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A B S T R A C T

This paper describes a new methodology that expands the capabilities of low-frame, high-
resolution stereo-camera systems in studying the dynamic behavior of components in the
presence of nonlinear phenomena. A new downsampling technique called the Smoothed
Harmonics Analysis (SHA) is proposed. This technique addresses the limitations due to the low-
frame rate cameras for the study of high-frequency periodic steady-state nonlinear oscillations.
SHA enables accurate reconstruction of downsampled signals, thus opening up numerous
potential applications. The feasibility of this technique is demonstrated by analyzing the motion
of a beam with nonlinear behavior. The nonlinearity is caused by intermittent contact while
the beam is subjected to harmonic excitation.

. Introduction

.1. Background and motivation

Non-contact measurement techniques have become increasingly important in the field of structural dynamics, as they offer
dvantages over contact techniques by overcoming their limitations. These limitations include the effect of added masses and the
hallenges associated with data transmission in rotating machinery. Among non-contact techniques, Laser Doppler Vibrometers
LDVs) are distinguished by their outstanding qualities of high sensitivity, high accuracy and high acquisition speed [1]. However,
ingle point measurements may not be suitable for describing complex deformed shapes. Therefore, more sophisticated measurement
onfigurations are commonly used. In [2] an LDV sensor was mounted on a robotic arm to speed up the acquisition process, while
n [3] a Scanning LDV (SLDV) was used to increase the number of measurement points. Although these approaches have proven
ffective, they cannot be classified as full-field methods. This is because the use of a single vibrometer limits measurements to
nly one dimension (along the beam axis), imposes limitations on the number of measurement points, and prevents simultaneous
easurements at different points.

For these reasons, extensive research efforts have been devoted to the advancement of full-field 3D measurement techniques.
lthough Digital Image Correlation (DIC) was originally developed for static acquisitions, the development of high-speed cameras
as opened up the application of the method to vibration measurements. The work reported in [4] discusses the advantages and
imitations of using DIC for experimental modal analysis compared to impact hammer and Scanning Laser Vibrometry (SLV). This
tudy demonstrates that DIC, using two high-speed cameras, is effective in analyzing the deformed shapes of a dryer-cabinet panel.
n [5] it has been proven that updating the localized parameter model performed with full-field measurements (cameras) is more
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accurate and efficient than that performed with single-point measurements (accelerometers). In [6], the 3D-DIC technique was
compared to a 3D scanning LDV system for analyzing the dynamics of a metal plate. The study showed that while SLDV required
a long time to scan the sample, the simultaneous sampling of multiple points with the DIC technique significantly shortened the
acquisition time. Additionally, although the noise floor for SLDV is significantly better than DIC for out-of-plane measurements, they
are approximately equal for in-plane results. This, combined with the lower costs of DIC setups, makes 3D-DIC a good solution for
three-dimensional surface motion measurements. In [7], 3D-DIC experimental modal analysis was performed on a large metal panel.
To improve the signal-to-noise ratio and enhance DIC accuracy, the recorded motion captured by high-speed cameras was magnified
using a phase-based motion technique. The importance of full-field measurements can be further emphasized when nonlinear
phenomena are to be studied, as they enable the acquisition of detailed information on the spatial distribution of deformations,
facilitating a better understanding of the complex behavior exhibited by nonlinear systems. Nonlinear phenomena commonly occur
in structures that have contact surfaces. For example, in the case of turbine such contacts occur at the blade root or under the
blade platform [8], where friction dampers are implemented to mitigate the vibration amplitude. Accurate measurement of the
relative displacement between contact surfaces is critical in addressing contact problems, as it allows for a better understanding
and more effective management of them. A number of papers in the literature deal with the measurement of nonlinear phenomena
using DIC techniques. A combined high-speed camera and DIC analysis was applied in [9] to gain an in-depth understanding of
the global and local motion of an underplatform damper. Nonlinear vibro-impact phenomena were analyzed in [10] to estimate
the Coefficient Of Restitution (COR) and friction forces, which were used to implement different contact models. The nonlinear
vibrations of a saxophone reed was studied in [11] by using the stroboscopic effect. The strobe light allowed the amplitudes of
different harmonics to be evaluated while the reed was subjected to purely sinusoidal excitation. In [12] DIC technique and a
high-speed camera were used to make measurements of the waves propagating along a thin plate floating on the surface of the
water, revealing non-linear components that introduce asymmetries in the wave shape. In [13] a comparison was made between
SLDV and DIC, with high speed cameras, in measuring the linear and nonlinear response of a nominally flat beam and plate under
a sinusoidal load in steady state. The beam and plate were clamped-clamped and nonlinearities were triggered by large deflections.
Small displacement amplitudes are often difficult to measure because of the noise that typically affects high-speed cameras. The
work presented in [14] addresses this problem and shows that by using the Least-Squares Complex-Frequency method combined
with the Least-Squares Frequency-Domain method, modal identification is still possible. DIC was used in [15] was used to visualize
the local kinematic behaviors of a jointed interface. Slip and separation was measured with high resolution at the interface of a
bolted joint. The full-field nonlinear dynamics was measured using high frame-rate cameras on a jointed structure in [16]. Because
high-speed camera fan noise is injected into the measurements, the accuracy of the DIC was validated using accelerometer data. The
follow-up paper [17] exploit the use of high spatial resolution data to compare different nonlinear system identification methods.
The paper presented in [18] develops a novel modal decomposition method, called smooth mode decomposition (SMD), to manage
the excessive storage and computational requirements and the temporal aliasing effect associated to full-field sensory techniques.
This method was applied to a set of full-field displacement data obtained from the 3D digital image correlation (DIC) to validate
the capability of the proposed SMD in identifying linear normal modes from full-field measurements.

All these approaches have provided promising results in applying full-field DIC measurements to nonlinear phenomena by
xploiting high-speed cameras. However, higher frame rates can be achieved only by reducing the image resolution, which results in
ensitivity loss for small displacements. Moreover, the high cost of high-speed cameras makes them unaffordable for most research
enters. Accordingly, several approaches have also been developed in the literature to use high-resolution, low-speed cameras to
easure high-frequency linear vibrations. The challenge is to overcome the Nyquist–Shannon theorem. In [19] the downsampling

pproach was applied to band-limited signals. In [20], low-speed cameras and the DIC technique were used to analyze the deformed
hapes of a rotating disk by employing stroboscopic lights and a downsampling technique. Nevertheless, the feasibility of these
pproaches in the case of nonlinear phenomena has not yet been investigated. The first attempt to nonlinear modal analysis using
ow-frame cameras was done in [21]. A different approach was proposed in [22] where images captured by the cameras were
ynchronized exploiting the signal of an LVD with high frequency resolution.

.2. Objective

The objective of this work is to develop a methodology for using standard high-resolution, low-speed cameras to study nonlinear
henomena at high-frequency. This is made possible with an algorithm that correctly reconstructs a downsampled signal avoiding
liasing error. Accordingly, a new downsampling method, denoted Smoothed Harmonics Analysis (SHA), was developed and applied
o reconstruct the response of a beam with step wise boundary conditions that trigger nonlinear behavior. This paper is organized as
ollows. Section 2 briefly summarizes the basic procedure for measuring displacements of a structure using cameras whose frame rate
s less than the vibration frequency and Nyquist’s condition is not satisfied. This Section is introductory to the problem and can be
kipped by the reader familiar with DIC along with a downsampling procedure. Section 3 explains the detail of the method proposed
o reconstruct a multi-harmonic signal with downsampled data. The test case is described in Section 4. This Section describes both
he experimental set up and a semi-analytical solution found in the literature. The semi-analytical solution helps to find the right
hoice for the approximation of the target solution. The simulation results are shown in Section 5. One point was used as reference
oint to evaluate the reliability of the method: the displacement of this reference point was measured with an LDV sensor and
ompared with the displacement determined by the proposed method.
Notation and convention: Throughout this paper vectors and matrices are denoted by boldface letters. If not explicitly stated

⊺

2

therwise vectors are column vectors. The symbol indicates the transpose of a vector or matrix.
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2. Measurement process

The measurement process in which DIC is applied to downsampled signals is summarized as follows.

• Specimen preparation: DIC analysis requires uniqueness in the image of the set of pixels (subsets) representing a point on
the surface of the specimen. Consequently, when the surface does not naturally fulfill this requirement, proper preparation
becomes fundamental. Typically, a speckle pattern is employed to ensure accurate and precise DIC measurements. In [23],
various pattern generation techniques are examined, taking into account the vast diversity in test materials, spatial scales, and
experimental conditions.

• Image acquisition at a frame rate lower than the Nyquist sampling rate (downsampling): valuable guidance on setting
environmental and camera parameters to capture high-quality images of a moving object can be found in the literature. In
particular, clear and concise guidelines on general camera settings are provided in [24]. The setting of sampling parameters
(frame rate and recording time) is discussed in Section 3.

• Image processing by DIC algorithm: it enables the calculation of the displacement field of the specimen for each frame. The
fundamentals of this process are illustrated in Section 2.1.

• Signal reconstruction of downsampled signals at each DIC point: it allows to accurately estimate the displacement field
over time, avoiding aliasing errors. Brief descriptions of downsampling algorithms are provided in Section 2.2, whereas the
Smoothed Harmonic Analysis algorithm, employed in this paper, is presented in Section 3.

2.1. Digital image correlation

There are three fundamental steps typical of stereo-DIC algorithms: system calibration, processing two sets of images acquired
rom two different perspectives using 2D-DIC algorithms, and triangulating the 2D position of each point tracked by the cameras.
or each camera in a stereo pair, calibration aims to determine both intrinsic parameters, which define the geometric and optical
haracteristics of the camera, and extrinsic parameters, which define the position and orientation of the camera relative to a global
oordinate system. Intrinsic and extrinsic parameters describe the transformation that maps each image point on the camera sensor
o its corresponding 3D point in the global coordinate system according to the pinhole optical model [25]. In this work, open source
odes were used to perform 3D-DIC analysis. The first step was addressed by using the MATLAB Stereo Camera Calibrator App [26].
hen, the obtained stereo-parameters were used to triangulate at each frame the image points computed by the open source 2D-DIC
oftware Ncorr [27]. Ncorr is a subset-based DIC algorithm. In this method, each measurement point is represented by a circular
roup of pixels known as subsets, defined in the reference image. To do that users can specify the subset size (radius of each circle
n pixels) and grid spacing (distance in pixels between contiguous subset centers). The algorithm tracks the shape and position of
eference subsets across deformed images (deformed subsets). To determine the deformation of a subset, DIC algorithms search for
he extremum of a correlation function. This process involves an iterative process where deformation is assumed to be homogeneous
ithin each subset and the transformation between the reference and deformed subsets is defined by shape functions. In Ncorr the

ransformation is constrained to a linear first-order deformation, allowing translation, shear and normal deformation of subsets.

.2. Downsampling methods

The Nyquist–Shannon theorem establishes that in order to accurately sample a periodic signal, the sampling rate must exceed
wice the frequency of the highest component of interest in the signal. However, in situations where it is not feasible to meet
he requirements of the Nyquist theorem because the frequencies involved are much higher than the maximum sampling rate of
he measuring instrument, it becomes necessary to employ downsampling and signal reconstruction techniques. These approaches
revent loss of information and aliasing error, where high-frequency components appear as lower-frequency ones, distorting the
riginal signal and introducing unwanted artifacts. Recent research shows that it is possible to reconstruct a downsampled linear
nd stationary response to a single harmonic excitation. In particular, in [28] Non-Harmonic Fourier Analysis (NHFA) has been
mplemented. NHFA mainly consists in correctly reconstructing a signal by finding the best-fit, with a single harmonic at the same
requency as the excitation, of the downsampled signal. Another technique [29] consists in extending the acquisition time over
everal periods by setting a sampling period Ts larger than an integer multiple of the period of vibration Tv, i.e. Ts = k Tv + Δt.

This procedure is depicted in Fig. 1, where the parameter k was set to two, which means recording one sample every two periods.
Thus, through a back-translation of the samples taken at different periods, the signal is effectively sampled within a single period
at a fictitious frequency that is higher than the actual frequency of the measuring instrument. In Fig. 1 a sinusoidal signal with a
frequency of 1 Hz was sampled at 0.47 Hz, thus at a sampling rate lower than its Nyquist frequency, resulting in a signal affected
by aliasing. After back-translation of the measured points, it is possible to fictitiously sample a period of the signal at a frequency
3

of 7.5 Hz, which is higher than the Nyquist frequency.
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Fig. 1. A generic signal y sampled with a sampling rate lower than its Nyquist frequency and its recovery by back-translation.

3. Smoothed harmonics analysis

It is well known that a periodic signal, denoted as 𝑦, can be represented as a combination of sine and cosine using the Fourier
series.

𝑦(𝑡) =
∞
∑

𝑗=0

(

𝐴𝑗 cos
(

𝜔𝑗 𝑡
)

+ 𝐵𝑗 sin
(

𝜔𝑗 𝑡
))

(1)

where 𝜔𝑗 is the 𝑗th harmonic frequency and 𝐴𝑗 and 𝐵𝑗 are the amplitudes of cosine and sine, respectively. From a practical point
of view, all experimental signals are discrete and finite, because they consist of a finite number of samples recorded at different
instants within a finite time interval. However, it is still feasible to analyze the harmonic components of such signals using a Discrete
Fourier Transform (DFT) and approximate the signal with a finite number of harmonics. This approach has limitations, as the
frequency resolution depends on the sample length and thus may not be able to accurately calculate every harmonic in the signal.
In addition, if a downsampled signal is analyzed with DFT, the resulting frequency content detection will be incorrect (aliasing).
Both the Smoothed Harmonics Analysis (SHA), which is presented in this paper, and the Non-Harmonic Fourier Analysis (NHFA)
offer effective approaches to accurately reconstruct a downsampled signal that has a limited number of significant harmonics. Both
methods assume that the frequencies of the harmonics are known. This requirement may limits their applicability, making them
unsuitable for test cases where the frequency composition of the sampled signal is unknown. This is the case, for example, with
nonlinear structures, whose response to even a controlled single harmonic excitation can be unpredictable. However, for the purposes
of this study, this limitation can generally be overcome. In fact, low-frame rate cameras capturing the full-field system dynamics can
be paired with a single-point, high-frame-rate device (such as microphone, accelerometer, vibrometer, etc.) to detect the primary
harmonics of the structural response. These detected harmonics can then be utilized for accurately downsampling and reconstructing
DIC measurements. Thus, these methods determine the amplitude and phase of each harmonic by finding the best-fit to the acquired
samples. Specifically, the NHFA method is an iterative process in which a harmonic contribution is detected and removed from the
downsampled signal at each iteration. The SHA method, on the other hand, calculates all harmonic contributions simultaneously.
As a result, these two algorithms exhibit different features when applied to a generic downsampled signal. The different behavior
of the two methods is compared in Section 3.1. The SHA method is described in detail below.

Eq. (1) written in matrix form gives

𝑦(𝑡) ≈ (1 … cos(𝜔𝑗 𝑡) sin(𝜔𝑗 𝑡) … cos(𝜔𝑚) sin(𝜔𝑚𝑡))

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴0
⋮
𝐴𝑗
𝐵𝑗
⋮
𝐴𝑚
𝐵𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2)

where 𝜔𝑗 is the 𝑗th frequency component of the signal, 𝐴𝑗 and 𝐵𝑗 the amplitude of the corresponding harmonics and m is the total
number of harmonics. In short form Eq. (2) becomes

𝑦(𝑡) ≈ 𝐩⊺ ⋅ 𝐪 (3)

where the harmonics used to approximate the signal were placed into vector 𝐩 while 𝐪 contains the amplitude of each harmonic.
4
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If 𝐩 and n discrete values of y are known at different instants of time 𝑡𝑖, it is possible to compute the amplitudes in 𝐪 by finding
he best-fit of the 𝑛 samples from the 𝑚 harmonics. The best-fit can be found by minimizing the objective function

𝛩 = 1
𝑛

𝑛
∑

𝑖=1

(

𝑦𝑡𝑖 − 𝑦
𝑒
𝑡𝑖

)2
= 1
𝑛

𝑛
∑

𝑖=1

(

𝐩𝑇𝑡𝑖 ⋅ 𝐪 − 𝑦𝑒𝑡𝑖

)2
(4)

here 𝑦𝑒𝑡𝑖 is the 𝑖th experimental sample. In this paper y is the response of a mechanical system, in terms of displacements, excited
y external forces. Minimizing the objective function with respect to q means setting the first derivative of the objective function

equal to zero [30]
d𝛩
d𝐪

= 𝐀𝐪 − 𝐛 = 0 (5)

In Eq. (5) A and q are the (2𝑚 + 1) × (2𝑚 + 1) matrix and the (2𝑚 + 1) vector

𝐀 = 1
𝑛

𝑛
∑

𝑖=1
𝐩𝑡𝑖 ⋅ 𝐩

⊺
𝑡𝑖

𝐛 = 1
𝑛

𝑛
∑

𝑖=1
𝐩𝑡𝑖 ⋅ 𝑦

𝑒
𝑡𝑖

(6)

The best-fit vector 𝐪𝑠, computed by solving Eq. (5) as a function of the unknown 𝐪, gives the amplitude of each harmonic that has
been kept in the response. The approximated response, reconstructed from the under-sampled signal according to Eq. (3), is then

𝑦(𝑡) ≈ 𝐩(𝑡) ⋅ 𝐪𝑠 (7)

Therefore, this method makes it possible to reconstruct the downsampled signal while avoiding aliasing if the frequency values of
the main harmonics are assumed to be known.

To ensure the effectiveness of the algorithm, it is essential that the sampling period 𝑇𝑠 is not an integer multiple n of the signal
fundamental period 𝑇𝑣, which is here defined as the least common multiple of the periods of the frequencies that compose the signal,

𝑇𝑠 ≠ 𝑛𝑇𝑣 (8)

If this condition is not met, the same signal point will be sampled at different intervals, resulting in redundancy of information
within the period and, consequently, poor information for the algorithm. Conditions in Eq. (8) can be fulfilled by several sampling
frequencies. A relationship between the number of samples to be acquired, denoted as 𝑛𝑠, at the sampling rate 𝑓𝑠 can be written as

𝑓𝑠 =
1
𝑇𝑠

= 1
𝑘𝑇𝑣 + 𝛥𝑡

(9a)

𝑛𝑠 =
𝑇𝑣
𝛥𝑡

(9b)

where 𝑘 and 𝛥𝑡 are parameters that must be set as a function of the maximum speed of the measurement device and of the highest
frequency of the signal. The meaning of these parameters is illustrated in Fig. 1. In particular, 𝛥𝑡 must be set small enough to
correctly describe the highest harmonic component of the signal, and 𝑘 must be chosen high enough so that the sampling rate falls
within the range of the measuring instrument. Sampling parameters set according to (9) provide a dense description of the period
(fictitiously sampled at a resolution of 𝛥𝑡) and minimize the total acquisition time.

3.1. Sensitivity to noise and sampling parameters

This section presents the results of numerical testing to illustrate the performance of the proposed SHA method. Subsequently,
the results were compared with those obtained using the previously mentioned NHFA method. The algorithm’s behavior was
tested with varying downsampling parameters, namely the number of acquired samples and the sampling frequency. Given the
possibility of neglecting some harmonics of an under-sampled signal in real scenarios, it is also useful to investigate its impact on
the detected amplitudes of harmonics. Therefore, the algorithm was tested by calculating the amplitude of a single harmonic within
a multiharmonic signal. The test involves progressively increasing the number of harmonics considered, starting from one (in which
only the target harmonic was considered) up to considering all harmonics.

For this purpose, a test signal was generated with 5 harmonics, whose amplitudes are given as reference amplitudes. The
fundamental period, that is the lowest common multiple of the periods of the five harmonics, is 0.01 s and the maximum frequency
is 1 kHz. White noise, with a signal-to-noise ratio of 10 dB, was also added to the signal to simulate the perturbation on measured
signals. The test signal is shown in Fig. 2a, together with the aliased signal obtained with a sampling frequency of 39.84 Hz, chosen
as suggested by Eq. (9a) with k = 2.5 and Δt = 10−4 s. The SHA algorithm was applied to the aliased signal resulting in the signal
plotted in blue in Fig. 2b. The figure compares the recovered signal to the original test signal, with (in blue) and without (in red)
noise. In the absence of noise, the difference between the recovered and the original test signal is negligible, whereas, in the presence
of noise, the recovered signal can no longer follow the higher frequency introduced by the noise.

In addition, to evaluate the algorithm’s ability to detect amplitudes of each wave when the series is truncated, the aliased signal
was recovered by progressively increasing the number of harmonics in Eq. (2). The amplitude of the first harmonic as a function of
5
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Fig. 2. Figure (a) shows a periodic y-signal created as a sum of five harmonics and white noise; aliased data resulting from its downsampling are also shown.
Figure (b) displays a period of the y-signal resulting from aliased data recovery by the SHA method. It is superimposed on the original signal and the filtered
signal.

Fig. 3. (a) Amplitude of the first harmonic calculated by the SHA as a function of the number of harmonic contributions considered by the method; (b) Amplitude
of the first harmonic computed by SHA and NHFA as a function of the number of samples of the downsampled signal.

the number of harmonics is shown in Fig. 3a. If the number of samples of the downsampled signal is chosen according to Eq. (9b), ns
= 100 in the example shown in Fig. 2, the amplitude of the harmonic calculated by the SHA method is independent of the number of
harmonics used to recover the signal. On the other end, if ns does not comply with Eq. (9b) (ns = 150 in the example) the amplitude
varies with the number of harmonics approaching the reference value if the samples are not affected by noise.

Although obtained empirically, this result leads to two considerations. First, when the harmonic series is truncated, the
downsampled signal is more accurately recovered if the sampling parameters are set according to Eq. (9). Second, even in case
of random downsampling, the SHA method provides the exact result if all harmonics of the test signal are considered. This is an
advantage over the NHFA method, in which the contribution of each harmonic is calculated separately. This feature is highlighted
in Fig. 3b, which shows the amplitude of the first harmonic as a function of the number of samples. Calculations were performed
by SHA and NHFA methods, considering all harmonics of the signal and fixing the sample length. The two methods give the same
result only if the aliased signal is described by an integer multiple of ns determined according to Eq. (9b), while for different ns the
result of the SHA method is more accurate.

4. Test case

Before starting the experimental campaign, several nonlinear systems were simulated in search of a system capable of triggering
nonnegligible nonlinearities in order to validate the performance of the proposed method. Among these systems, the impact of a
light beam on an obstacle showed the greatest harmonic distortion. Therefore, the test case chosen as the benchmark is the forced-
response of a beam with step wise boundary conditions. One end of the beam is clamped on the moving coil of an electromagnetic
shaker. The other end is free to move in one direction but impacts a rigid obstacle in the other direction, as shown in Fig. 4. This
step wise boundary conditions triggers a nonlinear behavior of the motion of the beam. The beam, made of aluminum, is 280 mm
long, and has a cross-section of 25 × 5 mm. The motion of the beam was tracked by utilizing a low-frequency stereo-camera system
and DIC technique. The aliased displacement map was then recovered by the SHA method.
6
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Fig. 4. Experimental setup: beam clamped to a shaker and impacting a rigid obstacle during motion: (a) front view and (b) top view.

Because of the nonlinear behavior, the motion of the beam contains superharmonics of the excitation frequency but also
subharmonics, as predicted in [31]. This behavior has been accurately measured with a high-resolution, high-frequency laser
vibrometer (LDV) on a reference point of the beam. Section 4.1 provides a brief numerical analysis of the nonlinear behavior
exhibited by the system. The experimental setup and corresponding results are then presented in Section 4.2.

4.1. Test planning

A semi-analytical solution of the test case, a beam impacting on a obstacle, was provided in [32,33]. Since the beam was excited
at a frequency close to its first resonance, the beam response w – function of the axial coordinate x and time t – was approximated
by considering both the first modal shape of the cantilever beam 𝜓1(𝑥) and of the clamped-supported beam 𝜓2(𝑥), as illustrated
in Fig. 5. Therefore, it is possible to describe the bending displacement v of the beam as a function of 𝜓1(𝑥) and 𝜓2(𝑥) and their
respective modal amplitudes 𝑎1(𝑡) and 𝑎2(𝑡), as

{

𝑤1(𝑥, 𝑡) = 𝑎1(𝑡)𝜓1(𝑥) 𝑎1 < 0
𝑤2(𝑥, 𝑡) = 𝑎2(𝑡)𝜓2(𝑥) 𝑎2 > 0

(10)

The equation of motion of a beam clamped to a moving support is

𝐷𝑑
4𝑤
𝑑𝑥4

= −𝑚
(

𝑑2𝑤
𝑑𝑡2

+ 𝑑2𝑊
𝑑𝑡2

)

(11)

where 𝐷 is the bending stiffness of the beam, 𝑚 the mass per unit length and 𝑊 (𝑡) = 𝑊𝑜𝑐𝑜𝑠(𝜔𝑡) the harmonic displacement imposed to
its clamped end. Substituting Eq. (10) into Eq. (11) yields the equations of motion of the system, which are solved in the time domain
by Runge–Kutta integration. Fig. 6 shows the result of the displacement of a point at the center of the beam, i.e. for 𝑥 = 𝐿∕2 as defined
in Fig. 5, in the time and frequency domain. Simulations were performed with amplitude W 0 = 10 mm and frequency ω = 130.9
rad/s (20.8 Hz), corresponding to the first resonance frequency of the clamped-free beam. The model predicts the sub-harmonic and
super-harmonic frequencies of the excitation in the response spectrum. Therefore, the results of this simplified model were used to
guide the SHA method in recovering the displacement from the downsampled signals measured by the cameras. Specifically, the
steady-state response from the semi-analytical model was downsampled and reconstructed using an increasing number of harmonic
contributions to determine the optimal number of harmonics required for accurate signal reconstruction. For this purpose, 180
samples (blue dots in Fig. 7a) were extracted from the original signal (represented by the blue line) and were processed by SHA.
These samples were selected according to Eq. (9), by choosing k = 0.5 and Δt = 0.053 μs, resulting in a sampling frequency 𝑓𝑠 of
20.6 Hz. The cross-correlation coefficient C is used to evaluate the similarity between the original and reconstructed signals. If 𝑤1
represents the original signal and 𝑤2 the reconstructed one, sampled with 𝑁 samples, it is defined as:

𝐶(𝑤1, 𝑤2) =
1

𝑁 − 1

𝑁
∑

𝑖=1

(𝑤1,𝑖 − 𝜇1
𝜎1

)(𝑤2,𝑖 − 𝜇2
𝜎2

)

, (12)

where 𝜇 and 𝜎 are the mean and standard deviation of the signals. The cross-correlation coefficient is plotted in Fig. 7b as a
function of the number of harmonics input to SHA. The correlation coefficient is lower than 0.8 when only the first harmonic (the
subharmonic) and the second one (at the excitation frequency) are considered, and it asymptotically approaches 1 as the number
of harmonics increases. According to these results, 12 harmonics, which yield a correlation coefficient of 99.98%, were considered
for reconstructing the signal. The reconstructed signal is shown in red in Fig. 7a.

4.2. Experimental setup

Fig. 4 shows the experimental setup, namely a beam clamped to the moving coil of a shaker with the free end impacting on a rigid
obstacle. A speckle pattern was sprayed to the surface of the beam to properly perform the DIC analysis. The scale of images used
7
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Fig. 5. Sketch of the experimental setup. The two modal shapes, 𝜓1(𝑥) and 𝜓2(𝑥), used in the simulation are displayed.

Fig. 6. Time history (a) and spectrum (b) of the flexural steady state displacement 𝑤(𝑧, 𝑡) of the middle point (𝑥 = 140 mm) of the beam resulting from the
analytic model.

Fig. 7. (a) Steady-state response resulting from the semi-analytical model (blue dotted line) and its downsampled samples (blue dots). The reconstructed signal
from the downsampled one using the SHA with 12 harmonics is shown with a red line. (b) Cross-correlation coefficient between the numerical and reconstructed
response as a function of the number of harmonics contributions considered by the SHA algorithm.

for DIC analysis is around 80 μm/pixel, resulting in a sensitivity of the DIC system of about 10 μm. The excitation was obtained by
a signal generator, which was used to create a monotone harmonic signal at 24 Hz, specifically chosen to be near the first resonance
frequency of the clamped-free beam. The Digital Image Correlation (DIC) hardware consists of two Optomotive Spinosours cameras,
each equipped with a 23 MP Fujinon lens with a 35 mm focal length. These cameras are equipped with a high-resolution sensor
capable of recording 7.1 MP images at their maximum frame rate (200 fps). In this work, images were acquired at a frame rate of
23.7 fps, lower than the maximum allowed and according to Eq. (9). The shutter time plays a crucial role in dynamic acquisition, as
a short shutter time is essential to freeze the scene and to prevent capturing blurred images. Selected cameras are characterized by
a minimum shutter time of 2 μs that makes them suitable for this test. Thus, high-intensity external light is needed to compensate
for the loss of image brightness caused by a shorter shutter speed and the resulting underexposure. Therefore, two 200 W Stratus
LED modules equipped with parabolic reflectors were introduced to illuminate the scene. The captured images were stored in a
dedicated computer connected to the cameras.
8
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Fig. 8. Experimental setup: the motion of the front side of the beam is captured by the stereo-camera system, while the motion of a reference point in the rear
part of the beam is measured using a LDV.

Fig. 9. Displacement w determined by the velocity measured with the LDV at the reference point, on the centerline of the beam and 50 mm from the tip, in
the time domain (a) and in the frequency domain (b).

The motion, in terms of velocity, of a reference point was measured also with a high-resolution Laser Doppler Vibrometer (LDV)
and then integrated to obtain its displacement. The initial condition w(0) for the integration is unknown as the LDV data were
recorded from a time other than t = 0. In contrast, DIC measures displacements using a reference image of the structure taken at
rest, when all displacements are zero, w(0) = 0. Integration was then performed using as initial condition the displacement measured
with the DIC. The LDV was placed behind the beam, as shown in Fig. 8 and the out-of-plane (along the z-direction) displacement
w was measured with high accuracy (0.1 μm) and high sampling frequency (50 kHz).

5. Results

The displacements w of the reference point measured with the LDV were compared with the displacements measured with
the proposed method. In addition, the reference point displacements were also used to detect superharmonics and subharmonics
resulting from nonlinearity. The displacement w of the reference point is shown in Fig. 9a while its spectrum is presented in Fig. 9b.

The spectrum clearly shows the presence of superharmonics as multiple of the excitation frequency f0 = 24 Hz. Moreover, also
a subharmonic is present, whose frequency is half the excitation frequency fsub = 24/2 Hz, with its multiple n fsub. The spectrum of
laser response indicates that the relevant frequencies are in the range 12–144 Hz and confirms the harmonic content predicted by
the theoretical analysis. This observation will guide the application of the SHA method. Cameras were set to capture 180 frames at
23.7 fps, as suggested by Eq. (9) with k = 0.5 and Δt = 0.046 μs. Fig. 10 illustrates the downsampled signal of the displacement w
at the reference point measured by DIC (blue dots) and the corresponding signal recovered by the SHA (red line). The signal was
recovered using the subharmonic fsub and the first 11 multiples in the Fourier series of Eq. (3).

Fig. 11 compares the displacement w at the reference point recovered with DIC and the SHA method and the LDV measurement.
The cross-correlation coefficient, defined in Eq. (12), is equal to 99.3%. Thus, the two measurements are in good agreement. The
9
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Fig. 10. Downsampled data at the reference point (experimental samples from DIC) and the displacements w as recovered with SHA.

Fig. 11. Comparison of displacements measured at the reference point by a low frame-rate DIC with the LDV; Figure (a) shows the superposition of the two
ignals in the time domain while Figure (b) depicts the histogram of the amplitudes of the first harmonics in the frequency domain.

ifferences are of the same order as the accuracy of the DIC measurement device. In addition, both laser and camera measurements
xperience inevitable misalignments and disturbances, so the mismatch between the results seems reasonable.

As a further checking, the aliased samples were back-translated into a single period 𝑇𝑠𝑢𝑏 = 1∕𝑓𝑠𝑢𝑏 associated to the 24-Hz
ubharmonic and processed with DFT. The result obtained on the reference point is shown in Fig. 12 together with the harmonic
ontent achieved with SHA and the spectrum of LDV on the same point. The results of the two downsampling methods are in
ood agreement and the small discrepancy between the calculated spectra can be explained by the low resolution of the spectrum
alculated by the DFT. However, the application of the DFT method yields a cross-correlation coefficient of 97.2% between the
econstructed and the LDV signals, which is lower than the one computed by the SHA. Indeed, the main limitation of the DFT
pproach comes from its frequency resolution [34,35], which varies with sample number. It means that frequency components of
he signal that are not integer multiples of the reciprocal of the acquisition period cannot be accurately detected by DFT.

The full-field dynamics of the beam is achieved by recovering the displacements at all the DIC measurement points. Fig. 13
hows the displacements w at three different points along the beam: near the free end, where the beam impact the obstacle, at an
ntermediate point, and near the clamped end of the beam. In the same figure, eight significant instants of time are labeled with
he letters A through H, while the deformed shapes at the same instants are shown in Fig. 14 and labeled with the same letters. The
isplacement was amplified by a factor of 100 to highlight the deformed shapes; the actual value of the displacement is represented
y the color scale on the right side. The black cylinder visible in the images represents the estimated location of the obstacle.

. Conclusion

This paper has presented a novel methodology to extend the applicability of the DIC technique to the study of the dynamic
esponse of nonlinear systems under the assumption of periodic and steady-state vibrations. The method has been developed for
ameras with low frame-rate that does not allow the Nyquist–Shannon theorem to be satisfied. Thus, this methodology allows for
igh-resolution analysis of high-frequency dynamics, overcoming the limitations of high-speed cameras, which are characterized by
elatively low resolution and high cost. This is the first time that low frame-rate DIC has been applied to the dynamic analysis of
onlinear structures, thus advancing this field of research. At the heart of the method is a new algorithm called Smoothed Harmonic
nalysis (SHA). Comparison of SHA with other well-known spectral analysis methods (DFT and NHFA) suggests its potential for
10
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Fig. 12. Comparison of spectra computed for downsampled signal recovering: in black the spectrum computed by the Discrete Fourier Transform (DFT) of the
ignal obtained moving the samples computed by DIC in the first period of vibration of the beam and in orange the spectrum reconstructed by the SHA method.
he blue spectrum illustrates the DFT of the laser signal.

Fig. 13. Out-of-plane displacement w computed by DIC and SHA methods at three points along the beam: the blue, black, and red lines represent displacement
ignals extracted at a point near the free end, at a midpoint, and near the clamped end of the beam, respectively. Letters from A to H label times at which
here is a change in the sign of the velocity of some points on the beam.

ccurate and efficient spectral analysis of a downsampled signal characterized by multiple harmonic components whose frequencies
re supposed to be known. The performance of the method has been tested both numerically and experimentally.

To demonstrate its feasibility the methodology was applied to the analysis of the nonlinear response of a beam with one clamped
nd and a step wise boundary condition at the other end. The beam was excited by a 24-Hz single harmonic force while the
esponse, in terms of images, was recorded with cameras at a sampling rate 23.7 fps in the range 10–150 Hz. Due to the nonlinear
ature of the system, the response contains superharmonic and subharmonic of the excitation frequency. Consequently, the chosen
ampling rate does not meet the requirements of the Nyquist theorem, making the DIC technique alone unsuitable for accurately
apturing the system dynamics. A qualitative numerical model was used to predict the frequency content of motion that was then
onfirmed by measurements made with high-resolution, high-speed LDV. The test results demonstrate that by computing the signal
s a function of time, the SHA method decouples the signal reconstruction process from the acquired samples. This decoupling
s critical to avoid aliasing errors when reconstructing a downsampled periodic response acquired by cameras, since it allows the
hoice of the temporal discretization of the response, ensuring an accurate representation of the system dynamics. The accuracy
f the reconstruction process depends on the quality (noise level) of the acquired data and the number of harmonic contributions
onsidered. For numerical data without noise interference, the cross-correlation coefficient between the reconstructed signal and the
ell-sampled signal approaches 1 when all contributions of the response spectrum are considered. However, it may not be feasible

o consider all harmonic contributions of the spectrum, necessitating the detection of relevant contributions or a specific frequency
and of interest. For the system studied in this paper, the response of a semi-analytical model was downsampled at 20.6 Hz and
econstructed in the range of 10–120 Hz with an accuracy of 99.98%, as evaluated by the cross-correlation coefficient. For the
eal system response, downsampled by DIC at 23.7 Hz and reconstructed in the range of 12–144 Hz, the accuracy of the process
as 99.3%, as evaluated by the cross-correlation coefficient between the high-frequency, high-precision LDV measurement and
11
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Fig. 14. Deformed shape of the beam measured by the DIC and SHA methods at different instants of time denoted by the letters A to H, as defined in Fig. 13.
To highlight the deformed shape, the out-of-plane displacement w at each point was amplified by an 100 factor, while the true values are indicated by the color
map. The black cylinder indicates the estimated position of the obstacle.

the reconstructed signal. Consequently, the presented methodology results in accurate full-field analysis that allows tracking the
deformed shape of nonlinear structures that exhibits periodic motion at any time within the vibration period.

In summary, the results of the analysis conducted in this paper allow the following conclusions to be drawn.

• The time history of the displacements of a nonlinear system can also be recovered for downsampled signals using the DIC and
SHA method.

• Comparison of the displacement measured with an LDV (high frequency and high precision measurement) on a reference point
and the displacement recovered on the same point through SHA demonstrated the accuracy of the proposed method.

• The main limitation of this method might seem to be the knowledge of the main harmonics of the response. In the bench mark
used to assess the method the response consisted of superharmonics and subharmonics of the exciting load, and this is the
general behavior in nonlinear structure, so the method can be easily applied.

• The proposed methodology can be effectively applied even in operational conditions where measuring excitation forces and
predicting the significant harmonic contribution of the structure’s periodic response might be difficult. This can be achieved by
exploiting high-frequency single-point measurement devices (microphone, strain gauge, accelerometer, others) to detect the
significant harmonic frequencies, which can then be used for recovering the full-field displacements of the entire structure.
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