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Abstract—To investigate the actual health status and mechani-
cal properties of structural materials, both direct and/or indirect
investigation procedures can be used. The acoustic emission
(AE) method is a non-destructive indirect structural health
monitoring method based on the analysis of the elastic wave
propagation inside the material under study induced during
cracks and micro-cracks coalescence, opening, and formation
process. To capture reliable ultrasonic elastic waveform data,
piezoelectric sensors are typically employed which are directly
and firmly fixed and attached to the specimen under study. For
identifying the region of crack formation, thus the position of
structural damage in its early stage, at least four sensors must
be employed simultaneously. Furthermore, the identification of
the onset time is crucial to accomplishing this task. In this study,
the authors proposed a deep-learning-based solution based on
a U-net architecture for identifying onset time with a method
attempting to overcome the existing limitations of traditional
threshold-based methods. The onset time precision obtained with
this artificial intelligence-based (AI) paradigm is discussed on
an acknowledged dataset available in the literature based on
Pencil Lead Break (PLB) data, commonly used as a benchmark
in the AE field. Finally, the method is tested on some real AE
signals acquired during laboratory testing of reinforced concrete
specimens. The results demonstrated the actual potential of the
proposed AI-based method in future real-time monitoring real-
world applications.

I. INTRODUCTION

The recent advancements in artificial intelligence (AI) [1],
particularly deep learning, have revolutionised engineering by
providing innovative solutions and insights [2]. Deep learning,
inspired by the human brain [3], excels at automatically
learning complex patterns from data, making it a versatile tool
for solving various engineering problems. This paper explores
the application of deep learning in detecting the onset time
in Acoustic Emission (AE) signals. Acoustic Emission (AE)
is a non-destructive technique [4] widely used in Structural
Health Monitoring (SHM) [5] to monitor historical buildings
[6] and structures [7]. It allows the understanding of struc-
tural dynamics and enables prompt interventions to extend
the service life of structures. AE stands out in SHM due
to its passive nature [8], being not necessary to physically
damage or excite the structures. Transient ultrasonic waves
are recorded by piezoelectric sensors [9]. These waves are
produced when the accumulated elastic energy in cracks is

released. These waves are converted into an electric voltage
by the sensors, which can then be digitised and analysed
[10]. The study of collected signals provide insight into the
genesis and progression of cracking patterns. Based on the
analysis of AE signals, a variety of methodologies have been
developed to localize, characterize, and quantify damage. The
primary applications of Acoustic Emission (AE) technology
are the localization of cracks and their categorization. This
study focuses on the latter, which is of crucial importance
for the understanding of damage causes and the facilitation of
timely maintenance. Precise localization of damage depends
critically on the onset time of an AE signal, which is the
instant the elastic wave encounters the piezoelectric sensors.
Over the years, numerous strategies for automatically detecting
the onset time have been developed [11], [12], [13]. In order
to address these issues, recent years have seen the emergence
of novel methodologies that employ artificial intelligence (AI)
and machine learning (ML) techniques [14], [15]. Machine
learning and deep learning algorithms have shown effective
in precisely predicting the onset time of acoustic emission
signals [16], [17]. Nevertheless, current methodologies still
exhibit limitations, including computational and storage in-
tensity or the necessity for data preprocessing techniques to
enhance Signal-to-Noise Ratio (SNR) [18]. Furthermore, these
techniques frequently necessitate signal segmentation, thereby
requiring additional preprocessing for classification [19]. This
research presents a novel deep learning model that uses a U-
Net neural network [20] to detect the onset times of acoustic
emission sources. The model reduces the onset time detection
problem to an a single-dimensional segmentation task, iden-
tifying each point in the data as either signal or background
noise. A rolling average probability is used to reduce false
positives by smoothing the probability curve over time. The
proposed architecture is optimised for accuracy, computational
efficiency, and storage, resulting in a lighter model compared
to traditional convolutional neural networks. Furthermore, the
approach is designed to operate directly on continuous signals,
eliminating the requirement for preprocessing. The goal is to
develop a technique that can be used to identify onset times
in real time on the field. The models are trained using data
collected through a Pencil Lead Break test (PLB) [21]. The



rationale behind this approach is to simulate the AE signal
by fracturing a pencil lead against a concrete block. Since
the position of the pencil lead is known, this test enables the
recording of labelled signals in which the onset time is known.
In general, this type of test is widely used for the calibration
of the recording instrumentation. Following the training on
the PLB dataset, the method is qualitatively evaluated on a
real-world dataset of authentic acoustic emissions, without any
finetuning. The real data has been recorded during a three-
point bending test conducted on a beam made of FRC (fiber-
reinforced concrete).

II. METHODOLOGY

Identifying the onset time in Acoustic Emission (AE) sig-
nals is crucial for crack localization. In a simplified model,
it is possible to precisely localize crack through AE signal
onset times using at least 5 sensors [22]. In such model, the
shortest wave path is assumed, as P-wave onset times are less
affected by disturbances and are used for crack localization.
The distance d0−A between the crack source S0 = (x0, y0, z0)
and sensor SA = (xA, yA, zA) is calculated using:

d0−A =
√
(x0 − xA)2 + (y0 − yA)2 + (z0 − zA)2

Assuming a homogeneous medium with constant wave
speed c, the travel time TA is:

TA =
d0−A

c

The unknowns (x0, y0, z0), crack event time t0, and wave
speed c prevent direct solution. However, relative arrival times
∆tA at each sensor can be analyzed, leading to:

∆tA = TA − TR

=

√
(x0 − xA)2 + (y0 − yA)2 + (z0 − zA)2

c
− TR

Hence, with at least 5 sensors, it is possible to precisely
localize the crack through AE signal onset times.

While experts can manually identify onset times, automatic
identification is needed for real-time monitoring, especially
given the large volume of recorded signals. Various methods
for onset time identification exist, including machine learning
approaches.

In this paper a deep learning-based method using a U-Net
architecture [20] for onset time identification is introduced.
U-Net, a type of Convolutional Neural Network (CNN), is
designed for segmentation tasks and is effective in vari-
ous applications. U-Net is an encoder-decoder model that
captures local and global context information. The encoder
uses convolutional and pooling operations to reduce spatial
dimensions and extract high-level features. It consists of
multiple blocks with convolutional layers followed by ReLU
activation and max-pooling layers. The decoder restores spa-
tial information through up-convolutional and concatenation
operations, creating a segmentation map matching the input

matrix dimensions. The decoder blocks, which include up-
convolutional layers, enhance spatial resolution and merge
features from the encoder through skip connections, which
improve segmentation accuracy. In this study, we evaluate the
efficacy of different U-Net models obtained by varying the
number of convolutional blocks. The simplest models includes
only one convolutional block, while the more complex models
include four convolutional blocks. Each block has two one-
dimensional convolutional layers with GELU activation. The
decoder is intended to duplicate the encoder, with the added
functionality of upsampling for temporal resolution. The fi-
nal output layer, a one-dimensional convolutional layer with
softmax function activation, generates a pixel-wise probability
map indicating the likelihood of each point being a signal or
background noise. The U-Net architecture is remarkable for its
use of skip connections, which connect map features from the
contracting path to equivalent blocks on the expansion path.
This approach enables the decoder to acquire and use multi-
scale data from previous network stages, boosting the precision
of segmentation. A pixel-wise probability map is generated at
the conclusion of the expanded path using a 1x1 convolutional
layer with softmax activation. The result map shows the
likelihood of each pixel falling into a particular class. The
network is tuned during training with appropriate loss func-
tions, including cross-entropy loss or dice loss, to minimize the
discrepancy between the segmentation maps predicted and the
ground truth. To summarize, the U-Net design offers a strong
framework for segmentation tasks, exploiting both global and
local context information via its encoder-decoder architecture
and skip connections. The approach in this study involves
the use time series as input to the deep learning model,
eliminating the need for Fourier transform pre-processing. This
method significantly reduces the computational cost compared
to approaches using 2D or 3D input data. For every signal
point, the model returns a probability indicating whether it is
part of the AE signal or background noise 1. A probability
threshold is defined, and points with probabilities greater than
this threshold are categorized as part of the AE signal.
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Fig. 1. Example of signal segmentation in ”background” or ”signal” achieved
by utilizing a U-Net model.

The neural model segments the one-dimensional signal to
classify each point into two classes: background noise and
AE signal. It assigns each point a probability of belonging
to either class, which helps to identify the onset time. An
example of signal classification is shown in Figure 1. The
onset time is defined as the point at which the background
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Fig. 2. AE signal depicted in both a time-series (top) and a spectrogram
(bottom). The frequencies are reported in Hertz [Hz] and the amplitudes are
normalised.

noise transitions to the AE signal. The U-Net neural network
was trained using data from [21]. This dataset is derived
from artificial acoustic emission (AE) tests performed on a
block of concrete using pencil lead breaks (PLBs) to generate
elastic waves. The dataset comprises 98 time-series of acoustic
emission (AE) signals recorded from laboratory experiments
on concrete samples. These signals, sampled at 10,000 kHz,
are represented as both time-series and spectrograms in Figure
2. However, distinguishing between background noise and the
AE signal in the spectrograms is challenging due to similar
frequencies, especially in concrete structures.

Each AE signal has 1024 time samples and a continuous
pre-triggering duration of 256µs before the onset time event.
The labels are as follows: label 0 corresponds to background
noise and label 1 to the AE signal. The objective of this
study is to automate onset time identification in AE signals
for real-time applications. For this purpose, the dataset is
processed in such a way that it contains non-uniformly spaced
AE signals. This is achieved by concatenating the time-series
into one long signal and segmenting it into windows with
varying lengths. Additionally, random segments are trimmed
from the initial part of each signal containing background
noise. Subsequently, the aforementioned processed dataset is
divided into a 75% training set and a 25% validation set for
the purposes of model training and evaluation, respectively. In
this work, the input sequence length and U-Net architectural
depth are varied to assess the effectiveness of several neural
models. Three depths (2, 3, and 4) and three input sequence
lengths (512, 1024, and 2048 samples) are compared. For
training, the maximum number of epochs is set to 200 to
balance computational efficiency and model convergence, with
early stopping implemented to prevent overfitting. Due to its
applicability in binary classification problems, binary cross-

entropy is adopted as the loss function. The learning rate of the
ADAM optimiser is set to 10−4 to facilitate faster convergence
and enhanced performance. These choices are made with the
objective of optimising the training process and ensuring effec-
tive learning of data patterns. Following the training process,
classification errors are analyzed. It is observed that model
errors consist of samples from background noise incorrectly
classified as part of the AE signal, while the model rarely
misclassify samples from the signal as background noise.
These misclassifications lead the signal to have false onset
times. Table I presents a summary of the number of erroneous
onset timings obtained by the various models, including both
the training and validation sets.

Model U-Net Predictions R.A. Correction
Seq. Len. Depth Train Validation Train Validation

2048 4 0 19 0 1
2048 3 0 57 0 10
2048 2 191 242 9 13
1024 4 0 21 0 2
1024 3 0 56 0 7
1024 2 485 270 32 24
512 4 5 22 2 2
512 3 0 70 0 5
512 2 625 282 37 21

TABLE I
THE NUMBER OF ERRONEOUS ONSET TIMES FOUND BY U-NET OUTPUTS

BEFORE AND AFTER USING THE ROLLING AVERAGE ADJUSTMENT.

In order to reduce the classification errors, a smoothing
technique is applied to the probability values derived from the
U-Net output. Figure 3 illustrates how these errors frequently
result in localized variations in the probability values. In order
to achieve a smoother probability function derived from the
U-Net output, it is necessary to average the probability values
over a window of fifty samples.
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Fig. 3. The impact of smoothed probability with rolling average correction.
The top graph shows predictions based on model output probabilities. The
graph in the middle compares U-Net probability to the rolling average cor-
rection. The bottom graph displays forecasts based on smoothed probability.

This approach significantly reduces the occurrence of spu-
rious onset times. Table I compares the number of false
onset times obtained with direct classification against corrected
classification using the rolling average approach. The approach



was highly effective, lowering false onset times by over 90%
in several cases.

The evaluation metrics of the various neural models for
both the validation and training sets are presented in Table II.
The table presents the outcomes of varying the input sequence
length and the U-Net architecture depth, which ranges from
two to four layers. Extending the input sequence is a way
to capture more context surrounding the event and enhancing
the model capability to correctly identify the onset time. An
increase in the number of levels and parameters in the ANN
results in a more accurate fit to the dataset while avoiding
overfitting.

The metrics presented in Table II demonstrate the efficacy of
the models in identifying signal samples and distinguishing be-
tween background noise and AE signals. The models achieve
accuracies exceeding 0.97, with some exceeding 0.9999. The
mean absolute error (MAE) values are notably low, with the
optimal result of 0.006 observed on the test set. However,
these metrics evaluate the categorisation of individual samples
within a time series, where the initial background noise
and subsequent AE signal are distinguishable. Accurately
pinpointing the transition between these phases proves more
challenging. The application of traditional machine learning
metrics may be influenced by the presence of clearly dis-
cernible initial and terminal samples, which may limit the
ability to gain insight into the proximity of the expected onset
time to the actual onset time. To provide a comprehensive
evaluation, the time difference between the predicted and
actual onset times was considered. This metric offers more
meaningful insights into the models performance. Given the
rapid propagation speed of AE signals, it is imperative to
minimise the discrepancy between the expected and actual
onset times. Even a small error in onset time identification
can significantly affect the accuracy of crack location. Table III
presents the mean absolute time difference between predicted
and actual onset times for all the evaluated neural networks.

The corrective strategy applied to model results consider-
ably increases the methodology precision. The optimal model
exhibits an average error of 7µs, which is equivalent to 2.8cm
positional inaccuracy when the acoustic wave velocity is
assumed to be 4000m/s. This improvement can be attributed
to a reduction in false positive onset time events. Figure 4
depicts a comparative analysis of all trained models, which
reveals discrepancies in the estimated time delay (∆t) obtained
through the proposed methodology. The results indicate that
the depth of the U-Nets has a significant influence on the
outcomes, with deeper networks resulting in higher accuracy
in determining the onset time. The duration of the input signal
sequence has a comparatively less pronounced impact on the
results. No preprocessing of the data was employed in order to
achieve the high accuracy, and the integration of several signals
from piezoelectric sensors was not investigated as a potential
source of improvement in this study. Although this was not
within the scope of the project, which aimed to develop a
deep learning strategy for real-time onset time recognition in
continuous data, these techniques offer the potential for future

method accuracy improvements.

III. APPLICATION AND RESULTS

This section presents the results obtained by our method
on a dataset of authentic acoustic emission signals, without
any re-training or finetuning. The signals have been recorded
during laboratory investigations of concrete samples, specifi-
cally during a three-point bending test on a specimen of fibre-
reinforced concrete. The test sample, of size 120x30x15 cm,
exhibited a 5 cm deep notch in the centre. The loading was
applied until failure, with control over crack mouth opening
displacement (CMOD). A piezoelectric sensor was positioned
on the shorter side of the specimen to collect the acoustic
emission waveforms generated during the fracture develop-
ment process. The signals were sampled at a frequency of 1000
kHz. At this stage, the model was tested considering a single
signal. Under operational conditions, it will be necessary to use
at least 5 sensors simultaneously to perform crack location.

Figure 5 illustrates the effectiveness of the method in
distinguishing the AE signals from the background noise.
It is acknowledged that the PLB test signals exhibit in-
herent variations when compared to those generated during
the actual crack formation process. Nevertheless, the U-Net
model, which was trained exclusively on PLB test signals,
has demonstrated a commendable ability to identify acoustic
emission signals. It is pertinent to highlight that the afore-
mentioned procedure was tested on signal segments that had
been trimmed to align with the length of those utilised for
training. It is recommended that model training with real
acoustic emission data be conducted in order to achieve greater
accuracy and the ability to incorporate continuous signals. It is
also important to recognise that the acoustic emission signals
tested were acquired in a laboratory setting, which may have
resulted in a lower background noise level compared to field-
recorded data.

IV. CONCLUSIONS

The study presents a deep learning method for real-time
identification of onset times in acoustic emission signals,
which is particularly relevant for structural health monitoring
(SHM). Experiments on simulated and real data demonstrate
the effectiveness of the method in accurately classifying signal
samples and distinguishing between background noise and AE
signals. The models achieve high levels of accuracy across
various evaluation metrics, with minimal mean absolute error
(MAE) and a rolling average correction technique significantly
improving precision. Future enhancements may involve train-
ing the neural network on a diverse dataset of real AE signals
to simulate real-world monitoring conditions and improve
resilience. This research contributes valuable insights into deep
learning for AE signal analysis, advancing SHM practices and
enabling innovative solutions for structural defect detection
and maintenance management.
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Fig. 4. Comparison of various U-Net models taking into account the difference between the ground truth and the expected onset time.
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Model Train Validation
Seq. Len. Depth Loss Acc MAE RMSE F1 AUC Loss Acc MAE RMSE F1 AUC

2048 4 0.006 1.000 0.006 0.007 1.000 1.000 0.037 0.992 0.014 0.084 0.995 0.997
2048 3 0.010 1.000 0.010 0.013 1.000 1.000 0.065 0.985 0.026 0.115 0.990 0.991
2048 2 0.031 0.997 0.028 0.056 0.997 1.000 0.108 0.973 0.052 0.153 0.980 0.986
1024 4 0.004 1.000 0.004 0.005 1.000 1.000 0.031 0.994 0.011 0.072 0.996 0.998
1024 3 0.007 1.000 0.007 0.010 1.000 1.000 0.061 0.986 0.021 0.109 0.991 0.991
1024 2 0.055 0.991 0.047 0.096 0.991 0.999 0.103 0.972 0.062 0.151 0.978 0.990
512 4 0.012 0.999 0.008 0.019 1.000 1.000 0.032 0.993 0.015 0.072 0.996 0.998
512 3 0.008 1.000 0.007 0.013 1.000 1.000 0.059 0.985 0.023 0.112 0.990 0.993
512 2 0.052 0.987 0.040 0.095 0.990 0.999 0.092 0.971 0.054 0.148 0.978 0.993

TABLE II
MACHINE LEARNING METRICS FOR THE VARIOUS U-NET MODELS.

Model Seq. Len. 2048 2048 2048 1024 1024 1024 512 512 512
Depth 4 3 2 4 3 2 4 3 2

U-Net predictions Train 0 0 142.83 0 0 211.24 5.46 0.11 242.55
Validation 14.63 86.27 201.98 25.58 81.71 207.67 33.53 89.39 210.33

R.A. corrections
Train 0 0 4.74 0 0 19.59 3.39 0.11 25.37

Validation 7.03 21.34 28.56 10.62 22.12 35.64 9.01 16.51 36.02

∆x (cm) 2.812 8.536 11.424 4.248 8.848 14.256 3.604 6.604 14.408

TABLE III
AVERAGE TEMPORAL DISTANCE (10−6 SECONDS) BETWEEN PREDICTED AND ACTUAL ONSET TIMES, WITH THE CORRESPONDING ESTIMATED

POSITIONAL ERROR.

Exchange (RISE) - http://addoptml.ntua.gr/ - “ADDitively
Manufactured OPTimized Structures by means of Machine
Learning” (No: 101007595)
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