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ABSTRACT: The wide variation of nanomaterial (NM) characters (size, shape,
and properties) and the related impacts on living organisms make it virtually
impossible to assess their safety; the need for modeling has been urged for long.
We here investigate the custom-designed 1−10% Fe-doped CuO NM library.
Effects were assessed using the soil ecotoxicology model Enchytraeus crypticus
(Oligochaeta) in the standard 21 days plus its extension (49 days). Results
showed that 10%Fe-CuO was the most toxic (21 days reproduction EC50 = 650
mg NM/kg soil) and Fe3O4 NM was the least toxic (no effects up to 3200 mg
NM/kg soil). All other NMs caused similar effects to E. crypticus (21 days
reproduction EC50 ranging from 875 to 1923 mg NM/kg soil, with overlapping
confidence intervals). Aiming to identify the key NM characteristics responsible
for the toxicity, machine learning (ML) modeling was used to analyze the large
data set [9 NMs, 68 descriptors, 6 concentrations, 2 exposure times (21 and 49
days), 2 endpoints (survival and reproduction)]. ML allowed us to separate experimental related parameters (e.g., zeta potential)
from particle-specific descriptors (e.g., force vectors) for the best identification of important descriptors. We observed that
concentration-dependent descriptors (environmental parameters, e.g., zeta potential) were the most important under standard test
duration (21 day) but not for longer exposure (closer representation of real-world conditions). In the longer exposure (49 days), the
particle-specific descriptors were more important than the concentration-dependent parameters. The longer-term exposure showed
that the steepness of the concentration−response decreased with an increased Fe content in the NMs. Longer-term exposure should
be a requirement in the hazard assessment of NMs in addition to the standard in OECD guidelines for chemicals. The progress
toward ML analysis is desirable given its need for such large data sets and significant power to link NM descriptors to effects in
animals. This is beyond the current univariate and concentration−response modeling analysis.
KEYWORDS: machine learning, soil, ecotoxicology, safer and sustainable-by-design (SSbD), advanced materials

Nanomaterials (NMs) enter the market at an unprecedent pace,
as never seen before for any class of chemicals.1−3 At this pace, it
is difficult to timely evaluate their risks, let alone that it is
virtually impossible to assess all variations of existing NMs. As
any other material, NMs can pose serious threats to human
health4 and to the environment.5−7 The (eco)toxicity of NMs,
when evaluated, is mostly done for one or a few NMs at a time
and based on one or a few species/cell lines. This is well-known
to be a rather time-consuming and low-efficient process. Hence,
it is important to progress toward a modeling-based approach
and develop good predictor-based case studies to support the
transition. Data modeling can be done via different methods,
e.g., quantitative structure−activity relationship (QSAR)
analysis and machine learning (ML), among others, where
many material features can be analyzed at the same time and
used to predict toxicity.8−11

In recent years, ML algorithms have emerged as powerful
tools in the field of nanotoxicology, offering a promising avenue
to predict and analyze the toxicity of NMs more efficiently and

accurately.12 ML enables toxicity prediction by training models
on data sets of NMs with known outcomes, making them well-
suited for the multifaceted nature of NM toxicity.13 A diverse
range of ML attempts have been made in the context of
nanotoxicology, contributing to our understanding of the
relationships between NM properties and their potential effects
on living systems.14,15

ML models can utilize physicochemical and structural
properties, such as particle size, surface charge, and composition,
to estimate the likelihood of adverse effects.9 Additionally, ML
techniques have been exploited for establishing QSAR, shedding
light on the molecular mechanisms underlying toxicity and
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guiding safer-by-design NM.16 Furthermore, ML can address
challenges in data imputation and integration, facilitating
comprehensive and reliable toxicological analyses.17 ML has
been also used to model adverse outcome pathways, identify
critical pathways through which NMs exert adverse effects, and
explore clustering and pattern recognition to identify distinct
toxicity pathways and correlations with physicochemical
properties.18,19 ML also has the potential to enable cross-
species toxicity extrapolation, bridging knowledge gaps between
different organisms and facilitating risk assessment for humans
and other species.20 Last, feature selection and importance
analysis can be employed to identify key descriptors influencing
NM toxicity and enhance model interpretability.21 One way to
sort out the descriptors of toxicity of NMs from a data set using
ML is to identify the descriptors closely associated with
biological endpoints and then determine the strength of
association of the identified descriptors with the respective
biological endpoint.22 Therefore, ML holds significant potential
in nanosafety, but addressing challenges is crucial to ensure
reliable and applicable models.23 A major challenge is the
availability and quality of toxicological data for NMs, where
insufficient or inconsistent data can hinder accurate predictions

and introduce biases. Interpreting ML predictions is another
critical issue as many algorithms operate as black boxes: ensuring
model interpretability is essential to gain mechanistic insights
into NM toxicity and building trust in predictions. Moreover,
the complex interactions between NMs and biological systems
lead to nonlinear toxicity responses, challenging traditional
linear models. To achieve broader model applicability across
different types of NMs and exposure scenarios remains a
challenge. Careful consideration of data set composition and
feature representation during model training is essential to
enhance generalization.24

Studies performed under comparable conditions and
including many NMs are necessary to derive valid models, but
these studies are seldom available, although they are particularly
relevant. To pursue such a quest, libraries (sets of custom-
designed NMs with varying characters, e.g., size, while keeping
other variables constant) can be used as they provide large sets of
character-dependent descriptors that can be used for modeling
toxicity when tested under uniform conditions. Data modeling
anchored to NM libraries testing has previously allowed the
identification of specific NM properties that trigger toxic-
ity15,25−27 and also identified the biological mechanisms of

Figure 1. Physicochemical characterization of pure and Fe-doped CuO nanoparticles. (A) XRD patterns of Fe-doped CuO homologous series. The
data show that the patterns are slightly shifted with doping (figure inset, top) corresponding to the linear decrease of the c-parameter of the CuO unit
cell (figure inset, bottom). (B) EDX analysis of the dry powder. The particle composition reasonably agrees with the initial amounts of Cu and Fe in the
feed solution prepared for combustion. The C-signal observed is due to C in the TEM grid. (C) Low-resolution (top row) and high-resolution (bottom
row) of pure and doped particles. The data show that the agglomerated particles are highly crystalline.
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response.28 Hence, such a combination of uniform experimental
data with computational modeling can lead to the reduction in
numbers of tests required for hazard assessment.

In the present study, we investigate the bioactivity of an Fe-
doped CuO NM library based on in vivo toxicity assays. Effects
were assessed using the soil ecotoxicology model Enchytraeus
crypticus (Oligochaeta) based on the Organization for Economic
Co-operation and Development (OECD) standard 21 days
enchytraeid reproduction test (ERT)29 and a standard extension
up to 49 days. ML modeling was used to analyze the large data
set (9[NMs]*68[descriptors]*6[concentrations]*2[exposure times: 21, 49 days]-
*2[biological endpoints: survival, reproduction]). Enchytraeids are widely
distributed in soils worldwide, where they contribute to
improving the soil structure and organic matter decomposition.
Further, they are the most important organisms in many soil
habitats dominant in biomass or abundance.30 The Fe-CuO NM
library studied was a custom-designed combinatorial library in
which CuO was doped with 1−10% Fe in a flame spray pyrolysis
reactor.27 The library (pristine particles) was fully characterized
by X-ray diffraction (XRD), Brunauer−Emmett−Teller (BET)
method, Raman spectroscopy, transmission electron micros-
copy [TEM: high-resolution TEM and energy filtered TEM],
and electron energy loss spectroscopy27 in addition to dynamic
light scattering (DLS) and zeta potential.

Fe doping constitutes a safer-by-design alternative to the toxic
CuO NM, as demonstrated by a progressive decrease in
cytotoxicity to BEAS-2B and THP-1 cells as well as an
incremental decrease in the rate of hatching interference in
zebrafish embryos.27 A decrease in dissolution in the aqueous
test media (and Cu+/2+ release) with increase in Fe% was
associated with the decrease in toxicity.27 However, no such
information exists for the soil compartment, and the toxicity to
soil organisms is unknown. The aims of the present study are to
assess the environmental toxicity of a fully characterized Fe-
doped CuO NM library and to identify the key NM
characteristics responsible for the toxicity, the latter using ML
modeling to analyze the large data set obtained.

■ RESULTS
Material Characterization. The flame-made homologous

series of Fe-doped CuO particles were analyzed using advanced
characterization techniques.31 The high intensity X-ray
diffraction patterns of pure and Fe-doped CuO indicate highly
crystalline particles (Figure 1A).

The BET primary particle sizes (dBET) of pure and Fe-doped
CuO were found to be in the range of 10−14 nm (see Table 1)
indicating ultrafine nature of the particles (for full details, see
27). The powder XRD patterns of pure and Fe-doped

nanoparticles were Rietveld refined (ICSD 69757, space group
C1C1). The X-ray data showed (1) a decrease in the X-ray
intensity (Figure 1A), (2) a slight peak shift with Fe doping
(upper inset in Figure 1A), and (3) high crystallinity with
crystallite sizes in the range of 10−12 nm (Table 1).

While the refinement of XRD patterns of Fe-doped CuO was
performed with the pure CuO cif file, reasonable fitting of the
refined patterns indicates Fe incorporation going beyond the
known solubility limit. To verify high doping possibility, the c-
parameters of pure and Fe-doped CuO were plotted against Fe
content. The almost perfect linear behavior for all doping agrees
with Vegards rule (see lower inset in Figure 1A). The pure and/
or doped particle composition was investigated using energy-
dispersive X-ray spectroscopy (EDX), and the data showed
precise amounts of Fe and Cu that were added in the feed
solution before flame combustion (Figure 1B). TEM of pure and
Fe-doped CuO homologous series shows spherical particles and
very similar morphology with a particle distribution window of
5−20 nm (Figure 1C, upper and lower columns). The images of
the particles confirm the high crystallinity observed in the XRD
(for detail characterization of the particles, please see refs 27, 32,
and 33). DLS results (Table S1) evidenced the high degree of
agglomeration of the particles when dispersed in water, but that
was not a clear concentration-dependent pattern. The zeta
potential results corroborate the high instability of the system,
i.e., values ranging from −14 to 10 mV.
Material Modeling. The calculated all-atom full particle

nanodescriptors (Table S1) describe the core and surface
regions of the NPs. These descriptors cover the total number of
atoms (both Cu and Fe) and are based on the chemical
composition, potential energy, lattice energy, topology, size, and
force vectors. Constitutional descriptors are the counts of atoms
of different identities and/or location. Potential energy
descriptors are derived from the force-field calculations
corresponding to the arithmetic means of the potential energies
for specific atom types and/or locations in the NM. Lattice
energies are based on the same potential energies but presented
as metal oxide nominal units (MxOy) and describe the energy
needed to rip away the said unit from the nanoparticle surface.
All potential energy-related descriptors are presented in units of
eV. The coordination number of atoms is defined as the count of
the neighboring atoms which lie inside the radius R: R = 1.2 ×
(RM + RO), where RM and RO are the ionic radii of metal and
oxygen ions, respectively.
Materials Bioactivity (Effects on Survival and Repro-

duction). For the standard 21-day ERT, the validity criteria
were fulfilled as within the standard OECD test guideline,29 i.e.,
in controls, adult mortality <20%, and the number of juveniles
>50 per replicate, with a coefficient of variation <50%.

The results showed that in the standard 21-day exposure,
CuCl2 and 10%Fe-CuO NM caused a concentration-dependent
reduction on survival (CuCl2 being the most toxic), while the
other tested NMs did not cause effects (Figure 2A). In terms of
reproduction, there was a concentration-dependent decrease in
reproduction for all of the tested materials, except Fe3O4 NM
(Figure 2A).

CuCl2 was the most toxic (EC50 = 244 mg Cu/kg soil),
followed by 10%Fe-CuO NM (EC50 = 650 mg NM/kg soil).
For all other NMs, the ECx determined are similar (with
overlapping confidence intervals), as can be seen in Table S2.

In the prolonged exposure (49 days, standard extension), the
toxicity of 10% Fe-decreased to the same level as the other NMs
(EC50 with overlapping intervals), which resembles the effects

Table 1. Specific Surface Area (SSA), Primary Particle Size
(dBET), and Crystallite Size (dXRD) for Pure and Fe-doped
CuO NMs27

particles SSA (m2/g) dBET (nm) dXRD (nm)

pure CuO 80.9 (±2.5) 11.8 (±1.3) 9.4 (±0.1)
1% Fe-doped CuO 79.2 (±3.2) 12.0 (±1.5) 11.9 (±0.4)
2% Fe-doped CuO 77.6 (±1.8) 12.3 (±1.2) 9.2 (±0.1)
4% Fe-doped CuO 89.6 (±4.2) 10.7 (±1.8) 10.5 (±0.1)
6% Fe-doped CuO 92.9 (±3.6) 10.3 (±1.6) 10.8 (±0.1)
8% Fe-doped CuO 93.6 (±4.5) 10.3 (±1.9) 9.8 (±0.4)
10% Fe-doped CuO 90.4 (±1.2) 10.7 (±1.0) 9.6 (±0.9)
pure Fe3O4 80.4 14.5 -
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observed on day 21 in terms of reproduction (Figure 2 and
Table S2).
ML Data Analysis. The multistep data analysis method was

utilized to identify the descriptors responsible for the biological
response of Fe-doped CuO NMs from a list of experimental and
modeling variables potentially involved in the toxicological

mechanisms. Starting with an initial set of N = 68 variables (x1,
x2, ..., x68), the data cleaning process reduced the number to N =
67. In this preliminary cleaning process, we removed the XRD
(dXRD) data from the analysis as this variable had missing
values for some configurations of the nanomaterials (see Table
S8). The presence of incomplete data for dXRD could introduce

Figure 2. Results in terms of survival and reproduction of Enchytraeus crypticus exposed to CuCl2 and 8 NMs: Fe3O4, pure CuO, and 1, 2, 4, 6, 8 and
10% Fe-doped CuO in LUFA 2.2 soil during (A) 21 days, (B) 49 days, and (C) over 0, 21, and 49 days. For (A) and (B), the lines represent the model
fit to data.
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biases and inconsistencies in the ML model, potentially affecting
the reliability and accuracy of the results. Therefore, to maintain
the integrity of the analysis, it was essential to exclude this
variable, ensuring that all potential descriptors used in the model
had complete and consistent data across all configurations.

The 21- and 49-days biological responses were then fitted as a
function of concentration of the tested NMs (Fe-doped CuO,
Fe3O4) or substance (CuCl2) as reported in Figure 3a,b,
respectively.

The observed high fitting accuracy (R2 between 0.61 and 0.97,
cf. Tables S3 and S4) demonstrates a common logarithmic
decrease of the biological response with concentration. The only
notable exception was the test with Fe3O4 NMs, which showed a
concentration-independent biological response after 21 days
that eventually became dependent on the concentration after 49
days. The best fitted values of the b parameter, namely, the
derivative of the biological end point with respect to the natural
logarithm of the concentration (i.e., the steepness of the
response curve), is shown for 21-days and 49-days exposure in
Figure 3c,d, respectively, as a function of Fe concentration in the
tested CuO NMs. In the case of 21-days exposure, the highest b
value (i.e., the steepest decrease in biological response with
concentration increase) was found for CuCl2, while the lowest
was found for Fe3O4 NMs. Fe-doped CuO NMs showed
intermediate values of b with respect to CuCl2 and Fe3O4,
without any statistically relevant change with the Fe
concentration. Prolonging the exposure up to 49 days led to a
clear relationship between b and Fe concentration in the Fe-
doped CuO NMs, with higher b values at low Fe concentrations
(the highest value was found for the CuO NM, i.e., 0% Fe
concentration). The b value of Fe-doped CuO NMs eventually

decreased to a constant value at higher Fe concentrations.
Furthermore, the 49-days exposure also showed a lower b value
for CuCl2 and a higher b value for Fe3O4 with respect to 21-days
exposure observations, highlighting that different toxicological
mechanisms may be triggered with longer exposure time.
Overall, CuCl2 appears to be the substance causing the sharpest
decrease in the biological response with concentration, followed
by Fe-doped CuO and finally Fe3O4 nanoparticles. Notably, Fe-
doped CuO nanoparticles with low Fe doping can overcome the
b value of CuCl2 in the case of 49-days exposure.

The concentration-independent end point b eliminates the
obvious effect of concentration on the biological response and
hence allows for a clearer analysis of chemical-physical effects of
the considered nanoparticles on toxicity, which showed a clear
impact at least for 49-days exposure. Therefore, concentration-
dependent variables were initially removed from the analysis,
and the hierarchical clustering algorithm was employed to
highlight correlated variables (Figure S2). The algorithm
revealed 15 clusters of similar variables, and the clustering
accuracy was confirmed by the high values of the cophenetic
correlation coefficient and Spearman’s correlation coefficients
within each cluster (Figure S3). The representative variable per
each cluster was nominated (Table S5), and then, the pruning
process was iteratively conducted. The process terminated at the
fourth round (Figure S4), and the remaining three variables after
pruning (Table S6) were considered significant descriptors of
the toxicological mechanism related to Fe-doped CuO NMs.
The identified concentration-independent descriptors included
a balanced mix of geometrical (nanoparticle diameter),
geometrical-environmental (surface specific area of nano-
particles, which may be influenced by the surrounding medium),

Figure 3. Best fit of the biological response (y) to Fe-doped CuO NMs after (a) 21 days and (b) 49 days of exposure with respect to the given
concentration (c). Colored dots correspond to experimental measurements; dashed lines (with the same color as the corresponding particle or
substance tested) correspond to the best fitting function in the form y = −b ln c + b0. The best fitted value of the b parameter, namely, the derivative of
the biological end point with respect to the natural logarithm of the concentration, is shown for (c) 21 days and (d) 49 days of exposure as a function of
Fe concentration in the tested CuO NMs. See Tables S3 and S4 for a detailed list of the fitting parameters and accuracy.
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and chemical (force vector of metallic/oxygen atoms in the
nanoparticles, cf. cluster #9 in Table S5) features.

Finally, concentration-dependent variables such as concen-
tration, hydrodynamic size, and zeta potential were added back
into the analysis, leading to the final set of descriptors listed in
Table S7 that proved to be all uncorrelated between each other
(cf. Figure S5). Considering this final list of six descriptors, the
symbolic regressor was used to best fit the biological response
and highlight its sensitivity on each descriptor for both 21- and
49-days exposure. Figure 4a (21-days exposure) and b (49-days
exposure) remarks the obvious evidence that the biological
response had the highest sensitivity on the nanoparticle
concentration. For the 21-days exposure, relevant descriptors
were also, in descending order of sensitivity, zeta potential, force
vector of metallic/oxygen atoms in the nanoparticles, and their
surface specific area; whereas for the 49-days exposure, they
were the diameter of nanoparticles, their surface specific area,
and the force vector of metallic/oxygen atoms in the
nanoparticles. Such evidence highlighted descriptors signifi-
cantly affecting both exposure times (i.e., surface specific area of
nanoparticles and force vector of metallic/oxygen atoms in the
nanoparticles) or not (i.e., hydrodynamic size) and descriptors
with different influence on the biological response according to
the exposure time. In particular, the zeta potential appeared as a
clear parameter of the toxicity mechanisms involved in the first
21 days of exposure; whereas the diameter of nanoparticles
showed a significant influence in the 49-days exposure scenario.
Such a discrepancy of the second-order effects on the biological
response may be a further confirmation of different toxicological
mechanisms as time is prolonged. Figure 4a,b provides
additional insights into the “% positive response” of descriptors
on the biology. This quantity indicates the likelihood of
increasing the biological response with an increase in the
descriptor. The observed negative correlation between the
concentration and biological response aligns with typical
findings in the literature. The hydrodynamic size also showed
a mostly negative correlation with the biological response, while
the nanoparticle diameter and the force vector of their metallic/
oxygen atoms were a positive one: in other words, smaller
nanoparticles with lower force vector of their metallic/oxygen
atoms and higher hydrodynamic size should decrease the

biology most. The zeta potential, instead, demonstrated a
different response according to the exposure time, switching
from a strongly negative (21-days exposure) to a mostly positive
(49-days exposure) correlation with the biological response.

In the last extended fitting by the symbolic regressor, the best
correlations between the six descriptors listed in Table S7 and
the biological response achieved remarkable R2 values of 0.93 for
21 days of exposure and 0.94 for 49 days of exposure
experiments (see Figure S6).

■ DISCUSSION
The in vivo toxicity results showed that the biological response
of E. crypticus to Fe-doped CuO NMs depends on the Fe%, and
that the patterns of toxicity observed after the standard exposure
test (21 days) were overall maintained after prolonged exposure
(49 days).

Based on the standard test (21 days) and based on literature
data,34 CuCl2 was the most toxic in terms of survival and
reproduction. The 21-days EC50 determined here (244 mg Cu/
kg soil) is in good agreement with that reported previously for E.
crypticus (28-days EC50 = 179 mg Cu/kg soil), with overlapping
confidence intervals.34 The effects observed for CuO NM were
also in agreement with literature data when compared to a
commercial CuO NM (Plasma Chem) of similar primary
particle size (ca. 12 nm).34 Among the tested materials, the NM
with the steepest concentration−response curve was the 10%Fe-
CuO (21-days reproduction EC50 = 650 mg NM/kg soil), and
the least toxic was Fe3O4 NM (no effects up to 3200 mg NM/kg
soil). All other NMs caused similar effects to E. crypticus (21-
days reproduction EC50 ranging from 875 to 1923 mg NM/kg
soil, with overlapping confidence intervals). A previous study
showed that increasing the Fe doping of CuO NM caused a
progressive reduction of toxicity to BEAS-2B and THP-1 cells
and to zebrafish embryos.27 For the cell lines, 6, 8, and 10%Fe
showed similar performance in protecting cell viability.27 Also,
Joshi et al.35 showed that DMSA-coated CuO NM was more
toxic to C6 Glioma cells than DMSA-coated 10%Fe-CuO NM.
Both studies27,35 point at the higher dissolution and Cu2+

release, from pure CuO NM, in the test media (diverse cell
culture media) as the cause for higher toxicity.

Figure 4. Effect of descriptors on the biological response. The process of variables pruning reveals the presence of six descriptors that significantly
influence the biological response of Fe-doped CuO NMs (see Table S7). The sensitivity of the biological response to these descriptors is depicted for
(a) 21 days of exposure and (b) 49 days of exposure. In this context, “sensitivity” quantifies the average relative impact of a descriptor within the
identified fitting models on the biological response. On the other hand, “% positive response” refers to the likelihood that increasing a descriptor will
lead to an increase in the biological parameters (i.e., number of organisms) and vice versa for “% negative response.” For example, a “% positive
response = 80% for the x6 descriptor (21-days exposure)″ means that, considering the explored fitting functions and values of x6 between the minimum
and maximum in the data set, x6 is positively correlated with the biological response in 80% of the cases. In the remaining 20% of cases, a negative or no
correlation is observed instead.
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For the CuO NM library tested here, the particle dissolution
in aqueous solution was insignificant.27 A low dissolution
pattern was also reported for CuO and 10%Fe-CuO in
freshwater, with minimal toxicity, in terms of growth inhibition
of the marine algae Isochrysis galbana and sea urchin.36,37 In this
work, the NMs were added to soil as dry powders, and the
adding of water to moist the soil would lead to minimal
dissolution unlike the results reported by Naatz et al.27 The
reported data indicated ionic release leading to strong covalent
complexation between metal ions (Mz+) and proteins/amino
acids in the cells, subsequent precipitation of the Cu-complex
crystals in the cellular fluid, and ROS generation, followed by
Tier III biological cascades. The in vivo particle exposure was
long term, and the dissolution kinetics of pure and Fe-doped
CuO over 250 h was evaluated. The dissolution profile revealed
an initial fast burst-like release of copper, followed by a
prolonged slow release lasting several weeks. While the particle
exposure in the present investigation was based on the aqueous
medium, the differences observed between the pure and doped
CuO NMs are not related to Cu2+ release, instead the Fe above a
certain threshold (>6%) might play a role to affect surface
activity. Considering that Fe3O4 NM was not toxic to E.
crypticus, the higher effects observed for 10%Fe-CuO might
result from the interaction between Cu and Fe.38 With
increasing exposure time (up to 49 days), the toxicity of 10%
Fe-CuO NM was reduced to the same level as all other NMs.

Overall, across concentration-dependent variables, the
exposure concentration is the most important factor, i.e., in all
cases (except Fe3O4 for 21 days) an increase in concentration
leads to a decrease in the number of juveniles (Figure 2). The
steepness of the concentration−response curve decreased with
the increase in %Fe-doping, but a correlation was observed only
after 49 days. It is related to a stronger stability (higher values of
the force vector related descriptors) of the particle with lower %
Fe. For the 21-day exposure, the zeta potential (range 5−10 mV)
is also negatively correlated in most cases with a high sensitivity,
whereas this is not the case for the 49-day exposure where zeta
potential was mainly positively correlated but less sensitive in
the model. The difference may be due to aggregation/
agglomeration to the soil matrix being more important with
longer exposure time. For the 49-day exposure, also the
hydrodynamic size was, in less cases, related to the biology
and not sensitive in the model, possibly again due to the
aggregation/agglomeration over time. In other words, the
importance of zeta potential in the standard test duration (21
days) can be attributed to its effect on the initial agglomeration
and sedimentation behavior of nanoparticles. During the early
phase of exposure, nanoparticles with higher absolute zeta
potential values (either positive or negative) tend to repel each
other, resulting in higher dispersion in the soil matrix. This
increased dispersion enhances the bioavailability of nano-
particles, thereby increasing their potential for toxic interactions
with soil organisms such as Enchytraeus crypticus. Conversely,
nanoparticles with low absolute zeta potential values are more
prone to agglomeration, which reduces their mobility and
bioavailability. This lower dispersion can lead to a decreased
interaction with soil organisms, limited to hotspots, thus
potentially lowering their toxicity.

For the actual physiochemical nanoparticle characteristics, the
symbolic regression showed that the most important combina-
tion of nanoparticle descriptors (mindful that these are proxies
for other descriptors) related to toxicity are dBET and SSA and
force vector of Me atoms in the core (BET size). This indicates

obviously that the size (and related surface area) of the particles
and the stability of the core are important for toxicity. For both
21- and 49-days exposure there was a positive relationship
between core stability and presence of organisms, indicating
nanoparticle-specific effects. This was most important for the
49-day exposure. In the previous work with Fe-doped TiO2 NPs
(Fe dopped TiO2 nanoparticles15), we found that the surface
force vectors were the most important, and this was related to
oxidative stress since the surface forces were related to the band
gap. For the Fe-doped CuO NMs, the diameter and surface area
of the particles were almost in all cases positively correlated with
the presence of animals at the 49-day exposure, that is, with
larger particles (or with larger surface area) showing less toxicity
within the size range. This was not the case for the 21-day
exposure where the surface area was negatively correlated with
the presence of animals.

■ CONCLUSIONS
The first conclusion is that it is important to separate
experimental related parameters (such as zeta potential etc.)
from particle-specific descriptors (e.g., force vectors) for the best
identification of important parameter/descriptors. We observed
that concentration-dependent parameters (environmental
parameters, e.g., zeta potential) were the most important
under standard test duration (21 days); this is not the case when
longer exposure studies are made (closer representing real-world
conditions). In the longer exposure conditions (49 days), the
particle-specific descriptors are more important than concen-
tration-dependent parameters (usually measured under surro-
gate conditions, i.e., not directly in the test media). The longer-
term (and more realistic) exposure showed that the steepness of
the concentration−response decreased with the increased Fe
content in the particles. Hence, longer-term exposure should be
a requirement in the hazard assessment of NMs in addition to
the previous requirement in standard OECD guidelines for
chemicals.

■ MATERIALS AND METHODS
Test Species. The test species Enchytraeus crypticus (Oligochaeta:

Enchytraeidae) was used. The cultures were kept in agar, consisting of
sterilized bacti-agar medium (Oxoid, Agar No. 1) and a mixture of four
different salt solutions at the final concentrations of 2 mM CaCl2·2H2O,
1 mM MgSO4, 0.08 mM KCl, and 0.75 mM NaHCO3 under controlled
conditions of temperature (19 ± 1 °C) and photoperiod (16:8 h
light:dark). The cultures were fed with ground autoclaved oats twice
per week.
Test Materials and Characterization. A library containing

homologous pure CuO and 1−10% Fe-doped CuO NMs were
produced using flame spray pyrolysis as described in ref 27, and
commercially available copper(II) chloride dihydrate (CuCl2·2H2O >
99.9%, Sigma-Aldrich) was used.

Briefly, the required amount of copper(II) naphthenate in mineral
spirits (Strem, 8% Cu, CAS 1338-02-9) was dissolved in xylene (Strem
Chemicals, 99.95% pure, CAS 1330-20-7) to obtain a 0.5 M solution by
metal. To dope Fe in CuO, the required amount of iron naphthenate
(12% Fe by metal, Strem Chemicals, 99.9% pure, CAS 1338-14-3) was
mixed with copper naphthenate before combustion to prepare the spray
solution with 1, 2, 4, 6, 8, and 10% Fe in copper naphthenate dissolved
in xylene. The morphology and structural properties of the NMs
produced were determined by XRD and Rietveld analysis, BET, EDX,
and TEM. Further, the hydrodynamic diameter and zeta potential of
the NMs were determined by DLS. The main characteristics of the
NMs tested is provided in Table 1, as from Naatz et al.27

Material Characterization−Modeling. The particles were
characterized by atomistic modeling, as described by Tam̈m et al.39
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and Burk et al.,40 by generating quantitative (nano)descriptors for each
material. The calculations were carried out using Lennard-Jones
potential41,42 version of the conjugate gradient approach. The core and
shell region of the NP was determined by the Kneedle method,43,44

where it is assumed that the shell region starts where the change in the
corresponding value is the highest. Consequently, the descriptors of the
core atoms are quite similar to the ones that could be obtained for a
perfect crystal structure. The descriptors were calculated solely based
on the atomistic structure of the nanoparticle and included atom
counts, core/shell distribution of atoms, coordination distances, lattice
energies, etc. (see Table S1).
Test Soil and Spiking. The standard LUFA 2.2 natural soil

(Speyer, Germany) was used. The main characteristics are pH (0.01 M
CaCl2) of 5.5, 1.77% organic matter, 10.1 mequiv/100 g of cation
exchange capacity, 44.8% WHC (water holding capacity), 7.3% clay,
13.8% silt, and 78.9% sand regarding grain size distribution.

The tested concentrations were 0, 100, 320, 640, 1000, and 3200 mg
NM/kg soil dry weight (DW), for the NMs, and 0, 100, 320, 640, and
1000 mg Cu/kg soil DW for CuCl2.

All NMs were directly mixed with the dried soil following the
recommendation for dry powder nondispersible nanomaterials,45 done
per individual replicate to ensure total raw amounts per replicate. For
CuCl2, a stock (aqueous) solution was prepared and serially diluted and
added to batches of premoisestened soil (per concentration), and the
soil was homogeneously mixed. Soil moisture was adjusted to 50% of
soil’s maximum WHC on adding deionized water. The soil was left to
equilibrate for 24 h prior the start of the tests.
Exposure Procedures: Survival and Reproduction. The

standard guideline for the ERT29 and the method described by Ribeiro
et al.,46 i.e., including an additional 28 days of exposure besides the
standard 21 days (21 and 49 days), was followed, The endpoints were
survival (day 21) and reproduction (days 21 and 49). Due to the limited
amount of NMs available, one replicate was performed per test
condition (concentration and time), except for CuCl2. Briefly, 10
mature adults (with well-developed clitellum) were introduced into
each test container with moist soil (⌀4 cm with 20 g of soil for day 21,
and ⌀5.5 cm with 40 g of soil for day 49) and food supply (24 ± 2 mg,
autoclaved rolled oats). Test ran for 49 days at 20 ± 1 °C and 16:8 h
photoperiod. Food (12 ± 1 mg until day 21 and 24 ± 2 mg from 21 to
49 days) and water were replenished every week. On day 21, survival
and reproduction were assessed by counting the juveniles and adults.
After 24 h, soil samples were sieved through meshes with decreasing
pore size (1.6, 0.5, and 0.3 mm) to separate the enchytraeids from most
of the soil and facilitate counting. Adult and juvenile organisms were
counted using a stereomicroscope, and survival and reproduction were
assessed. For the 49-day exposure replicates, on day 21, adults were
carefully removed from the soil, after which the exposure continued
until day 49 when the organisms were counted following procedures as
described for day 21.
Data Analysis. Concentration Response Modeling. Univariate

effect concentrations (ECx) were calculated for each NM by modeling
data to logistic or threshold sigmoid 2 parameter regression models, as
indicated in Table S2 using the Toxicity Relationship Analysis Program
(TRAP 1.30) software.
ML Analysis.To derive across material information, our data analysis

protocol starts with an initial set of N = 68 variables x1, x2,..., x68
obtained from both computational and experimental characterization
of Fe-doped CuO NMs (Table S8, BET model), being potential
descriptors of the biological end point (y). The protocol aims to
gradually prune redundant or less significant variables related to the
biological response observed in the experiments, eventually identifying
a limited yet essential set of descriptors and to see which computational
descriptors could be used to derived toxicity models.47 The biological
and chemical complexity along with the abundance of variables may
lead to model overfitting, which we carefully considered.48 Similar to
our previous work,15 the employed data analysis protocol comprises five
successive steps and employs a combination of statistical and ML
approaches: (i) preprocessing data, (ii) normalizing the biological
response to a concentration-independent quantity, (iii) removing
correlated variables, (iv) identifying descriptors through an iterative

pruning process, and (v) correlating descriptors with the biological
response.

The biological response to Fe-doped CuO NMs was assessed in vivo
after 21 and 49 days, resulting in 40 unique biological data points
(average value and standard deviation were computed in case of
replicated data). The experimental characterization provided values
related to concentration, material (e.g., size, chemical composition),
and surrounding environment (e.g., zeta potential), along with
additional variables computed by numerical modeling. Consequently,
we had a 40 × 68 data matrix comprising 40 experimental results
described by 68 variables (concentration, material, environment, and
modeling) and 2 biological responses obtained after 21- and 49-days
exposure.

First, we cleaned the initial data set by removing variables with
missing data. Second, we fitted the biological response (y) using a
logarithmic equation (y = −b ln c + b0) as a function of nanoparticle
concentration (c) for each of the materials in the library. This provided
us with an end point that integrated the entire concentration response
curve. This concentration-independent end point (b) directly
integrates the biological response over all exposures and allows for a
clear identification of the NM descriptor parameters responsible for the
toxicity. Third, we pruned the data by identifying and clustering
redundant variables (highly correlating variables) to achieve a shorter
list of noncorrelating variables. We used the hierarchical clustering
algorithm with the Spearman’s correlation coefficient as the metric to
quantify similarity between variables.49 Variables with similar character-
istics were hierarchically linked and grouped into clusters until the
stopping criteria were met (here, the inconsistency coefficient equal to
0.8, roughly corresponding to the 1-sigma confidence level). A
representative variable per cluster was nominated with preference
given to variables commonly studied in the toxicity literature. However,
it is essential to note that for our specific purposes, any variable within
the cluster holds equal significance. Fourth, we iteratively pruned the
uncorrelated concentration-independent variables obtained from the
clustering step to identify the most significant descriptors for the
normalized biological response after 49-days exposure. At each pruning
step, a symbolic regression algorithm was used to find accurate and
compact functions ( f) relating the availableNi variables (x1, x2,..., xNi) to
the concentration-independent end point (b). The complexity of these f
functions was compared with the resulting fitting accuracy using a
Pareto front approach (e.g., Figure S1). At each ith pruning step, we
selected the best ranked 40% of variables based on their occurrence in
suitable f functions on the Pareto front and pruned the remaining ones,
therefore obtaining a reduced set of Ni+1 variables to be analyzed in the
successive (i + 1)th pruning step. This process was iteratively
performed until a stopping criterion was reached, defined as the ratio
between the average and standard deviation of the weighted importance
for the remaining variables being less than 0.2. Higher values of this
ratio indicate the presence of variables with limited effect on the
concentration-independent end point, which should be further pruned
from the analysis. The symbolic regression algorithm implemented in
Eureqa software was used, employing different parametrizations of the
minimization algorithm and averaging fitting results. In more detail, we
considered two sets of building blocks for the explored fitting equations:
rational polynomial functions and a combination of rational
polynomial, exponential/logarithmic, and square root functions.
Additionally, we employed three target error metrics: maximizing the
R-square, minimizing the absolute error, and maximizing a hybrid
correlation/error index. This resulted in six different repetitions of the
fitting procedure for each pruning step. A stable solution was typically
reached after 2−20 million generations. To aid convergence of the
minimization algorithm, the data were preliminarily normalized with
respect to their mean and standard deviation per each independent/
dependent variable. Fifth, the concentration-independent variables that
remained after the pruning process were considered relevant
descriptors related to the biological response to the tested Fe-doped
CuO NMs, along with concentration-dependent parameters such as the
concentration, hydrodynamic size, and zeta potential. Finally, we used
the symbolic regressor to best fit the biological response (y) with the
remaining descriptors, refining the minimization process through more
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than 40 million iterations. Based on this final fitting procedure, we
assessed the sensitivity between each descriptor and the biological
response for both 21- and 49-days exposure. Further information on the
methodological details of the ML analysis is reported in our previous
work.15

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsami.4c07153.

Pareto front list of suitable fitting functions f identified by
the symbolic regressor; Spearman’s correlation coefficient
computed between each pair of Fe-doped CuO particles
variables potentially related to toxicity; Spearman’s
correlation coefficient computed between each pair of
concentration-independent variables within the 15
clusters identified by the hierarchical clustering algorithm;
results of variable pruning; and comparison of model
correlations between the biological responses (PDF)
Details of the variables used for ML modeling; character-
istics of the Fe-doped CuO particle library, including
atomistic modeling; effect concentrations (ECx) esti-
mated; best fitting parameters and corresponding R2

determined for the Fe-doped CuO particles assessed in
vivo (21 days); best fitting parameters and corresponding
R2 determined for the Fe-doped CuO particles assessed in
vivo (49 days); clustering of correlated concentration-
independent variables; uncorrelated concentration-inde-
pendent variables representative of each cluster consid-
ered in the pruning process; uncorrelated descriptors of
the biological response y for the tested Fe-doped CuO
particles; and curated data set considered for the ML
analysis of Fe−Cu oxide nanoparticles (XLSX)

■ AUTHOR INFORMATION
Corresponding Author
Mónica J.B. Amorim − Department of Biology & CESAM,
University of Aveiro, 3810-193 Aveiro, Portugal; orcid.org/
0000-0001-8137-3295; Email: mjamorim@ua.pt

Authors
Janeck J. Scott-Fordsmand − Department of Ecoscience,
Aarhus University, DK-8000 Aarhus, Denmark; orcid.org/
0000-0002-2260-1224

Susana I.L. Gomes − Department of Biology & CESAM,
University of Aveiro, 3810-193 Aveiro, Portugal; orcid.org/
0000-0001-7537-2341

Suman Pokhrel − Department of Production Engineering,
University of Bremen, 28359 Bremen, Germany; Leibniz
Institute for Materials Engineering IWT, 28359 Bremen,
Germany; orcid.org/0000-0001-5712-2824

Lutz Mädler − Department of Production Engineering,
University of Bremen, 28359 Bremen, Germany; Leibniz
Institute for Materials Engineering IWT, 28359 Bremen,
Germany; orcid.org/0000-0002-7073-0733

Matteo Fasano − Department of Energy, Politecnico di Torino,
Torino 10129, Italy; orcid.org/0000-0002-3997-3681

Pietro Asinari − Department of Energy, Politecnico di Torino,
Torino 10129, Italy; INRIM, Istituto Nazionale di Ricerca
Metrologica, Torino 10135, Italy; orcid.org/0000-0003-
1814-3846

Kaido Tämm − Institute of Chemistry, University of Tartu,
Tartu 50411, Estonia

Jaak Jänes − Institute of Chemistry, University of Tartu, Tartu
50411, Estonia

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsami.4c07153

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This study was supported by funds of the European Commission
NANOINFORMATIX (H2020-NMBP-14-2018, No. 814426),
NANORIGO (H2020-NMBP-13-2018, GA No. 814530) and
SUNRISE (Horizon Europe, GA No. 101137324). Further
support was due to FCT/MCTES through national funds
(PIDDAC) and the cofunding by the FEDER, within the
PT2020 Partnership Agreement and Compete 2020 via
BEAUTY (PTDC/CTA-AMB/3970/2020, 10.54499/PTDC/
CTA-AMB/3970/2020) and via CESAM (UIDP/50017/2020
+ UIDB/50017/2020 + LA/P/0094/2020). S.G. is funded by a
FCT research contract under the Scientific Employment
Stimulus�Individual Call (CEEC Individual)�2021.02867.
CEECIND/CP1659/CT0004, 10.54499/2021.02867.
CEECIND/CP1659/CT0004. M.F. acknowledges the CINE-
CA award under the ISCRA initiative for the availability of high-
performance computing resources and support.

■ REFERENCES
(1) Inshakova, E.; Inshakov, O. World Market for Nanomaterials:

Structure and Trends. MATEC Web Conf. 2017, 129, No. 02013.
(2) Rambaran, T.; Schirhagl, R. Nanotechnology from Lab to Industry

− a Look at Current Trends. Nanoscale Adv. 2022, 4 (18), 3664−3675.
(3) Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A

Revolution in Modern Industry. Molecules 2023, 28 (2), 661.
(4) Pietroiusti, A.; Stockmann-Juvala, H.; Lucaroni, F.; Savolainen, K.

Nanomaterial Exposure, Toxicity, and Impact on Human Health.
WIREs Nanomedicine and Nanobiotechnology 2018, 10 (5), No. e1513.
(5) Gomes, S. I. L.; Scott-Fordsmand, J. J.; Amorim, M. J. B.

Alternative Test Methods for (Nano)Materials Hazards Assessment:
Challenges and Recommendations for Regulatory Preparedness. Nano
Today 2021, 40, No. 101242.
(6) Gambardella, C.; Pinsino, A. Nanomaterial Ecotoxicology in the

Terrestrial and Aquatic Environment: A Systematic Review. Toxics
2022, 10 (7), 393.
(7) Dube, E.; Okuthe, G. E. Engineered Nanoparticles in Aquatic

Systems: Toxicity and Mechanism of Toxicity in Fish. Emerg. Contam.
2023, 9 (2), No. 100212.
(8) Chew, A. K.; Pedersen, J. A.; Van Lehn, R. C. Predicting the

Physicochemical Properties and Biological Activities of Monolayer-
Protected Gold Nanoparticles Using Simulation-Derived Descriptors.
ACS Nano 2022, 16 (4), 6282−6292.
(9) Wang, T.; Russo, D. P.; Bitounis, D.; Demokritou, P.; Jia, X.;

Huang, H.; Zhu, H. Integrating Structure Annotation and Machine
Learning Approaches to Develop Graphene Toxicity Models. Carbon
N. Y. 2023, 204, 484−494.
(10) Sizochenko, N.; Mikolajczyk, A.; Jagiello, K.; Puzyn, T.;

Leszczynski, J.; Rasulev, B. How the Toxicity of Nanomaterials towards
Different Species Could Be Simultaneously Evaluated: A Novel Multi-
Nano-Read-across Approach. Nanoscale 2018, 10 (2), 582−591.
(11) Sizochenko, N.; Syzochenko, M.; Fjodorova, N.; Rasulev, B.;

Leszczynski, J. Evaluating Genotoxicity of Metal Oxide Nanoparticles:
Application of Advanced Supervised and Unsupervised Machine
Learning Techniques. Ecotoxicol. Environ. Saf. 2019, 185, No. 109733.
(12) Scott-Fordsmand, J. J.; Amorim, M. J. B. Using Machine Learning

to Make Nanomaterials Sustainable. Sci. Total Environ. 2023, 859,
No. 160303.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.4c07153
ACS Appl. Mater. Interfaces 2024, 16, 42862−42872

42870

https://pubs.acs.org/doi/10.1021/acsami.4c07153?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsami.4c07153/suppl_file/am4c07153_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.4c07153/suppl_file/am4c07153_si_002.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mo%CC%81nica+J.B.+Amorim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8137-3295
https://orcid.org/0000-0001-8137-3295
mailto:mjamorim@ua.pt
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Janeck+J.+Scott-Fordsmand"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2260-1224
https://orcid.org/0000-0002-2260-1224
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Susana+I.L.+Gomes"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7537-2341
https://orcid.org/0000-0001-7537-2341
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Suman+Pokhrel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5712-2824
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lutz+Ma%CC%88dler"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7073-0733
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matteo+Fasano"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3997-3681
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pietro+Asinari"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1814-3846
https://orcid.org/0000-0003-1814-3846
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kaido+Ta%CC%88mm"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jaak+Ja%CC%88nes"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.4c07153?ref=pdf
http://doi.org/10.54499/PTDC/CTA-AMB/3970/2020
http://doi.org/10.54499/PTDC/CTA-AMB/3970/2020
https://doi.org/10.54499/2021.02867.CEECIND/CP1659/CT0004
https://doi.org/10.54499/2021.02867.CEECIND/CP1659/CT0004
https://doi.org/10.1051/matecconf/201712902013
https://doi.org/10.1051/matecconf/201712902013
https://doi.org/10.1039/D2NA00439A
https://doi.org/10.1039/D2NA00439A
https://doi.org/10.3390/molecules28020661
https://doi.org/10.3390/molecules28020661
https://doi.org/10.1002/wnan.1513
https://doi.org/10.1016/j.nantod.2021.101242
https://doi.org/10.1016/j.nantod.2021.101242
https://doi.org/10.3390/toxics10070393
https://doi.org/10.3390/toxics10070393
https://doi.org/10.1016/j.emcon.2023.100212
https://doi.org/10.1016/j.emcon.2023.100212
https://doi.org/10.1021/acsnano.2c00301?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.2c00301?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.2c00301?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.carbon.2022.12.065
https://doi.org/10.1016/j.carbon.2022.12.065
https://doi.org/10.1039/C7NR05618D
https://doi.org/10.1039/C7NR05618D
https://doi.org/10.1039/C7NR05618D
https://doi.org/10.1016/j.ecoenv.2019.109733
https://doi.org/10.1016/j.ecoenv.2019.109733
https://doi.org/10.1016/j.ecoenv.2019.109733
https://doi.org/10.1016/j.scitotenv.2022.160303
https://doi.org/10.1016/j.scitotenv.2022.160303
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.4c07153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(13) Romano, R.; Barbul, A.; Korenstein, R. From Modeling Dose-
Response Relationships to Improved Performance of Decision-Tree
Classifiers for Predictive Toxicology of Nanomaterials.Comput. Toxicol.
2023, 27, No. 100277.
(14) Khan, B. M.; Cohen, Y. Predictive Nanotoxicology. In Machine

Learning in Chemical Safety and Health; Wag, Q.; Cai, C., Eds.; Wiley,
2022; pp 199−250. .
(15) Gomes, S. I. L.; Amorim, M. J. B.; Pokhrel, S.; Mädler, L.; Fasano,

M.; Chiavazzo, E.; Asinari, P.; Jänes, J.; Tämm, K.; Burk, J.; Scott-
Fordsmand, J. J. Machine Learning and Materials Modelling
Interpretation of in Vivo Toxicological Response to TiO 2 Nano-
particles Library (UV and Non-UV Exposure). Nanoscale 2021, 13
(35), 14666−14678.
(16) Zhang, F.; Wang, Z.; Peijnenburg, W. J. G. M.; Vijver, M. G.

Machine Learning-Driven QSAR Models for Predicting the Mixture
Toxicity of Nanoparticles. Environ. Int. 2023, 177, No. 108025.
(17) Canzler, S.; Schor, J.; Busch, W.; Schubert, K.; Rolle-Kampczyk,

U. E.; Seitz, H.; Kamp, H.; von Bergen, M.; Buesen, R.; Hackermüller, J.
Prospects and Challenges of Multi-Omics Data Integration in
Toxicology. Arch. Toxicol. 2020, 94 (2), 371−388.
(18) Kozikowski, P. Machine Learning for Grouping Nano-Objects

Based on Their Morphological Parameters Obtained from SEM
Analysis. Micron 2023, 171, No. 103473.
(19) Chiavazzo, E.; Fasano, M.; Asinari, P. Inference of Analytical

Thermodynamic Models for Biological Networks. Phys. A Stat. Mech. its
Appl. 2013, 392 (5), 1122−1132.
(20) Wu, J.; D’Ambrosi, S.; Ammann, L.; Stadnicka-Michalak, J.;

Schirmer, K.; Baity-Jesi, M. Predicting Chemical Hazard across Taxa
through Machine Learning. Environ. Int. 2022, 163, No. 107184.
(21) Bilgi, E.; Karakus, C. O. Machine Learning-Assisted Prediction of

the Toxicity of Silver Nanoparticles: A Meta-Analysis. J. Nanoparticle
Res. 2023, 25 (8), 157.
(22) Murugadoss, S.; Das, N.; Godderis, L.; Mast, J.; Hoet, P. H.;

Ghosh, M. Identifying Nanodescriptors to Predict the Toxicity of
Nanomaterials: A Case Study on Titanium Dioxide. Environ. Sci. Nano
2021, 8 (2), 580−590.
(23) Mancardi, G.; Mikolajczyk, A.; Annapoorani, V. K.; Bahl, A.;
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