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Conjointly active and passive 
modelings with deep neural 
networks as fully automated 
optimizations for upper‑mid band 
6G communications
Lida Kouhalvandi 1 & Ladislau Matekovits 2,3,4*

Today wireless systems include the fifth and sixth generations (5G and 6G) technologies and are 
growing day by day that result in exponentially increasing data traffic. For providing a reliable and 
high performance radio frequency (RF) designs especially for 6G networks, amplifiers and antenna 
as active and passive components play important roles. In the 5G/6G communication systems, the 
propagation loss is considerably large and its compensation requires high output power generated 
from the amplifiers for guaranteeing the satisfied quality of transmitted signal. From another point 
of view, the installed antennas must be able to optimally manage the radiated signals and handle/
compensate nonlinear performances of the RF circuitry. Hence, advanced modeling and multi-
objective optimization algorithms are required for designing and optimizing high performance 
amplifiers and antennas in terms of output power, gain, efficiency, linearity, and bandwidth. 
Concurrently optimizing active and passive components is not straightforward and typically it requires 
additional efforts by the RF designers. To tackle this drawback, a two-step methodology is proposed: 
(1) configuring the initial structure of active and passive devices, and (2) sizing the configured devices. 
In this work, various methods are introduced for structuring the topology of circuits and then artificial 
intelligence, including machine learning and neural networks, is preferred among other surrogate 
modelling for sizing the designs. These neural networks are satisfied due to the accurate modeling 
responses and are able to provide an automated optimization process leads to employ multi-objective 
optimization methods. In this work, an automated optimization process for comprehensive design 
of high-performance amplifiers with antennas through bottom-up optimization (BUO) method and 
long short-term memory (LSTM)-based deep neural networks (DNNs) is proposed. At the output layer 
of DNNs, the multi-objective multi-verse optimizer (MOMVO) method is employed for optimizing 
various specifications of active device (i.e., amplifier), and passive device (i.e., antenna), concurrently. 
In the presented method, all the electromagnetic (EM) design rules are implemented which results in 
reducing simulation time in the harmonic balance simulation environment that also provides ready to 
fabricate layouts. The novelty consists of the all-inclusive style that (1) reduces the manual breaks, aka 
time-to-market, and (2) delivers ready-to-fabricate layouts of the device that exhibits global optimum 
performances, automatically. The validation of the proposed method is verified by designing and 
optimizing high power amplifier (HPA) with antenna in the frequency band from 9.0 GHz to 9.6 GHz, 
suitable for upper-mid band 6G communications.

In the fifth generation (5G) and next-generation (i.e., sixth generation (6G)) communication systems, high-order 
modulations are playing important roles as they are useful for transferring high-data rate in the broadband 
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complex radio frequency (RF) systems1–4. The 5G technology is developing on the 450 MHz–1 GHz (low band), 
1 GHz–7 GHz (Mid band), 7 GHz–24 GHz (upper-mid band), and 24 GHz–52 GHz (High band/mmWave) 
in the recent years regarding the announcement from the international telecommunication union (ITU)5–8. In 
these telecommunication systems, antennas and amplifiers are significant components that are influencing the 
coverage (radiation performances) and figure of merit (FoM) of RF circuits9,10. Transmitting high-power signal 
in the communication systems (i.e., combinational of active and passive devices) is a challenging task where 
intelligent methods including proper optimization methods are required11,12. Figure 1 presents the design of 
wireless system that can include important RF designs as: low pass filter (LPF), amplifier (AMP), monolithic 
microwave integrated circuit (MMIC), and antenna, where various high performance circuits are required to 
have successful complex system.

In the above mentioned wireless communication systems, amplifiers as low-noise amplifiers (LNAs) with 
high power amplifiers (HPAs) and antennas play an important role in receiving and transferring large signals. 
For this case, active device (i.e., amplifiers) and passive component (i.e., antenna) must have very satisfied output 
performance in the determined band frequency. The design and optimization of these components can face with 
the problems due to the nonlinear behavior of used transistor models in the amplifiers, quality factor of passive 
components, environment effects, etc. Hence, strong and multi-objective optimization algorithms are required 
to help engineers in designing these circuits. In a recently published papers, applying nonlinear optimizations 
gets the attention of engineers in optimizing RF circuits13. In designing these circuits, the more accurate plat-
form for applying the optimization algorithms must be selected considerably. Optimizations as support vector 
machine (SVM)14, Kriging15, polynomial-based surrogate modeling16, particle swarm optimization17–19, and 
genetic algorithm20–22 are suitable optimization methods for designing RF designs; however, when the design 
parameters with circuit designs are lot and complex these methods can not be powerful enough. To tackle this 
problem, intelligent-based optimization approach can be a powerful one23–26.

Artificial neural networks (ANNs) are presented as an accurate modeling network that can model the non-
linear circuits in a remarkably successful way27. In28, the optimization process based on the ANN is applied for 
designing the active antenna that can be suitable for 5G networks. These methods can help electronic design 
automation (EDA) tools in improving the modeling problems. The DNN (network includes multi hidden layers) 
is used in29 for designing and optimizing a receiver that is suitable for low earth orbit (LEO) satellite commu-
nications. The works in28,29 present optimization methods for designing either antenna or power amplifier by 
just considering the effect of individual components. However, in the communication systems both the antenna 
section and HPA device must be optimized concurrently in order to achieve high performance output responses 
which lack in the recently published works. Another problem that exists in the recent works is the provided 
computer-aided design (CAD) tools that may not be suitable for concurrent simulations. Hence, a universal 
and strong optimization environment is required that can be the combination of EDA tool and the numerical 
analyzer together.

This paper devotes to present such an intelligent-based optimization method for designing and optimizing 
the communication systems including active and passive devices concurrently which is lacking in the previous 
studies. It provides an optimization-oriented process for designing and optimizing nonlinear circuits as HPA and 
antennas that can be employed for 5G/6G networks. In the first phase, the initial structure of active and passive 
devices are constructed automatically. Afterwards, the configured HPA and antenna are optimized concurrently 

Effective signal

Inter-cell interference

Pilot

Transmitter Receiver

Power amplifier

Low noise

amplifier

Transmit spatial

modulation

Receive spatial

modulation

Figure 1.   Complete multi-technology wireless system design.
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in their related design specifications and in a fully automated environment. In particular, the HPA is optimized 
in terms of power gain, output power, efficiency, and linearity and the antenna is optimized in terms of gain and 
bandwidth. Typically, optimizing both nonlinear circuits as HPA and antenna is not straightforward and requires 
additional manual interruptions. Hence, combinational of EDA tools and numerical analyzers provide a strong 
co-simulation environment. In this work, the whole optimization process is implemented in an automated envi-
ronment that is the combination of EDA tool and the numerical analyzer: (1) a script for controlling the nonlinear 
simulation results of HPA and antenna, (2) a mathematical solver for dealing with the generated huge amount 
of data. After creating an automated environment, the initial structures of devices are generated: here bottom-
up optimization (BUO) method is employed30. Then it is time for employing the multi-objective optimization 
methods for optimizing various specifications of configured active and passive devices, concurrently. Recently 
combination of multi-objective optimizations with deep neural networks (DNNs), (i.e., multi-layer neural net-
works), have proved their validity in designing and optimizing nonlinear circuits31. Hence, employing DNNs 
with implementation of multi-objective optimization methods are proposed. In this work, the multi-objective 
multi-verse optimizer (MOMVO)32 method with long short-term memory (LSTM) DNNs are used due to the 
effectiveness of function in approximating the Pareto-optimal front (POF) for more than three objectives32. 
Respectively, the LSTM-based DNNs are used for predicting output specifications in a large bandwidth.

The novelty of this work is divided into five subsections: (1) providing a reliable simultaneous co-operation 
of EDA tools and mathematical analyzer; (2) configuring the initial structure of active and passive devices; (3) 
constructing and employing multi-objective strong algorithms for optimizing various design specifications; (4) 
implementing these algorithms to the LSTM-based DNNs for optimizing the model and sizing the nonlinear 
circuits such as HPA and antenna; (5) optimizing the HPA and antenna concurrently that can be suitable for 
next generation networks.

The remained part of this manuscript is structured as follows: section “Literature review” presents the lit-
erature review and section “Proposed method” describes the proposed method. The detail descriptions with 
employed steps are provided in section “Detailed descriptions for the employed steps in the proposed optimiza-
tion method”. Simulation results of the proposed method are provided in section “Practical implementation of 
proposed method” and finally section “Conclusions” concludes this manuscript.

Literature review
Over the last decade, ultrafast wireless communication systems are required where these systems must be opti-
mized in terms of power, gain, efficiency, linearity, and so on33. However, it is a challenging task to concurrently 
optimize the FoM of active and passive devices34–38. Recently, various studies have been presented and this 
section devotes to provide the literature review where optimization methods are employed for enhancing the 
overall performance of system.

In39, a joint design methodology for designing antenna and amplifier is presented where a common parametric 
space is employed for realizing the targeted specifications of the system. In the presented method, intermediate 
and potentially lossy components are not used leading to achieve optimal impedance interface between active 
and passive devices. Typically, the big challenging task is to directly matching the the transistor drain output to 
its optimal load impedance. In40, circuit-electromagnetic codesign methodology is applied leading to find the 
optimal interface impedance between antenna and amplifier. Another solution is provided in41, where for each 
of the channels existed between antenna and amplifier, low pass matching networks are employed. From another 
point of view, in42 the optimization algorithm is employed for achieving design parameters of the load modulator 
circuit leading to improve the its energy-efficiency.

Artificial neural network (ANN) is employed in28, for optimizing the radiating part of active antennas in 5G 
services. For considering and computing the nonlinear characteristics of system, the harmonic neural network 
(modelled for the antenna) is designed and simulated leading to reduce the consumed-time of electromagnetic 
(EM)-simulations.

Through the joint optimization design methodology, in43 this method is employed for designing wideband, 
and high efficiency active integrated array element that is interfaced with the antenna. In this study, a metal 
cavity-backed bowtie slot is applied to achieve the optimal interface impedance.

By reviewing the recently published literature on the combination of active and passive devices, it is recog-
nized that concurrently optimizing various specifications such as output power, gain, linearity, noise, and so on 
is missing. Hence, we propose the following methodology for improving the overall performance of systems in 
terms of various specifications.

Proposed method
Concurrently optimizing active and passive components, existed in 5G/6G communication systems, is not 
straightforward and typically requires the additional efforts by the RF designers. For reducing the designers’ 
interruptions and providing an automated optimization process, artificial intelligent, is selected in accurately 
modeling responses44. This sections devotes to describe and give introduction about the proposed method.

In the 5G/6G communication systems the propagation loss is considerably large, and request high output 
power generated from the amplifier for guaranteeing the satisfied quality of the signal. Hence, providing the 
reliable and high-performance amplifiers and antenna as active and passive components play important roles. 
All the design process is executed in an automated environment where the numerical analyzer is the main core 
for handling all simulation process. The overall automated environment is depicted in Fig. 2.

After generating the automated environment, we propose two-step automated methodology where firstly 
the initial structures of HPA and antenna are generated, and afterwards the optimal size of design parameters 
though LSTM-based DNNs are predicted. Figure 3 presents the general flowchart of the proposed method. 
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For the active devices (i.e., amplifier) and passive device (i.e., antenna), the transistor model with transmission 
lines (TLs) are selected and prepared, respectively. Afterwards the combination of multi-objective optimization 
with DNN is employed for sizing the various existed parameters in devices, leads to optimize active and passive 
designs in various specifications. As presented in Fig. 3, the first phase (i.e., generating the initial structure) can 
include various methods as: bottom-up optimization (BUO)30, top-down optimization (TDO)45, simplified real-
frequency technique (SRFT)46, and classification DNN12 where the suitable method can be selected regarding the 
overall system specification. At the second phase (i.e., sizing the design parameters), the LSTM-based regression 
DNN can be employed for achieving the optimal design parameters. Some of the various targeted specifications 
for the 5G/6G communication systems are presented in Fig. 4. As it is clear, the installed antennas must be able 
to optimize the radiated signals and nonlinear performances. Hence, advanced modeling and multi-objective 
optimization algorithms are required for designing and optimizing high performance HPAs, LNAs, and anten-
nas in terms of various specifications.

For providing high performance system, each of the determined circuits must work properly. Hence after 
designing and optimizing each passive and active device with the proposed method, all these circuits are com-
bined together and the automated optimization is performed for the overall system. The set of data can be var-
ied as the duty of DNN is to predict the output of the new generated data. The proposed optimization method 
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Figure 2.   Proposed approach for optimizing concurrently the nonlinear circuits where the numerical analyzer 
is the main core of optimization process.

LSTM

layer 1
Fully 

connected

layer

LSTM

layer 2
LSTM

layer n

Input

Layer

Output

Layer

Hidden Layers

Bottom-up

Top-down 

Classification DNN

Generating  
initial 

configuration

Sizing the active 
and passive 

devices

Post layout 
generation

Figure 3.   General description of the proposed automated optimization process results in ready-to-fabricate 
layouts.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17993  | https://doi.org/10.1038/s41598-024-68011-8

www.nature.com/scientificreports/

optimizes the whole system in terms of various nonlinear specifications as return loss, power gain, output power, 
efficiency, linearity, stability, and thermal of HPA, gain and noise figure of LNA, bandwidth, gain and beam direc-
tion of antenna, (if any). In the presented method, all the electromagnetic (EM) design rules are implemented 
which provides ready to fabricate layouts.

The problem is solved by:

•	 Providing a fully automated optimization environment without any manual interruptions;
•	 Using multi-layer neural networks (i.e, DNN) for optimizing determined various nonlinear specifications 

as return loss, power gain, output power, efficiency, linearity, stability, and thermal, gain and noise figure 
specifications, bandwidth, gain and beam direction, (if any) concurrently;

•	 Applying multi-objective optimizations to be employed in the DNNs;
•	 Employing the fabrication rules and constraints inside the optimization process that results in passing EM 

simulations and prepares ready-to-fabricate layouts. In simple words, it must be clarified as follows: The 
layout of each circuit in order to be sent for fabrication in any companies, needs passing the existed EM 
simulations in the EDA tools. The EM simulations do not give acceptance proof when we as designers do 
not pay attention to some existed rules and constraints in circuits. For example: if the ratio between length 
and width of components is less or more than the defined design rules, the EM simulation does not give us 
acceptance news. Therefore inside the optimization coding, the design rules that are determined for each 
component must be implemented for having acceptance proof from EM simulations;

•	 Concurrently optimizing various nonlinear circuits which results in optimizing various and many design 
specifications once together.

Figure 4.   Typical blocks of communication systems include HPA, LNA, and antenna designs.
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Detailed descriptions for the employed steps in the proposed optimization method
In the presented method, concurrently amplifier and antenna designs are optimized together. For each design, the 
suitable optimization process is provided and then these devices are combined together. The general description 
of the proposed method is as follows:

Step 1: Providing an automated environment that is the combination of EDA tools and the 
numerical analyzer
This step is to just create an automated environment and the optimization process is not stated yet. Firstly, a co-
simulation environment between EDA tools and numerical analyzer is created for achieving the related simula-
tion results of the nonlinear designs and also for mathematically dealing with the huge amount of data that are 
generated by EDA tools47,48. Figure 2 presents the general overview of the co-simulation environment for start 
optimizing both active and passive devices concurrently. The numerical analyzer is the main core of the process 
that handles the generated huge amount of data from both amplifier and antenna designs.

In this co-simulation environment, the EDA tools are working in the background and the numerical analyzer 
is handling the optimization process by the generated data from the EDA tools. Hence, all the optimization 
process is performed automatically without any interruption of humans. In simple words, EDA tools are used as 
an environment for: (1) designing amplifiers and antenna circuits; (2) generating design specifications as return 
loss, power gain, output power, efficiency, linearity, stability, and thermal of amplifier, gain and noise figure of 
LNA, bandwidth, gain and beam direction of antenna, (if any). One can note, that while designing any circuit, 
in the EDA tools these specifications can be achieved as they are the output results of any circuit. From beside, 
the numerical analyzer is collecting the generated large amount of data from EDA tools and settling the platform 
for performing multi-objective optimizations through the DNNs.

In summary, a multi-surface combination of EDA tools and numerical analyzers for designing and optimizing 
amplifiers and antennas is generated. The optimization is employed in a multi-surface environment as ampli-
fiers (i.e., HPAs and LNAs) are designed in the ADS, AWR, etc. simulation tools and antennas are designed and 
simulated in HFSS, CST, etc. Hence, the simulation environments of determined circuits are different and there 
is not one common tool for simulating all circuits. In addition, it must be noted that one numerical analyzer such 
as MATLAB, Python, etc. is used as a connection tool between ADS/ AWR and CST/HFSS softwares (see Fig. 2).

Step 2: Designing the initial configuration of amplifier and antenna
After constructing the automated environment where EDA tools and numerical analyzer is working together, 
it is time to construct the initial configuration/ topology/ geometry of both the active and passive devicesi.e., 
HPA/LNA and antenna, respectively. The initial configuration of active and passive devices are generated using 
various optimizations as presented in section “Proposed method”: BUO, TDO, SRFT, and/or classification DNN.

Step 3: Applying multi‑objective optimization algorithms
Mathematically, the optimization term refers to methods for finding the optimal solutions of functions in diverse 
conditions. For either single or multiple functions, various variables can be determined by arranging the set 
of constrains. In any system design the initial guess for the variables is executed, and then with respect to the 
interrelationships between various specifications, the optimal parameters are achieved. In single objective func-
tions, only one single objective function is optimized. In contrast, multi-objective optimization is executed for 
optimizing two or more that two objective functions.

Typically in multi-objective optimization, the POF is the set of all Pareto efficient possibilities. Hence, employ-
ing POF set is presented in this work and the general definition is illustrated in Eq. (1). Figure 5 shows the concept 
of POF for any two functions as f1 and f2.

Figure 5.   POF presentation for multi-objective functions as f1 and f2.
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where χ is the design space, x is the decision vector and G is a vector of m objective functions ( gi(x)).
In the presented method an oriented optimization process is constructed to optimize active and passive 

devices concurrently in terms of many specifications, presented in section “Proposed method”, for determined 
various designs. Some of the various multi-objective functions can be: multi-objective particle swarm optimiza-
tion (PSO)49, multi-objective pareto front using modified quicksort (PFUMQ)50, Thompson Sampling Efficient 
Multiobjective Optimization (TSEMO) algorithm51, MOMVO method, and so on. These multi-objective opti-
mization methods lead to optimize various nonlinear design specifications.

Step 4: Training and constructing DNNs with the multi‑objective optimization algorithms
Implementation of multi-objective algorithms requires a reliable platform. Surrogate modeling (i.e., modeling 
with artificial neural networks) is a reliable method for employing the multi-objective methods where artificial 
intelligence is one type of the surrogate modeling and includes deep learning. The use of DNN has recently 
become popular due to its merit in the accurate modeling. The regression LSTM-based DNNs are used for 
modeling the nonlinear circuits as amplifiers and antennas. As Step-2 presents, the initial configuration of active 
and passive devices are constructed. Then in the constructed automated environment, the design parameters 
such as: width (W) and length (l) of design elements, inductors, capacitors, TL sizes, etc. are altered using Latin 
hypercube sampling technique within the specific range52. Hence, large amount of data that will divided into 
training, validation, and testing data are achieved automatically as all the process is performed in an automated 
environment. This data are used for modeling the nonlinear circuits with DNNs.

Figure 6 presents the general structure of the LSTM-based DNN: it consists of the input layer, hidden layer, 
and output layer. The input layer presents the set of variables from the active and passive devices and the output 
layer presents the output specifications of designs. Since it is targeted to achieve the ready-to-fabricate layouts, 
for passing the EM simulations successfully the constrains presented in53 must be employed where TLs are used. 
For any of the passive devices, included inductors and capacitors, the constrains during the optimization can be 
provided by designers due to the availability of components in the process design kit (PDK).

The hyperparameter of hidden layers can be achieved through Bayesian optimization, rule of thumb, Thomp-
son sampling (TS) algorithm, and so on31,31. For optimizing the passive and active devices, the suitable DNNs are 
trained as presented in Fig. 6. With respect to the prepared data, the DNN is trained using Eq. (2) where XTrain 
is the sampling data and YTrain corresponds to the output responses of trained input data. The accuracy of the 
trained DNN is calculated by considering the difference between YTest (i.e., data generated through testing data) 
and YPred , that is achieved through Eq. (3).

(1)minimizexǫχ⊆RdG(x) =
[

g1(x), g2(x), . . . , gm(x)
]

(2)net =trainNetwork(XTrain,YTrain, layers, options)

(3)YPred =predict(net, XTest)
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Figure 6.   The general structure of DNN.
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Step 5: Combination of active and passive designs for generating the high performance 5G/6G communication 
system
After modeling and constructing the related DNNs for active devices (i.e., amplifiers) and passive devices (i.e., 
antennas), these devices are located in their own position in the receiver and transmitter sides. By simulating all 
these devices together, the simulation results can be altered somehow due to the existence of nonlinear compo-
nents such as transistors. Hence, some pruning iterative optimization (i.e., increasing/decreasing the values of 
parameters) can be required. The proposed optimization method can itself do this iteration optimization and 
finally provide a 5G/6G communication system that have optimal and desired output performance. As presented 
in the previous section, numerical analyzer as MATLAB can handle this iteration process for both active and 
passive devices. The final generated outcomes are the ones that any designer would wish to achieve.

Practical implementation of proposed method
In this paper, transceiver section of any communication system is designed and optimized where for the design 
of HPA and antenna, ADS and CST softwares are used, respectively. The general flowchart of the proposed 
method is presented in Fig. 7. The overall optimization process is performed on the CPU execution environment, 
with detailed information as Intel Core i7-4790 CPU @ 3.60 GHz with 64.0 GB RAM. In this platform, the total 
computational time for performing the proposed methodology is around 12 h and 35 min.

The HPA and antenna designs are configured through the BUO method, in this work. Figure 11 presents the 
general overview of the BUO method for generating the initial structure of the HPA where the optimization is 
started by one inductor-capacitor (LC) ladder and then increasing in the number of LC ladders, sequentially30,54. 
The employed transistor model is WIN 0.25 µ m GaN process and it is biased as 28 V and 100 mA/mm . For the 
antenna designs based on the BUO method, the initial structure is started with one TL and then increased in 
the number of TLs55 (see Fig. 12)54.

After generating the initial structures for both HPA and antenna, the multi-objective optimization as 
MOMVO method is employed for constructing objective functions as PoF representations for the HPA design. 
In this work, the objective functions are power gain ( Gp ), and power added efficiency (PAE) specifications of 
HPA. As Fig 9 presents the MOMVO method is employed in the output layer of LSTM-based DNN for improv-
ing the performance of HPA.The multi-objective optimization is employed for Gp , and PAE functions presented 
over the frequency band with the target of maximizing the POF of (Gp)

2·α × (PAE)2(1−α) function where α takes 
values between 0 and 1 values.

Respectively, Fig. 8 shows the general structure of LSTM-based DNN for predicting the optimal impedances 
leading to match the HPA and antenna designs in the transceiver section of 5G/6G communication systems.

For constructing these two DNNs, suitable amount of data is required. For this case, the design parameters of 
configured HPA (i.e., values of inductors and capacitors) and antenna (i.e., width and length of TLs) are iterated 
randomly and with respect to each variable, the related output specification is gathered56. The design parameters 
of each active and passive devices are iterated within the range of [ ∓5%–∓50 %] with step size of 5%. In generation 
of DNNs, 5000 data with multi-segment output responses are generated. The hyperparameters of DNNs, includes 
number of neurons and hidden layer, are achieved through the bayesian optimization57. For the HPA design, 
4 hidden layers with 200 neurons and for the antenna design, 5 hidden layers with 150 neurons are estimated. 
Figure 13 presents the normalized root mean square error (RMSE) performance for the trained HPA where it 
demonstrates that in 200th neuron it achieves 0.073 accuracy. Additionally, the loss result of trained HAP over 
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the iteration is presented in Fig. 14. The proper DNN is constructed for the antenna as well that achieves 0.081 
normalized RMSE specification in 150th neuron. For both of the DNNs, learning rate, dropout rate , and batch 
size are 0.005, 0.5, and 1, respectively.

Figure 10a shows HPA configuration with the design parameters achieved from the BUO method. Figure 10b 
presents the initial configuration with design parameters obtained from BUO method. After employing the 
proposed LSTM-based DNNs for both initial active and passive devices separately, these circuits are optimizing 
together leading into better and satisfied performance. Figure 10.c presents the overall transceiver system design 
that have passed the EM simulation; hence they can be fabricated easily. The proposed method can generate the 
ready-to-fabricate layouts where the industry companies can fabricate these layouts easily.

Figure 15a also presents the bandwidth of the optimized antenna with the various generated impedance 
from the antenna side leading to optimize the HPA with respect to these data (see Fig. 15b). The related various 
output results of the HPA design before and after optimization are shown in Fig. 16. These figures demonstrate 
that the output responses after the optimization is much more better than the results before the optimization. 
Lastly for proving the linearity performance of the proposed method, DPD performance is provided in Fig. 17.

Table 1 summarizes the various presented optimization processes in the recently published literature. By 
comparing our methodology it can be observed that: concurrently optimizing active and passive devices through 
the DNNs and multi-objective methods is presented for the very first time leading results in enhancing the overall 
performance of communication systems.
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Figure 8.   Modelled antenna with LSTM-based DNN.
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Conclusions
This work is based on presenting the all-inclusive style that (1) reduces the manual breaks, aka time-to-market, 
and (2) delivers ready-to-fabricate layouts of the device that exhibits global optimum performances. An auto-
mated optimization process for comprehensive design of high-performance amplifiers with antennas through 
LSTM-based DNNs is proposed. Firstly, an automated environment with the combination of EDA tools and 
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Figure 10.   (a) HPA design using BUO method, (b) antenna design using the BUO method, (c) optimized 
antenna with optimized HPA through proposed method.
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numerical analyzer is provided. Then, the initial structures of active and passive devices are configured through 
BUO method and afterwards the DNNs are employed for achieving the optimal design parameters. In the 
presented method, all the EM design rules are implemented which results in reducing simulation time in the 
harmonic balance simulation environment and provides ready to fabricate layout.

The output of this study can be summarized as follows:

•	 Generating the initial configurations of active and passive devices;
•	 Reducing the human interruptions and minimizing some created technical errors by designers;
•	 Reducing the time consuming EM simulation due to the implemented fabrication constraints;
•	 Generating ready-to-fabricate layout of RF integrated design which lighten the application in the industry.
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Figure 15.   Antenna specification; (a) bandwidth of antenna, (b) generated impedance from antenna side.



14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:17993  | https://doi.org/10.1038/s41598-024-68011-8

www.nature.com/scientificreports/

a)

b)

c)

Figure 16.   Overall performance with the existence of antenna and amplifier before and after optimization; (a) 
S11 , (b) gain, (c) efficiency.
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