POLITECNICO DI TORINO
Repository ISTITUZIONALE

Explainable Stacking Models based on Complementary Traffic Embeddings

Original

Explainable Stacking Models based on Complementary Traffic Embeddings / Gioacchini, Luca; Santos, Welton; Lopes,
Barbara; Drago, Idilio; Mellia, Marco; Almeida Jussara, M.; Goncgalves Marcos, André. - (2024), pp. 261-272. (Intervento
presentato al convegno 2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) tenutosi a
Vienna (AUT) nel 08-12 July 2024) [10.1109/EuroSPW61312.2024.00035].

Availability:
This version is available at: 11583/2991923 since: 2024-08-26T07:27:52Z

Publisher:
IEEE

Published
DOI:10.1109/EuroSPW61312.2024.00035

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

03 September 2024

Explainable Stacking Models based on Complementary Traffic Embeddings

Luca Gioacchini*, Welton Santos’, Barbara Lopes', Idilio Drago?,
Marco Mellia*, Jussara M. Almeidaf, Marcos André Gon(;allvesT
* Politecnico di Torino, Turin, Italy,

{luca.gioacchini, marco.mellia} @polito.it
t Universidade Federal de Minas Gerais, Belo Horizonte, Brazil,
{weltonarsantos, barbara.gcol} @ gmail.com,

{jussara, mgoncalv}@dcc.ufimg.br
Y Universita di Torino, Turin, Italy,
idilio.drago @unito.it

Abstract—Network security relies on effective measurements
and analysis for identifying malicious traffic. Recent propos-
als aim at automatically learning compact and informative
representations (i.e. embeddings) of network traffic that cap-
ture salient features. These representations can serve mul-
tiple downstream tasks, streamlining the machine learning
pipeline. Researchers have proposed techniques borrowed
from Natural Language Processing (NLP) and Graph Neural
Networks (GNN) to learn such embeddings, with both lines
delivering promising results.

This paper investigates the benefits of combining comple-
mentary sources of information represented by embeddings
learnt via different techniques and from different data. We
rely on classifiers based on traditional features engineering
and on automatic embedding generation (borrowing from
NLP and GNN) to classify hosts observed from darknets
and honeypots. We then stack these base classifiers trained on
each embedding through meta-learning to combine the com-
plementary information sources to improve performance.

Our results show that meta-learning outperforms each
single classifier. Importantly, the proposed meta-learner pro-
vides explainability on the importance of the embedding types
and the impact of each data source on the outcome. All in all,
this work is a step forward in the search for more effective,
general, understandable, and practical representations that
could carry multiple traffic characteristics.

Index Terms—Representation learning, traffic classification,
meta-learning, model stacking

1. Introduction

Artificial Intelligence (AI) increasingly supports net-
work analysts and security experts to address growing and
complex challenges in the ever-evolving landscape of net-
work security. This surge is notably marked by the number
of novel proposals targeting various applications, from
traffic classification [1], [16], [27], [28], to cybersecurity
problems [9], [25], [30], and unsupervised exploration of
traffic [12], [19], [29], to cite a few.

A common trend in such techniques consists of learn-
ing embeddings, i.e. compact yet highly informative nu-
merical representations of network entities (e.g. hosts [12],
ports [4], traffic flows [15], etc.) capturing the main as-
pects of the traffic. These embeddings are later fed as input

to specialised Deep Learning (DL) or Shallow Learning
(SL) models to accomplish diverse downstream tasks [17],
[22].

Yet, how to represent network data to produce ro-
bust embeddings is still an open problem. Many stud-
ies rely on classic feature engineering [21] or automatic
autoencoders [18], [19] to process network traces that
offer traffic-related measurements that are then fed into
deep neural networks (DNN). More recently, some au-
thors started using Natural Language Processing (NLP)
techniques to build “documents” in which the temporal
sequence of entities (e.g., host IP addresses appearing
on network logs) are treated as sequences of words [12],
[29]. Such texts are then processed through specific DNNs
to produce context-aware embeddings [23], [24]. Another
emerging yet promising approach is representing network
data as a graph [11] reflecting the network topology and
the relationships between entities. The graph is processed
through a Graph Neural Network (GNN), a deep learning
model that exploits the structural information of a graph
to generate meaningful representations for its nodes and
their connections.

These models prove instrumental in summarising net-
work data and measurements, enabling the identification
of patterns and anomalies that might go unnoticed through
traditional methods [12], [19]. Nevertheless, despite their
effectiveness in several tasks, such techniques are often
tailored to a specific context, as exemplified by their
applications in Wireless Networks [3], Honeypots [20],
inter alia. In essence, the embeddings produced from
these heterogeneous networks are characterised by in-
herent diversity, providing distinct yet complementary
sources of information. This contextual specificity calls
for approaches to seamlessly integrate diverse (comple-
mentary) models, data sources, and information to build
general knowledge across networks, broadening the range
of applications they can serve.

Early works toward the direction of combining dif-
ferent network data sources explore multi-modality. Typi-
cally, they merge the informative content of heterogeneous
features that are not originally comparable (e.g. text,
images, audio, etc.) [21], [31], [34]. A few works focus
on combining specialised models rather than focusing on
the raw data [33]. In this work, we focus on a particular
type of model ensemble — stacking [14] — which consists

of learning how to combine multiple models trained on
different sources and fusing their predictions (e.g. through
a meta-model in case of Meta-learning) to achieve a more
comprehensive view [10] of a given network.

Unlike prior work focusing on multi-modal data be-
longing to the same networks, here we investigate the
benefit of stacking models trained on different representa-
tions derived from complementary sources of information
related to heterogeneous network setups.

Namely, we address a supervised host classification
problem as a case study. We generate host embeddings
using (i) standard features engineering of domain-specific
data, (ii)) NLP techniques for temporal co-occurrences
of hosts [12] and (iii) GNN approaches for capturing
the evolution of host interactions [11]. Departing from
a hypothesis that these three sources are complementary,
we examine the extent to which building classifiers by
stacking multiple base learners built on top of these com-
plementary embedding representations can boost perfor-
mance. In particular, we consider a simple naive majority
voting and a full-fledged Meta-Learning (ML) stacking
that learns how to combine the output (class probabilities)
of the base learners.

Additionally, we investigate the benefit of combining
embeddings learnt from the traffic observed in different
sources of data. As use cases, we consider a darknet (or
network telescope) and honeypots. The first is a passive
monitoring system designed to sense activities on unused
portions of the Internet [32]; the latter are decoy systems
intentionally set up to attract and interact with cyber
attackers [20].

Our experimental evaluation using data collected dur-
ing 31 days shows that stacking solutions boost perfor-
mance, confirming our hypothesis of complementarity of
the base classifiers. Furthermore, the experiments show
the benefits of combining information from different data
sources, confirming another source of complementarity.
The best stacking alternative —the Meta-Learner— achieves
93% of the Fl-score in the host classification task.

Fundamental, the meta-learner layer provides explain-
ability by suggesting which are the features that drive
the classifier in making its decision, a key requirement in
network security and monitoring where the analyst shall
understand the rationale of a machine learning decision.

2. Host Classification Methods

We compare alternative methods used to classify hosts
exchanging traffic in a network. We consider classifiers
trained on host embeddings generated according to dif-
ferent strategies as a baseline. Next, we consider stacking
approaches that combine the outputs of those baselines to
produce a final classification.

Figure 1 presents an overview of the full pipeline
of execution. From left to right, we first gather a se-
quence of temporal snapshots of network traffic collected
by two network monitors!, i.e. a darknet and honeypots
(see Section 3 for more details). The approach can be
easily extended to encompass other scenarios; in the
representation learning stage (A) we represent the hosts

1. In the following we use the term “network™ to state the type of
data a network monitor exposes.

Data Collection A Representation Learning

—— = —= ~———

Features

oo

& @
Generation

=

Generation

Features

oo

B Classification C Model Stacking
o-@-e-

Final
Prediction,
Generation

ot |8

Embeddings

Honeypots

Q-

Darknet

Mojority Voting / Meta-Learning/

Prediction
Probabilities

Figure 1: Overview of the full pipeline: first, we col-
lect data from different networks; (A) process traffic
traces and produce (i) traffic-related domain-specific host
embeddings through features engineering, (ii) text host
embeddings through i-DarkVec, (ii) graph host embed-
dings through GNNs; (B) train downstream classifiers
specialised on each host embedding, retrieving the class
prediction probabilities; (C) predict the final class of
a host, stacking the prediction probabilities of the spe-
cialised classifiers.

that generated the traffic adopting a specific embedding
approach to transform the raw data into features (see Sec-
tion 2.1); for each feature, we solve a host classification
problem (B) training a specialised classifier that learns
class probabilities (see Section 2.2). For the stacking step,
(C) we combine the contributions of the single classifiers,
i.e., their output class probabilities, to produce a final
classification (see Section 2.3).

2.1. Representation Learning: Host Embeddings

In the representation learning stage, we describe the
host activities observed within a network by producing
host embeddings. We can obtain them via classic fea-
ture engineering driven by domain knowledge, or via
automated learning processes as done in a Deep Neural
Network style. In a nutshell, we define an embedding
as a numerical representation of a host, e.g. the features
that characterise the intensity of traffic hosts generate
or the temporal relationships among hosts observed in a
network. Here, we describe the three techniques we adopt
to produce host embeddings.

2.1.1. Domain-driven Features Engineering. Given the
wide range of patterns of a host when exchanging traffic
in a network, we focus on features that describe the in-
tensity and type of traffic generated by hosts. We consider
information about traffic volume and the range of services
that reveal insights into the host’s intentions.

We process raw traffic traces collected in different
networks to extract traffic-related features. We rely on
traditional features engineering techniques to associate
each host to a feature vector which summarises its traffic
intensity and type, e.g. sum, average, and standard devia-
tion of the packets sent by a host (see the Host Features
column of Table 5, Appendix A for more details).

2.1.2. Text Embeddings. We rely on i-DarkVec [12]
to generate host embeddings capturing the temporal co-
occurrence of hosts when generating traffic, using the
(TCP) port numbers as a proxy for coarsely grouping the
traffic by service. i-DarkVec relies on a NLP algorithm,
Word2Vec, and incremental training. We refer to [23]
for details on Word2Vec and only provide here a brief
overview of i-DarkVec.

In a nutshell, i-DarkVec represents hosts sourcing
the traffic (identified by IP addresses) highlighting their
common communication patterns. We build “documents”
that report the sequences of source IP addresses present in
traffic traces, grouping senders by the destination TCP port
they contact. Analogously to NLP, IP addresses represent
“words”, and their sequence represents “sentences”’. We
feed the generated documents as input to Word2Vec,
which is trained in a self-supervised way [24] to produce
contextual embeddings — i.e. hosts co-occurring in time
when targeting similar ports belong to the same context
and appear close to each other in the embedding space.

2.1.3. Graph Embeddings (GNN). We consider the ob-
served sequence of traffic snapshots and represent network
traffic as a bipartite graph. At each snapshot ¢ we build a
bipartite graph from the raw traffic traces. The two node
layers of the bipartite graph are (i) source host nodes and
(ii) destination port nodes. A link exists between a pair
of nodes if the host sends packets towards the port in the
considered snapshot. The link weight is the number of sent
packets. Similarly to the feature-engineered embeddings,
we associate each node with a traffic-related feature vec-
tor. We refer the reader to Table 5, Appendix A for more
details.

We feed the graph as input to an i-GCN-GRU [11], a
temporal GNN, which we train in a self-supervised way to
produce host embeddings. We refer the reader to [11] for
a description of i-GCN-GRU. In a nutshell, we train the
GNN to predict the presence of a link between two nodes
given the links of neighbouring nodes. Upon training, the
GNN produces the final host embeddings.

2.2. Classification Task

For each host embedding generated according to one
of the methods described above, we train a specialised
classifier to accomplish a host classification task. Specif-
ically, we aim to identify groups of hosts engaged in
similar activities in a network. Hence, we rely on an
external ground truth (described in Section 3) whose labels
indicate groups of hosts whose coordination is known a
priori.

Motivated by the assumption that sufficiently robust
and informative embeddings can cater to various tasks
independently from the employed model [8], we use
a simple k-nearest-neighbours classifier (kNN) [7] that
classifies data points based on the class probabilities in
their neighbourhood. Specifically, kNN estimates the class
probabilities of a given point based on the class frequen-
cies among their k-nearest neighbours in the embedding
space. The output is the class with the highest probability.

Besides being fast for practical purposes, kNN is
also calibrated: it outputs reliable probabilities that are
strongly correlated with the accuracy of the model [6].

This is an important requirement for the stacking methods,
which combine the probabilities for a final decision.

We refer to the three classifiers built by employing
kNN along with one of the host embedding methods de-
scribed in the previous section as i) “DS” for the domain-
specific traffic embeddings, ii) “text” for the i-DarkVec
embeddings and iii) “graph” the GNN embeddings, thus
highlighting that their differences lie solely on the embed-
ding strategy employed. We take these classifiers as base-
lines for comparison with the proposed stacking models.

2.3. Stacking Methods

Our stacking approaches leverage the specialised kNN
classifiers. We combine the host class probabilities pro-
duced by each classifier through two stacking approaches:
(i) an unsupervised naive stacking, based on a simple
Majority Voting strategy and (ii) a machine learning model
trained to learn how to combine the outputs (probabilities)
of the base methods. We call the latter the meta-learner
(ML) since it learns based on the output of other models.

Naive stacking We consider the output of each base
model as a “vote” for a class. Each classifier “votes” for
the highest probability class, and the naive stacking model
outputs the class with the most votes. In case of a tie, we
randomly choose one of the most voted classes.

ML stacking We train a meta-learning model with
the class probabilities produced by each base model in a
supervised way to accomplish the same host classification
task as the base models, i.e., to produce a host class. Given
practical applicability concerns and preliminary experi-
ments among several alternatives, we choose a Logistic
Regression (LR) model [5] as the meta-learner. LR is
very effective for the task, efficient at training and testing
time and, like kNN, calibrated. Additionally, unlike more
complex alternatives like neural networks, LR provides
explainability — i.e. the coefficients of the LR models
provide insights into the importance of each feature.”

In a nutshell, for each class, the meta-learner learns
a (LR) function that combines the different (base) class
probabilities into a final class probability. That is, given
m base models and Y classes, the meta-learner learns
Y different functions, one for each class. Each function
combines the Y x m class probabilities produced by all
base models and outputs a probability of the data point be-
longing to the corresponding class. Learning the functions
corresponds to learning how to weight the contributions
(i.e., the class probabilities) of the different base models to
produce a final class probability. By building Y different
functions, the ML model allows for different weights to be
used for estimating the probabilities of different classes.
In the end, the class with the highest estimated probability
is chosen.

3. Datasets

We focus on two network deployments commonly
used in cybersecurity applications, i.e. darknets and hon-
eypots. We collect 31 days of traffic (from 2022-10-01 to

2. Notice that the features of the meta-learner are the base class
probabilities. Nevertheless, base models are specialised on the different
embeddings. Hence, we consider the LR features as a proxy for the
embedding resulting from the different methods.

TABLE 1: Number of hosts seen in each network. We
report values for (i) each network independently; (ii) hosts
active in both the networks (D N H); (iii) total observed
hosts without repetitions (D U H).

Darknet D Honeypots H DNH DUH
Mirai-like 76 176 92 077 62955 105298
Spammer 5395 6615 4189 7 821
ShadowServer 3074 3074 3074 3074
Driftnet 2772 3456 2772 3456
InternetCensus 2 400 2 404 2 395 2 409
Bruteforcer 2618 18 194 2223 18 589
Censys 1210 1510 1210 1510
Rapid7 1255 1267 1201 1321
Onyphe 728 829 725 832
Shodan 295 315 292 318
SecurityTrails 162 162 162 162
Ipip 132 202 132 202
Exploiter 111 895 91 915
IntrinSec 56 149 54 151
Michigan Uni. 30 42 30 42
Unknown 47 093 62212 34 809 74 565
Total 143 507 193 403 116 314 220 665

2022-10-31) from each network. We reserve the first 20
days for bootstrapping the embedding generation method-
ologies and focus our analysis and dataset characterisation
on the last 11 days. Notice that both datasets cover the
same period.

Darknets, D: Darknets (or network telescopes) are
sets of IP addresses announced on the Internet but with-
out hosting any services. They collect mostly large-scale
Internet scans. We collect data from a /24 darknet. As in
previous works [12] we focus on TCP SYN packets and
remove hosts that send less than 5 packets per day. This
step removes most of the backscattering traffic (i.e., traffic
coming from victims of attacks with IP spoofing). The
final dataset contains more than 52 thousand hosts that
sent more than 15 million SYN packets over 11 days.

Honeypots, H: Honeypots are sets of IP addresses
hosting (real or emulated) vulnerable services to attract at-
tackers. They provide a controlled environment for the ob-
servation of malicious activities. We install a setup based
on the honeypots distributed by the T-Pot project [13]. We
deploy only low-interaction honeypots, exposing remote
terminal services (e.g., SSH and telnet), remote desktop,
and file-sharing services (e.g., based on SAMBA), among
others. Each service logs all TCP connections and applica-
tion interactions, which include not only scan traffic but
also brute-force login attempts and initial exploit steps.
We rely on the T-Pot 20.06 bundle and deploy services on
their standard ports. Moreover, we deploy the DPIPot [32],
which performs deep packet inspection to handle traffic
reaching non-standard ports.

We consider here the SYN packets of successfully
negotiated TCP sessions with the honeypots and apply the
same filtering approach used for the darknets. The final
dataset contains 73 thousand hosts sending more than 60
million TCP flows over 11 days.

Ground Truth: We perform the final host classifica-
tion task relying on a ground truth that contains groups
of hosts engaged in similar activities. We rely on four
data sources: (i) ground truth available from [12] (ii) the
presence of fingerprints of Mirai-like malware observed
in received packets [2]; (iii) information from a public

repository of acknowledged scanners,® i.e. non-hostile

hosts performing scanning activities; (iv) labels provided
by domain experts (Bruteforcer, Spammer and Exploiter)
based on the activity observed on the honeypots. The
resulting ground truth labels 54% of the hosts observed
within each network into 15 classes. Such labelled hosts
are responsible for 34% of the observed darknet flows and
43% of the honeypot flows over 11 days. We mark all the
remaining hosts as the additional class, Unknown, having,
in total Y = 16 classes. Notice that, as the Unknown class
includes hosts whose characteristics we cannot verify, we
consider samples belonging to this class when training the
models, but do not report classification metrics for them.

In Table 1 we report the number of hosts, divided
by class, in each network: (i) Darknet D and Honeypot
H independently; (ii) hosts observed in both networks
(i.e. DN H); and (iii) the total number of unique hosts
observed (i.e. D U H). A significant portion of the hosts
is active in both networks (=52%). The table highlights a
high imbalance in the datasets towards the most popular
class — Mirai-like — having around half of the hosts in
both networks. Conversely, classes like Michigan Uni.
or SecurityTrails are very small, with just a few dozen
or a few hundred hosts. Such a high skewness in class
distribution challenges learning-based methods, like ML
stacking, and requires proper addressing to avoid biasing
results towards the largest class. We address this issue in
Section 4.

4. Experimental Setup

Our study is driven by two research questions: RQ
What are the benefits of stacking in comparison with the
baselines? and RQy: What is the benefit of combining
multiple data sources? Next, we describe the evaluation
scenarios and methodology devised to address these ques-
tions.

4.1. Evaluation scenarios

Focusing on host classification use case, we derive
three scenarios for testing the stacking alternatives. Each
scenario characterises the data used as input to build the
base classification models. They are:

Scenario 1 — Darknets only (D): only data from the
darknet is used to build the three baselines (DS, text and
graph), and the stacking method combines the produced
class probabilities. As darknets provide mostly visibility
on scanning traffic, here we test whether stacking methods
help to better classify the categories of scanners.

Scenario 2 — Honeypots only (H): only data from
the honeypots is used to build each of the base models.
We combine their outputs with the meta-learner. Here
we want to validate whether our approach and findings
are verified in a different host classification scenario, in
particular considering the completely different attacking
steps observed in honeypots.

Scenario 3 — Both data, common hosts (D N H):
in this scenario, we compare the stacking methods with
different data sources, i.e. the stacking of the six base

3. https://gitlab.com/mcollins_at_isi/acknowledged_scanners

https://gitlab.com/mcollins_at_isi/acknowledged_scanners

Compute Training Probabilities - LOO

Training Fold ~ Neighborhood Class
Stratified-k-Fold Validation o o Probabilities
>0 ! Q [J
> oo > %O/ &% : 2131
Ground Truth Unknown ~ oy .

Remove a
training sample

f—d‘%f_ﬁ
0 T I]

1 T T I]
kot — T]

Compute Test Probabilities

o > e
>on 0w w:OID
Test Fold == > 00 \v iy o

.. DO QL
Training Fold 3 8\) Testfold .8 .

samples

Figure 2: Overview of the validation methodology for
ML stacking. Green indicates training fold samples, red
indicates test fold samples and different shapes indicate
different classes.

models built on different networks independently (three
on D and three on H).

We use subscripts D, H and D N H to distinguish
across the scenarios. For a fair comparison, in this sce-
nario, all methods are tested on the same dataset (i.e., data
in DN H).

4.2. Evaluation Methodology

Using our ground-truth classes we build all models
and perform predictions of the host categories using daily
traffic. We use the per-class F1 Score as a primary evalua-
tion metric. We then report the average per-class F1 Score
along with the standard deviation across the 11 testing
days. We also produce an aggregated result by averaging
the daily per-class F1 Score, weighting all classes equally
(macro-average, to avoid biases towards the more popular
classes).

Baselines: We consider as baselines the six classi-
fiers that use as input the daily embeddings produced by
each representation learning technique. At each day we
evaluate the whole embedding space through a leave-one-
out validation [26]. In a nutshell, we iteratively consider
each observation (i.e. host) as a test sample. For each test
sample, we feed the embeddings of all the hosts as input
to the kNN classifier, retrieving the class probabilities
for the considered sample. We then assign the class with
the highest probability to the test sample, repeating the
process for all observations.

Naive stacking: Since this method predicts the class
of a test sample by just applying majority voting on the
class probabilities output by different baselines, we em-
ploy the same leave-one-out validation strategy to evaluate
its performance.

ML stacking: Since the ML approach requires the
training of the meta-learner, we use a different validation
methodology, i.e. a stratified 10-fold cross-validation (see
Figure 2). In a nutshell, we split each daily dataset into
10 equally-sized folds; 9 folds are used for training the
meta-learners and the remaining fold is used for testing.
We rotate the fold 10 times so that each fold is used as a
test set once.*

4. Notice that, as discussed in Section 3, since we do not report the
performance metrics for the hosts labelled as “Unknown”, we include
them always in the training fold, but disregard them in the test.

TABLE 2: Overview of the main results: Classification
F1-Scores (11-day average) of all methods (baselines and
stacking) and information sources. Best results in bold.

Stacking

Scenario Baseline Support
DS Text Graph | Naive ML | >"PP
1: Darknet D 083 0.76 0.81 0.85 0.90 96 414
2: Honeypot H | 0.73 0.86 0.74 0.82 0.91 | 131191
: Stacking
Scenario ‘ Naive ML, MLy MLpoy ‘ Support
3: Common pny | 091 0.91 091 093 | 81505

At each round of the cross-validation, we first retrieve
the class probabilities for each sample in the training
from the set of kNN classifiers, restricting the leave-one-
out methodology to the training samples only. To avoid
biases via data leakage, we retrieve the probabilities for
the test samples using only the training fold (i.e. for each
test sample we consider its nearest neighbours among the
training samples, as illustrated in the right bottom part
of Figure 2). We then train the meta-learners with the
probabilities for the training set. Finally, for testing, we
apply the meta-learners to the test samples (using as input
the probabilities obtained with the training) to produce the
final class probabilities (and thus the class assignments)
of the test samples.

Notice that for the baselines and naive stacking we
learn the class probabilities via leave-one-out on the entire
dataset (but the test sample itself), whereas for the ML
stacking, we learn the probabilities only from the training
fold (9 folds out of 10). This slightly smaller training set
(90% of the one used in the leave-one-out) may negatively
impact the performance of the ML stacking. Yet, we
understand this is a potential cost to be paid for using
the ML stacking, which requires a different data split into
training and test sets to train the meta-learners.’

The high prevalence of hosts labelled as “Unknown”
and whose characteristics we cannot verify, could lead
to misclassification in the learning process of the ML.
Hence, we undersample the training data through random
sampling, i.e. we reduce the size of the “Unknown” class
to the size of the third largest class in the respective
datasets.

We run our experiments following the same setup of
[11], [12]. Hence, we generate text embeddings and graph
embeddings € R28 following the same methodology of
the reference works. For the kNN, we set £ = 3 and
compute the neighbourhood through cosine distance.

5. Experimental Results

5.1. Overview of the main results

Table 2 summarizes the main results across all meth-
ods, datasets and scenarios. As shown, Meta-Learner (ML)
is the overall best method, being superior not only to all
baselines but also to the Naive stacking approach.

When we use data from the darknet only (Scenario
1: D), both stacking methods outperform the best base-
line (Domain-Specific - DS). The ML is the overall best

5. Learning the model with a leave-one-out approach would lead to an
extremely high computational cost and a lack of model generalization.

performer, with F1-Score gains of 7% over DS (0.90
compared to 0.83) and of 6% over naive stacking. Hence,
integrating complementary information by combining the
baselines improves classification. Such a combination re-
quires learning beyond majority voting.

When we use data from the honeypots only (Scenario
2: H), text embeddings lead to the best base results (0.86
F1-Score). Yet, ML is still the best performer, with F1-
Score gains of az 6% over the baseline. Notably, the naive
stacking is not able to outperform the best baseline (0.82
compared to 0.86), possibly due to the poorer performance
of the other two baselines, which may have biased the sim-
ple majority voting decisions. Intuitively, a naive stacking
approach is sensitive if “individual voters” do not perform
well. This further demonstrates the power and flexibility
of the ML stacking, which adapts to different scenarios,
outperforming naive stacking by = 11%.

As shown in the bottom part of Table 2, relying on
data from both networks (Scenario 3: D N H) benefits all
stacking approaches. The combination of six baselines,
as opposed to only three, explores more sources of in-
formation, bringing further improvements to ML (0.93
of F1-Score). Despite also naive stacking benefits from
more sources, the simple majority voting decisions are
not robust.

All in all, despite the smaller support in this scenario
(rightmost column in Table 2), ML~y outperforms ML
in both Scenarios 1 and 2. Hence, the benefits of bringing
different sources of information outweigh the drawbacks
of reducing the training data. In practical terms, MLpn g
allows cybersecurity applications to increase precision
when identifying the activity of hosts in the network, at
the expense of missing some hosts not visible on both
darknet and honeypot sensors.

5.2. Breaking down of the results per class

Table 3 shows the results for Scenario 2 (H) broken
down per class. The relative performance of the baselines
varies greatly across classes, with no overall single winner.
This motivates the stacking of those methods to explore
their complementarity, resulting in improved performance
across most classes — ML is the best alternative for 10 out
of 15 classes. When not strictly the best, MLy performs
on par with the text embeddings baseline (as in the Rapid7
and ShadowServer classes).

Notably, the performance gains for some classes are
impressive, e.g. +11% of MLy over DS embeddings
for Exploiter. Additionally, when one baseline strongly
outperforms the others, ML seems to be able to “choose”
the best source performing on par with it — e.g. Ipip for
which the graph embeddings strongly influence the MLy
(= 0.60 of F1-Score in both cases). As already mentioned,
in such cases the naive stacking is not robust enough to
limit the contribution of the worst performers. Similar
considerations can be drawn from Table 6 for Scenario
1 (D) in Appendix B.

In Table 4, we compare the stacking performance in
Scenario 3. The best performer between MLp and MLy
trained on embeddings learnt from a single network (3
sources) varies across classes with some large perfor-
mance gaps. This is somehow expected since darknets and
honeypots observe different types and stages of attacks.

TABLE 3: Classification average F1-Scores (11-day aver-
age). Hosts observed within Honeypot H. Best results are
in bold.

Baseline
DS Text

Stacking

Graph Naive MLy |Support

Mirai-like 0.9740.01 0.9910.00 0.98+0.00(0.99+0.00 0.991-0.00| 92 077
Bruteforcer {0.914-0.01 0.90£0.02 0.914-0.01{0.944-0.01 0.95+0.00| 18 194
Spammer 0.73£0.03 0.8010.01 0.66£0.04]0.76£0.02 0.83+0.03| 6 615

ShadowServer |0.714-0.03 1.00£0.00 0.704-0.03|0.944-0.01 0.99+£0.00| 3 074
Driftnet 0.9240.03 0.96+0.01 0.79£0.05]{0.89+0.02 0.99+0.00| 3 456
InternetCensus|0.8910.05 0.97£0.01 0.7640.06]0.9540.02 0.98+£0.00| 2 404

Rapid7 0.91£0.05 1.00+0.00 0.94£0.02{0.86£0.03 0.994+0.00| 1267
Censys 0.80£0.02 0.9240.03 0.72£0.05{0.99£0.00 0.93+0.03| 1510
Exploiter 0.81£0.15 0.7240.09 0.73£0.18]0.79£0.15 0.901+0.04 895
Onyphe 0.8540.05 0.9740.01 0.85+0.05{0.94£0.01 0.981-0.00 829
Shodan 0.80+0.03 0.7540.07 0.65+0.10{0.76£0.06 0.784+0.04 315

Ipip 0.14£0.18 0.3740.17 0.60£0.10{0.36=£0.15 0.61+0.15 202
SecurityTrails {1.0010.00 0.98+0.01 0.964-0.06|0.994-0.02 1.00-£0.00 162
IntrinSec 0.2240.18 0.78+0.07 0.41£0.15]0.57£0.13 0.744+0.33 149
Michigan Uni. |0.00=£0.00 0.98+0.03 0.41+0.28|0.50+0.34 0.94+0.03 42

|0.734:0.04 0.864-0.02 0.7440.03|0.82£0.03 0.91£0.02| 131 191

Average

TABLE 4: Comparing Meta-Learner (ML) classification
F1-Scores (11-day average). Results are referred to hosts
active in both networks D N H. The best average results
are in bold.

3 Sources 6 Sources Support

ML p MLy Naive MLpng DNH

Mirai-like 0.99£0.00 0.99+0.00 | 1.004+0.00 0.9940.00 | 62955
Spammer 0.874+0.01 0.82+0.02 | 0.80£0.03 0.8740.01 4189
ShadowServer | 0.99£0.01 0.99+0.00 | 0.974+0.01 0.9940.00 3074
Driftnet 0.99£0.00 0.99+0.00 | 1.004+0.00 0.9940.00 2772
InternetCensus | 0.99+0.00 0.99+£0.00 | 0.99£0.00 0.99+0.00 2395
Bruteforcer 0.82£0.02 0.81£0.02 | 0.714+0.03 0.9040.01 2223
Censys 0.98+£0.00 0.96+0.01 | 0.974+0.01 0.9940.00 1210
Rapid7 0.9940.00 0.99+0.00 | 1.00+£0.00 1.004-0.00 1201
Onyphe 0.99£0.00 0.98+0.00 | 0.991+0.01 0.9940.00 725
Shodan 0.85+£0.02 0.80+0.03 | 0.844+0.04 0.8440.03 292
SecurityTrails | 1.00+£0.00 1.00£0.00 | 1.00£0.01 1.00+0.00 162
Ipip 0.9740.03 0.83£0.09 | 0.94+0.06 0.9940.01 132
Exploiter 0.38+£0.28 0.64+0.17 | 0.56+0.27 0.5340.30 91
IntrinSec 0.8740.04 0.90+0.04 | 0.92+£0.08 0.9610.04 54
Michigan Uni. | 0.984+0.02 0.92+0.02 | 0.98+0.03 0.98+0.02 30

Average | 0.9140.02 0.91£0.02 | 0.91£0.02 0.9340.02 | 81 505

Indeed, the two networks offer complementary informa-
tion favouring different classes.

Relying on data from both networks (6 sources),
ML png improves both the single network performance
MLp, MLy and the naive stacking. Indeed, the ML-
based stacking produces the best results for 11 out of 15
classes and delivers performance on par with the single
network stacking for 3 other classes. The only exception
is Exploiter, for which MLy significantly outperforms
ML pn . For instance, the Exploiter class is composed of
hosts that achieve the deeper stages in the attack chains
observed in the honeypots. As darknets provide mostly
information about scanning traffic, their contribution to
the identification of this class is expected to be marginal.
Therefore, ML pn is penalized by the reduction in cov-
erage during training and the expected lack of quality
of classifiers built with darknet traffic alone. Indeed, the
MLy model is trained on 829 Exploiter samples, com-
pared to MLpng, trained on 91 hosts active in both the
networks (compare results and support for this class in
Table 3 and Table 4).

Finally, we note that the gains of M Lpnpy are ob-
tained in the presence of a very high data skewness:

Mirai-like [l 1
Bruteforcer - |l
Spammer - |]
ShadowServer - ||

Driftnet -
InternetCensus -
Rapid7 - []
Censys - | | L0.5
Exploiter -
Onyphe -
Shodan - []

Ipip -
SecurityTrails -

IntrinSec &
Michigan Uni. -,

True label
Observations [%)]

Ipip -

=
S

Ray
Unknown .

Mirai-like
Exploit.er -

Michigan Uni. -

5 InternetCensus -

redicted label

(a) Base model trained on graph embeddings.

Mirai-like
Bruteforcer -
Spammer -
ShadowServer -
Driftnet -
InternetCensus -
Rapid7 -
Censys -
Exploiter -
Onyphe -
Shodan -
Ipip -
SecurityTrails -
IntrinSec -
Michigan Uni. -,

True label
s
ot
Observations [%)

L8 £ 28885828 <€
= O no= B =R o'z = B
=g 2 ZEZE a0 5 S8
L2 = 2250 538 H =
] SESEEE 2 g8
£ 8 QL ESnm BEEE
=t < = EHF:D:;

A B SR

=

E s =

Predicted label

(b) MLy model trained on 3 sources.

Figure 3: Confusion matrix from the final classification
task. Scenario 2 (H). One testing day, i.e. 2022-10-28.

the majority class (Mirai-like) corresponds to 78% of
the instances, and is roughly 15x larger than the second
largest class. Such large skewness is a challenge to any
classifier due to the bias towards the majority class. Yet,
as Table 4 shows, M Lpny manages to achieve almost
perfect results even for some of the smallest classes. The
undersampling procedure of the unknown class used in the
training of the meta-learners (see Section 4) helps mitigate
this issue. Nevertheless, even with the undersampling,
the good performance in some of the smallest classes
is positively surprising. Next, we delve deeper into the
explanations of these results.

6. Explaining the Stacking Results

6.1. Classification Results

We focus on a sample day of Scenario 2 (honeypots)
and compare confusion matrices resulting from two ap-
proaches: (i) the base model trained on graph embeddings
(Figure 3a) and (ii)) MLy trained on three different em-
beddings (Figure 3b). In each matrix, the cell indicates
the number of samples of a true class assigned to the
predicted classes. See also Figure 5, Appendix C for the
matrices with the relative values.

We see that MLy drastically reduces the confusion
among the classes. The graph embeddings used in Fig-
ure 3a deliver information about the relationships between
hosts and the contacted honeypot services. Despite the
good classification performance (notice the almost di-
agonal matrix that indicates correct class assignments),
classes like Mirai-like, Bruteforcer and Spammer are prob-
lematic — see the light-red area in the top-left corner of
Figure 3a. It is largely expected that the hosts performing
brute-force attacks or trying to send spam generate high-
intensity traffic to only a few services. This is also the case
for the typically aggressive scans performed by Mirai-
like bots. From Figure 3a we conjecture that the graph
embeddings have not captured (and cannot capture) these
characteristics well.

Conversely, Figure 3b confirms that combining het-
erogeneous sources of information represented by the
three embeddings drastically improves the classification
performance. More than 80% of the senders are correctly
classified (values on the diagonal). Including informa-
tion related to the temporal co-occurrence of hosts (text
embeddings) and the intensity of generated traffic (DS
embeddings) drastically reduces the number of misclassi-
fied samples. Notice also the reduced number of samples
misclassified as Unknown. Similar observations can be
made for the comparison with the other methods.

6.2. Meta-Learner Coefficients

Recall we adopt a set of LR functions as meta-learner,
which output a final probability for each target class given
the base models’ probabilities. An advantage of using LR
is that we can analyse the final coefficients to infer the
relative importance (and contribution) of different inputs
to the final classification.’

Embeddings contribution We firstly focus on Fig-
ure 4a, which reports the LR coefficients of the base
models trained on different embeddings obtained in one
day of Scenario 2. We report results for five classes. We
consider the coefficient values (x-axis) as a measure of
the relative importance the meta-learner gives to each base
classifier when assigning samples to a given label (y-axis).
For the sake of completeness, we report the complete set
of coefficients for all classes in Figure 6, Appendix C.

As shown in the figure, the contributions of the base-
lines to the ML classification vary across classes. For
instance, for high-intensity traffic classes, like Bruteforcer
and Spammer, the meta-learner assigns almost equal im-
portance to the three baselines (which is consistent with
their roughly similar performance in Table 3), with an
emphasis on the text baseline, which reflects the temporal
co-occurrence of hosts [12] indicating similar scanning
activities.

For the Censys class, the meta-learner gives much
more importance to the text embedding classifier. This
is expected, considering the known extreme coordination
of Censys hosts in their scanning routine [12].

Conversely, for the Exploiter class, the domain-
specific features contribute slightly more than the other

6. The comparison of coefficients of different LR functions can be
done since all functions take as input the same class probabilities, which
are normalised values between 0 and 1.

Embeddings
Il DS
I Text

S e Graph

Bruteforcer

Spammer

Censys

Label

Exploiter

Ipip

0 1 2 3 1 5
LR Coefficients

(a) Contribution of different baselines (i.e., embedding types) to
ML on Honeypot (H) — Scenario 2.

-‘ Network
-. Il Darknet

Ipip I I Honeypot

0.0 05 1.0 15 20
Average LR Coefficients

Bruteforcer

Spammer

Censys

Label

Exploiter

(b) Contribution of different networks on common hosts (DN H)
— Scenario 3.

Figure 4: Logistic Regression coefficients for one testing
day, i.e. 2022-10-28.

baselines, whereas for Ipip, the graph embeddings have
the highest coefficients. This is in line with the superior
performance of text and graph baselines for the respective
classes in Table 3 and testifies that these classes exhibit
peculiar patterns in the DS and Graph features, respec-
tively.

In a nutshell, the meta-learner successfully learns to
differently weight the baselines based on their perfor-
mance for each class, reducing misclassifications.

Data contribution: Finally, we focus on one day
of Scenario 3, MLpny trained on data observed from
honeypots and darknet networks. In Figure 4b, for each
class, we compute the average of the LR coefficient over
the three base models. We consider the average values as
a proxy for the importance the meta-learner gives to the
information coming from the different sources of data (i.e.
darknet or honeypots).

Interestingly, for some classes whose ground truth
labels can only be derived from honeypot logs, such as
Bruteforcer and Exploiter, the meta-learning uses mostly
honeypot-based classifiers for its decision. Notice how the

embeddings from honeypots have high coefficients for the
Bruteforcer class. Similar behaviour is expected for the
Exploiter class. The meta-learner considers only honeypot-
based classifiers for this class, as none of the hosts have
been active in the darknet on the considered day.

In the case of Spammer and Censys for which stacking
three baseline models from the same network leads to
comparable performance (see ML p and ML in Table 4),
the meta-learner weights almost equally the two sources
of information improving the final classification. Con-
versely, for the Ipip class, stacking models trained on
darknet embeddings (MLp in Table 4) leads to superior
performance than the honeypot case (MLy in Table 4).
Once again, the meta-learner successfully learns how to
combine the base predictions favouring the source with
the higher informative content (i.e. the darknet).

All in all, by investigating the LR coefficients we can
provide insights on the informative content the different
sources bring. In most cases, this combination follows the
intuition coming from our domain knowledge. This fur-
ther corroborates the benefit of combining heterogeneous
information through model stacking while providing the
analysts useful insights on which features drive the most
the classification process.

7. Conclusions

We investigated the benefits of stacking models trained
on embeddings generated with different techniques and
from different types of input data for cybersecurity ap-
plications. Our results show that (i) combining different
embeddings learnt from the same network leads to im-
provements in solving host classification; (ii) combining
information from the different networks, particularly with
meta-learning techniques, allows enriching the representa-
tions improving the quality of the embedding and leads to
the best classification results; (iii) stacking models through
meta-learning provides some degree of interpretability,
allowing to understand the different contribution of each
source of information to the final classification.

Future developments will include the exploration of
other networks beyond the cybersecurity application and
the exploration of other embedding generation techniques,
along with the impact of different meta-learning models
and strategies. Additionally, the adoption of more sophis-
ticated explainability techniques, like SHAP, could deepen
the understanding of the obtained representations.

Ethical Considerations

Our work focuses on technical advancements in using
model stacking to enhance cybersecurity and deepen the
knowledge of traffic observed in different networks. There
is no sensitive information in the data we collect. As we
do not probe deeper into the identity of the sender or
gather additional personal information, no further ethical
considerations apply to our research.

Our primary objective is to improve the effectiveness
of network security measures through innovative Al solu-
tions.

Acknowledgement

The research leading to these results has been partly
funded by the project SERICS (SEcurity and Rlghts In
the CyberSpace - PE0O0000014) under the MUR National
Recovery and Resilience Plan funded by the European
Union, as well as the ACRE (AlI-Based Causality and Rea-
soning for Deceptive Assets - 2022EP2L.7H) and xInternet
(eXplainable Internet - 20225CETN9) projects - funded
by European Union - Next Generation EU within the
PRIN 2022 program (D.D. 104 - 02/02/2022 Ministero
dell’Universita e della Ricerca). This manuscript reflects
only the authors’ views and opinions and the Ministry
cannot be considered responsible for them. This work
was also supported by Brazil’s CNPq, CAPES, Fapemig,
Fapesp and AWS.

References

[1] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Anto-
nio Pescapé. Mobile Encrypted Traffic Classification Using Deep
Learning: Experimental Evaluation, Lessons Learned, and Chal-
lenges. IEEE Transactions on Network and Service Management,
2019.

[2] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard,
Elie Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halder-
man, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz
Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman,
Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding the Mirai
Botnet. In 26th USENIX security symposium (USENIX Security
17), 2017.

[3] Lloreng Cerda-Alabern, Gabriel Iuhasz, and Gabriele Gemmi.
Anomaly detection for fault detection in wireless community net-
works using machine learning. Computer Communications, 2023.

[4] Dvir Cohen, Yisroel Mirsky, Manuel Kamp, Tobias Martin, Yuval
Elovici, Rami Puzis, and Asaf Shabtai. DANTE: A Framework for
Mining and Monitoring Darknet Traffic. In Computer Security —
ESORICS 2020, 2020.

[5] D.R. Cox. The Regression Analysis of Binary Sequences. Journal
of the Royal Statistical Society: Series B (Methodological), 1958.

[6] Washington Cunha, Celso Franga, Guilherme Fonseca, Leonardo
Rocha, and Marcos André Gongalves. An Effective, Efficient,
and Scalable Confidence-based Instance Selection Framework for
Transformer-Based Text Classification. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 2023.

[7] Padraig Cunningham and Sarah Jane Delany. k-Nearest Neighbour
Classifiers - A Tutorial. ACM Computing Surveys, 2021.

[8] Claudio M. V. de Andrade, Fabiano M. Belém, Washington Cunha,
Celso Franga, Felipe Viegas, Leonardo Rocha, and Marcos André
Gongalves. On the class separability of contextual embeddings
representations — or “The classifier does not matter when the
(text) representation is so good!”. Information Processing &
Management, 2023.

[9] Mohamed Amine Ferrag, Leandros Maglaras, Sotiris Moschoyian-
nis, and Helge Janicke. Deep learning for cyber security intrusion
detection: Approaches, datasets, and comparative study. Journal of
Information Security and Applications, 2020.

[10] Jing Gao, Peng Li, Zhikui Chen, and Jianing Zhang. A Survey on
Deep Learning for Multimodal Data Fusion. Neural Computation,
2020.

[11] Luca Gioacchini, Andrea Cavallo, Marco Mellia, and Luca Vas-
sio. Exploring Temporal GNN Embeddings for Darknet Traffic
Analysis. In Proceedings of the 2nd on Graph Neural Networking
Workshop 2023, 2023.

[12] Luca Gioacchini, Luca Vassio, Marco Mellia, Idilio Drago,
Zied Ben Houidi, and Dario Rossi. i-DarkVec: Incremental Embed-
dings for Darknet Traffic Analysis. ACM Transactions on Internet
Technology, 2023.

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

[31]

github rashelbach. T-Pot - The All In One Honeypot, 2024.

Christian Gomes, Marcos Goncalves, Leonardo Rocha, and Sergio
Canuto. On the Cost-Effectiveness of Stacking of Neural and Non-
Neural Methods for Text Classification: Scenarios and Performance
Prediction. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, 2021.

Idio Guarino, Giuseppe Aceto, Domenico Ciuonzo, Antonio Mon-
tieri, Valerio Persico, and Antonio Pescape. Explainable Deep-
Learning Approaches for Packet-Level Traffic Prediction of Col-
laboration and Communication Mobile Apps. IEEE Open Journal
of the Communications Society, 2024.

Eyal Horowicz, Tal Shapira, and Yuval Shavitt. A few shots traffic
classification with mini-FlowPic augmentations. In Proceedings of
the 22nd ACM Internet Measurement Conference, 2022.

Zied Ben Houidi, Raphael Azorin, Massimo Gallo, Alessandro
Finamore, and Dario Rossi. Towards a systematic multi-modal
representation learning for network data. In Proceedings of the
21st ACM Workshop on Hot Topics in Networks, 2022.

Jonas Hochst, Lars Baumgértner, Matthias Hollick, and Bernd
Freisleben. Unsupervised Traffic Flow Classification Using a
Neural Autoencoder. In 2017 IEEE 42nd Conference on Local
Computer Networks (LCN), 2017.

Michalis Kallitsis, Rupesh Prajapati, Vasant Honavar, Dinghao Wu,
and John Yen. Detecting and Interpreting Changes in Scanning
Behavior in Large Network Telescopes. [EEE Transactions on
Information Forensics and Security, 2022.

Seungjin Lee, Azween Abdullah, Nz Jhanjhi, and Sh Kok. Clas-
sification of botnet attacks in iot smart factory using honeypot
combined with machine learning. PeerJ Computer Science, 2021.

Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and
Jing Yu. ET-BERT: A Contextualized Datagram Representation
with Pre-training Transformers for Encrypted Traffic Classification.
In Proceedings of the ACM Web Conference 2022, 2022.

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng
Xia, and Philip S. Yu. Graph Self-Supervised Learning: A Survey.
IEEE Transactions on Knowledge and Data Engineering, 2023.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient Estimation of Word Representations in Vector Space, 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed Representations of Words and Phrases and their
Compositionality. In Advances in Neural Information Processing
Systems, 2013.

Preeti Mishra, Vijay Varadharajan, Uday Tupakula, and Em-
manuel S. Pilli. A Detailed Investigation and Analysis of Using
Machine Learning Techniques for Intrusion Detection. /EEE Com-
munications Surveys & Tutorials, 2019.

Annette M. Molinaro, Richard Simon, and Ruth M. Pfeiffer. Pre-
diction error estimation: a comparison of resampling methods.
Bioinformatics, 2005.

Fannia Pacheco, Ernesto Exposito, Mathieu Gineste, Cedric Bau-
doin, and Jose Aguilar. Towards the Deployment of Machine
Learning Solutions in Network Traffic Classification: A Systematic
Survey. IEEE Communications Surveys & Tutorials, 2019.

Shahbaz Rezaei and Xin Liu. Deep Learning for Encrypted Traffic
Classification: An Overview. I[EEE Communications Magazine,
2019.

Markus Ring, Alexander Dallmann, Dieter Landes, and Andreas
Hotho. IP2Vec: Learning Similarities Between IP Addresses. In
2017 IEEE International Conference on Data Mining Workshops
(ICDMW), 2017.

Bushra Sabir, Faheem Ullah, M. Ali Babar, and Raj Gaire. Ma-
chine Learning for Detecting Data Exfiltration: A Review. ACM
Computing Surveys, 2021.

Amin Shahraki, Mahmoud Abbasi, Amir Taherkordi, and Mo-
hammed Kaosar. Internet Traffic Classification Using an Ensemble
of Deep Convolutional Neural Networks. In Proceedings of the
4th FlexNets Workshop on Flexible Networks Artificial Intelligence
Supported Network Flexibility and Agility, 2021.

[32] Francesca Soro, Mauro Allegretta, Marco Mellia, Idilio Drago, and
Leandro M. Bertholdo. Sensing the Noise: Uncovering Commu-
nities in Darknet Traffic. In 2020 Mediterranean Communication
and Computer Networking Conference (MedComNet), 2020.

[33] Yang Yang, Yu Yan, Zhipeng Gao, Lanlan Rui, Rui Lyu, Bowen
Gao, and Peng Yu. A Network Traffic Classification Method Based
on Dual-Mode Feature Extraction and Hybrid Neural Networks.

IEEE Transactions on Network and Service Management, 2023.

[34] Ruijie Zhao, Mingwei Zhan, Xianwen Deng, Yanhao Wang, Yijun

Wang, Guan Gui, and Zhi Xue. Yet Another Traffic Classifier:
A Masked Autoencoder Based Traffic Transformer with Multi-
Level Flow Representation. Proceedings of the AAAI Conference
on Artificial Intelligence, 2023.

Appendix

1. Host Features

We here complement the information about the em-
beddings generation explained in Section 2.

TABLE 5: Host and port domain-specific (DS) embed-
dings extracted through standard features engineering.

Host Features Port Features

#Contacted network ports #Hosts contacting a port

STATS(#Packets per source host

STATS(#Packets per network port) contacting a port)

#Contacted network hosts 0-valued dummy feature

STATS(#Packets per network host) 0-valued dummy feature

STATS(Size) STATS(Size)
STATS(TTL)) STATS(TTL)
Source g, STATS(MSS) retwork ot STATS(MSS)
STATS(WIN) POIL - g raTS(WIN)
STATS(TS) STATS(TS)

In Table 5 we provide an overview of the features
generated for source hosts targeting a network and the
destination ports. The function STATS(-) extracts the sum,
minimum, maximum, average and standard deviation of
the provided entity.

Notice that, in the case of DS embeddings, we produce
only the Host Features. In the case of tGNN embeddings,
we assign features to both hosts and port nodes of the
graph.

2. Darknet Classification Performance.

Table 6 complements the per-class results of the down-
stream classifier discussed in Section 5.

3. Explainability

We here complement the analysis of the Meta-Learner
explainability provided in Section 6. In Figure 5 we
report the confusion matrix obtained when classifying
hosts observed only within Honeypot (Scenario 2 — H)
during 2022-10-28, Model MLy . In Figure 6, we show the
complete set of LR coefficients for Scenario 2 of Figure 4.

TABLE 6: Classification average F1-Scores over 11 test-
ing days. Hosts observed within the darknet D. Best
average results are in bold.

Baseline Stacking

DS Text Graph Naive MLp |Support
Mirai-like 1.0040.00 0.99+0.00 1.004-0.00(/1.004-0.00 0.99+0.00| 76 176
Spammer 0.77£0.03 0.76+0.02 0.74=£0.02{0.77£0.03 0.86+0.01| 5 395
ShadowServer |0.701-0.03 0.99+0.00 0.704-0.02|0.8840.02 0.99+£0.00| 3 074
Driftnet 1.004+0.00 0.98+0.01 0.984+0.01{0.9940.00 0.99+0.00| 2 772
Bruteforcer |0.4940.04 0.440.05 0.5040.05|0.4640.05 0.75+£0.03| 2618
InternetCensus|0.9540.03 0.97+0.01 0.914-0.04{0.9740.01 0.99+£0.00| 2 400
Rapid7 0.98+0.01 1.00+0.00 0.97+0.02{1.00£0.00 0.99+0.00| 1255
Censys 0.9740.02 0.7110.05 0.81£0.04{0.90£0.03 0.98+0.00| 1210
Onyphe 0.9540.03 0.961-0.02 0.93£0.03{0.97£0.01 0.991-0.00 728
Shodan 0.88+0.03 0.76+0.07 0.67£0.12{0.81£0.04 0.841-0.02 295
SecurityTrails |0.9610.04 1.00=£0.01 0.9340.03|0.9640.02 1.00-£0.00 162
Ipip 0.98+0.04 0.071-0.08 0.98+0.02{0.98+0.04 0.971-0.03 132
Exploiter 0.3740.22 0.2040.28 0.38+£0.19{0.29+0.20 0.324+0.23 111
IntrinSec 0.4940.23 0.88+0.10 0.73£0.19{0.85+0.08 0.8710.06 56
Michigan Uni. |0.63£0.10 0.98+0.03 0.98+0.03|0.98+0.03 0.98+0.02 30
Average |0.8340.03 0.761-0.03 0.8140.03]|0.85-£0.03 0.90-£0.02| 96 414

Mirai-likem 0.0 00 00 0.0 0.0 0.001 0.001 0.001 0.0 {0.026 1
Bruteforcer -0.017 JUkshg 0.003 0.001 0.001 0.002 0.001 0.13
Spammer -0.021 0.0080.005 0.046 0.038 0.002 0.029 0.003 0.32
ShadowServer - 0.022 [[UEH 0.007 0.007
Driftnet -0.011 0.007 0.004 (IRSW 0.007 0.004 0.018 0.068 —
_ InternetCensus - 0.005 0.023 0.005 0.15 0.023 =
2 Rapid7 -0.026 0.041 g
- Censys - 0.022 0.015 0.35 0.5 %
S Exploiter - 0.27 g
Onyphe - 0.036 0.091 8
Shodan -0.13 0.067 0.067 0.067 0.033 0.067 ©
Ipip-0.056 0.056 0.11
SecurityTrails -
IntrinSec =5 0.062 0.19
Michigan Uni. - 0,1 , , , , , , , , , , , , , , m i
I8 3 £ £ % £ 2 8T HOE 2 o= B
E 2 i % A ¥ = 9O 8 & & z & § £
= £ & 2 E = I)
« k] g 2 S
@n ;5 N =
Predicted label
(a) Base model trained on graph embeddings.
Mirai like 0.0 0.007 !
Bruteforcer -0.003 0.007 0.001 0.057
Spammer -0.015 0.002 o8 0.005 0.005 0.016 0.002 0.003 0.2
ShadowServer -
Driftnet - 0.018 —
_ InternetCensus - 0.99 0.009 S
2 Rapid7 - g
; Censys - 0.071 0.043 05%
é: Exploiter - 0.13 é
Onyphe - 2
Shodan - 0.11 0.11 0.7 ©
Ipip - 0.045 0.41
SecurityTrails -
IntrinSec -
Michigan Uni. - 0,1 , , , , , , , , , , , , , , 0
T 3 3 3 & g & 5 i) = S = El
- : 4 I G-
o] & = o S
G £ & =

Predicted label

(b) MLy model trained on 3 sources.

Figure 5: Confusion matrix resulting from the final classification task. Scenario 2 (H). One testing day, i.e. 2022-10-28.

-0.36 -0.18 -0.1 -0.13
-0.43 -0.44 -0.33 -0.32 -0.21 -0.23
-0.7 0.51 -0.27 -0.12 0.57 -0.39

Mirai-like SI2000 -0.11 0.82 -0.37 -0.42 -0.14
Bruteforcer - 0.39 [J2IGH-0.097 -0.42 -0.52 -0.41

-0.27 -0.32

-0.15 0.039 0.034 -0.38
-0.15 -0.052-0.054 0.67

Spammer =-0.89 -0.21 [J2128 -0.64 -0.58 0.15

ShadowServer --0.44 -0.28 -0.38 187 0.017 -0.17 -0.17 -0.12 -0.075-0.099-0.097-0.021-0.097-0.022-0.007 0.18

Driftnet -0.55 -0.36 -0.49 -0.003[J2I8Hl 0.24 -0.017-0.58 -0.1 0.2 -0.12-0.025 -0.1 -0.016-0.006-0.83
InternetCensus-0.15 0.12 -0.72 -0.13 -0.052_ 1.4 0.49 -0.13 -0.093 -0.15 -0.62 -0.034 -0.12 -0.021-0.007 -0.11 -1
Rapid7--0.57 -0.3 -0.39 -0.0550.035 0.15 208 -0.14 -0.095-0.086 -0.1 -0.028 -0.11 -0.019-0.006 -0.32
Censys--0.7 -0.43 0.088 -0.18 -0.26 -0.23 -0.25 [J2N@l -0.14 -0.13 -0.041 -0.11 -0.027-0.008 -0.24
Exploiter =-0.81 -0.25 0.068 -0.2 -0.2 -0.21 -0.24 -0.22 [J2ISM -0.12 -0.11 -0.067-0.096-0.029-0.009 -0.31
Onyphe--0.45 -0.27 0.18 -0.1 0.19 -0.24 -0.2 -0.14-0.078 1.6 -0.13 -0.023 -0.11 -0.017-0.005 -0.23
Shodan-0.81 -0.36 0.25 -0.13 -0.31 0.067 -0.29 -0.22 -0.15 -0.11 1.7 °-0.045 -0.13 -0.03 -0.015/ -1.0
Ipip =-0.69 -0.007 -0.42 -0.14 -0.15 -0.15 -0.18 -0.15 -0.098-0.091-0.083 1.2 -0.082-0.027-0.006 1.1
SecurityTrails --0.27 -0.15 -0.19 -0.045-0.078-0.092-0.099-0.065 -0.04 -0.037 -0.05 -0.01 [FI:81-0.007-0.002 -0.67
IntrinSec-0.39 -0.28 -0.31 -0.099 -0.11 -0.13 -0.16 -0.11 -0.065-0.071 -0.08 -0.038-0.072 0.28 0.08 0.78
Michigan Uni.- 1.0 -0.15 -0.24 -0.07 -0.086 -0.1 -0.12 -0.082-0.047-0.054-0.056-0.013-0.055 0.12 0.071 -0.14
Unknown-0.53 0.44 -0,39 -0,24 -0,16 0,6 -0,44 -0.87 -0,25 -0,49 -0.082-0.094-0.042-0.021 0.72

Q o a) .

-0.31 -0.14 -0.037 0.84 2

True label
s
LR Coefficients

o

Mirai-like
Bruteforcer
Spammer -;
ShadowServer -g
Driftnet -
InternetCensus -;
Rapid7 -
Censys -
Exploiter -
Onyphe -,
Shodan -
Ipi
SecurityTrails
IntrinSe
Michigan Uni
Unknowr

Predicted label

(a) Domain-specific host embeddings (DS).

Mirai-like 1.2 -0.82 -0.42 0.003 -0.62 -0.49
Bruteforcer - 0.47 0.44 -0.57 -0.74 -0.24 -0.31
Spammer =-0.84 »0.13--0.74 0.52 0.071 -0.47
ShadowServer --0.43 -0.47 -0.39 [JSI0 -0.34 -0.33 -0.22
Driftnet --0.33 -0.35 -0.65 -0.31 -0.52 -0.27 -0.14 -0.1
InternetCensus --0.44 -0.57 -0.47 -0.25 -0.45 -0.32 -0.15 -0.12
Rapid7--0.41 -0.39 -0.33 -0.26 -0.32 -0.41-—0.16 -0.12
Censys--0.41 -0.51 -1.1 -0.33 0.12 -0.37 -0.23
Exploiter--0.38 -0.5 -0.51 -0.27 -0.32 -0.29 -0.2
Onyphe --0.36 -0.36 0.13 -0.21 -0.32 -0.36 -0.2
Shodan:-1.0 -0.51 -0.46 -0.16 -0.18 0.35 -0.21

Ipip --0.69 -0.64 0.28 -0.031-0.25 -0.25 -0.18

-0.35 -0.39
-0.58 -0.54
-0.41 -0.88
-0.22 -0.17

-0.35
-0.35
-0.35
-0.2

201921 -0.33 -0.16

-0.20 -0.48 -0.18 -0.59 -0.34 1.1

0.5 -0.47 0.22 -0.53 -0.27 1.4 9

-0.087-0.037 -0.11 -0.097 -0.14

-0.18 -0.11-0.027 -0.1 -0.064-0.075 -0.44

-0.29 -0.18 -0.047-0.12 0.12 -0.1 -0.55 -1

-0.14 -0.096-0.039 -0.12 -0.087-0.084 -0.62

-0.23 -0.12 -0.049 -0.12 -0.11 -0.13 -0.39

-0.18 -0.11-0.056 -0.1 -0.11 -0.1 0.64

-0.12 -0.034 -0.12 -0.075-0.083[=L.1
10.054 -0.13 -0.2 -0.13 0.37

-0.73 -0.77 0.24

True label

-0.17 -0.11
-0.18 -0.12
-0.16 -0.14

B
LR Coefficients

-0.18
-0.14 -0.092J9N-0.085-0.083-0.064 0.6
SecurityTrails ~0.19 -0.17 -0.15 -0.081 -0.12 -0.14 -0.097-0.062-0.041 -0.06 -0.046-0.0 130181 -0.03 -0.03 -0.57

IntrinSec --0.82 -0.54 -0.35
Michigan Uni. --0.49 -0.31 -0.23

-0.25 -0.26 -0.27 -0.18 -0.18 -0.14 -0.14 0.14 -0.086 -0.08 S -0.14 -0.62

-0.16 -0.18 -0.18 -0.12 -0.11 -0.083-0.098-0.057-0.023 -0.06 -0.083 -1.2
-0,94 -0.83 -0,38 -0.077 -L.1 0.46 -0.6 -0,23 -0,19 -0,53 [=1.2" -0.9
= K <

v |
P

a
s
2
g
9
E
=
=1

|
w

sys

Onyph

Shodan -,
Ipip

Mirai-like =22
Bruteforcer -
Spammer -
ShadowServer -
Driftnet -
InternetCensus -
Rapid
Censy
Exploiter
SecurityTrails -
IntrinSec
Michigan Uni.
Unknown

Predicted label

(b) Text host embeddings.

Mirai-like SI2E30 -0:99 -0.044 0.085 -0.41 -0.39 0.16 -0.31 -0.29 -0.32-0.083 0.086 -0.17 -0.14 0.38
Bruteforcer -0.063 [J286l-0.071 -0.49 -0.47 -0.33 -0.5 -0.45 -0.39 -0.19 -0.16 0.15 -0.18 0.18 -0.16 0.36
Spammer --0.28 -0.47 J200 -0.55 0.22 0.01 0.05 0.57 -0.61 -0.41 0.41 -0.74 -0.3 -0.14 -0.16 0.41 2

ShadowServer --0.41 -0.27 -0.086/ 1.2 -0.18 -0.11 -0.17 -0.14 -0.077-0.082-0.076-0.059-0.058 -0.03 -0.043 0.57

Driftnet --0.28 -0.081 -0.17 -0.25 [J2i01-0.057 -0.13 -0.41 -0.082-0.081 -0.28 -0.044 -0.11 -0.021-0.024 0.049
InternetCensus =-0.68 0.32 -0.32 0.11 0.75 81 -0.25 -0.39 -0.098 -0.12 -0.2 -0.075 -0.12 -0.049-0.036 -0.66 -1
Rapid7--0.12 -0.27 -0.15 -0.16 -0.27 -0.27 [J2I2H -0.14 -0.09 -0.087-0.084-0.064 -0.11 -0.031-0.028 -0.31
Censys--0.52 -0.39 0.44 -0.18 0.034 -0.23 -0.2 1.1 -0.12-0.098 -0.22 -0.076 -0.11 -0.031-0.044 0.63
Exploiter --0.42 -0.48 -0.41 -0.2 -0.23 -0.22 -0.21 -0.19 [J2I2-0.099-0.079 -0.1 -0.095-0.031-0.039 0.58
Onyphe -0.47 -0.3 -0.046 -0.13 -0.39 0.58 -0.17 -0.16 -0.079FIT 0.15 -0.057 -0.12 -0.029-0.028 -0.49
Shodan-0.45 -0.39 0.026 -0.15 0.37 0.29 -0.22 0.12 -0.14 -0.12 0.96 -0.077 -0.14 -0.089-0.044/-0.85
Ipip-0.082 0.47 -0.5 -0.23 -0.29 -0.25 -0.23 -0.2 -0.15 -0.11 -0.084]J280M -0.09 -0.064-0.031-1.2
SecurityTrails --0.27 -0.15 -0.14 -0.053 -0.11 -0.11 -0.086-0.065-0.037 -0.04 -0.04 -0.022[F1:81-0.012 -0.01 -0.66
IntrinSec-0.73 0.21 -0.29 -0.14 -0.18 -0.19 -0.16 -0.13 -0.087-0.078-0.071 -0.12 -0.076 0.87 -0.042 -0.25
Michigan Uni.--0.16 -0.18 -0.18 -0.078 -0.11 -0.12 -0.1 -0.077-0.046-0.046-0.043-0.028-0.056-0.023 0.8 0.4
Unknown -0.062 0.34 -0.055 1,2 -0,71 -0,39 0.042 0.85 0.074 0.15 -0,11 -0.068 -0,6 0.033 1,0

1 - I~ w - =1

0.11

True label

| s
LR Coefficients

|
o

Onyphe
Shodan -
i.

er

Mirai-like
Brutefore
Spammer
ShadowServer -
Driftnet -
InternetCensus -
Rapid
Cens;
Exploite
Security Trails
IntrinSe
Michigan Un
Unknown -

Predicted label

(c) Graph host embeddings.

Figure 6: Logistic Regression coefficients for one of the testing days, i.e. 2022-10-28. Contribution of different embedding
types on Honeypot (H) —Model MLy . Scenario 2.

	Introduction
	Host Classification Methods
	Representation Learning: Host Embeddings
	Domain-driven Features Engineering
	Text Embeddings
	Graph Embeddings (GNN)

	Classification Task
	Stacking Methods

	Datasets
	Experimental Setup
	Evaluation scenarios
	Evaluation Methodology

	Experimental Results
	Overview of the main results
	Breaking down of the results per class

	Explaining the Stacking Results
	Classification Results
	Meta-Learner Coefficients

	Conclusions
	References
	Appendix
	Host Features
	Darknet Classification Performance.
	Explainability

