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ABSTRACT This work presents a flexible method for the real-time estimation of human joint angles from
magneto-inertial measurement technology. Themethod aims to enhance the accuracy and consistency of joint
angle estimates by incorporating physiological joint limits and task-specific motor characteristics into the
optimization process, thanks to a biomechanical model. As an explanatory example, the method was applied
to shoulder and elbow joints during a prolonged writing task. The adopted upper limb model was designed
following the International Society of Biomechanics guidelines and the Denavit-Hartenberg convention,
ensuring anatomical relevance and computational efficiency. By comparing results with stereophotogram-
metric tracking outputs, the application of constraints - leveraging a priori knowledge of the workspace
boundaries for joint centers - enhanced the accuracy of shoulder and elbow angle estimations and effectively
mitigated the impact of sensor orientation drift over extended periods. This method ensured that joint centers
trajectories remain within task-specific workspace limits, thus preventing deviations that are not compatible
with the expected kinematic behavior. The percentage decrease in the root mean square average errors
amounted to about 13% in the time intervals when constraints were active, demonstrating the method’s
effectiveness in reducing the errors. Computationally time-wise, joint angles were estimated with an update
period of about 10 ms, allowing real-time usage. The proposed method can be easily generalized to different
biomechanical models and to include information from complementary technologies, making it applicable
across various contexts such as clinical assessments, rehabilitation, and ergonomics.

INDEX TERMS Anatomical constraints, human motion tracking, MIMU, IMU, ISB, joint angle estimation,
kinematics, magneto-inertial signals, real-time optimization, rehabilitation, sensor fusion, task-specific
constraints, upper limb biomechanical model, wearable sensors.

I. INTRODUCTION
The recent diffusion of low-cost wearable magnetic and
inertial measurement units (MIMUs) has opened new per-

The associate editor coordinating the review of this manuscript and

approving it for publication was Angelo Trotta .

spectives for the tracking of human joint kinematics. The
most straightforward approach to compute joint kinematics
involves estimating the orientation of the MIMUs mounted
on adjacent segments in a common global reference frame
using a sensor fusion algorithm and then decomposing their
relative orientation around the axes of the joints according to
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a specific rotation sequence [1]. However, the reliability of
the joint kinematics is strongly dependent on the quality of
the orientation estimates which are jeopardized by stochastic
fluctuations and instabilities of the measured angular veloc-
ities [2], [3]. The accumulation of these errors during the
integration process limits the accuracy of the MIMU orienta-
tions to fewminutes [4], and, during prolonged recordings the
estimated joint angular displacements can be not compatible
with the joint physiological limits. Furthermore, inaccuracies
in joint orientation estimates can result in incorrect positions
of joint centers, determined based on the orientation and
length of each segment in a kinematic chain, leading to move-
ments that are not compatible with the specific constraints of
the motor tasks being analyzed.

To overcome the above-mentioned issues, particularly
critical during prolonged sessions, this study proposed an
effective real-time constrained optimization method which
allowed to take into account both information about the phys-
iological joint limits [5], [6] (first constraint) and the charac-
teristics associated with the specific motor tasks under anal-
ysis (second constraint). Joint angles were obtained by mini-
mizing the difference between MIMU sensor fusion-derived
segment orientation and the corresponding orientation based
on a biomechanical model. While this approach of mini-
mizing is not unusual for stereophotogrammetric (SP) based
methods, it has rarely been used with MIMU signals [5],
[6], [7], [8], [9], [10], and, among these few works, none
have exploited constraints related to physical task-specific
workspace boundaries, focusing solely on physiological joint
limits.

The feasibility of the proposed kinematics optimization
method was tested through proof-of-concept experiments
conducted on one healthy subject performing a prolonged
writing task. As an example of application, the method was
specifically tailored for the kinematics estimation of the
shoulder and elbow joints, considering the orientation of two
MIMUs placed on the upper arm and forearm as input. The
reference joint kinematics was provided by a marker-based
SP system. The focus on the upper limb has been chosen as it
is of interest for many applications such as clinics [11], reha-
bilitation [12], [13], [14], [15], industry [16], [17], sports [18],
and ergonomics [19].
The biomechanical model adopted in this work was com-

pliant with the guidelines of the International Society of
Biomechanics (ISB) proposed in [20] and designed following
the robotic Denavit-Hartenberg (DH) convention. This con-
vention is particularly efficient considering the analogy with
a robotic arm [21], [22] and it allows a simple and straightfor-
ward description of the kinematic chain which guarantees fast
calculations and numerical stability of the obtained angles.
Previous literature works have adopted the DH convention to
model human upper limbs [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34]. However, these works did
not consider either the complete upper limb or defined the
anatomical axes without following ISB rules, which is central

to facilitate clinical interpretability and to compare results
with other research findings.

II. MATERIALS AND METHODS
The quantities highlighted in bold refer to vectors. The main
symbols introduced in this section are summarized in the
Glossary section for reader’s convenience.

A. DH UPPER LIMB MODEL
The DH convention defines the pose (i.e., orientation and
position) of the jth link with respect to the pose of the (j− 1)th

link by means of four parameters: two distances (dj and aj)
and two angles (θj and αj). According to the DH conven-
tion [35], each joint is modelled with one degree of freedom
allowing a single rotation included in the joint variable ϑj.
In the proposed model, for each link, dj, aj, and αj are
constant and defined based on the geometry of connections
between consecutive joint axes only, while θj is time-varying,
including ϑj in addition to a constant offset. Once the axes
and the parameters are assigned, the DH convention defines
the transformation matrix of the jth link with respect to the
previous one in a standard formulation.

The proposed kinematic chain was composed of three rigid
segments, namely the trunk (TR), the upper arm (UA), and the
forearm (FA) and six revolute joints (Figure 1a). The TR was
assumed still, and its coordinate system centered in the shoul-
der. In detail, the shoulder was assumed as spherical joint
allowing three rotations: ‘‘plane of elevation’’ (ϑ1), ‘‘eleva-
tion’’ (ϑ2), and ‘‘intra-extra rotation’’ (ϑ3). The elbow was
modeled as a universal joint allowing the flexion-extension
(ϑ4) and the pronation-supination (ϑ6). Moreover, a constant
subject-specific carrying angle (ϑ5) was introduced to model
the physiological abduction of FA with respect to UA [23],
[36].

The fixed trunk coordinate systemwas defined by axes (x0,
y0, z0) and centered in pTR, i.e., the shoulder joint center. pTR
was estimated by subtracting, in the vertical direction, from
the acromion position the 17% of the distance between the
left and right acromion [37], [38] (l AC and rAC), which can
be easily identified by palpation.

The UA coordinate system was defined by axes (x3, y3,
z3) and centered in pUA (elbow joint center) assumed as
the middle point between the lateral and medial epicondyles
(LE and ME, Figure 1b), which can be easily identified by
palpation. The length of UA (lUA) was the distance between
pTR and pUA.

The FA coordinate system was defined by axes (x6, y6, z6)
and centered in pFA (wrist joint center), coincident with the
ulnar styloid process, as suggested by ISB guidelines [20].
It is worth noting that several works considered the wrist joint
center as the middle point between the ulnar and radial styloid
processes (US and RS, respectively), which diverges from the
ISB guidelines. The US and RS can be easily identified by
palpation and their distance is 2h. It follows that the δ rotation
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FIGURE 1. a) The DH model of the human upper limb in agreement with
the guidelines of ISB. Black segments have null length, whereas blue and
red colors are associated to UA and FA, respectively; b) TR, UA, and FA
origins are reported with black dots; relevant anatomical landmarks (AC,
LE, ME, RS, and US) are reported with white dots; geometrical lengths of
UA and FA are reported in blue and red double arrows, respectively.

TABLE 1. The DH parameters and the physiological joint limits.

required to properly center the FA axes in US was obtained
by hypothesizing the FA as a planar trapezium (Figure 1b).

δ = tan−1
(
h
lFA

)
(1)

The DH parameters were evaluated as reported in Table 1.
The last two columns refer to the physiological lower and
upper limits for each rotation [39].

For simplicity a3, a4, and d4 were set equal to zero even
though, as shown by previous cadaveric studies and as high-
lighted by Cutti et al. [23], their values are small.
Given a joint configuration ϑ = [ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6]

and by applying the DH forward kinematics equations, it was
possible to obtain the pose of the UA and FA with respect to
the trunk coordinate system. In particular, the 3× 3 matrices
representing the orientations of the UA and FA are indicated
with 0RUA(ϑ) and 0RFA(ϑ), while the 3×1 position vectors of
the elbow and wrist joint centers with 0pUA(ϑ) and 0pFA(ϑ),
respectively. For notation simplicity, the ‘‘0’’ superscript will
be hereafter omitted.

B. KINEMATICS OPTIMIZATION METHOD
For sake of clarity, the optimization method is presented with
reference to the specific problem of the upper limb kinematics
during a writing exercise. However, a similar methodology
can be generalized and applied to different kinematic models
and motor tasks. The hat superscript ^ refers to quantities
obtained from the sensor fusion algorithm starting from
MIMU raw signals.

The optimization relied on the minimization between the
modelled UA and FA orientations, RUA (ϑ) and RFA (ϑ), with
the corresponding MIMU-based sensor fusion orientations
(R̂UA and R̂FA, calculated as detailed in paragraph D). Their
relative orientations were computed as follows:

R1UA = RUA (ϑ) (R̂UA)
T

R1FA = RFA (ϑ) (R̂FA)
T

(2)

Then, R1UA and R1FA were mathematically converted into
the corresponding axis-angle representations. Their angular
values, γUA and γFA, were extracted as follows [35]:

γUA = cos−1

(
tr
(
R1UA

)
− 1

2

)

γFA = cos−1

(
tr
(
R1FA

)
− 1

2

)
(3)

where the tr function in (3) represents the trace of the matrix.
The nonlinear multivariable objective function fobj to be min-
imized was finally defined as:

fobj (ϑ) = γ 2
UA + γ 2

FA (4)

It is worth pointing out that the joint configuration ϑ

which aligns RUA (ϑ) and RFA (ϑ) with their counterparts
R̂UA and R̂FA, respectively, also results in R1UA and R1FA
being equivalent to the identity matrices (2). In this case, γUA
and γFA would be zero (3) as well as fobj (ϑ). To avoid joint
angles to exceed their physiological range and to force the
elbow and wrist centers to lie within their physical workspace
boundaries, the minimization of fobj (ϑ) was constrained to
g1 (ϑ) and g2 (ϑ) functions. Mathematically the problemwas
formulated as follows:

min fobj (ϑ) subject to

{
g1(ϑ)
g2(ϑ)

(5)
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The equations for g1 (ϑ) are defined in (6).

g1 (ϑ) = lower limit j ≤ ϑj ≤ upper limit j
∀j = {1, 2, 3, 4, 6} (6)

In (6) index j = 5 is omitted, since the carrying angle ϑ5
is a constant value, according to Table 1. In general, the
formulation for g2 can include any nonlinear function of ϑ .

In this work, the equations for g2 are defined on the elbow
and wrist trajectories as in (7)

g2 (ϑ) =

{
pUA (ϑ) ∈ WSe
pFA (ϑ) ∈ WSw

(7)

where WSe and WSw are the generic sets defining the
three-dimensional workspace boundaries in which the elbow
and wrist centers must be confined. This problem was solved
by defining the Lagrangian function L (ϑ, λ, σ ):

L (ϑ, λ, σ ) = fobj (ϑ) −

∑N

n=1
λng1n (ϑ)

−

∑M

m=1
σmg2m (ϑ) (8)

and then finding the optimal values of ϑ, λ, σ which lead to
∇L = 0. The quantities λ and σ represent the Lagrangian
multipliers applied to g1 (ϑ) and g2 (ϑ), respectively. In gen-
eral, λ and σ are vectors with a length depending on the
number of inequalities defined (i.e., N and M). Obviously,
even if applied, λ and/or σ are only effective for those time
intervals when (6) and/or (7) are not respected, otherwise
the optimal ϑ would be equal the same as if the constraints
were not applied. The numerical solution for the optimal
ϑ, λ, σ values was iteratively found using an optimization
solver such as the Sequential Quadratic Programming (SQP),
which is suitable for non-linear constrained optimization
problems [40].
The implementation method shown in Figure 2 was

designed to find the optimal joint configuration at each ith

time-step.
For each iteration, given aϑ, λ, σ configuration, the objec-

tive function definition requires the computation of RUA (ϑ)

and RFA (ϑ). Then equations (2)-(4) were applied to quantify
fobj (ϑ). The lower and upper limits required by (6) were
defined for each ϑj according to Table 1. To implement (7),
the pUA (ϑ) and pFA (ϑ) were first computed by applying the
DH forward kinematics. The workspace boundariesWSe and
WSw were assumed as horizontally oriented parallelepipeds.
The validity of (7) was established in two sequential steps.
Firstly, the point-in-polygon algorithm [41] was applied to the
(x, y) coordinates of pUA (ϑ) and pFA (ϑ) enforcing the elbow
and wrist positions to lie inside the horizontal projection
of E and W, respectively. Subsequently, the z-coordinates
of pUA (ϑ) and pFA (ϑ) were limited to the minimum and
maximum values of the E andW vertical projections. Finally,
the L was quantified according to (8). The SQP iteratively
refined the solution by adopting a sequential approach to
update ϑ, λ, σ to ensure ∇L = 0. For each ith time-step, the
number of iterations strongly depended on the choice of the

initial values. For this reason, the solution convergence (i.e.,
the computational time) at each ti was promoted setting the
starting configuration equal to the optimal values at ti−1. This
was allowed considering the continuity of the joint angles
between two consecutive time-steps.

To understand the influence of g1 and g2 on the results,
please refer to a simplifying example in Appendix A.

C. EXPERIMENTAL SETUP AND PROTOCOL
To prove the feasibility of the proposed optimization method,
experiments were conducted on one healthy subject (29 y.o.,
male and BMI = 23.4 kg/m2) in the movement analysis
PolitoBIO Med Lab of the Politecnico di Torino (Turin, Italy).
The participant provided informed consent (ethics approval
prot. 474/CE 2024). The anthropometric measurements were
acquired with a caliper and amounted to lUA = 0.3 m, lFA =

0.3 m, 2h = 0.06 m and δ = 6 deg, ϑ5 ≈ 20 deg manu-
ally measured with a goniometer when the elbow was fully
extended. The subject was equipped with two 3D-printed
plastic supports on the UA and FA (Figure 3a). Each support
hosted aMIMU and four retroreflective passive markers (∅ =

14 mm). In detail, each support was designed with four slots
to ensure the accurate alignment of three local coordinate
systems: markers (green), MIMU (red), and support (blue).
The supports were mounted on the subject’s segments by
means of Velcro straps (Figure 3b) taking care to manually
align the axes of the support with the UA and FA axes.
To enable a proper comparison between the MIMU and SP
kinematics, two additional markers were placed on the sub-
ject’s left and right acromion process (Figure 3c), to compute
the time-invariant orientation between the SP and MIMU
coordinate systems.

The subject was equippedwith twoMIMUs (Xsens –MTw,
Movella, Enschede, The Netherlands, sampling frequency =

100 Hz), attached to UA and FA. Noise characteristics of
the MIMUs are reported in Appendix B. The SP system was
composed of twelve infrared cameras (VICON - Vero, UK,
sampling frequency= 100 Hz) synchronized with the MIMU
station via cables.

An initial warm-up period of ten minutes was executed
to limit the temperature influence on the gyroscope read-
ings [42], [43]. After that, a static acquisition of one minute
was recorded to compute the bias of each gyroscope to be
removed from the angular velocity readings collected during
the actual experiments. The subject was asked to sit in front
of a table, first assuming an initial neutral position for a few
seconds (Figure 3b), and then performing a dynamic task
for ten minutes without pauses. The subject was also asked
to maintain the trunk still for the whole dynamic task. The
task consisted of drawing an X-shape figure with a pencil as
shown in Figure 4. The trajectories of the elbow and wrist
were constrained to remain within two volumes of 0.25 ×

0.25 × 0.15 m and 0.33 × 0.22 × 0.10 m for elbow and
wrist, respectively, as shown and discussed further on in
Figure 6.

115618 VOLUME 12, 2024
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FIGURE 2. The designed real-time optimization method. Quantities with ^symbol refer to sensor fusion-based orientation. Blue and red colors refer to
orientation and position of the upper arm and forearm, respectively. Dashed arrows refer to input/output quantities internal to the solver. When no
constraints are applied λ = σ = 0 and ϑun is obtained. When constraints are applied both λ and σ can be non-zero and ϑcon is obtained.

FIGURE 3. a) The plastic support equipped with four SP markers hosted in the dedicated slots and one MIMU. The local coordinate system of the
support, markers, and MIMU are represented in blue, green, and red, respectively; b) the two supports aligned with the UA and FA axes; c) frontal
representation of the subject equipped with the two additional markers on the left and right acromion.

D. MIMU AND SP ORIENTATION ESTIMATION
The orientation of the MIMUs mounted on the UA and FA
was evaluated with respect to the global reference frame (x0,
y0, z0) in quaternion form using the popular and open-access
sensor fusion filter by Madgwick et al. [44]. The orientations
of the MIMUs were initialized using the inclination algebraic
quaternion described in [45] during the neutral position at
the beginning of the experiment (Figure 3b), where both the
UA and FA were aligned on the horizontal plane (i.e., their

z-axes were parallel and horizontal). Finally, the time-series
orientation of the two MIMUs was converted into rotation
matrices R̂UA and R̂FA.
It is recognized that the filter parameter value β has a

great impact on the accuracy of the orientation estimates [46],
[47], [48]. For this reason, the value of β∗

UA and β∗
FA, used to

compute R̂UA and R̂FA respectively, was estimated following
the rigid-constraint-method described in [42] and [49] and
detailed in Appendix C.

VOLUME 12, 2024 115619
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FIGURE 4. Top view of the subject in front of the table with the followed
curvilinear path as reconstructed with SP system after the ten minutes
experiment. The two grey circles represent the markers on the left and
right acromia.

The reference SP orientations for both UA and FA (R̂UASP
and R̂FASP ) were computed from the marker clusters using the
SVD techniques [50] and exploiting the alignment between
the axes of markers and MIMUs (Figure 3a) [48]. This
enabled a proper comparison between the MIMUs and
SP-based joint angles.

E. DATA ANALYSIS
The optimization method was implemented in MATLAB
R2022b (The MathWorks Inc., Natick, MA, USA). The
values for lower and upper joint limits required in (6)
were set equal to those listed in Table 1. The elbow and
wrist workspace boundaries required in (7) were set equal
to the size of the rectangular parallelepiped described in
paragraph C.
The optimization method was run to estimate the shoul-

der and elbow angles starting from R̂UA and R̂FA without
and with applying the constraints g1 and g2 to obtain ϑun

and ϑcon, respectively. By applying the DH forward kine-
matics equations, the corresponding joint center positions
pUA(ϑ

un), pFA(ϑ
un) and pUA(ϑ

con), pFA(ϑ
con) were obtained.

The minimization problem was initialized with the neutral
configuration [0, 0, 0, 0, ϑ5, 0].

FIGURE 5. The unconstrained (yellow) vs constrained (green) error
time-series of the elbow flexion-extension angle. The time intervals in
which the unconstrained trajectories of the elbow and wrist joint centers
fell outside the workspace boundaries (tout ) are represented as
horizontal black lines.

To perform a consistent comparison, the corresponding
reference joint angles ϑSP were obtained by running the
optimization method from R̂UASP and R̂FASP .
The average execution time for a single iteration of the

optimization process was measured for an Intel® Core™ i7-
10510U CPU @ 1.80 GHz in Microsoft™ Windows 11 when
processing a dataset of about 62000 samples, without exe-
cuting any other applications. This calculation was repeated
when computing ϑun and ϑcon, separately.

F. ERROR METRICS
Four errors were computed:

• euntot = rms(ϑun
− ϑSP), to quantify the errors on the

whole recording without applying any constraints.
• econtot = rms(ϑcon

− ϑSP), to quantify the errors on the
whole recording by applying the constraints.

• eunout = rms (ϑun(tout ) − ϑSP(tout )), where tout =

∀ti | pUA(ϑ
un) /∈ WSe ∨ pFA(ϑ

un) /∈ WSw to quantify the
errors only in the time intervals in which the elbow and
wrist joint centers fell outside their workspace bound-
aries, without applying any constraints.

• econout = rms (ϑcon(tout ) − ϑSP(tout )), to quantify the
decrease of the errors due to the application of con-
straints, in the same time intervals of eunout .

The euntot , e
con
tot , e

un
out , and e

con
out were a 5×1 vectors, each entry

summarizing the corresponding joint angular error.

III. RESULTS
To assess the influence of constraints on the angular values,
a graphical comparison between the error time-series of ϑun

4
and ϑcon

4 is depicted in Figure 5, along with the time inter-
vals in which the elbow and wrist joint centers fell outside
their workspace boundaries. The first two panels of Figure 6

115620 VOLUME 12, 2024
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FIGURE 6. Top view reconstruction of the elbow (blue) and wrist (orange) trajectories for the entire recording when starting from the unconstrained (left),
constrained (center), and reference (right) time series of the joint angles, respectively. The horizontal projection of the elbow and wrist workspaces are
represented in light blue and light orange.

TABLE 2. The error metrics for the shoulder and elbow angles.

show the constraint influence on the corresponding uncon-
strained and trajectories, pUA(ϑ

un), pFA(ϑ
un) and pUA(ϑ

con),
pFA(ϑ

con), respectively, while the third panel shows the refer-
ence trajectories.

The euntot , e
con
tot , e

un
out , and e

con
out are listed in Table 2.

The tout amounted to 12.8%with respect to the total record-
ing duration. The percentage decrease of econout values with
respect to eunout amounted to 21.3%, 28.3%, 11.1%, 14.8%, and
17.3%, for the shoulder and elbow angles.

The execution time for a single iteration amounted to 6.9±

0.4 ms and 11.3 ± 0.1 ms when computing ϑun and ϑcon,
respectively.

IV. DISCUSSIONS
The goal of this study was to present a real-time optimization
method for joint kinematics estimation based on a multi-
body kinematic model for imposing subject and task specific
kinematic constraints. The kinematic model was consistent
with the ISB standards to enable clinical interpretability and
comparison with previous studies [23], [25].
A three-segment upper limb model was defined according

to DH convention.
The main feature of the proposed method is the possi-

bility to easily and directly incorporate two different types
of constraints, thus avoiding joint angles to exceed the
physiological limits and producing joint kinematic outputs
that guarantee for joint centers trajectories compatible with

the task-specific workspace boundaries. Constraints were
mathematically specified with ad hoc functions and added
to the objective function to be minimized by means of
the Lagrangian multipliers [51]. When no constraints were
applied, errors computed over the whole recording (euntot ) are
comparable with findings from a studywith a shorter duration
and pauses [11] (Table 2). It is worth highlighting that con-
straints were active only during those time intervals in which
the joint center trajectories would fall outside the workspace
boundaries or when joint angles reached their limits. This sit-
uation happened for only 12.8% of the experiment’s duration
explainingwhy the reduction in angular error across the entire
recording is neglectable (econtot vs euntot ). Differently, when com-
paring the errors only in these time intervals (econout vs e

un
out ),

an average percentage decrease of 18.5% can be appreciated
when applying the constraints. To assess the influence of
noise characteristics of different MIMUs on the constraints’
efficacy, the reader is referred to Appendix B in which two
additional repetitions were recorded and analyzed.

An important point of attention of the constraint appli-
cation is that, when the constraints are not active, there is
no difference between the unconstrained and constrained
angles time-series, as illustrated in Figure 5. The same con-
siderations apply to the trajectories. When no constraints
were applied, the errors jeopardizing R̂UA and R̂FA directly
affected the elbow and wrist trajectories, which exceeded the
spatial boundaries defined for the experiments (left panel of
Figure 6). However, with g2 applied pFA(ϑ

con) was more like
a cropped version of the corresponding unconstrained one,
rather than matching the reference shape shown in the right
panel.

The task-specific constraint g2 could be generally for-
mulated by means of linear or nonlinear functions of ϑ to
incorporate the a-priori knowledge of the performed move-
ment. In this work, the joint center trajectories were forced
to remain within their corresponding expected boundaries.
In other cases, such as in robot-assisted rehabilitation, when
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the hand moves along predefined trajectories, g2 could be set
to mathematically define task-consistent joint angles. In gen-
eral, the results accuracy will be highly influenced by the
range of the space actually restricted by g2.
The main limit of the proposed multi-segmental model

consists in the fact that the pose of the base segment needs to
be known for each instant to fully reconstruct the kinematic
chain via the DH equations. In our experiments, this problem
was bypassed by instructing the participant to maintain his
trunk still, thereby ensuring that assuming it as fixed did
not markedly affect the results’ accuracy. If trunk movement
occurred, the suggested upper limb model would require
incorporating one or more additional links to be equipped
with MIMUs based on the number of segments used to
describe such motion. Furthermore, it is expected that errors
in the segment lengths will affect the accuracy of the joint
positions, as common for mechanisms such as robots [52],
[53].

Another key feature of the proposed optimization method
is that it can be easily modified to incorporate additional
available kinematics information. For instance, the trajectory
of a joint center or the end effector could be provided using
an optical system [54], [55] while the drift-free coordinates
of a body segment or the mutual distance between body
segments might be obtained from barometric and distance
sensors, respectively [56], [57].
Finally, a further benefit was represented by the possibility

of obtaining the optimized solutions in real-time, being the
execution time for a single iteration lower than or almost
equal to the sampling period. This was achieved despite
the inherent complexity of the task and absence of explicit
solutions, highlighting the efficiency and effectiveness of the
optimization method.

V. CONCLUSION
This study proposed a method to estimate ISB-consistent
angles in real-time compatible with the functional anatomy
and the performed task, thanks to the application of rea-
sonable constraints. When active, the constraints allowed an
18.5% reduction of the angular errors, while simultaneously
avoiding unfeasible joint configurations. This method was
not conceived to correct sensor-fusion errors but to reduce
their impact on the final kinematics reconstruction sensor-
driven data.

APPENDIX A
CONSTRAINT INFLUENCE: PLANAR EXAMPLE
As an example, consider a simple case in which the elbow
and the wrist move only on the horizontal plane at the same
height of the shoulder (i.e., ϑ2 = 90 deg), as shown in the
top panels of Figure 7. For simplicity, consider δ = 0 deg
and ϑ3 = ϑ5 = ϑ6 = 0 deg. In this situation, only ϑ1 and
ϑ4 have an impact on the results. The modelled UA and FA
orientation, RUA(ϑ1, ϑ4) and RFA(ϑ1, ϑ4) can be obtained by
applying the DH forward kinematics equations as in (9). For
sake of clarity, the dependency of the modelled quantities on

FIGURE 7. Top panels) top and sagittal views of the simplified setup.
Bottom panel) comparison of pUA and pFA resulting from the ϑ1 and ϑ4
values computed in case a, b, c, and d. Each case is represented using a
different marker. Elbow positions are represented in blue, while wrist
positions are in orange. The wrist workspace is represented with the
colored rectangular region. Note that the elbow positions for case b and d
are superimposed.

(ϑ1,ϑ4) in the equations is omitted for themodelled variables.

RUA =

 sin(ϑ1) cos(ϑ1) 0
−cos(ϑ1) sin(ϑ1) 0

0 0 1


RFA =

 sin(ϑ1 + ϑ4) cos(ϑ1 + ϑ4) 0
−cos(ϑ1 + ϑ4) sin(ϑ1 + ϑ4) 0

0 0 1

 (9)

In this setup, on a given time-step, the orientations pro-
vided by the sensor fusion algorithm, R̂UA and R̂FA, can be
interpreted as elementary rotations around the z-axis of the
trunk coordinate system with an angle equal to ϕ̂UA and ϕ̂FA,
respectively, as reported in (10).

R̂UA =

 cos(ϕ̂UA) −sin(ϕ̂UA) 0
sin(ϕ̂UA) cos(ϕ̂UA) 0

0 0 1


R̂FA =

 cos(ϕ̂FA) −sin(ϕ̂FA) 0
sin(ϕ̂FA) cos(ϕ̂FA) 0

0 0 1

 (10)

After applying (2) and (3), the fobj (ϑ1, ϑ4), whose gen-
eral expression is reported in (4), can be thus simplified as
follows:

fobj =

(
ϑ1 −

π

2
− ϕ̂UA

)2
+

(
ϑ1 + ϑ4 −

π

2
− ϕ̂FA

)2
(11)

The constraint functions are specified in (12). In partic-
ular, g2(ϑ1, ϑ4) was defined to ensure the wrist lies within
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TABLE 3. Values of fobj , ϑ1, ϑ4, λ, and σ for each of the four cases.

a horizontal rectangle with zero height, as actually happens
during this example:

g1 =

{
−

π
2 ≤ ϑ1 ≤

π
3

0 ≤ ϑ4 ≤
5
6π

g2 =

{
−0.16 ≤ pFA(x) ≤ −0.06
0.22 ≤ pFA (y) ≤ 0.32

(12)

According to (12) there are 8 inequalities, which means that
the multipliers λ and σ contained in (8) are a 4 × 1 vector
each. The expression of pFA (ϑ1, ϑ4) can be easily obtained:

pFA =


lUA cos (ϑ1) + lFA cos (ϑ1 + ϑ4)

lUA sin (ϑ1) + lFA sin (ϑ1 + ϑ4)

0
(13)

The solutions for ϑ1, ϑ4, λ, and σ are computed for the
following four cases: a) without applying g1 and g2, b) by
applying only g1, c) by applying only g2, and d) by applying
both g1 and g2. The results, together with the residual opti-
mization values fobj are reported in Table 3. For all the cases
ϕ̂UA and ϕ̂FA amounted to −40 deg and 135 deg, respectively.
From the results listed in Table 3 it is possible to assess that

the (ϑ1, ϑ4) values are different in a, b, c, and d.Moreover, the
residual is null when no constraints are applied, as expected
in case 1. In this case, the model completely adapts to R̂UA
and R̂FA thus reflecting any sensor fusion error which may
affect the two orientations. On the contrary, the residual is
highest when both g1 and g2 are applied, this means that
the corresponding (ϑ1, ϑ4) values are certainly different with
respect to case 1. It is also worth observing that, in cases
2, 3 and 4 the λ1, λ3, σ1, and σ3 values are always null.
This situation is referred to ‘‘inactive constraints’’, meaning
that the associated constraints do not actively contribute to
determining the optimal solution. In other words, the obtained
(ϑ1, ϑ4) values automatically satisfy the constraints asso-
ciated with λ1, λ3, σ1, and σ3. This usually happens when
the solution is constrained between within a specific range,
as in (12). Consequently, the solution can approach only one
of the extremities, making inactive the constraints related to
the opposite one.

The bottom panel of Figure 7 graphically represents the
pUA and pFA resulting from the DH forward kinematics equa-
tions using the ϑ1 and ϑ4 values computed in the four cases
(each case is represented with a different marker symbol). It is
possible to observe that constrained wrist position in cases c
and d largely differ from the unconstrained in case a. This is
possible thanks to the effect of g2. In fact, ϕ̂UA and ϕ̂FA can be

in general affected by errors which can be limited by applying
the a-priori knowledge of the performed motion.

APPENDIX B
INFLUENCE OF MIMU NOISE CHARACTERISTICS
Two additional repetitions were recorded on the same subject
using two additional MIMUs of the same model whose noise
characteristics are reported in Table 4. The noise density,
bias instability, and random walk were quantified from the
Allan variance during an eight-hour static acquisition [58],
while the bias residual was obtained by subtracting the mean
gyroscope value from one-minute static recording acquired
before and after the experiment.

TABLE 4. The noise characteristics of the employed MIMUs.

The metrics described in section III were also computed
for rep II and rep III including euntot , e

con
tot , e

un
out , e

con
out , and tout

and reported in Table 5.

TABLE 5. The error metrics for rep ii and rep iii.

The tout for rep II and rep III amounted to 0.8% and 4.8%
with respect to the total recording duration. The average per-
centage decrease of econout values with respect to e

un
out amounted

to 9.2% and 4.7% for rep II and rep III, respectively. These
additional results confirm the benefits of applying constraints
in reducing joint angle errors. Although the movement was
the same as in repetition I, it is noteworthy that both tout
and the average percentage decrease varied considerably
among the three repetitions. These variations are primarily
due to the different noise characteristics of the MIMUs,
as shown in Table 4 where it is evident that the bias resid-
ual is the most fluctuating characteristic, consistently with
literature findings [48]. This remarks the fact that different
MIMUs, even from the same model, may provide differ-
ent performance, including the instants at which the elbow
and wrist joint centers fell outside the workspace limits.
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Employing constraints can help minimize these variations,
making the results more consistent and repeatable.

APPENDIX C
SENSOR FUSION PARAMETER VALUE ESTIMATION
Recent literature highlighted the significance of custom
tuning in sensor fusion algorithms to account for noise char-
acteristics of both MIMU models and movement kinematics,
since default parameter values provided in filter implemen-
tations may lead to substantial errors [48]. The optimal
parameter value is defined as the one which minimizes the
orientation error with respect to the reference. However,
relying on a known orientation reference is impractical for
home monitoring, which is the focus of this study. To set
a reasonable parameter value without using any reference,
this work adopted the ‘‘rigid-constraint method’’ (RCM, [42],
[49]). The RCM, applied to two aligned MIMUs on a rigid
body, identifies the parameter value minimizing the differ-
ence between the orientation independently estimated by
each MIMU, following a grid-search approach.

For this reason, two MIMUs of the same model were
rigidly stacked and aligned with the UA and FA axes of the
DH model, respectively, as depicted in Figure 8. Then, a pre-
liminary exercise similar to that described in Paragraph C.
was executed, as suggested in [49].

FIGURE 8. Left) the setup for rigid constraint methods used for the
preliminary experiments aimed at estimating β∗

UA and β∗
FA. Right) the

relative orientation difference for each value of β for the MIMU pairs
mounted on the upper arm (in blue) and on the forearm (in orange),
respectively.

After that, the RCM was applied to UA and FA MIMU
pairs, independently. To this end, the orientation of each of the
four MIMUs, separately, was computed with the Madgwick’s
filter for 77 values in the range β = [0, 0.8] rad/s to obtain
R̂UA#1(β), R̂UA#2(β), R̂FA#1(β), and R̂FA#2(β), respectively.
The suitable value for each pair ofMIMUs,β∗

UA andβ∗
FA, were

obtained as follows:

β∗
UA = β|min fAA

(
R̂UA#1 (β)T R̂UA#2 (β)

)
β∗
FA = β|min fAA

(
R̂FA#1 (β)T R̂FA#2 (β)

)
(14)

where fAA is the function to extract the angular value after
the conversion of the matrix into its axis-angle representation,

as in (3). The identified β∗
UA and β∗

FA amounted to 0.0091 rad/s
and 0.0037 rad/s, respectively. The chart depicted in Figure 8
shows the trend of the relative orientation difference when
varying β for each pair of MIMU, β∗

UA and β∗
FA are also

highlighted. Finally, β∗
UA and β∗

FA were used to compute
R̂UA and R̂FA during the actual experiments described in
Paragraph II-C.
For the sake of completeness, since themain setup included

the markers aligned with the MIMU axes (Figure 3), the
absolute orientation error corresponding to R̂UA and R̂FA was
also assessed as described in [49] and amounted to 2.8 deg
and 10.8 deg, respectively. The higher errors for R̂FA can
be attributed to the increased motion intensity of the FA
compared to the UA [48]. More in detail, the maintenance
of the elbow flexion-extension axis nearly vertical during the
task made it difficult to effectively compensate the drift on
the horizontal plane. While the magnetometer theoretically
addresses this issue, it introduces its own set of problems [42].
It is work noting that despite the 10-minute duration, the
RCM served as one viable approach to provide parame-
ter values to contain the absolute orientation errors within
reasonable limits in a home-setting without relying on any
orientation reference.

APPENDIX D
CODE AND DATA SHARING
Code and data associated with this article are available
on CodeOcean 10.24433/CO.2174974. Two main MATLAB
scripts are provided, one is an interactive script for the move-
ment visualization with the designed upper limb model, the
second is the script to run the proposed optimization method.

GLOSSARY
The main symbols used in this manuscript are listed below:

dj, aj, θj, αj Parameters of the DH model.
ϑ Generic vector (6 × 1) of the upper limb

angles.
ϑ1, ϑ2, ϑ3 Generic shoulder angles.
ϑ4, ϑ5, ϑ6 Generic elbow angles. ϑ5 represents the car-

rying angle and is fixed and subject specific.
pTR (ϑ)

pUA (ϑ)

pFA (ϑ)

Generic position vectors (3 × 1) for the
trunk, upper arm, and forearm joint centers,
respectively after applying the DH forward
kinematics equations.

δ The rotation required to properly center the
forearm axes, based on the assumption of the
forearm as a planar trapezium.

(x0, y0, z0)
(x3, y3, z3)
(x6, y6, z6)

Coordinate system axes for the trunk, upper
arm, and forearm, respectively.

RUA (ϑ)

RFA (ϑ)

Generic rotation matrices (3× 3) represent-
ing the modelled UA and FA orientations
after applying the DH forward kinematics
equations.
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R̂UA
R̂FA

Rotation matrices (3 × 3) representing the
orientation of the MIMUs mounted on UA
and FA obtained from a sensor fusion
algorithm.

R̂UASP
R̂FASP

Rotation matrices (3 × 3) representing
the reference orientations of the MIMUs
mounted on UA and FA obtained from the
stereophotogrammetry data. Used for vali-
dation purposes only.

γUA
γFA

Angular values representing the magnitude
of differences between the model-based and
sensor fusion-based orientations of UA and
FA, respectively.

fobj (ϑ) The nonlinear multivariable objective func-
tion.

g1 (ϑ) Constraint functions applied to the optimiza-
tion process to prevent joint angles from
exceeding physiological ranges.

g2 (ϑ) Constraint functions applied to the optimiza-
tion process to ensure that the elbow and
wrist center trajectories remain within phys-
ical workspace boundaries.

λ, σ Lagrangian multipliers associated with the
constraints g1 and g2 used to enforce the
constraints during the optimization process.

L (ϑ, λ, σ ) The Lagrangian function, incorporating the
objective function and the constraints.

β∗
UA, β

∗
FA Filter parameter values used to compute

R̂UA and R̂FA obtained through the rigid-
constraint-method described in Appendix B.

ϑun The optimal joint angles obtained from the
optimization method fed with R̂UA and R̂FA
without applying the constraint functions g1
and g2.

ϑcon The optimal joint angles obtained from the
optimization method fed with R̂UA and R̂FA
by applying the constraint functions g1 and
g2.

ϑSP The reference joint angles obtained from
the optimization method fed with R̂UASP and
R̂FASP . Used for validation purposes only.

pUA (ϑun)

pFA (ϑun) ;

pUA (ϑcon)

pFA (ϑcon) ;

pUA(ϑSP)
pFA(ϑSP)

Position vectors for elbow and wrist joint
centers obtained starting fromϑun,ϑcon, and
ϑSP, separately.

WSe, WSw Sets defining the workspace volumes for the
elbow andwrist centers, ensuring themotion
stays within predefined spatial boundaries.

tout ∀ti|pUA(ϑ
un) /∈ WSe ∨ pFA(ϑ

un) /∈ WSw,
i.e., those time intervals where the elbow and
wrist exceed their workspace boundaries.

euntot Errors vector (5 × 1) containing the rms of
the difference between the full time series of
ϑun and ϑSP.

econtot Errors vector (5 × 1) containing the rms of
the difference between the full time series of
ϑcon and ϑSP.

eunout Errors vector (5 × 1) containing the rms of
the difference between ϑun and ϑSP evalu-
ated at tout .

econout Errors vector (5 × 1) containing the rms of
the difference between ϑcon and ϑSP evalu-
ated at tout .
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