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Abstract—Cloud computing has transformed the landscape of
application delivery, offering an enormous pool of devices with
a wide-spread geographical distribution. In this context, liquid
computing is a novel paradigm that aims to avoid that avail-
able resources are underutilized, by facilitating their seamless
sharing among different tenants and administrative domains.
Nevertheless, liquid computing introduces new security chal-
lenges, particularly related to network isolation, which traditional
approaches are inadequate to address. Therefore, this paper
proposes a security orchestrator to automate the configuration
of network isolation primitives across a multi-domain and multi-
tenant cloud environment, simplifying the implementation of
security patterns like zero trust and least privilege. The proposed
solution is intent-driven, because users define their requirements
in terms of desired and prohibited network communications
through a user-friendly language. In our implemented proposal,
intents expressed by different users are harmonized to avoid
discordances among them, and then they are translated into
Kubernetes Network Policies as isolation primitives.

Index Terms—cloud security, Kubernetes, security automation

I. INTRODUCTION

Cloud computing is a revolutionizing paradigm that re-
shaped the traditional ways to deliver applications. Its main
principle consists in enabling network access to a shared pool
of computing resources that can be rapidly provisioned and
released with minimal management effort, thus allowing to
build distributed systems reaching world-wide scale. In order
to further expand this feature, several initiatives are research-
ing a way to avoid that cloud servers use less computational
resources with respect to what they have been equipped with,
as they often leave a large portion of the allocated resources
unused. A noteworthy concept is liquid computing [1], a novel
cloud paradigm that allows a seamless sharing of resources
(e.g., network, computation, data) between different tenants
and administrative domains, thus generating a seamless pool
of resources that can be borrowed or lent in a dynamic way.
Despite the many advantages of this approach in terms of
scalability and costs [2], it introduces additional security risks
and an increased complexity in security management. In fact,
in such multi-cloud and multi-domain scenario, each physical
node could be possibly shared by multiple and heterogeneous
users belonging to different administrative domains.

A significant problem to be addressed in the context of
liquid computing is network isolation. This problem has been
often overlooked in traditional cloud environments, despite its
relevance. As reported in [3], most of the analyzed clusters

(>90%) have not configured any Network Policy in their
namespaces, lacking an important isolation layer that could
prevent attackers from performing lateral movements within
the cluster. All the more, the problem of network isolation
cannot be neglected anymore in liquid computing, because
the conventional notion of a physical boundary that must be
protected is no more valid. The single physical server is sub-
stituted by the virtual cluster, which describes the concept of a
physical machine that is extended to one or more remote ones
by buying resources from them. The boundary of this virtual
cluster is a dynamic virtual boundary capable of shrinking and
expanding in a “liquid” way.

Specifically, ensuring network isolation in the shared re-
source continuum serves multiple purposes. First, it is neces-
sary to protect the hosting cluster against potential harm from
guest applications deployed by a different tenant, possibly
belonging to a different administrative domain. Second, it is
equally important to protect guest applications against poten-
tial stealing of data or code or unauthorized interference from
the host. Third, there is the need to allow application owners to
specify precisely what interactions their applications may have
with their environments, and what the hosting environments
are willing to allow. However, no solution is available in
literature to address network isolation in liquid computing,
so currently these three goals have not yet been achieved.

In view of all these considerations, this paper proposes the
design of a security orchestrator to automate the configura-
tion of network isolation primitives, i.e., Kubernetes Network
Policies, across a multi-domain and multi-tenant cluster, so
as to ease the implementation of common security patterns
such as zero trust and least privilege. The proposed solution
is intent-driven, because desired and prohibited network com-
munications are expressed by the user with a user-friendly
high-level language that does not require excessive technical
knowledge, and then these intents are automatically translated
into the specific low-level configurations used for enforcement.

The remainder of this paper is structured as follows. Section
II discusses related work. Section III describes the proposed
approach, detailing its main features. Section IV discusses how
this approach has been implemented and validated. Section V
concludes the paper and outlines future research work.

II. RELATED WORK

Network security automation has been explored in recent
years to make use of the improved dynamism of virtual



networks, as shown in a comprehensive analysis of the state of
the art about this topic [4]. Specifically, some studies, such as
[5]–[8], combine configuration automation with policy-based
management, an approach that brings different benefits, such
as reducing the risk of misconfigurations and introducing the
usage of high-level intents. However, those solutions cannot
be applied to cloud computing environments to configure it so
as to provide network isolation.

Intent-based security automatic approaches within the cloud
thus represent a natural follow-up to what has already been
investigated in that field. In this context there have been
different studies trying to automate security related tasks.
In particular, a relevant number of solutions [9]–[11] have
been proposed for the automatic verification of user-defined
security intents over formal models generated starting from
configuration files of a cloud system. Other studies [12], [13]
focus on the extraction of an enriched model from Kubernetes
configuration files, so as to use it to solve different automated
reasoning problems, such as attack graph generation and threat
analysis. However, all of them are applying automation only
for the verification and compliance of the security posture
of the system, lacking the ability of automatically generate
a security configuration from scratch. From this point of
view, there are just few studies [14]–[16] that try to automate
the enforcement of low-level security configuration aspects
starting from the analysis of running systems. Nevertheless,
none of them is providing a solution capable of integrating
higher-level security features, e.g., Network Policies, they are
all missing the support for user-defined intents, and they are
not designed to work with the liquid computing paradigm.

III. THE PROPOSED APPROACH

In a multi-domain and multi-tenant cloud environment,
the resource sharing process determined by liquid computing
involves two roles: the consumer and the provider. The former
uses resources of a remote cluster, and the latter supplies
resources to other clusters. A resource, which resides phys-
ically in the provider’s cluster, once shared will be seen by
the consumer as part of their own local cluster. The remote
resources can be consumed in a transparent way, meaning that
any workload targeting these resources will be automatically
executed in the hosting cluster (i.e., the provider’s remote clus-
ter) and will be seen as a workload hosted by the provider. The
technology enabling the creation of this seamless continuum
of resources is Liqo [17], and the process of connecting two
clusters is called peering. Instead, the process of allocating a
workflow in a remote cluster is called offloading.

In this context, this paper proposes an automatic approach
for the enforcement of a network boundary between the
consumer and the provider, enabling both parties involved
in the peering to define finely-grained intents to request
and authorize connections. Specifically, at the beginning of
the process, different sets of intents are exchanged during
the offloading (Subsection III-A). Then, an harmonization is
performed between the intents defined by both tenants taking
part in the peering to intelligently select the resulting set of

approved intents, which are later translated and enforced in
the appropriate locations (Subsection III-B).

A. Intents

In defining the types of intents a user can formulate as input
to our proposed approach, we considered security isolation re-
quirements that are specific to liquid computing. For example,
a user may have the need of allowing the communications
for pods in the same virtual cluster but distributed over
many physical clusters. This is the deployment scenario called
“elastic cluster”, which could be adopted to absorb a cloud
bursting, during which some pods are moved to a remote
cluster due to the physical limitations of the one on premise.
As an another example, a user may also have to restrict
communications for pods belonging to different virtual clusters
but sharing the same physical one. This other situation is
motivated by the principle of data gravity, requiring that the
processing is moved where the data is located for improved
latency, or also to be compliant with regulation policies like
GDPR, which requires that data cannot be moved outside a
specific geographical location.

In order to express all these possible scenarios, we have
envisioned three main types of intents a user may express, each
tailored to achieve different objectives and definable only if the
user has a certain role, i.e., consumer or provider. When users
assume the consumer role, their main security objective is to
safeguard communications within their local cluster (Private
intents) and protecting communications among resources of-
floaded to remote clusters (Request intents). Conversely, when
users assume the provider role, their main security goal is to
limit communications involving the hosted resources on the
one hand, its own services or the external network (i.e., the
Internet) on the other hand (Authorization intents).

Fig. 1 presents an example of the different communications
that could be expressed with these three types of intents. Each
sub-figure includes two thick-bordered boxes representing two
different physical clusters owned by the blue and yellow
tenants, some pods represented by filled boxes, and a virtual
cluster owned by the blue tenant represented by a region
with blue background that spans the blue physical cluster (the
home portion of the virtual cluster) and the yellow cluster (the
offloaded portion of the virtual cluster). The different commu-
nications are represented by arrows. Given such example, the
possible intent types are explained in the following:

• Private intents: they are related to communications hap-
pening within the virtual cluster, i.e., intra-virtual cluster,
involving both local and remote resources. These are not
subject to the authorizations of the host(s), following the
principle that each user should have unlimited control
over his own resources. Some possible communications
expressed with Private intents are represented in Fig. 1a.

• Request intents: they are related to inter-virtual cluster
communications, i.e., those that are crossing the virtual
border of an extended cluster. These could be config-
ured to target services offered by the hosting cluster or
addresses on the external network. Some examples are



(a) Private Intents (b) Request Intents (c) Authorization Intents

Fig. 1: User-defined sets of intents

shown in Fig. 1b. Within these intents, the consumer
could tune some parameters to refine his will in terms
of isolation with respect to the hosting cluster (e.g., to
accept or refuse to be monitored by the provider).

• Authorization intents: they are defined by each user to
represent their authorization policies with respect to any
possible guest. Their scope is to regulate the inter-virtual
cluster communications for all virtual clusters that are
hosted in the local physical cluster. Specifically, they
target two communication types:

1) DeniedCommunications that must be blocked or fil-
tered for all hosts. For instance the provider could
choose to deny the connections to some blacklisted
URLs, or to a subset of his resources.

2) MandatoryCommunications that must be injected to all
hosts. A possible usage is to whitelist the communi-
cations needed for the provider to collect the logs of
each hosted application.

Fig. 1c presents some examples of communications that
can be expressed with Authorization intents.

All these intents can be expressed by the user with a format
that provides a similar degree of expressiveness as the one
achieved with selectors in Kubernetes Network Policies, so as
to allow the specification of the information needed to select
specific traffic. The envisioned structure is the following one:
“from SRC to DST, protocol[: port[−endPort]]”.

• SRC and DST can be either a pod or a group of pods
with the same label and an associated namespace, or an
address or a group of addresses defined through CIDR
(at most one could be a CIDR address). For them, the
wildcard symbol “*” can be used to target the whole
(virtual) cluster if “*” is the value assigned to both
pod and namespace, or to select all pods in a specific
namespace if it assigned only to the pod.

• protocol can be any transport protocol (TCP, UDP, SCTP,
etc.) or the value “ALL” to represents all of them.

• port can be a port, or a range of ports.
Finally, the Request and Private intents can be expressed

only in whitelisting, so as to be compliant with the default
behavior of Kubernetes Network Policies, which define the
set of permitted communications and all the other ones are
consequently blocked. Instead, the Authorization intents allow
for more expressiveness and flexibility. The DeniedCommu-
nications are expressed with a blacklisting approach, i.e., the

Fig. 2: Schema of the intent-based network isolation workflow.

user can define only denied communications and the remaining
ones are allowed. Conversely, the MandatoryCommunications
are simply allowed communications, since they express the
connections that must be imposed to all guest.

B. Workflow

The workflow envisioned for the orchestration of network
isolation intents is integrated in the resource acquisition
process. During this operation, the offloading cluster, i.e.,
consumer, and the hosting cluster, i.e., provider, interact ex-
changing the previously defined sets of intents and performing
the harmonization, translation, and enforcement. In general,
this process can be performed multiple times, one for each
candidate provider, with the scope of finding the best one
with respect to the consumer’s intents. The core process is
the harmonization, which produces a new set of Harmonized
intents by comparing the provider’s and consumer’s sets,
solving all the detected discordance between them. The result
of the harmonization is used by the consumer to choose the
compatibility level of the provider accordingly to the approved,
forced, or denied intents. The user could combine this result
with other parameters, coming from heterogeneous sources,
such as latency, geographical position, or energy consumption.
However, for the scope of this article, the consumer chooses a
provider only based on the offered set of network authoriza-
tions and the compatibility with his defined intents.

Fig. 2 graphically represents the workflow employed in the
situation of a peering request performed by a consumer cluster
towards a single provider cluster. The process starts when
the consumer creates a request to acquire some resources,
either computational resources (e.g., VMs, Kubernetes Slice)
or services (e.g., database, training data-set). The request is
enriched with the sets of user-defined Private and Request



intents, as explained in Section III-A. The local orchestration
module handle this request and it is responsible for contacting
all the providers to gather their offer, which is enriched, among
the others, with the set of Authorization intents. For each
candidate, the consumer must perform the harmonization, and,
once a specific provider has been selected, the intents are
translated into low-level configurations and properly enforced.
The modules handling these two phases are presented in
greater details in the following.

1) Harmonization: An algorithm has been designed to
perform the harmonization between different sets of intents
established by the users engaged in a peering process, pro-
viding an intelligent resolution of the possible discordance
between them. The general principle behind this algorithm
is that the hosting cluster has the decision power: it chooses
which Request intents, defined by the consumer, can or cannot
be enforced while possibly forcing some new ones. Anyhow,
the host can impose his authority only over the inter-virtual
cluster communications, while the intra-virtual cluster com-
munications, even if happening on the host’s cluster, should
be fully determined by the consumer who acquired the usage
of those resources and has the right to configure it freely. In
this context, a discordance arises when an intent defined by
one user is not authorized or coherent with intents defined by
another user with whom peering is requested.

These discordance can be classified in three main types,
related to three possible cases: 1) when a Request intent
defined by the consumer is not (fully or partially) authorized
by the Authorization intents of the provider; 2) when a Manda-
toryCommunication defined by the provider’s Authorization
intents is not satisfied (fully or partially) by the Request
intents of the consumer; 3) when a Request intent defined
by the consumer has been authorized, but does not have a
symmetrical Request intent in the provider. This last case is
needed to have coherence between the consumer and provider
intent sets, since it is not enough that the consumer’s Request
intent is authorized but a similar provider’s intent should be
defined in order to fully allow the communication. These
three discordance types are represented in Fig. 3 through an
example. For the first case, a user performing the offloading is
requesting that his offloaded entity A can contact a malicious
website, but the Authorization intents defined by the hosting
user deny all connections to the Internet for all offloaded pods,
thus causing a discordance. Second, the provider defined a
MandatoryCommunication from his resource M, a monitoring
endpoint, to all offloaded pods. This is not yet satisfied by the
intents defined by the consumer, causing another discordance.
Third, the consumer requests that the same offloaded entity
A can contact entity B, which is part of the hosting cluster.
However, the hosting user has not defined an intent allowing
B to be contacted by A, thus resulting in another discordance.

2) Translation: After the Harmonized set of intents has
been computed, and the consumer has selected a provider, the
translation module translates the high-level intents, agnostic to
the actual implementation, into the low-level configuration of
the Kubernetes Network Policies required to enforce network

Fig. 3: Example of possible discordance between intents.

Fig. 4: Example of translation of an intent.

isolation between workloads. The complexity of translation
depends on the selected CNI (e.g., not all CNI support cluster-
wide Network Policy, thus requiring in some cases a one-
to-many translation for the intents). The presence of this
translation module is crucial for the interoperability with
multiple clusters that are possibly using multiple technologies.
Different version of this translation module could adapt the
solution to different vendor-specific solutions, e.g., different
CNIs and Network Policy formats. Finally, this module is also
responsible for the enforcement of the generated Kubernetes
Network Policies by communicating with the API server of
the cluster hosting the targeted resources. Fig. 4 represents an
example of such workflow considering a single intent that is
translated to two Network Policies, one allowing the ingress
traffic at the destination from the source, and another allowing
the egress traffic for the source toward the destination.

IV. IMPLEMENTATION AND VALIDATION

The proposed approach has been implemented as a proof-of-
concept Java module, which authenticates itself and communi-
cates with the API server of different Kubernetes clusters. For
what concerns the CNI, we implemented a translator working
with Calico because of its full support to the native Kuber-
netes Network Policy format. Moreover, the security intents
are expressed using an extended version of the MSPL (i.e.,
Medium-level Security Policy Language) language, which is
characterized by a generic syntax that abstracts the vendor-
specific configuration. This choice is motivated by the fact
that MSPL has already been successfully used and validated
by multiple European research project, e.g., ANASTACIA and
SECURED, and research papers [18], [19].

This implementation has been validated with different sce-
narios and sets of user-defined intents in the context of the EU
project FLUIDOS. However, for the scope of this paper, we
present a representative validating use case.

The scenario considered in the use case is shown in Fig. 5.
It is characterized by two domains, represented by the cluster
with a blue border and the one with an orange border, each



Fig. 5: Example scenario.

Fig. 6: Simplified visualization of intent sets.

hosting a different service, composed of multiple applications.
The first hosts a simplified e-commerce service composed of
four applications. The second hosts a warehouse management
service, composed of two applications, and a monitoring
agent to keep track of cluster events and application-specific
logs. All the resources are labeled at the application level
as represented within the image, which means that all pods
running the same application will have the same label.

In this scenario, the user of the blue cluster wants to use an
external warehouse service, which is offered by the user of the
orange cluster. The goal is to handle the resource acquisition
process and automatically enforce isolation between the two
tenants over the border of the virtual cluster, represented with
a light blue line extending from the physical cluster of the
consumer to the remote one of the provider. At the same time,
some connections should be opened for different reasons:

• the consumer wants to use the Internet connection of the
hosting cluster for the application handling payments,
which must be able to communicate with the external
bank’s payment network.

• the consumer wants to limit the communications with
the provider’s service, i.e., warehouse management ser-
vice, only to a specific application, i.e., order placement,
blocking all the others communications.

• the provider wants that each application in their cluster,
even the guest ones, can be contacted by the monitoring
agent to retrieve application’s logs.

All the other communications are by default blocked, follow-
ing the least privilege principle. Note that for the consumer
only the Private and Request intents are important, whereas

Fig. 7: Result of type-1 discordance resolution.

Fig. 8: Result of type-2 discordance resolution.

for the provider only the Authorization and Request ones. The
complete set of intents defined by both parties is presented in
a simplified form in Fig. 6.

Starting from this initial situation, the user sends a request
for the resources and the service to an orchestration agent. The
offers of all possible providers are collected and the consumer
has to pick one of them. This process might involve many
factors, but the only one we consider in this case is network
authorizations. In order to compute the compatibility of the
provider’s intents with his set, the consumer has to perform the
harmonization of the two. Within this use case, the consumer
defined two Request intents:

1) allow traffic from app : order placement to all destina-
tions in the hosting cluster ∗ : ∗, any port and protocol.

2) allow traffic from app : bank payment to all IP ad-
dresses, i.e., 0.0.0.0/0, any port and protocol.

In the harmonization process, each type of discordance is
solved separately. Starting from the first discordance type,
the first intent is overlapping with the authorizations de-
fined by the provider, which exposed only the application
app : product catalogue at port 80 TCP and blocks all the
other communications. Moreover, the second intent is partially
overlapping with another Authorization intent of the provider,
which blocks the 0.0.0.0/4 range of addresses. The result of
this passage is shown in Fig. 7. Continuing with the second
discordance type, the provider defined only one intent within
the mandatory list of communications. Moreover, that intent
describes a communication that has no intersection with the
ones in the current Harmonized set of consumer’s Request
intents. Consequently, the mandatory communication is added
to the final Harmonized set with no modification. This is
shown in Fig. 8. Then, concerning the third discordance type,
as initially the set of provider’s Request intents is empty, the
consumer’s Request intents are simply opportunely modified
and added to the provider’s set because there is no possible
overlap. This is represented in Fig. 9.



Fig. 9: Result of type-3 discordance resolution.

Fig. 10: Resulting Network Policy.

After having performed the same harmonization procedure
for each possible candidate provider, the consumer has to
pick one of them. Once this has been done, the peering is
completed and the harmonized set is passed to the translator
which must enforce the isolation as soon as the application
are deployed in the remote cluster. Taking as example just
the first harmonized Request intent, i.e., allow communication
from app : order placement to app : product catalogue at
port 80 TCP, its translation into a Network Policy is shown
in Fig. 10. This file is then pushed to the API server of the
provider cluster for the actual enforcement.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel approach for the automated
orchestration of network isolation in a liquid computing
environment. By using user-defined intents, the approach
streamlines the configuration of network security primitives
across multiple clusters, simplifying the implementation of
common security patterns. The proposed approach has been
implemented and validated on different use cases, showing its
applicability to the presented problem.

Future work will focus on refining the capabilities of the
security orchestrator. This includes the integration of the
solution within the resource acquisition workflow, currently
under development within the FLUIDOS project, to ease the
lease of resources. Finally, we plan on conducting further
validation to ensure the effectiveness and scalability of the
solution in real-world deployments.
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