1 year 2 years 5 years 10 years
0

250

500

750

1000

1250

Ne

w
Pa
th
s

Fig. 4. Original and new critical paths evolution for basicmath_small program

1 year 2 years 5 years 10 years
6400
6450
6500
6550
6600
6650
6700

Or

ig
in
al
 P
at
hs

1 year 2 years 5 years 10 years
0

250

500

750

1000

1250

Ne

w
Pa
th
s

Fig. 5. Original and new critical paths evolution for qsort program

in the three categories reported in Table I, that is, an adder in
the ALU divider, an adder in the Load/Store unit, and an adder
used to calculate the target address when a jump instruction
is to be taken.

By analyzing the above results, it is possible to state
that aging a processor introduces a non-negligible amount
of critical paths over time, with a steep increase after five
years of use. Such paths are currently not detected through
the STL that has been developed for the fresh circuit’s critical
paths, thus posing a problem when it comes to ensuring the
safety and reliability of the processor over long periods of
time. For this reason, test engineers should develop the STL
also taking into account the set of critical paths that are to
be tested as the circuit age, making sure that it can ensure a
satisfactory fault coverage throughout the processor’s operative
lifetime, choosing between the possibility of having (i) an
all-encompassing STL since time zero, capable of detecting
failures stemming from faults in all critical paths including
those due to aging, or (ii) a modular STL that is capable of

enabling chunks of code, adapting to the paths as they age.

VI. CONCLUSIONS

This paper describes a methodology on how to age an
integrated circuit, with the goal of ensuring its safety and
reliability over a long period of time. We propose an evaluation
framework based on automatic aging tool, through which it is
possible to obtain an aging model for each cell in sequential
designs such as processors, leading to the generation of an
aged SDF. Thanks to that, it is possible to extract lists of
aged critical paths, understanding how critical paths, and thus
the path delay fault coverage, change over time. Experimental
data gathered on two programs from the MiBench-Embedded
benchmark running on a RISC-V processor show that as
the circuit ages, more and more paths that once were sub-
critical become critical, leading to a 17% decrease in fault
coverage after ten years. Thanks to this information, test
engineers can improve STLs for path delay faults so that they
include test vectors for path delay faults that may originate
over time, ensuring that strict levels of reliability are met
throughout the operative lifetime of the device and proving the
effectiveness of this methodology. We are currently working
in this direction.

Finally, the evaluation methodology is strictly dependent on
the technology library adopted, and it currently only takes
into account the propagation delay of cells, neglecting that
of interconnections between gates. New research can be done
in this area, either collecting new data on other libraries and
checking if aging occurs differently based on the library and
understanding how interconnections affect the aging of propa-
gation delay through paths. Moreover, future works will adopt
additional state-of-the-art techniques for aging estimations.

REFERENCES

[1] T. Sakurai and A. Newton, “Alpha-power law mosfet model and its
applications to cmos inverter delay and other formulas,” IEEE Journal
of Solid-State Circuits, vol. 25, no. 2, pp. 584–594, 1990.

[2] S. S. Sapatnekar, “What happens when circuits grow old: Aging issues
in cmos design,” in 2013 International Symposium onVLSI Design,
Automation, and Test (VLSI-DAT), 2013, pp. 1–2.

[3] B. Halak, V. Tenentes, and D. Rossi, “The impact of bti aging on
the reliability of level shifters in nano-scale cmos technology,” Micro-
electronics Reliability, vol. 67, pp. 74–81, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0026271416304103

[4] Y. Zhao and H. G. Kerkhoff, “Highly dependable multi-processor socs
employing lifetime prediction based on health monitors,” in 2016 IEEE
25th Asian Test Symposium (ATS), 2016, pp. 228–233.

[5] M. Altieri, S. Lesecq, E. Beigne, and O. Heron, “Towards on-line
estimation of bti/hci-induced frequency degradation,” in 2017 IEEE
International Reliability Physics Symposium (IRPS), 2017, pp. CR–6.1–
CR–6.6.

[6] K. Senthamarai Kannan, “Management des performances de sûreté
et de sécurité pour les applications automotives et iot,” Ph.D.
dissertation, Université Grenoble Alpes, 2021, thèse de doctorat
dirigée par Anghel, Lorena et Portolan, Michele Nanoélectronique et
nanotechnologie Université Grenoble Alpes 2021. [Online]. Available:
http://www.theses.fr/2021GRALT044

[7] S. Hussain, M. A. Raheem, and A. Ahmed, “Sic-tpg for path delay fault
detection in vlsi circuits using scan insertion method,” in 2021 Devices
for Integrated Circuit (DevIC), 2021, pp. 1–5.

[8] I. Pomeranz, “On the detection of path delay faults by functional
broadside tests,” in 2012 17th IEEE European Test Symposium (ETS),
2012, pp. 1–6.

[9] ——, “Gepdfs: Path delay faults based on two-cycle gate-exhaustive
faults,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 7, pp. 2315–2322, 2022.

[10] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda, “Micro-
processor software-based self-testing,” IEEE Design Test of Computers,
vol. 27, no. 3, pp. 4–19, 2010.

[11] P. Bernardi, M. Grosso, E. Sanchez, and M. Sonza Reorda, “On the
automatic generation of test programs for path-delay faults in micropro-
cessor cores,” in 12th IEEE European Test Symposium (ETS’07), May
2007, pp. 179–184.

[12] K. Christou, M. K. Michael, P. Bernardi, M. Grosso, E. Sanchez, and
M. S. Reorda, “A novel sbst generation technique for path-delay faults
in microprocessors exploiting gate- and rt-level descriptions,” in 26th
IEEE VLSI Test Symposium (vts 2008), April 2008, pp. 389–394.

[13] Wei-Cheng Lai, A. Krstic, and Kwang-Ting Cheng, “Test program
synthesis for path delay faults in microprocessor cores,” in IEEE Intl.
Test Conference, 2000, pp. 1080–1089.

[14] N. I. Deligiannis, R. Cantoro, T. Faller, T. Paxian, B. Becker, and
M. S. Reorda, “Effective sat-based solutions for generating functional
sequences maximizing the sustained switching activity in a pipelined
processor,” in 2021 IEEE 30th Asian Test Symposium (ATS), 2021, pp.
73–78.

[15] L. Anghel, R. Cantoro, R. Masante, M. Portolan, S. Sartoni, and M. S.
Reorda, “Self-test library generation for in-field test of path delay faults,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pp. 1–1, 2023.

[16] R. Cantoro, P. Girard, R. Masante, S. Sartoni, M. S. Reorda, and A. Vi-
razel, “Self-test libraries analysis for pipelined processors transition fault
coverage improvement,” in 2021 IEEE 27th International Symposium on
On-Line Testing and Robust System Design (IOLTS), 2021, pp. 1–4.

[17] F. A. da Silva, R. Cantoro, S. Hamdioui, S. Sartoni, C. Sauer, and
M. Sonza Reorda, “A systematic method to generate effective stls for the
in-field test of can bus controllers,” Electronics, vol. 11, no. 16, 2022.
[Online]. Available: https://www.mdpi.com/2079-9292/11/16/2481

[18] D. K. Schroder and J. A. Babcock, “Negative bias temperature
instability: Road to cross in deep submicron silicon semiconductor
manufacturing,” Journal of Applied Physics, vol. 94, no. 1, pp. 1–18,
2003. [Online]. Available: https://doi.org/10.1063/1.1567461

[19] T. Ning, “Hot-electron emission from silicon into silicon dioxide,” Solid-
State Electronics, vol. 21, no. 1, pp. 273–282, 1978. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/003811017890148X

[20] H. J. Lee and K. K. Kim, “Analysis of time dependent dielectric
breakdown in nanoscale cmos circuits,” in 2011 International SoC
Design Conference, 2011, pp. 440–443.

[21] J. McPherson, “Time dependent dielectric breakdown physics – models
revisited,” Microelectronics Reliability, vol. 52, no. 9, pp. 1753–1760,
2012, special Issue 23rd European Symposium on the Reliability of
Electron Devices, Failure Physics and Analysis. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0026271412001916

[22] T. T.-H. Kim, P.-F. Lu, K. A. Jenkins, and C. H. Kim, “A ring-oscillator-
based reliability monitor for isolated measurement of nbti and pbti in
high-k/metal gate technology,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 7, pp. 1360–1364, 2015.

[23] J. Keane, X. Wang, D. Persaud, and C. H. Kim, “An all-in-one silicon
odometer for separately monitoring hci, bti, and tddb,” IEEE Journal of
Solid-State Circuits, vol. 45, no. 4, pp. 817–829, 2010.

[24] M. Altieri Scarpato, “Estimation de la performance des circuits
numériques sous variations pvt et vieillissement,” Ph.D. dissertation,
Université Grenoble Alpes, 2017, thèse de doctorat dirigée par Beigné,
Édith et Lesecq, Suzanne Nano electronique et nano technologies
Université Grenoble Alpes (ComUE) 2017. [Online]. Available:
http://www.theses.fr/2017GREAT093

[25] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. USA: Addison-Wesley Publishing Company, 2010.

[26] A. Sivadasan, S. Mhira, A. Notin, A. Benhassain, V. Huard, E. Maurin,
F. Cacho, L. Anghel, and A. Bravaix, “Architecture- and workload-
dependent digital failure rate,” in 2017 IEEE International Reliability
Physics Symposium (IRPS), 2017, pp. CR–8.1–CR–8.4.

[27] J. Watt, R. Borhani, and A. K. Katsaggelos, Machine Learning Refined:
Foundations, Algorithms, and Applications, 1st ed. USA: Cambridge
University Press, 2016.

[28] M. Kuhn and K. Johnson, Applied Predictive Modeling. Springer, 2013.
[29] ETH Zurich and Università di Bologna, “PULPino microcontroller

system,” https://github.com/pulp-platform/pulpino, 2022.

[30] J. Bennett, “Mibench-embedded benchmark,” https://github.com/
embecosm/mibench/tree/master, 2023.

