
19 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Original

DiMViDA: Diffusion-based Multi-View Data Augmentation

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992023.2 since: 2024-08-28T16:46:16Z

IEEE



DIMVIDA: Diffusion-based Multi-View Data
Augmentation

G. Di Giacomo1, G. Franzese2, T. Cerquitelli1, C. F. Chiasserini1,3,4, P. Michiardi2

1: Politecnico di Torino, Italy – 2: EURECOM, France – 3: CNR-IEIIT, Italy – 4: CNIT, Italy

Abstract—We present DIMVIDA, a Diffusion-based
Multi-View Data Augmentation method built upon an
innovative approach for Novel View Synthesis, which uses
an extension of diffusion generative models that accepts any
number of input views and that can generate any number
of missing output views. In this work, our goal is to analyze
the benefits of such a generative model in the context of
object classification. Given a single input view, we compare
the object classification performance of state-of-the-art
models, namely ResNet18 and MobileNetV3, using the
input view, versus its application to novel views synthesized
by our generative model, using such synthetic views to
augment the training set. Notably, differently from other
works, we also adopt such a multi-view data augmentation
method at inference. Our experimental findings illustrate
that novel view synthesis can enhance object classification
capabilities.

Index Terms—ML as a Service, DNN training, edge
computing, energy-aware models for learning

I. INTRODUCTION

Generative modeling is an increasingly important re-
search area, as it enables the learning of data distribution
and the generation of synthetic samples that mimic
real-world data. In recent years, diffusion models [1]–
[5] have emerged as the state-of-the-art models for
image generation, outperforming Generative Adversarial
Networks (GANs) [6] and Variational AutoEncoders
(VAEs) [7].

Among the possible applications, data augmentation
strategies based both on GANs [8], [9] and diffusion
models [10] have been adopted to produce synthetic
data that are then used to enhance the capabilities of
trained Deep Neural Networks (DNN). For example,
while standard data augmentation methods are based
on color (e.g. change of brightness, contrast, saturation)
and geometric (e.g., flipping, rotation) transformations,
[11] leverages diffusion models to perform data augmen-
tation by changing the semantics of the data, increasing
their diversity.

Recently, there has been a growing interest in multi-
modal [12], [13] and multi-view [14]–[16] diffusion
models, which address the challenge of modeling multi-
ple inputs representing the same concept using different
modalities, e.g., image and text, or different views. In
this work, we present DIMVIDA, a Diffusion-based
Multi-View Data Augmentation method that uses a
Novel View Synthesis diffusion model to augment both

the training and the evaluation pipeline in the context of
a classification task.

Specifically, we consider a single-view dataset con-
sisting of N samples, each representing a view of
an object, and we augment it by generating for each
sample three additional images of the same object from
different viewpoints. To do so, we employ the latent dif-
fusion model (LDM) introduced in [12], which applies
multi-time masked diffusion to endow the model with
conditional generation capability. Then, the resulting
augmented set is used to train a classification model. At
inference, we follow the same augmentation procedure
also for the test set, producing a set of 4 views for each
test sample. Next, given a set of multi-view images,
we evaluate the classification model individually for
each view and, finally, we compute the mean of the 4
outputs produced by the classification model to predict
the samples’ class. We corroborate the effectiveness of
our method by performing experiments on a multi-view
dataset using two state-of-the-art classification models,
i.e., ResNet18 [17] and MobileNetV3 [18], both training
the models from scratch and fine-tuning them starting
from pre-trained weights. Our approach leads to im-
provements in classification accuracy up to 20%.

A similar approach was introduced in [19]; however,
a GAN was used instead of a diffusion model and,
remarkably, data augmentation is only carried out to
extend the training set. In contrast, in our work, we also
augment the inference pipeline, enabling us to achieve
superior performance compared to only augmenting the
training set.

The rest of the paper is organized as follows. Sec. II
introduces the latent diffusion model utilized to gener-
ate novel synthetic views, while Sec. III presents the
designed methodology. The experimental details and
performance of DIMVIDA are presented in Sec. IV,
while Sec. V discusses some related work. Finally,
Sec. VI draws our conclusions.

II. LATENT DIFFUSION MODEL

In this section, we summarize the architecture of our
Novel View Synthesis generative model, namely a latent
diffusion model, which is composed of two building
blocks: a deterministic autoencoder and a score-based
diffusion model.



A. Autoencoder

The deterministic autoencoder consists of two parts,
the encoder eϕ and the decoder dψ , and is trained
independently and prior to the diffusion model. The au-
toencoder is a model that learns to reconstruct its input.
Specifically, the encoder maps the input in a lower-
dimensional space, inducing a latent variable, while the
decoder maps back such latent variables to the input
space, producing an output that should be as close to
the input as possible.

Formally, given a data distribution p(x), the autoen-
coder is trained by minimizing the following objective
function:

L =

∫
p(x)l(x− dψ(eϕ(x))) dx . (1)

where l is the desired distance function.

B. Score-based diffusion model

After training the deterministic autoencoder, the en-
coder is used to produce latent representations of the
data, which are then used to train the score-based dif-
fusion model. At this stage, the diffusion model learns
the latent distribution, enabling conditional generation
during inference.

The score-based diffusion model involves two steps,
namely, the forward and the backward diffusion pro-
cesses. The forward process is a stochastic noising
process injecting noise into the input data, i.e., the
latent representations, and is defined by the following
Stochastic Differential Equation (SDE):

dRt = α(t)Rtdt+ g(t)dWt, R0 = Z ∼ q(r, 0), (2)

where α(t)Rt and g(t) are the drift and diffusion terms,
respectively. Wt is a Wiener process, while q(r, t) de-
notes the time-varying probability density of the stochas-
tic process at time t∈[0, T ], with finite T and initial
conditions q(r, 0)=qϕ(r).

To generate a new sample, we need to reverse the
noising process by simulating the reverse-time SDE:

dRt=
(
−α(T−t)Rt+g2(T−t)∇ log(q(Rt, T−t))

)
dt

+g(T−t)dWt, R0∼q(r, T ). (3)

To solve (3), a parametric score network sχ(r, t) is
used to approximate the true score function; further-
more, q(r, T ) is approximated with the noise distribution
ϵ∼N (0, I). Finally, a decoder dψ is used to map the
latent variables back into the input space.

Conditional generation. Our model accommodates
conditional generation: to do so, we capitalize on the
multi-time masked diffusion model introduced in [12].
Specifically, the model leverages masked forward and
backward diffusion processes to produce samples from
the conditional distribution qϕ(z

M | zC), being C and
M the sets of conditioning and missing views to be
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Fig. 1. Architecture of the employed latent diffusion model.

generated, and, hence, zC and zM the respective latent
variables. We define the masked forward SDE as:

dRt = M(M)⊙ [α(t)Rtdt+ g(t)dWt] ,

q(r, 0) = qϕ(r
M | zC)δ(rC − zC), (4)

where R0=C(RM0 , RC0 ), with RM0 ∼qϕ(r
M | zC),

RC0 =zC , and C(·) being the concatenation operator.
Importantly, the mask M(M) is used to freeze or
diffuse the latent variable zC and zM , respectively.

The reverse-time process of (4) is defined as follows:

dRt=M(M)⊙ [(−α(T−t)Rt+

g2(T−t)∇ log
(
q(Rt, T−t | zC)

))
dt+g(T−t)dWt

]
,
(5)

with R0=C(RM0 , zC) and RM0 ∼q(rM , T | zC). In this
case, q(rM , T | zC) is approximated by its corresponding
steady-state distribution ϵ∼N (0, I), and the true con-
ditional score function ∇ log

(
q(r, t | zC)

)
is estimated

with a conditional score network sχ(r
M , t | zC).

The diffusion model implements masked diffusion
also using a multi multi-time vector τ=[t1, . . . , tV ],
which concurrently indicates the diffusion time and
which views are missing. Formally, the multi-time vector
is defined as τ(M, t)=t

[
1(1∈M), . . . ,1(V ∈M)

]
.

III. METHODOLOGY

In this section, we explain in detail our methodology,
which relies on the latent diffusion model, built on
the method introduced in [12], to generate synthetic
views that are used to improve the performance of a
classification model.

A. Latent diffusion model

At inference time, the architecture of the latent dif-
fusion model is depicted in Fig. 1. We consider a
set of V=4 views in total and, for instance, the set
of missing views with M={3}. The deterministic en-
coder eϕ encodes each conditioning reference view Xc,
with C={1, 2, 4}, producing their latent representations
Zc=eϕ(X

c); on the other hand, the missing view latent
variable is represented using random noise, sampling
from the Normal distribution N (0, I). The obtained
latent representations are concatenated in order to obtain
the variable Z, which is fed into the score-based diffu-
sion model sχ. Finally, the diffusion model generates
the latent variable Ẑm of the missing view Xm, and
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Fig. 2. Scheme of DIMVIDA for training (left) and evaluation (right).

the deterministic decoder dψ maps it back into the input
space, producing the generated image X̂m=dψ(Ẑ

m).
Training procedure. First, the encoder eϕ and the

decoder dψ are jointly trained by optimizing the loss
function in (1). Then, they are frozen, and we train
the score-based diffusion model, which learns the con-
ditional distribution of the missing latent variables
ZM={Zm}m∈M∼p(zM |zC). To do so, we employ
the multi-time masked diffusion approach introduced
in [12], by using a complete training set and randomly
setting some views as missing during the fine-tuning.
Specifically, with probability d=0.2 we set C=∅, i.e.,
there is no conditioning view; hence, we diffuse all latent
variables; on the other hand, with probability 1−d, we
perform masked diffusion: first, we uniformly sample
the set of conditioning views over all the possible sets;
then, the remaining views, which are assumed to be
missing, are diffused, while the latent variables of the
conditioning views are frozen.

Formally, we train the score-based diffusion model sχ
by minimizing the following loss:

L = λ(M,C)

·
∥∥M(M)⊙

[
∇ log

(
q(Rt | zC)

)
−sχ(Rt, τ(M, t))

]∥∥2
2
,
(6)

where Rt is obtained by first sampling from the
distribution q(r |Z, t) and aggregating it with the in-
put Z using the mask M(M). Importantly, we use a
scaling factor λ(M,C)=1+ |C|

|M | to take into account the
randomization of M and C that leads to the diffusion
of different portions of the latent space.

B. Classification pipeline

Once the latent diffusion model is trained, it is en-
dowed with the capacity to generate missing views given
the observed ones. Thus, we exploit this conditional
generation ability to augment the classification pipeline.

The training procedure scheme of DIMVIDA is pre-
sented in Fig. 2(left). Given a single-view dataset, that is,
composed of N samples with one view per sample, we
use the LDM to generate for each sample 3 other images

from different viewpoints. Then, we train a classification
model using such an augmented training set. As shown
in Fig. 2(right), during the evaluation step, we also
augment the test set, following the same procedure used
for the training set; thus, for each sample in the test data
we produce a set of 4 views, including the real image
and 3 synthetic ones. Next, for each set of multi-view
images, we evaluate the model individually for every
view and we compute the mean of the 4 classification
model outputs, which is finally used to predict the class
of the sample.

IV. EXPERIMENTS

In this section, we first describe the dataset used for
the experiments and we evaluate the generation perfor-
mance of the diffusion model. Finally, we assess the
effectiveness of our augmented classification pipeline.

Datasets. We assess DIMVIDA performance using
the Neural 3D Mesh Renderer Dataset (NMR) [20].
NMR consists of objects of the 13 largest classes of
ShapeNet [21] dataset, a collection of 3D objects, from
which 64x64 2D images are rendered at 24 fixed views.
For our experiments, we only use 4 views, i.e., front,
back, right and left views.

Specifically, the dataset is split into three partitions:
• NMRd, it includes for each sample all 4 views

and is used to train both the autoencoder and the
diffusion model;

• NMRc, it includes only one random view per sam-
ple and is used to train the classifiers;

• NMRe, it includes only one random view per sam-
ple and is used to evaluate the classifiers.

A. Training details of latent diffusion model

For the autoencoder, we use the same architecture
used in [12] for the CUB [22] dataset and train the model
using the Laplace distribution to estimate the likelihood.
We used TrivialAugmentWide from the Torchvision li-
brary for data augmentation. We set the dimensionality
of the latent space to 64; we perform 1000 training
epochs, with learning rate 1e−4 and batch size equal
to 64. Regarding the score-based diffusion model, we
borrow the architecture from [12] used for the CUB
dataset. However, we extend the input dimension from
1024 to 1536. During training, we perform 1000 epochs,
with the learning rate and batch size, respectively, equal
to 1e−4 and 64.

B. Results

Conditional image generation performance. First,
we evaluate the performance of the LDM by assessing
the quality of the conditionally generated images by
computing the Fréchet Inception Distance (FID) [23],
Peak Signal-to-Noise Ratio (PSNR), the Structural Sim-
ilarity Index Measure (SSIM) [24] and the Learned



TABLE I
PERFORMANCE OF LATENT DIFFUSION MODEL

Available images

Metric 1 2 3

FID (↓) 16.43 15.14 14.51
LPIPS (↓) 0.074 0.056 0.048
SSIM (↑) 0.832 0.884 0.912
PSNR (↑) 24.028 26.776 28.491

Coherence (%↑) 85.49 88.33 89.14

Perceptual Image Patch Similarity (LPIPS) [25]. The
FID score evaluates both the quality and diversity of
the generated data; PSNR is a widely used metric based
on the pixel-wise difference between two images; SSIM
measures the similarity of two images by comparing
luminance, contrast, and structure. SSIM aims to better
reflect human visual perception, which is also the goal
of LPIPS. However, the latter computes the difference
between the features obtained from a layer of a pre-
trained image convolutional neural network, namely
SqueezeNet [26] in our implementation.

Furthermore, we verify that such generated data pre-
serve the semantics of the conditioning images, i.e., the
observed images: to do so, we measure the so-called
coherence. Specifically, we use a pre-trained classifier
Γ fine-tuned on our dataset to check that the generated
images are classified coherently with the conditioning
images. Formally, for N generated images, the coher-
ence is computed as follows:

coherence(X̂m|XC) =
1

N

N∑
1

1{Γ(X̂m)=yXC }, (7)

where X̂m is the image generated by the diffusion
model conditionally with respect to set XC , while yXC

is the true label, i.e., the class of the conditioning set.
The computed metrics are reported in Tab. I, which

shows that the performance improves when more images
are observed, highlighting that the model efficiently
aggregates information from different views. In general,
the reported metrics also indicate the capability of the
latent diffusion model to generate high-quality data,
while maintaining the semantics of the conditioning
images when generating the missing views.

Classification performance To evaluate the impact
of synthetic images on the augmented classification
pipeline, we first consider a classifier Ωs, trained on the
single-view NMRc dataset, and a classifier Ωm, trained
on the augmented dataset NMRca, which includes both
all NMR imagesc and the synthetic images obtained
with the diffusion model conditioned on NMRc data.
During classifier training, we use the Adam optimizer
with learning rate 1e−5 and batch size set to 128,

As for the evaluation protocol, we consider two ap-
proaches. The first is the standard procedure, where

TABLE II
CLASSIFIERS ACCURACY (%) - TRAINING FROM SCRATCH

Architecture Model -
training set Test set

NMRe NMRea

ResNet18 Ωs - NMRc 83.89 87.21
Ωm - NMRca 85.18 88.03

MobileNetV3 Ωs - NMRc 71.01 79.66
Ωm - NMRca 77.95 85.45

TABLE III
CLASSIFIERS ACCURACY (%) - FINE-TUNING

Architecture Model -
training set Test set

NMRe NMRea

ResNet18 Ωs - NMRc 89.98 89.89
Ωm - NMRca 90.83 90.96

MobileNetV3 Ωs - NMRc 87.14 88.15
Ωm - NMRca 88.08 90.00

trained models are tested on the NMRe single-view
evaluation data set. The second method uses the latent
diffusion model to augment the NMRe dataset, as done
with NMRc, obtaining the dataset NMRea.

We perform experiments with two state-of-the-
art classification models, namely ResNet18 and Mo-
bileNetV3, training them from scratch. The results re-
ported in Tab. II underline that the use of augmented
multiview datasets both for training and evaluation leads
to the best classification performance. Moreover, we
also find that performing the augmentation only during
the evaluation improves the performance more than
augmenting solely the training set.

Finally, we also fine-tune the models starting from the
pre-trained weights provided by the Torchvision library.
The obtained results are shown in Tab. III, which further
demonstrates the benefits of our augmented classification
pipeline, even if the gain is lower than the case of
the training from scratch: very likely, the initialization
of the model with the pre-trained weights equips the
classification models with an already appropriate visual
understanding ability, limiting further enhancements.

V. RELATED WORK

Generative models are a class of machine learning
algorithms designed to learn the underlying distribution
of the input data, which enables the generation of new
data samples that resemble the training data.

Over the years, Generative Adversarial Networks
(GANs) [6] and Variational AutoEncoders (VAEs) [7]
have dominated the field; however, recently, diffusion
models [1], [27] have emerged as a superior alternative.
[28] introduces the concept of the “generative learning



trilemma”, which highlights the three main challenges
in generative modeling, namely high-quality sample
generation, sample diversity, and fast generation. While
GAN-based methods are characterized by poor mode
coverage, i.e., low diversity of generated samples, and
VAEs tend to produce samples of lower quality, score-
based diffusion models are capable of generating both
high-quality and diverse images, though they are slower
in the generation process.

Augmentation with synthetic data. Many works
have implemented data augmentation techniques that
rely on GANs for classification tasks, such as [8], [9].
[29] trains a classifier using only synthetic data produced
with a GAN, resulting in improved performance com-
pared to the original dataset. [19] proposes a method
similar to ours, generating an augmented dataset by
producing images of real data from novel viewpoints;
however, data augmentation is performed by means of a
GAN and, more importantly, only involves the training
set. Our approach, instead, takes advantage of the multi-
view synthetic data also during evaluation.

Recently, diffusion models have replaced GANs for
data augmentation approaches based on synthetic im-
ages, thanks to their superior generation capability, both
in terms of data quality and diversity. For instance,
[10] demonstrates the benefits of using synthetic images
generated by a state-of-the-art text-to-image diffusion
model for image classification. In particular, the im-
pact of synthetic data is analyzed in three scenarios,
namely zero-shot learning, few-shot learning and large-
scale model pre-training for transfer learning. [11] lever-
ages diffusion models to perform data augmentation by
changing the data semantics, increasing data diversity.

VI. CONCLUSIONS

In this paper, we have presented DIMVIDA, a novel
data augmentation technique based on a diffusion-based
novel view synthesizer method. Our approach is specif-
ically designed for a classification task: specifically, we
envision augmenting data both during training and infer-
ence, as the evaluation step takes into account the single
real test image and the ones generated by the diffusion
model, which represent the same object from different
viewpoints. Importantly, the experiments performed have
supported the effectiveness of the proposed approach,
with gains in classification accuracy up to 20%.

As for future work, we will extend our experimental
campaign to further corroborate the benefits of our aug-
mented classification pipeline. In particular, we will use
additional datasets and state-of-the-art diffusion models.
Also, we will investigate how the diversity of the gen-
erated images impacts the classification performance.
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