
03 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

ROAR: Routing Packets in P4 Switches With Multi-Agent Decisions Logic / Angi, Antonino; Sacco, Alessio; Esposito,
Flavio; Marchetto, Guido. - ELETTRONICO. - (2024), pp. 63-68. (Intervento presentato al convegno 2024 IEEE
International Conference on Machine Learning for Communication and Networking (ICMLCN) tenutosi a Stockholm (SE)
nel 05-08 May 2024) [10.1109/icmlcn59089.2024.10625142].

Original

ROAR: Routing Packets in P4 Switches With Multi-Agent Decisions Logic

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/icmlcn59089.2024.10625142

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991799 since: 2024-08-20T12:49:19Z

IEEE

ROAR: Routing Packets in P4 Switches With
Multi-Agent Decisions Logic

Antonino Angi ∗ Alessio Sacco ∗ Flavio Esposito † Guido Marchetto ∗
∗ Department of Control and Computer Engineering, Politecnico di Torino, Italy

† Computer Science Department, Saint Louis University, USA

Abstract—The soaring complexity of networks has led to
more complex methods to efficiently manage and orchestrate
the multitude of network environments. Recent advances in
machine learning (ML) have opened new opportunities for
network management automation, exploiting existing advances
in software-defined infrastructures. Advanced routing strategies
have been proposed to accommodate the traffic demand of
interactive systems, where the common architecture is composed
of a data-driven network management schema collecting network
data that feed a reinforcement learning (RL) algorithm. However,
the overhead introduced by the SDN controller and its operations
can be mitigated if the networking architecture is redesigned.
In this paper, we propose ROAR, a novel architectural solution
that implements Deep Reinforcement Learning (DRL) inside
P4 programmable switches to perform adaptive routing policies
based on network conditions and traffic patterns. The network
devices act independently in a multi-agent reinforcement learning
(MARL) framework but are able to learn cooperative behaviors
to reduce the queuing time of transmitting packets. Experimental
results show that for an increasing amount of traffic in the
network, there is both a throughput and delay improvement in
the transmission compared to traditional approaches.

Index Terms—deep reinforcement learning, P4, routing

I. INTRODUCTION

In recent years, there has been a rapid increase in the
number of brand-new applications, which not only places
more and more demands on communication technologies, e.g.,
5G and 6G, but also poses significant difficulties for the
Internet. Each application, in particular, has distinct yet strict
requirements for latency, jitter, throughput, and packet loss
rate. We can observe that as networks continue to evolve
and become more complex, the need for efficient routing
mechanisms becomes increasingly crucial.

One dictating trend is applying Machine Learning (ML) and
Deep Learning (DL) to routing with the aim of leveraging
information about past traffic conditions to learn good routing
configurations for future conditions [1]. The flexibility pro-
vided by SDN enables a fast reactive and proactive network
management, in which the SDN controller can easily observe
the network and react to changes in traffic demand and
evolutions [2], [3]. One class of ML is Reinforcement Learning
(RL), which well fits routing problems given its automatic
learning improvements to achieve the optimal policy [4]. In
recent years many research works integrated RL and Deep
Reinforcement Learning (DRL) into SDN networks for routing
optimizations [5], [6].

However, these approaches based on centralized controllers
are inherently too slow to respond to fine-grained traffic

changes, as in short traffic bursts. Moreover, even when the
software control plane is local on the switches, the ability to
select new routes is often limited and not fast enough [7].

To overcome these limitations, recently programmable data
planes have gained popularity, and different works have de-
veloped mechanisms that, operating entirely in the data plane,
enable real-time adaptation [8], [9]. These solutions can deliver
considerable performance benefits over more static mecha-
nisms and centralized approaches using fine-grained perfor-
mance information on hardware timescales. However, these
techniques are limited to trivial performance-aware policies
that are unable to learn during the execution and, consequently,
adapt to multiple scenarios. Moreover, as the complexity of
the network grows, determining the optimal routing policies
to avoid congestion and improve performance has become
increasingly essential but also challenging.

To automate routing decisions directly in the network de-
vice, we designed a Reinforcement learning for Autonomous
Routers (ROAR). In our solution, we uses network pro-
grammability in general, and P4 [10] programmable switches
in particular, to perform distributed routing decisions via Deep
Reinforcement Learning (DRL). As such, every switch of
the network is an agent of the DRL system, which uses the
algorithm to decide the forwarding port for the incoming
packet according to two main factors: the next hop to the
destination, known for the topology of interest, and the port’s
outgoing queue, to be minimized. Since the switches con-
stantly learn from the environment, the model is periodically
trained to consider the impact of different routing decisions
on network performance and select the best route based on
learned policies. Designing a DRL model with P4 is known
to be challenging since the architecture does not support
loops, complex arithmetical operations, or if-else conditions
in action blocks, which are essential for the DRL algorithm.
To overcome this limitation, we modify the P4-16 compiler
in order to adapt to a C++ external module, which is the
fundamental intermediary between the P4 application and the
DRL algorithm. We evaluated our solution on an emulated
network over Mininet, showing that when the network starts
being congested, the benefits of ROAR can be observed in the
increment of throughput and delay reduction.

The rest of the paper is structured as follows. Section II
presents literature about RL-based routing. In Section III, we
describe ROAR’s components. Section IV presents the exper-
imental results, and finally, Section V concludes the paper.

II. RELATED WORK

With the increasing number of connected devices and more
demanding applications, e.g., Tactile Internet, meta-verse, the
volume of data traffic flowing through networks has grown
exponentially. This has created a pressing need for efficient
routing mechanisms to optimize network performance, re-
duce latency, and ensure reliable data transmission, bringing
researchers to propose different automated and reactive ap-
proaches, usually combining ML techniques, such as RL and
DRL, to perform traffic prediction for load balancing and rout-
ing [7]. One example is QR-SDN [11], where the authors use
tabular RL (Q-learning) techniques to reduce latency across the
network by optimizing multipath routing. An SDN centralized
controller routes packets using a flow-preserving strategy
that aims to minimize the latency of transmissions. Another
interesting study is RSIR [12] that implements a knowledge
plane, in connection with the management plane, to store the
data, which are then used by the SDN centralized controller
to find the routing shortest path and balancing the load,
comparing their results with the classic Dijkstra algorithm. As
the authors suggest, adopting a centralized controller with a
global view brought a low response time in case of topology
changes. This solution works well in limited scenarios, but
in large network scenarios and with an increasing number of
flow numbers, we assist in a downgrade of throughput and
overall delay due to the constant interaction with a centralized
controller that cannot ensure reliable packet transmissions.
Over the last few years, Deep Reinforcement Learning (DRL)
methods have also been quickly adopted in many fields of
networking, from the Internet of Things (IoT) to concurrent
multipath transfer data scheduling, mobile-edge computing,
and heterogeneous networks, focusing especially on routing
optimization and congestion control [5]. An example of DRL-
based approach is [13], where the authors propose DROM,
a deep policy gradient routing optimization mechanism that
uses neural networks to improve the network’s overall perfor-
mance. However, this work requires human intervention for the
network strategy customization and maintenance that affects
the rewarding function [7]. Routing optimization mechanisms
were also essential in heterogeneous networks where various
devices with different capabilities, such as cell phones, laptops,
and tablets, are connected, and efficient resource utilization
was vital to avoid delays and maximize the throughput. An
example of an application in a heterogeneous network is
SmartCC [14], a multipath congestion control approach based
on DRL where an asynchronous RL framework learns a set of
congestion rules and adapts the congestion windows accord-
ingly. Several attempts to alleviate network congestion and
balance network load utilizes DRL methods running without
[15] or with an SDN controller, such as DRLS [16] and IQoR-
LSE [17], where great focus is brought to the collection of
network measurements.

While with the advent of programmable switches there was
an attempt to move part of the computation inside network
devices, e.g., [18], [19], to the best of our knowledge there
is no current routing solution having a data-driven DRL

ML-basedNon-ML

CentralizedDistributed

Internal External

Non-adaptability to topology
changes (e.g., ECMP, OSPF)

Slow to react for large
topologies (e.g., RSIR, QR-SDN)

ROAR

RL-based Supervised
Demanding a comprehensive

dataset for all scenarios

Limited scalability
(e.g., DROM, SmartCC)

Fig. 1: Design space for adaptive routing techniques highlight-
ing difference with state-of-the-art.

routing algorithm running inside the device. As shown in
Fig. 1, differently from other centralized solutions that face
the issue of data collection, we propose a routing optimization
mechanism aiming at providing a general solution adaptable
to any network scenario and any P4-compatible switch.

III. SYSTEM ARCHITECTURE AND COMPONENTS

In this section, we describe the design of our solution, as
well as the principles behind this definition. As represented
in Fig. 2, we can observe that ROAR revolves around using
P4 switches to control the forwarding plane directly inside
the network device, adopting forwarding decisions according
to the outcome of a deep reinforcement learning approach.
Every switch of our network is composed of three main blocks:
(i) the P4 application, which constitutes the logic of the
network device, (ii) the Deep Reinforcement Learning (DRL)
module, that runs the learning algorithm to route the packets,
(iii) the Inter-process communication (IPC) module, which is
composed of the high-level modules and data structures needed
to connect the P4 application to the DRL module.

A. DRL Module in ROAR

In ROAR, every switch of the network is an agent of
the DRL, making the solution a Multi-Agent Reinforcement
Learning (MARL) [20] scenario that applies forwarding de-
cisions according to the result of the DRL model in an
environment where other agents are also trying to reach the
same goal. We consider a system of M agents (routers)
within a shared environment without a centralized controller
responsible for gathering rewards or making decisions on
behalf of the agents. In this setup, the collection of agents
is represented as Mt, where M denotes the cardinality of the
set, and every agent has the capability to communicate with
all other agents. In particular, the composition of the agent set
can possibly vary over time (e.g., failures) and is defined as
Mt at a given time t ∈ M.

SDN Controller

Data Traffic

Metrics
DRL

ModuleIPC

P4
Application

Fig. 2: Overview of ROAR and its differences compared to a
centralized solution. The solution is based on the control of
packet forwarding planes directly in networking devices, also
showing the blocks composing every network switch.

Our time-varying MARL process is defined as a tuple
⟨{Si}i∈M, {Ai}i∈M, P, {Ri}i∈M, {Mt}t≥0⟩, where Si de-
notes the local state space of agent i in Mt, and Ai is the
action set that agent i can execute. Besides, A =

∏M
i=1 A

i

is the joint action space of all agents, also referred to as the
global action profile. We then proceed by defining the local
reward function of agent i, denoted as Ri : S × A → R, and
the state transition probability function P : S×A×S → [0, 1].
In this setup, we assume that the states and actions have
a global impact but are locally observable, as well as the
rewards, which are only observed locally. At each time step
t, given the state st ∈ S and the joint actions of the agents
at = (a1t , . . . , a

M
t) ∈ A, each agent receives an individual

reward rit+1. This reward is given by an equation that captures
the incentive that the learning model wants to model and is
determined by Ri

(st,at)
. Additionally, the system transitions to

a new state st+1 ∈ S with a probability of P (st+1|st, at).
Our model is considered fully decentralized and individual

as each agent receives rewards locally and performs actions
independently. Opposed to an SDN centralized scenario, where
the controller has a global view of the network, we design a
fully distributed solution. The leading idea is to train agents in-
dependently of each other to simplify the coordination process
among routers and reduce the overhead caused by continuous
updates. On the contrary, routers only exchange information
about the known topology to consolidate in a virtual global
network view. In this scenario, agents are independent of
each other, considering that they do not share network state
information or model parameters.

In each ROAR’s agent i, the action Ai is a discrete number
ranging from 1 to N , where N is the number of ports the
switch uses. The state Si, instead, is composed of three
elements: (i) current destination, which is the current packet’s
destination IP address, (ii) future destinations, which is a list
of L next packet’s destination IP addresses that follow the
same route as the current one, (iii) action history, which is
a list of the last k actions adopted for the current packet’s
destination. Every time a given action for a certain state has
been performed, e.g., a packet has been forwarded towards
a specific port, the reward function is evaluated to update

the expected cumulative reward (Q-value) for that state-action
couple. Thus, it takes into account two main factors: (i)
queuing time, which is the time every packet has spent in
the output queue, and (ii) the distance of the chosen next hop
from the final destination. While we want to minimize the time
spent by the packets in the outgoing queues, the distance of the
next hop from the final destination is the only information the
agent knows about the global topology. The reward function
Ri also considers two indicators: delivered, σ1, set to 1 if
correctly routed, 0 otherwise, and dropped, σ2, set to 1 if the
packet has been dropped, 0 otherwise. Their value is always
set to 0 in the case of spine switches, as they are not directly
connected to any destination host.

Summarizing, the reward function for each agent i is:

Ri = λ1 ∗ σ1 − λ2 ∗ q − λ3 ∗ σ2 − λ4 ∗ σ3 ∗ d (1)

where: (i) the λ values are the model’s hyper-parameters set
during the training to check the performance of the algorithm,
(ii) q is the time that the packet has spent in the queue before
being sent, (iii) σ3 is a parameter indicating whether the
switch is a spine one and is multiplied by d, i.e., the distance
to the destination switch.
Our Neural Network. In ROAR, we determined the number
of input features for our NN, i.e., the state space, by computing
their mean reward and selecting the list length for which
they achieve the highest value. After different settings and
evaluations, we set as input the last two taken decisions, i.e.,
the length for the “future destination” and “action history”
state. Being categorical features, we need to convert them
into numerical ones using encoding techniques. For this work,
we used the One-Hot-Encoding method, which uses dummy
variables to perform categorical encoding and performs better
than other techniques according to the precision-recall curve
(PR-AUC) metric [21].

These encoding features are now ready to be the inputs
of our NN model. We evaluated different NN structures
on leaf and backbone switches, finding that an architecture
composed of 3 hidden layers of 128, 64, and 32 neurons
can achieve the best performance. It is important to notice
that the DRL algorithm is not applied every time a switch
receives a packet. The overhead would be too high and it
would take tens of milliseconds to make a routing decision
which would be intolerable at line rate for modern switches.
The resulting trade-off is to adopt a static routing guided by
the DRL algorithm by means of periodical updates. It has
been tested that updating the single route towards a specific
destination every 10, 000 packets maximize the performance
of our network.

B. P4-based Actions

P4 is a networking programming language that allows
defining the data plane processing of a switch in a high-level
structure and generates efficient code that can run on different
hardware targets, including ASICs, FPGAs, and CPUs. It
provides a way to define how packets should be processed
through a network device, including how they are parsed,

matched against rules, and modified. To do so, P4 is composed
of three main blocks: a parser, a match-action pipeline, and
a deparser. The parser is designed as a finite-state machine
that analyzes and extracts headers. For example, a packet may
begin with an Ethernet header, followed by an IPv4 or IPv6
header; the parser extracts all of these headers and passes
them to the next step, the match-action pipeline. This stage
is composed of checksum verification algorithms, ingress,
and egress pipelines, which are composed of structures (e.g.,
tables, registers, counters) that P4 uses to customize switch
behavior and implement routing strategies based on policy.
The deparser is the final stage, defining how outgoing packets
are constructed from a set of header fields. In the following, we
mostly focus on the match-action pipeline’s ingress and egress
while considering that the parser recognizes and extracts the
Ethernet, IP, UDP, TCP, and ICMP headers.

When a ROAR’s router receives a packet, it performs two
main operations: (i) inserts the current packet’s IP destination
address inside the “future destinations” data structure, accessed
by the IPC module, (ii) chooses the output port given by the
DRL module. The egress performs two other main operations:
(i) forwards the packet according to a FIFO criteria and re-
moves its destination IP address from the “future destinations”
data structure, (ii) interacts with the IPC module to determi-
nate the reward for that specific forwarding action according to
the time spent by the packet in the outgoing queue. Due to P4
limitations that prevent implementing any machine-learning
method inside the default P4 compiler, we had to modify
it and enable “extern” instances, which allow implementing
external methods outside the P4 program [22]. The P4 program
can reference the extern object and pass inputs to it, but the
implementation details of how the object works are hidden
from the P4 program. This makes the network’s control and
data plane separation easier, allowing the P4 program to focus
on packet processing logic while leaving the low-level details
of interacting with hardware to the extern objects.

C. IPC module

In ROAR, we use an IPC module deployed inside each
switch to act as an intermediary between our P4-based network
application and the DRL algorithm. The IPC block serves
to bridge the two modules by providing a means for the P4
application to communicate the packet counters to DRL, and
for the DRL to communicate the chosen actions, i.e., next
hop, to the P4 forwarding plane. As mentioned previously,
our IPC module includes functionality for preprocessing and
transforming data to make it suitable for the DRL algorithm
and, in particular, for the NN method, as well as for monitoring
and collecting feedback on the performance of the system for
the reward function. More in detail, our IPC module uses sock-
ets abstraction written in C++ to establish a communication
channel and exchange data with the DRL module.

IV. EVALUATION

This section describes our experimental settings and results
obtained over a virtual testbed like Mininet, focusing on a

comparison between ROAR, a traditional routing protocol and
a centralized SDN solution.

A. Evaluation settings

To validate ROAR’s benefits, we used Mininet a network
emulator that allows reproducing virtual networks and use
them as a testbed for simulation purposes. Being specifically
designed for software-defined networking (SDN), it supports
P4-compatible switches via the Behavioral Model Version 2
(BMV2), which allows compiling a P4 program into packet-
processing actions of C++11 software switches. The topology
used for testing is composed of 10 servers connected to
their switches which are consequently connected to other 4
switches, in a leaf-spine fashion, with all the links of the
topology with 100 Mbps bandwidth. In all the performed
tests, we are using iperf3, a tool to perform measurements on
the network according to different bandwidths, protocols, and
buffer setups. Each server of the network sends packets to any
other server, varying the number of receiving servers (from 1
to 9) and replicating the workload as described in [23]. For
each network load, we then computed the average of the ob-
tained results (i.e., RTT, FPS, throughput, and packet loss) and
drew the two-tailed confidence interval at 95%. For the context
of this work, we compare our results against two alternatives:
a traditional routing protocol implementation as OSPF, which
uses the longest prefix match tables to perform routing across
the network and does not depend on the current network load;
and a centralized SDN solution, QR-SDN [11], that routes
packets according to the output of a tabular RL algorithm.

B. Random Traffic Generation

To study the performance of our solution, we started by
generating traffic using the iperf3 tool that helped us control
the level of congestion of our network and compare the results
with QR-SDN and the traditional routing implementation, as
OSPF (Fig. 3). We can see from Fig. 3a that when the load
is low (10% to 20%), the network is not congested, and QR-
SDN shows a lower Round Trip Time (RTT), while ROAR
and OSPF perform similarly. This might be caused to the fact
that ROAR uses DRL to choose the optimal route and, for
every 10, 000 packet, the IPC module interacts with the DRL
one to retrieve information about the best port to forward the
packet. This interaction can indeed impact on the network
performance, decreasing the overall throughput. However,
when the network load starts to increase (20% to 40%), a
significant difference is visible with OSPF, while QR-SDN
still achieves a lower RTT than ROAR. When our network
is highly congested (from 50% to 90% of network load), we
can clearly identify the benefits brought by ROAR, where the
RL method accurately chooses the best forwarding port to
avoid congestion and decrease the RTT, while for QR-SDN
the interaction with an SDN controller impacts the overall
performance of the network. A similar behavior is visible
when evaluating the throughput, as in Fig. 3b. The figure
shows that when the network is not congested and our load is
low (10% to 20%), ROAR performs as the traditional routing

10 20 30 40 50 60 70 80 90
Load (%)

0

100

200
R

T
T

(m
s)

ROAR
QR-SDN
OSPF

(a)

10 20 30 40 50 60 70 80 90
Load (%)

40

60

80

100

T
hr

ou
gh

pu
t(

M
bp

s)

ROAR
QR-SDN
OSPF

(b)

10 20 30 40 50 60 70 80 90
Load (%)

0.0

2.5

5.0

7.5

Pa
ck

et
L

os
s

(%
) ROAR

QR-SDN
OSPF

(c)

Fig. 3: Comparison of ROAR, OSPF and QR-SDN, measuring the (a) RTT evolution, (b) throughput, and (c) packet loss at
increasing network load.

10 20 30 40 50 60 70 80 90
Load (%)

155

160

165

170

FP
S

ROAR
QR-SDN

(a)

10 20 30 40 50 60 70 80 90
Load (%)

70

80

90

100

T
hr

ou
gh

pu
t(

M
bp

s) ROAR
QR-SDN

(b)

0 50 100 150
Time (s)

82.5

85.0

87.5

90.0

T
hr

ou
gh

pu
t(

M
bp

s)

ROAR
QR-SDN

(c)

Fig. 4: Comparison of ROAR and QR-SDN with realistic traffic workloads, measuring the (a) FPS evolution and (b) throughput
at increasing network load. (c) Throughput in 200 seconds when the network load is at 60%.

implementation, while QR-SDN achieves higher throughput.
However, a different behavior can be seen when our network
load increases. While QR-SDN achieves better throughput
than OSPF, ROAR allows our network to handle congestion
better and perform better than the compared solutions.
Packet delivery is another relevant metric when evaluating a
solution, as it is an indicator of how well the network responds
to the implemented strategy. Dealing with a high number of
packet loss means a low transmission quality with the need
to send packets again, negatively impacting the performance
of our model and the network resource utilization. For this
reason, we report in Fig. 3c the packet loss of when transmit-
ting UDP packets and network runs ROAR and compared it
to QR-SDN and OSPF. For this experiment, we chose UDP
as the default transport protocol to validate the only effect of
routing over losses, since for TCP we could also have the TCP
congestion control protocol running on the host to interfere.
As visible from the figure, our solution can constantly reduce
the number of packets lost compared to alternatives, due to the
faster reaction when congestion starts appearing. By promptly
reacting and adapting the next hop, ROAR is able to reduce
the number of losses. This result is particularly important for
delay-sensitive transmission, where keeping the number of re-
transmissions to the minimum is crucial.

C. Trace-based Evaluation

To evaluate our solution in the context of a realistic
workload scenario, we used captures taken from publicly
available datasets [24] and replayed them in our network using
the well-known tcprelay tool. The file, representing traffic

10 20 30 40 50 60 70 80 90
Load (%)

5

6

7

8

R
A

M
(%

)

(a)

10 20 30 40 50 60 70 80 90
Load (%)

4

6

8

10

C
PU

(%
)

(b)

Fig. 5: (a) RAM and (b) CPU consumption as a percentage
of available resources of a reference Intel Tofino switch.

collected from a data center, has been analyzed to extract and
replicate the flows in our topology by opportunely adapting IP
addresses. We reported in Fig. 4 the results of our evaluation.

We start in Fig. 4a by counting the flows per second (fps)
that the network can handle while running the file capture.
When our network is not congested, and the network load is
low (10% to 30%), QR-SDN is able to send a higher number
of fps than our solution. However, when the network starts
being more congested and the network load increases (from
40%), it is notable that ROAR performs better, being able
to send a high number of fps even at the highest network
load. As previous experiments showed, when the network state
(expressed as load) is more prominent, the RL module can
differentiate actions and select a more appropriate path.

A similar behavior is visible when evaluating the throughput
in both our solution and QR-SDN (Fig. 4b). While QR-SDN
achieves higher throughput at lower network loads, ROAR
is able to outperform when the network is fully congested.
Finally, we considered the first 200 seconds of execution at a

fixed network load of 60% and reported the result in Fig. 4c.
It is visible from the figure that for the entire evaluation
period, ROAR achieves better throughput than QR-SDN,
with results coherent with the ones reported before. These
results are extremely important to assess the validity of local
performance-aware routing not only with synthetic traffic, but
also with more realistic traffic patterns.

D. Can ROAR run over real switches?

Aware of the impact on resource consumption that a DRL
model might cause when implemented on physical switches
(e.g., FPGA, Tofino), we computed the RAM and CPU usage
of ROAR at a varying network load. To do so, we took
as reference the X308P-48Y-T programmable switch [25],
combined with its embedded Data Processing Unit (DPU),
proportioning the results to its computing power. We reported
the results in Fig. 5. In Fig. 5a, we can see how our solution
consumes a low amount of RAM when the network load
is low and the network is congested. This amount increases
only up to 2% at the highest load (70%-90%). The same
behavior is visible in Fig. 5b, where the CPU consumption
only increases at high network loads. These figures prove
that, despite the DRL module, the IPC module interaction, and
the NN algorithm, ROAR requires small hardware resources,
making it suitable to deploy on real programmable switches.

V. CONCLUSION

In this paper, we propose ROAR, a distributed ML-based
solution that uses the novel Deep Reinforcement Learning
(DRL) mechanism to optimize the routing process of the
network while doing all the computation directly inside the
P4 programmable switches. This approach allows to take into
consideration the current link load and re-route packets over
less congested paths. In the experimental results, we compared
our solution to a traditional routing implementation and a
centralized SDN solution. It has been proven that the absence
of an interaction with a centralized SDN controller reduces
RTT even when the network is congested, also achieving
higher throughput, especially at higher network loads.

ACKNOWLEDGMENT

This work has been partially supported by NSF awards
2133407 and 2201536.

REFERENCES

[1] A. Sacco, F. Esposito, and G. Marchetto, “Resource Inference for Sus-
tainable and Responsive Task Offloading in Challenged Edge Networks,”
IEEE Transactions on Green Communications and Networking, vol. 5,
no. 3, pp. 1114–1127, 2021.

[2] Y.-J. Wu, P.-C. Hwang, W.-S. Hwang, and M.-H. Cheng, “Artificial
intelligence enabled routing in software defined networking,” Applied
Sciences, vol. 10, no. 18, p. 6564, 2020.

[3] A. Sacco, F. Esposito, and G. Marchetto, “RoPE: An Architecture for
Adaptive Data-Driven Routing Prediction at the Edge,” IEEE Transac-
tions on Network and Service Management, vol. 17, no. 2, pp. 986–999,
2020.

[4] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[5] T. Fu, C. Wang, and N. Cheng, “Deep-learning-based joint optimization
of renewable energy storage and routing in vehicular energy network,”
IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6229–6241, 2020.

[6] C. Liu, M. Xu, Y. Yang, and N. Geng, “DRL-OR: Deep reinforcement
learning-based online routing for multi-type service requirements,” in
IEEE INFOCOM - IEEE Conference on Computer Communications.
IEEE, 2021, pp. 1–10.

[7] R. Amin, E. Rojas, A. Aqdus, S. Ramzan, D. Casillas-Perez, and J. M.
Arco, “A survey on machine learning techniques for routing optimization
in sdn,” IEEE Access, vol. 9, pp. 104 582–104 611, 2021.

[8] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra: A
programmable system for performance-aware routing,” in 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20). USENIX Association, 2020, pp. 701–721.

[9] L. Yu, J. Sonchack, and V. Liu, “Mantis: Reactive programmable
switches,” in Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’20). ACM New
York, NY, USA, 2020, pp. 296–309.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[11] J. Rischke, P. Sossalla, H. Salah, F. H. Fitzek, and M. Reisslein, “QR-
SDN: Towards Reinforcement Learning States, Actions, and Rewards
for Direct Flow Routing in Software-Defined Networks,” IEEE Access,
vol. 8, pp. 174 773–174 791, 2020.

[12] D. M. Casas-Velasco, O. M. C. Rendon, and N. L. da Fonseca, “Intel-
ligent Routing Based on Reinforcement Learning for Software-Defined
Networking,” IEEE Transactions on Network and Service Management,
vol. 18, no. 1, pp. 870–881, 2020.

[13] C. Yu, J. Lan, Z. Guo, and Y. Hu, “Drom: Optimizing the routing
in software-defined networks with deep reinforcement learning,” IEEE
Access, vol. 6, pp. 64 533–64 539, 2018.

[14] W. Li, H. Zhang, S. Gao, C. Xue, X. Wang, and S. Lu, “Smartcc: A
reinforcement learning approach for multipath tcp congestion control in
heterogeneous networks,” IEEE Journal on Selected Areas in Commu-
nications, vol. 37, no. 11, pp. 2621–2633, 2019.

[15] S. S. Bhavanasi, L. Pappone, and F. Esposito, “Dealing with changes:
Resilient routing via graph neural networks and multi-agent deep
reinforcement learning,” IEEE Transactions on Network and Service
Management, vol. 20, no. 3, pp. 2283–2294, 2023.

[16] L. Zhao, J. Wang, J. Liu, and N. Kato, “Routing for Crowd Management
in Smart Cities: A Deep Reinforcement Learning Perspective,” IEEE
Communications Magazine, vol. 57, no. 4, pp. 88–93, 2019.

[17] B. Dai, Y. Cao, Z. Wu, and Y. Xu, “IQoR-LSE: An Intelligent QoS On-
Demand Routing Algorithm With Link State Estimation,” IEEE Systems
Journal, vol. 16, no. 4, pp. 5821–5830, 2022.

[18] C. Yu, W. Quan, D. Gao, Y. Zhang, K. Liu, W. Wu, H. Zhang, and
X. Shen, “Reliable cybertwin-driven concurrent multipath transfer with
deep reinforcement learning,” IEEE Internet of Things Journal, vol. 8,
no. 22, pp. 16 207–16 218, 2021.

[19] A. Sapio, M. Canini et al., “Scaling Distributed Machine Learning with
In-Network Aggregation,” in 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’21), 2021, pp. 785–808.

[20] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforce-
ment learning: An overview,” Innovations in multi-agent systems and
applications-1, pp. 183–221, 2010.

[21] C. Seger, “An investigation of categorical variable encoding techniques
in machine learning: binary versus one-hot and feature hashing,” 2018.

[22] J. S. da Silva, F.-R. Boyer, L.-O. Chiquette, and J. P. Langlois, “Extern
objects in p4: an rohc header compression scheme case study,” in
2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft). IEEE, 2018, pp. 517–522.

[23] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM 2010 Conference, 2010, pp. 63–74.

[24] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 2010, pp. 267–280.

[25] “48x25gb+8x100gb, intel tofino p4 programmable bare
metal switch: Asterfusion,” July 2022. [Online].
Available: https://cloudswit.ch/product/48x25gb8x100gb-intel-tofino-
p4-programmable-bare-metal-switch-asterfusion/

