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ABSTRACT A methodology for beam-steering using operational amplifiers (Op-amps) is presented.
Continuous steering is required in various advanced applications and its implementation necessitates
additional efforts since singularly control of the feeding of the radiators is mandatory for both phase and
amplitude. The present work proposes a technique for generating the required sequence of the feeding
signal using two Op-amps for each input port. It leads to generating incremental phases with sequential
Op-amps without any limitation in the value of the phase differences, controlled by the bias voltage applied
to the Op-amps, hence giving rise to a continuous beam-steering capability. The study case consists of
a four-stage oscillator designed for creating a sequence of signals with progressive phase shifts between
consecutive outputs. The general scheme allows continuous control of the phase differences here applied
for generating a uniform, i.e., constant signal magnitude, feeding sequence. This set of signals is then used
to feed a four-element microstrip array operating at 1.2 GHz. The effectiveness of the method is validated
by numerical simulation of the array performances. Additionally, the low power consumption of active Op-
amps, easy implementation, and high sensitivity are characteristics of the presented paradigm.

INDEX TERMS Active devices, beam-steering, operational amplifier (Op-amp), oscillator, phase
manipulation.

I. INTRODUCTION
In radio and radar systems, beam-steering refers to altering
the direction of the main lobe of a radiation pattern. This
can be obtained by changing the relative phases of the single
radiators with respect to a reference one [1], [2], [3], [4]. The
beam-steering techniques result in reducing the interference
and enhancing the gain and directivity of the antennas [5], [6],
[7]. Recently, various innovativemethods have been proposed
to achieve beam-steering and in the following, a short review
of some of them is reported.

In [4], a passive system for discrete and continuous
beam steering with planar dielectric phase transformers is
presented. A procedure based on the use of two perforated
dielectric structures collocated in the near-field region of an
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antenna having a fixed beam is discussed in [8]. In other
studies, [9], [10], a frequency-diverse array is detailed; its
working principle is based on the range- and angle-dependent
directional modulation. An optically controlled system is
described in [11] that is investigating the fast-switching
approach for orbital angular momentum. In [12], a beam-
steering control method is described leading to the design
speedy maneuvering platform for synthetic aperture radar
imaging and to reduce Doppler bandwidth. Scarborough et al.
[13] present a method for reducing the computational domain
of traveling-wavemodulated structures for beam-steering and
amplification.

Although there are various modi operandi targeting beam-
steering, the most challenging problem of generating a
continuous phase control is still not fully solved. The present
dissemination aims to contribute to this open question. To the
best of the authors’ knowledge, a beam-steeringmethodology
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with active Op-amps leading to generate various phases
with no limitation to 2N radiating elements is proposed for
the very first time. In this method, an arbitrary number
stage oscillator structure with two amplifiers in each stage
is generated for producing various sequentially incremental
phases. The achieved phases are inserted into the far-filed
analysis of a microstrip array working at 1.2 GHz. The
simulation environments for generating phases with Op-amps
and for performing the far-filed analysis are LTSpice and
Microwave Studio (Dassault Systèmes), sequentially. Even
if the case study considers a 22 configuration, the presented
method can be applied to an arbitrary number of radiators.

The paper is organized as follows: Sec. II, presents the
proposed methodology for generating the progressive phase
shift between consecutive output ports of the active circuit.
These phases represent the input for the array elements to
realize the required beam-steering. Section III is devoted to
providing the numerical validation of the proposed method,
while Sec. IV concludes the discussion.

II. PROPOSED METHODOLOGY IN A NUTSHELL
This section is devoted to presenting the proposed method
for generating the continuous phases required for the
beam-steering of a linear array. The wording ‘‘beam-
steering’’ refers to the possibility of the antenna changing
the direction of the main beam; i.e., to generate the highest
power density in a given direction in the space. Phased
array antenna [4] are a classical example. The steering is
obtained by proper selection of the phases of the single
radiators; usually, one of them is considered as a reference.
However, the overall radiation pattern, including the angular
displacement of the main beam, also depends on the
distance between the radiators, which in the simplest case is
considered equal. A constant phase difference 1φ between
consecutive radiators corresponds to a linear phase error.
Figure 1 presents the phase front of the radiated fields by
the different radiators for a uniform, equispaced array with
constant phase shifts between them. In such a situation,
according to the Fourier theory, the results will be a shift in
space of the initial pattern of the array, i.e., that obtained for
1φ = 0. Depending on the amount of steering, the beam will
also suffer some distortions; a non-symmetric pattern with
respect to the main direction and a reduction of the gain are
the most imminent manifestations.

From an application point of view, considering 2N radiators
can be useful since equal length beam forming network
(BFN) will ensure the same phase for each radiator using a
single source. In such case, each arm can be equipped with a
single phase shifter, that is individually controlled to impose
the required phase for the considered radiator. The effect of
the BFN is strongly reduced. However, this solution presents
a limitation on the number of radiators. The proposed solution
described below overcomes this problem.

Themethod proposed here consists of generating the single
phases using a sequence of cascaded Operational amplifiers
(Op-amps). A feed-back circuit applied to each Op-amp will

FIGURE 1. The concept of beam-steering: different elements are fed by
different phase signals. The representation refers to an equi-spaced array
configuration with a uniform (constant amplitude A) feeding signal with a
progressive phase between consecutive radiators (8).

give rise to oscillators that are cascaded in such a way as
to obtain a progressive summation of the single phases of
the different Op-amp outputs. The general structure of the
oscillator is presented in Fig. 3. In the electronic field, the
oscillators refer to the designs for generating the output signal
with constant amplitudes and include both active and passive
elements. The main objective of the oscillators is to convert
DC voltage into a periodic AC signal.

Applying Op-amps theory, the gain of the oscillator for a
frequency dependent feedback, can be expressed as (1):

Af(s) =
A(s)

1 − Bf(s)A(s)
(1)

For sustained oscillations, at the resonant angular fre-
quency ω = ω0 the ‘‘Barkhausen criteria’’ must be
satisfied [14]. Equation (2) expresses the condition to fulfil
this criteria where 8(ω0) is the phase of Bf(ω0)A(ω0).∣∣Bf(ω0)A(ω0)

∣∣ ej8(ω0) = 1 (2)

Figure 2 reports the concept of the methodology for
generating non-limited phases by using active Op-amps. For
generating N phases such as 8n = n8(ω0), n ∈ (0, · · · ,N −

1}, N stage oscillators is required. The proposed method is
quite general since the number of back-to-back Op-amps can
be increased without any limitation according to the number
of radiators.

In the present investigation, identical ‘LTC6269-10’ (Lin-
ear Technology) Op-amps have been considered and the
employed diodes behave as capacitors for feedback. This
model of Op-amp is selected by considering the operational
frequency band of the antenna, and by getting the help of Op-
amps’s data sheet [15].
The circuits in the blue boxes in Fig. 2, i.e., the second

Op-amp at each stage, are used for high-frequencies that
are keeping the clipping and oscillating [16]. As Eq. (3)
presents, the Rf is the feedback resistor and the Rin is the
input impedance of the amplifier. Hence for our proposed
design, R4 denotes to feedback resistor and R3 affects the
input resistor of the design. For this case, R4 must be larger
than R3 as for Eq. (3).

Vout = −IinRf = −

(
Rf
Rin

)
Vin (3)
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FIGURE 2. Proposed Op-amp based phase generation as a method for beam-steering.

FIGURE 3. General concept of oscillator structure with a voltage gain of
‘‘A’’ and a positive feedback network with feedback gain of ‘‘B.’’

In our design R6 is the input impedance of the microstrip
antenna, here considered equal to 50�. However, a dispersive
value, reporting the actual active impedance of the single
patches can be incorporated into the model.

III. VALIDATION OF THE SUGGESTED PARADIGM
This section presents the practical simulation results of the
proposed methodology leading to generating non-limited
phases through Op-amp bases phase shifters. Successively,
these values are considered in an electromagnetic analysis.

In this work, the design of beam steering at 1.2 GHz
frequency is targeted. For this purpose, a 4-element antenna
array working at 1.2 GHz has been designed (see Fig. 4 for
the sketch and the Computer-Aided Design (CAD) model).
It includes four square patch radiators, and each of them is fed
individually by a coaxial cable. The considered substrate is
characterized by the following specifications: tanα = 0.044,
εr = 1.3, and a thickness of 0.17 mm.

Separately, a four-stage oscillator has been implemented.
It provides the four incremental phases that have been
considered in the analysis. For this case, four-stage amplifiers
are sequentially connected; feedback that connects the output
to the input is also present. In simple words, we use
four-stage oscillators to generate 8(ω), 28(ω), 38(ω), and
48(ω) phases, respectively. The overall structure is biased
with two DC voltage sources namely: V+ and V−. For
the determined design goals, i.e., having beam-forming
at 1.2 GHz and generating four sequential phases, the
optimal design parameters according to Eqs. (1-2) have been
determined. Table 1 presents these optimal design parameters
for generating four sequential phases at 1.2 GHz.

Regarding Eq. (3), we assume that R4 and R3 are 1.6 k�
and 0.5 k�, respectively. Additionally, R5 is determined to be
1 k� as it provides well-performance to the whole design in
terms of sensitivity.

FIGURE 4. Four antenna arrays that are feeding by coax cable sketch
(top), CAD model of the antenna with patches, and individual coaxial
feedings (bottom).

TABLE 1. Optimal values of proposed beam-steering through active
Op-amps presented in Fig. 2.

In the ‘‘s’’ domain, Bf(s) is defined as
(

s + RinC
1 + sRinC

)4

where

Rin is the input impedance of each stage of oscillator. Indeed,

Af(s) is also defined approximately by the
R4

R3
. For satisfying

the condition in Eq. (2), C2 is determined to be between
40 nF - 60 nF; here we prefer using the smallest value
capacitor. Lastly, for having the oscillation the R2 = 2R1
constrain must be fulfilled.

After inserting the optimal design parameters, the whole
Op-amp-based phase shifter has been simulated. Based on
the simulation output, firstly T1, T2, T3, and T4 have been
extracted that represent the time value at the maximum
magnitude for first, second, third, and fourth stages. They
are used to determine the phases associated with the delay
of the signal. Figure 5 (top) presents the simulation results
of the Op-amp-based phase shifter; output voltages, including
the transient time, between 10 (ns) and 40 (ns) are reported.
The plot illustrates the various output specifications namely
as Vout1, Vout2, Vout3, and Vout4. For better visualization,
Fig. 5 (bottom) shows in detail the magnified version of Fig. 5
(top) in the 30 ns to 33 ns interval. Continuously, Tab. 2
reports the time differences between the sequential outputs
namely T2 − T1, T3 − T2, and T4 − T3 for four different DC
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FIGURE 5. Performances of the proposed Op-amp based phase delay
generation. (0-40 ns (top) and zoom for the 30 ns - 33 ns interval
(bottom).

TABLE 2. Time delay of the different outputs for various values of the
control voltages; units are (V) and (ns).

voltages as 7.5 V, 9 V, 10 V, and 12 V. As expected, the time
variation between sequential outputs are approximately the
same for all values of the control voltage.

After the determination of the time-variant, the phase
variant is achieved from various DC voltage sources. For this
case, equation 18 = 360f1T (◦) is used, where f indicates
the frequency, and 1T is the time variance (i.e., Tn − Tn−1).
Table 3 presents the various achieved values for the first,
second, third, and fourth phases, respectively, for various
control voltages. These phases are set in the Microwave
Studio (Dassault Systèmes) post-processor utility and used to
excite the microstrip array elements under unitary amplitude
conditions. The main lobe direction has been monitored.
As expected, the phases for each voltage are increasing
sequentially which results in incremental steering of the main
lobe direction. Figure 6 presents the radiation pattern of the
antenna in Fig. 4 for different control voltages present in
Tab. 3.

TABLE 3. Summary of the beam steering performances for different
control voltages and associated phases applied to the individual radiators
@ 1.2 GHz. The 1st radiator is considered as reference.

FIGURE 6. Directivity for various DC supply voltages.

In the proposed design, by altering the DC supply voltages
the phases are also differing respectively. For instance,
as Tab. 3 shows, when a DC supply voltage of 9 V is
considered the circuit generates 0, 42.78◦, 101.61◦, and
147.08◦ phases, respectively. By augmenting the voltage
(see row for 10 V in Tab. 3) the phases are altering and
increasing: in particular 0, 56.68◦, 106.52◦, and 173.18◦

phases have been obtained. Additionally, Tab. 3 proves the
accuracy of the method whereby by altering the phases, the
main lobes are also controlled in a desired way. One can
note, that as expected, the increasing tilt angle introduces
a variation at side-lobe level as well. Controlling of such
dependence can be incorporated in the generation of the
phase values, and represent one of the future aspects.
These increments result in the steering of the main lobe
direction of the considered array. The corresponding steering
angles are reported in the last column of Tab. 3. For the
circuit designs including Op-amps, considering signal-to-
noise ratio (SNR) specification plays an important role. The
selected Op-amp (here, ‘LTC6269-10’) includes a FET-input
operational amplifier with low input bias current and low
input capacitance. Hence, it characterizes low input-referred
current noise and voltage noise [15]. Figure 7 presents the
overall SNR performance of four-stage amplifiers in which
the SNR value varies between 64.7-71.8 dB for the voltages
from 7.5-12 V.

Additionally to underline the novelty of the proposed
method, Tab. 4 is provided. As it is clear, the presented
method in this study is proposed for the very first time in the
literature leading to the employ of active devices in the field
of antenna technology and beam-steering methods.
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TABLE 4. Summary of various reported beamforming techniques in the literature.

FIGURE 7. SNR value versus voltages.

IV. CONCLUSION
A method to generate continuous beam-steering for a linear
array has been presented. For the very first time in the
literature, this dissemination presents a novel concept in
creating various continuous phases through active Op-amps.
The design of the proposed active RF circuit incorporating
an oscillator and clipping has been presented; it allows
for generating various phases continuously. The paradigm
permits sequential connection of a non-limited number of
oscillator stages hence controlling an arbitrary number of
radiators. Using Op-amps leads to having few external
components with reduced design size. For validating the
proposed procedure, a four-stage oscillator leading to gen-
erating four sequential phases has been presented and these
phases are controlled by changing the DC supply voltage. The
simulation results verify that the main lobe direction of the

considered printed linear patch array is incrementally increas-
ing for crescent DC supply voltage. The presented method
in this study is suitable and adaptable to be implemented for
all larger antenna arrays by designing a compatible Op-amp-
based phase generator in terms of frequency and operational
bandwidth. Additionally, by paying attention to the operated
bandwidth, various strategies for enhancing the SNR value
can be executed.
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