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Abstract—As network interfaces in the data center get faster
and faster, and an increasingly big portion of the services is
implemented in software, we must wonder just how much time
our servers’ CPUs are spending handling network traffic.

This paper explores the feasibility of measuring the cost of
the entire in-kernel network stack in real-time on production
systems by relying on the eBPF tracing capabilities instead
of utilizing custom logic or kernel patching. We describe two
methods that have been attempted, respectively based on an
“exact” instrumentation of the stack and sampling, along with
the advantages and defects of each approach.

Index Terms—Linux, networking, eBPF, tracing, observability

I. INTRODUCTION

Modern computer systems heavily rely on efficient network-
ing capabilities to handle the increasing demands of data trans-
fer and communication. Within this context, the kernel’s net-
working stack plays a vital role in both (i) facilitating network
communication, and (ii) ensuring data integrity. Therefore, as
network traffic continues to surge with the widespread adoption
of IoT (Internet of Things) devices [1] in the attempt to create
the so-called Smart Cities and Societies, it is of paramount
importance to understand and optimize the kernel’s overhead
imposed by the networking stack to achieve optimal system
performance to deal with the massive amount of generated data.

To address this challenge, emerging technologies such as
eBPF [8] (extended Berkeley Packet Filter) have gained sig-
nificant attention due to their ability to perform dynamic and
non-intrusive analysis of kernel behavior. By providing a safe
and efficient means to extend and customize the kernel’s
functionality, eBPF has opened up new possibilities for deep
analysis of the networking stack and its associated performance
overhead.

The primary objective of this paper is to explore the use
of eBPF as a powerful tool for tracking and quantifying the
overhead induced by the networking stack of the Linux kernel.
By utilizing eBPF, we can collect fine-grained data and gain
valuable insights into the behavior of the kernel during network
operations. This approach allows not only to pinpoint perfor-
mance bottlenecks but also to identify and possibly optimize
code and infrastructure inefficiencies, ultimately leading to
improved system performance and resource utilization.

In this paper, we present a comprehensive comparison of
techniques for utilizing eBPF to track kernel overhead in the

networking stack, following their implementation and testing
in Netto (https://github.com/miolad/netto), a new tool to aid
system administrators to diagnose the CPU consumption of
the networking subsystem of Linux-based operating systems.
These techniques attempt to isolate the networking cost of
the kernel by respectively instrumenting the specific kernel
functions responsible for implementing such networking func-
tionality (thus obtaining an “exact” evaluation), and sampling
the CPU kernel-side call stack to profile the networking code.
We will also discuss the collection and analysis of performance
data, and the interpretation of the results. Through experiments,
we extensively evaluate (i) the performance overhead of the
proposed solutions, and (ii) the measurement accuracy with
respect to each other.

The remainder of the paper is organized as follows. Sec-
tion II summarizes the related work. Section III introduces
the key concepts of the Linux networking stack. Section IV
describes the architecture and implementation details of in-
strumenting the Linux network stack using eBPF. Section V
discusses processing overhead and measurement accuracy of
the proposed methodologies, and also evaluates the tool against
a set of test cases which showcase the typical results achiev-
able through Netto. Section VI analyzes some of the current
limitations of out design and considers future development
opportunities. Finally, Section VII concludes the paper.

II. RELATED WORK

The need to measure costs and overheads in a kernel’s
network stack is quite common for research work on tech-
niques to mitigate bottlenecks and improve performance, but no
unified measurement framework exists that can satisfy all the
usual requirements of accuracy and transparency. Nevertheless,
the literature proposes several techniques to profile specific
sections of the networking stack, but in no case the suggested
method proves exhaustive in measuring the entire networking
layer of the Linux kernel. In the following we will present a
few of them to discuss advantages and limitations.

As part of the netmap project, Rizzo [6] adopted a custom so-
lution to obtain the baseline performance profile of FreeBSD’s
sendto system call: a userspace program was used to average
out the execution time of the designated syscall, and by repeat-
edly patching the kernel to short-circuit the syscall at different



stages of its execution path, a detailed breakdown of its cost
could be obtained. Such a solution is appropriate only for static
analysis of a system’s performance, but it is clearly not suitable
for real-time or continuous monitoring, as it requires multiple
intrusive kernel modifications to collect a single measurement.
Moreover, this approach does not take into account scheduling,
and is therefore unreliable on loaded systems. Apart from
these drawbacks, Rizzo’s solution would still not contend Netto
due to the limited extent of the measurement and inadequate
scalability.

Two years later, Peter et al. [5] used a similar technique to
profile the UDP path of the Linux network stack. Unlike [6],
however, measurements were taken by timestamping mean-
ingful events directly in the kernel, rather than averaging out
short-circuited versions of the syscall of interest. This approach
still requires patching the kernel but avoids breaking its func-
tionality while collecting the samples. Otherwise, the scope
remains that of a focused, one-time measurement: once again,
extending this concept to the whole network stack would need
a massive kernel patch which would be incompatible with the
Plug-and-Play nature that Netto strives for. Also, timestamping
per-packet hot paths would likely prove challenging due to
the associated overhead; Netto overcomes these complications
by sampling these otherwise prohibitive functions for a fixed,
configurable cost.

NSight [3] is a recent tool that allows to diagnose latency
deviations of network packets in end-hosts which claims both
very high precision and negligible overhead. It manages this
by utilizing the hardware profiler Intel-PT [4] to follow a
network packet’s journey through the network stack from the
NIC to the application (or vice-versa), and build its “lifetime”.
This is later analyzed in relation to that of neighbouring
packets to reveal anomalies and their causes. Because of
the Intel-PT dependency, NSight collects 600MB to 1GB
of compressed profiling data every second, which hinders its
chances of deployment as a real-time monitoring solution.
Furthermore, NSight requires a — albeit small — patch to
the mainline Linux kernel to obtain NIC timestamps at kernel
to userspace hand-off boundaries, making it cumbersome to
adopt on production systems.

In this paper, we propose two methods based on eBPF which
do not require patching the kernel, while remaining lightweight
enough to support continuous operation, with the ambition of
negligible system overhead.

III. LINUX NETWORKING SUMMARY

The Linux network stack is the portion of the kernel in
charge of handling (and moving) network data between (i)
one network interface card (NIC) and the target application
(and vice-versa), and (ii) a NIC to another (for bridging
and forwarding), regardless of whether network interfaces are
physical NICs or virtual devices that live entirely in software.
While the first path looks like the most common in servers, it is
actually the second one that is even more important, given that
modern data centers massively rely on bridging and routing

…

RX

packet buffer

IRQ handler

net_rx_action()

n
api

_sc
hed

ule
()

poll driver

RX ring

sock_recvmsg()

napi_gro_receive()

…

application

TX ring

packet buffer

sock_sendmsg()

ndo_start_xmit()

TX

Fig. 1: High level overview of the Linux kernel’s network stack
software architecture. The figure depicts both the receive (left)
and transmit (right) paths.

functions, e.g. to move network data among different virtual
machines or containers within the same host.

The following subsections detail the journey of a typical
network packet as it is received by an interface until it gets
delivered to the destination application.

A. Network to socket

When a packet is received on a physical interface, it is
DMAed to a driver-owned buffer in kernel memory, and an
interrupt is raised by the hardware. Due to its complexity,
the packet handling stack can not all be contained in the
Interrupt Service Routine (ISR) of the NIC driver, and it is
thus split into a top half and a bottom half. This architecture,
which is common across a variety of device drivers, allows
to preserve system responsiveness by keeping the high-priority
ISR (top half) compact and fast, while delegating the bulk of
the computation to a deferrable function (bottom half), usually
run in a lower priority context.

To this end, Linux provides deferrable functions as a
means for drivers to schedule code to be executed at a later
time, thus allowing to move expensive computations out of
the constrained interrupt context; this makes them ideal for



implementing typical bottom halves. In modern versions of
the Linux kernel, several deferrable function implementations
exist; among them, softirqs are an ideal fit for the network-
ing layer of the operating system, thanks to their favourable
concurrent execution behavior and low overhead due to the
tight integration into the kernel’s design. By contrast, tasklets
(an abstraction on top of softirqs) trade performance with
simplicity by disallowing parallel execution over multiple
CPU cores, and work queues are controlled by the system’s
global task scheduler, meaning that an hypothetical network
stack implementation based on one would result in unpre-
dictable and inconsistent packet latency. Indeed, two of the
ten currently allocated softirq types are related to networking:
NET_RX_SOFTIRQ and NET_TX_SOFTIRQ.

In virtually all modern NIC drivers, which are compli-
ant with the NAPI1 interface, the top half wraps a call to
napi_schedule(), which raises the NET_RX_SOFTIRQ
on the local CPU and registers the NIC’s driver for polling (Fig-
ure 1, left side). For each invocation, the NET_RX_SOFTIRQ
will poll all registered drivers (within its budget constraint of
300 packets or 2 jiffies by default), by calling their provided
napi_poll() virtual function. At this point, the typical NIC
driver will perform a “cleanup” of the RX descriptor rings, a
process which can be broken down into the following high
level overview, for each extracted packet:

1) Run any XDP_NATIVE eBPF programs, if supported.
2) Wrap the packet into an skb, populating fields such as

protocol and VLAN.
3) Submit the packet to the upper networking layer with

netif_receive_skb(), napi_gro_receive()
or similar (the specific function used depends on the
driver’s capabilities, not on the NIC or its current con-
figuration).

Once the common networking layer of the Linux kernel is
reached, the skb is managed based on its L3 protocol by deliv-
ering it to the appropriate protocol handler (like ip_rcv()
for IPv4 traffic). Similarly, bridging is implemented by a
specific receive handler — br_handle_frame() — which
is run on every frame received on an interface that is part
of a software bridge. Crucially, a bridge can “pass a frame
up” when an skb targets the bridge itself with a nested call to
netif_receive_skb().

B. Socket to application

To provide networking services to userspace processes,
Linux adopts the traditional socket API. Sockets represent the
interface between applications and in-kernel network functions,
and through them users can send and receive data.

The scope of the NET_RX_SOFTIRQ, for traffic intended
for the local host, ends after dispatching the packet’s payload
to the appropriate socket’s receive buffer. Note however that
not all incoming packets must be delivered locally. Some,
for example, might be transmitted on output interfaces due to

1NAPI (formerly New API) is the event handling mechanism used in the
Linux networking stack. https://docs.kernel.org/networking/napi.html

bridging or forwarding, or because of ACK generation, while
others may be dropped because of filtering or other reasons.

The traditional way of interacting with socket objects in
Linux has been the system call interface. Syscalls such as
read and recv may be used to retrieve data from the
socket’s kernel-side buffer and copy it to the user-provided
address, completing the packet’s journey. If no data is currently
available, most variants of the aforementioned system calls
will put the user process in “io-wait”, blocking it until there
is something to read. Some asynchronous versions of these
functions have been proposed throughout the years, like the
promising new io_uring [11] interface.

C. Data transmission

The network subsystem of Linux is, by nature, fairly asym-
metric. This is because the reception of an incoming network
packet is inevitably an asynchronous event with respect to
the local computer system. Consequently, its management is
delegated to a mechanism of (hard and soft) interrupts, until
the received packet is eventually assigned to a process via the
owning socket.

In the opposite direction, the picture is generally much
simplified, as socket writes represent the primary entry point
into the network stack for locally generated outbound traffic.
For a usual blocking call like write or send, the entire TX
network stack is executed within the syscall, which brings data
from the user-space buffer to the output NIC driver (Figure 1,
right side). It must be noted, however, that this simplistic
dissertation does not take into account complications specific
to individual protocols, like in the case of TCP, which uses
deferrable tasklets and timers to aid its congestion and flow
control implementations.

Lastly, a NET_TX_SOFTIRQ is activated for the deferred
transmission of pending packets in case the target interface is
still busy sending previous data. In any case, this last softirq
hardly matters in the overall picture for CPU consumption due
to the infrequent nature of its invocations.

IV. ARCHITECTURE AND IMPLEMENTATION

In this section, we delve into the two tracing models im-
plemented in Netto, explaining their software architecture and
design choices, first by tackling the solution based on an exact
analysis, then outlining the sampling approach.

A. Full Functions Tracking

An intuitive and general method to measure the CPU time of
any software component of the Linux kernel is to surround it
with eBPF probes attached to the entry and return addresses of
the functions responsible for implementing it. The event’s run
time can then be derived as the difference in the invocation
timestamps of the eBPF programs on a per-CPU basis. By
relying on eBPF for the instrumentation, we can ensure com-
patibility across distributions without requiring inconvenient
patches to the kernel or device drivers, while targeting an
acceptable level of runtime overhead.



In the case of the Linux network stack, the same concept
can be applied by first identifying the main entry points into
the networking code. Following the outline of the network
stack’s architecture described in the previous Section III, we
determined the following functions to be the key locations
where eBPF tracing was to be installed:

• NET_RX_SOFTIRQ: Polls NAPI-based physical and vir-
tual network drivers and handles incoming raw packets
until dispatchment to local sockets; it batches up to 300
skbuffs per invocation by default.
This softirq is responsible for most of the receive-side
network stack, as well as reactive outbound traffic (i.e.
transmitted packets that are produced in reaction to some
received message, such as TCP acknowledgments or
ICMP echo replies) and forwarded outbound traffic (like
for L2-bridging and L3-forwarding network functions).

• NET_TX_SOFTIRQ: Occasionally flushes transmission
queues for busy networking drivers during high load
scenarios.
As opposed to the RX softirq, the NET_TX_SOFTIRQ
generally has a limited CPU footprint.

• Socket receive operations: User-callable functions to
terminate a receive operation. These include system calls
like read and recv, which ultimately copy available re-
ceived data from in-kernel socket buffers to user-provided
memory for consumption.
The identified C function associated with this event is
sock_recvmsg(), which acts as a common crossing
point for the multiple available socket read paths.

• Socket send operations: User-callable functions to trigger
transmission of data through a socket object. Unlike read
operations, a write will usually account for most of the
transmission side of the Linux kernel’s networking stack.
These include system calls such as write and send.
The identified C function associated with this event is
sock_sendmsg(), which acts as a common crossing
point for the multiple available socket write paths.

Table I summarizes the chosen eBPF program types and
attach points for the four abovementioned events in the format
of their binary ELF sections2. The decision is attributable
to an effort at minimizing in-kernel overhead by the eBPF
instrumentation; for this reason, static tracepoints were pre-
ferred whenever available, and trampoline-based fentry and
fexit programs [7] were used otherwise. Note that, as both
softirq events map to the same set of tracepoints, the two are
distinguished by filtering over their “vec” arguments, which
identifies their specific type. It is also worth mentioning that
the last two events are hit by any of the similar system calls,
including their asynchronous analogues and the networking
opcodes of the io_uring interface.

The described set of eBPF programs allows Netto to mea-
sure the on-CPU time for each of the four network events

2An eBPF program’s section in its compiled ELF binary determines its
type and concrete attach point. See https://docs.kernel.org/bpf/libbpf/program
types.html for reference.

independently. Every exit program calculates the difference in
its invocation timestamp with that of its respective entry and
accumulates it into an event-specific counter. All four counters
live in a BPF_MAP_TYPE_PERCPU_ARRAY map, enabling
them to (i) retain per-CPU resolution over the measured usage
metrics, and (ii) be exported to the user space controller
for consumption. The controller runs with a default period
of 500ms, reads the most up-to-date values from the map
— which it compares with the previous iteration’s counters
—, and then updates the user-facing report. In particular,
the total amount of CPU time that Linux spent inside its
networking stack is computed as the sum of the on-CPU time
of the individual events. The default control loop invocation
frequency of 2Hz was chosen as a good compromise between
a satisfying temporal resolution of the output data and an
acceptable level of CPU overhead, although the initial concerns
about elevated system load due to the user-space controller
have not materialized.

We are now going to discuss some of the most prominent
complications that arise from this design, which require ad-
hoc and careful handling to avoid data races and measure-
ment inconsistencies (§IV-A1). Next, an additional feature is
explored in order to attempt a breakdown of the obtained cost
figure, enhancing Netto with the ability to estimate the CPU
consumption associated with the individual network functions
like bridging and forwarding (§IV-A2).

1) Handling switching of execution context: The design
presented so far works well in the common case, but it
is subject to errors in preemptible kernels in two separate
scenarios: (a) network softirqs can interrupt tasks on which
other monitored events are running, and (b) the task scheduler
could preempt or migrate monitored tasks.

a) Softirqs interrupting other tasks: Linux softirqs can be
run in IRQ context, and can thus interrupt any user process,
including those where an identified socket operation (i.e.,
send and receive system calls) is running. This occurrence
is especially common during high network load situations,
and leads to the over-estimation of the CPU utilization of
the interrupted task. It is worth pointing out that the opposite
case, where a NET_RX_SOFTIRQ or NET_TX_SOFTIRQ is
interrupted by a socket operation, is not possible since softirqs
are hosted on non-preemptible execution contexts.

The adopted solution consists in associating to each en-
countered kernel task a pair of bits allocated to store infor-
mation about what socket operation is currently executing,
if any. These bits are set at every entry and exit to the
sock_recvmsg and sock_sendmsg events. Softirq entries
will then behave like an exit from the socket recv/send event
whose id is stored in the task data, and vice-versa, softirq exits
will act as the corresponding socket event’s entry, updating the
global entry timestamp.

b) Migratable tasks: The second issue is related to tasks
being preempted out of the CPU by the Linux scheduler, possi-
bly migrating them to different cores. Since metrics exported by
the eBPF layer have a per-CPU resolution, any such migration



TABLE I: eBPF programs’ ELF sections for the four identified networking entry-points in the exact measurement approach.

Event Responsibility eBPF entry ELF sec. eBPF exit ELF sec.

NET_RX_SOFTIRQ Network → Socket tp_btf/softirq_entry tp_btf/softirq_exit

NET_TX_SOFTIRQ Flush TX queues tp_btf/softirq_entry tp_btf/softirq_exit

Socket recv operations Socket → Application fentry/sock_recvmsg fexit/sock_recvmsg

Socket send operations Application → Network fentry/sock_sendmsg fexit/sock_sendmsg

negatively influences the measurement’s accuracy, as the exact
on-CPU time of a migrated task can not be correctly estimated
by its eBPF probe. Once again, this only affects socket-related
network events, for the same reason denoted above.

The solution requires making Netto’s eBPF layer scheduling-
aware. This involves instrumenting the Linux scheduler, which
we do by attaching a tracing program to the sched_switch
tracepoint, that is invoked for each task swap. Coupled with
the per-task storage introduced in the previous paragraph, this
new program can correctly react to network task migrations.
Similarly, the strategy is that of “impersonating” the associated
event’s entry and exit routines by the sched_switch probe
based on the values of the task bits for the previous and next
tasks.

2) Cost breakdown for the NET_RX_SOFTIRQ: The algo-
rithm, as described to this point, is able to capture the total
CPU utilization of the Linux network stack, but provides little
to no insight into what components make up this monolithic
cost. In fact, the only subdivision that can be attempted at this
point is attributing the cost of the NET_RX_SOFTIRQ and
sock_recvmsg to inbound traffic, and that of the remaining
events to outbound, locally generated traffic. This classification
is coarse and provides little use as a diagnostic data point;
undoubtedly, a finer-grained breakdown could prove convenient
in identifying hotspots and implementing optimizations. For
this purpose, a NET_RX_SOFTIRQ breakdown feature has
been implemented in Netto, which targets the receive-side of
the network stack to extract usage metrics that reflect low-level
network functions such as bridging, forwarding, and more.

Intuitively, the feature can be implemented by merely ex-
tending the set of kernel functions tracked with eBPF probes
to also include the most significant from within the specific
softirq handler, some of which are briefly described:

• br_handle_frame(): Bridge entry point, it is called
as a receive handler for all Ethernet frames received on
interfaces that are configured as part of a software bridge.

• do_xdp_generic(): Run any attached Generic XDP
programs. Note that the native variant can not be tracked
with this method, as the kernel function responsible for
this activity is decorated as inline for performance
reasons, and thus not traceable with eBPF.

• ip_forward(): Entry point for IPv4 forwarding of
network packets.

• ip_local_deliver(): Deliver IPv4 skbs to upper
layer protocols, eventually reaching sockets.

Full Functions Tracking

Baseline

0 2 4 6 8 10 12

without bridge

with bridge

Throughput (Gbps)

Fig. 2: Overhead of Full Functions Tracking on the iperf3
TCP receive test under different networking configurations.
When bridging is enabled on the host effective speed is further
reduced.

B. Network Stack Sampling

As an alternative to using eBPF to hook into the network
stack functions directly, we also explored a sampling-based
profiling solution, which would gather equivalent metrics by
statistically evaluating arrays of captured stack traces.

The advantage of this methodology, compared to the one pre-
sented in the previous sub-section, is in the overhead associated
with the measurement stack. The execution of eBPF tracing
programs comes with a small computational overhead that
is typically acceptable for most applications. However, Netto
requires attaching to routines in the data path of the network
stack which can have a very high invocation rate: for exam-
ple, most of the programs used for the NET_RX_SOFTIRQ
breakdown are executed for every incoming packet, and thus
their instrumentation cost scales with the inbound throughput.
This means that, in high speed networks, Netto can have a
significant impact on the system’s networking performance.
Figure 2 shows an almost 50% reduction to TCP inbound
throughput on a 40Gbps link when GRO is disabled.

Conversely, a loss in accuracy is expected due to the
sampling sparsity, although the magnitude of the error can be
chosen to be as low as needed by controlling the sampling
frequency setting.



The network stack sampling strategy implements a sampling
profiler that specifically targets the Linux kernel’s network
stack. It works by instrumenting a purposefully allocated
perf event that is configured to run periodically with a user-
chosen frequency; for each raised perf interrupt, an eBPF
program is run to capture the current CPU’s kernel-side stack
trace with the bpf_get_stack() helper. The traces are
then delivered to Netto’s user-space controller for analysis
and metrics extraction. The eBPF layer is hence significantly
simplified with respect to the previous methodology, as much
of the measurement’s responsibility is moved to the user-space
domain, contributing to a great reduction in system overhead.

Special care has to be taken for the traces transport solution
in order to minimize additional and unnecessary costs: each
stack trace can be up to 1 kB in size under default kernel
configuration; this figure is then multiplied by the sampling
frequency and system’s core count to give the necessary stack
trace bandwidth. Considering a reasonable sampling frequency
of 1 kHz, this value easily reaches several MBps. For this
reason, regular BPF_MAP_TYPE_STACK_TRACE maps are
not suitable due to their lack of support for batch extraction,
requiring the execution of multiple system calls for every pulled
stack trace. Instead, Netto uses a BPF_MAP_TYPE_ARRAY
map decorated with the BPF_F_MMAPABLE flag, which be-
haves similarly to raw mapped memory shared between the two
actors. A double-buffering strategy is then employed to make
sure that no traces are lost during the map-draining phase: the
map is logically split into two equally sized slots; at any given
point in time, exactly one of them is enabled for writing by
the eBPF layer, and the other for reading by the user space
controller. The roles are atomically swapped just before the
controller begins draining the traces, ensuring that its view of
the buffer remains stable during the entire operation.

Compared to an idiomatic BPF_MAP_TYPE_RINGBUF —
which also internally uses a shared memory buffer between
kernel and user-space — our solution shows a marginal but
consistent improvement in trace extraction overhead, as de-
picted in Figure 3. Trace insertion was instead found to perform
largely equally between the two map choices.

As the traces are received by the user-space controller, they
are iterated over to match each stack frame to a set of pre-
determined symbols retrieved from the running kernel through
the /proc/kallsyms virtual file. Matches for each symbol
are accumulated and scaled by the sampling period in order to
obtain their estimated on-CPU time.

V. EVALUATION

In this section the proposed solutions will be evaluated and
compared with regard to runtime performance and measure-
ment accuracy. Then, multiple examples of real measurements
from our testbed are presented to showcase the capabilities of
the method, as well as providing a first analysis of the typical
network stack costs under common workloads. Our testbed
consists of two identical Intel Core i7 6700-powered machines
(4 Skylake cores at 3.4GHz base frequency, SMT enabled)
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Fig. 3: CPU utilization for network stack sampling with ring
buffer and mmapable array measured at various sampling
frequencies.

running Linux 5.15 LTS and directly connected at 40Gbps by
a pair of Intel XL710 QSFP+ NICs.

A. Processing overhead

As mentioned previously, the Network Stack Sampling tech-
nique has been introduced with the intention of alleviating
the severe performance concerns that Full Functions Tracking
has been shown to suffers from in high packet rate conditions
(Figure 2). To prove that the achieved level of overhead is in
fact reduced and no longer debilitating to the overall system’s
performance, we subjected both techniques to a workload
aimed at exposing their computational overhead.

The iperf3 open source throughput measuring software was
used to generate UDP traffic between two network namespaces
of a Linux 5.15 host at a fixed rate of 1.5Gbps. Artificially
limiting the throughput allowed us to disregard possible diver-
gences in the attained speeds, thus restricting any discrepancy
in efficiency between the various methods to the amount of
CPU used during the transfers. We then collected the one-
minute average of the overall CPU usage for the cores involved
in packet processing, and reported it in Figure 4.

The baseline number represents the ideal performance tar-
get, as it was obtained with no external instrumentation;
impressively, Network Stack Sampling with a 1 kHz sampling
frequency is able to match it, displaying a virtually null
overhead. Predictably, as the frequency is increased, its cost
also rapidly rises, but we argue that settings in excess of
1 kHz are generally not required to achieve a satisfactory
level of accuracy. Meanwhile, Full Functions Tracking (“FFT
full”) is only able to barely outperform NSS when configured
with the excessive 50 kHz setting, although a more acceptable
overhead can be obtained by disabling its NET_RX_SOFTIRQ
breakdown functionality (a feature which is always implicitly
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enabled for NSS, as it comes at no extra cost). Finally, the
“FFT empty probes” bar shows the overhead of Full Functions
Tracking when its eBPF probes are attached but emptied out of
any instruction; the fact that the overhead remains significant
indicates that the eBPF instrumentation cost plays a major role
in determining FFT’s poor performance.

Additionally, it must be noted that the general purpose Linux
perf [10] profiler was able to achieve a consistently lower
runtime sampling cost than even NSS — presumably due to
the fact that it can implement an equivalent function without
relying on the eBPF VM. Going forward, it’s clear that Netto
is better off depending on an industry-standard performance
monitoring backend such as perf instead of providing its own,
but for the sake of this paper, our eBPF-based implementa-
tion can effectively show the strenghts and weaknesses of a
sampling solution.

B. Accuracy

Full Functions Tracking and Network Stack Sampling take
two radically different routes for producing corresponding
metrics, but while FFT technically outputs ground truth values
by directly measuring the target functions with nanosecond
precision (although it must be noted that, due to the perfor-
mance impact highlighted above, its results might be somewhat
skewed by the instrumentation itself), NSS’s accuracy deserves
a more thorough discussion.

In principle, the time quantization determined by the sam-
pling frequency, together with the user-space integration time
setting (i.e. the controller invocation period, here kept at the
default 500ms), directly establishes the precision that the
technique can accomplish. For instance, a 1 kHz frequency
paired with a 1 s user-space update period gives a theoretical
resolution of 0.1% for each captured metric. In practice, the
user might choose to reduce the integration time to smaller

intervals to lower the memory footprint, which would propor-
tionally coarsen the resolution of the output.

In Figure 5 we compare the consistency of the extracted met-
rics for the sock_sendmsg() function specifically during a
consistent UDP transmission over multiple sampling frequency
settings. Every 500ms, the controller produces an estimate
for the consumption of every metric; if the workload stays
consistent (as it does in this test), the output metrics should
ideally also remain constant throughout the testing period. The
graph in Figure 5 is thus meant to isolate the jitter in the output
values that results from NSS’s finite sampling frequency.

Fig. 5: Measurement stability of Network Stack Sampling
at various sampling frequencies for the sock_sendmsg()
metric under a consistent networking load.

At 100Hz, the sampling pattern is clearly too sparse to pro-
duce homogeneous results. As the sampling rate is increased,
the variance improves, but after 1 kHz the gains remain limited.
Also note that a slight inflation in the average metric’s value
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Fig. 6: Detailed CPU allocation breakdown for the iperf3 TCP receive (left) and send (right) tests. In both instances, the leftmost
pie represents the overall distribution of the CPU among idle, user and kernel time; successive pies then progressively expand
on specific sections.

is to be expected at higher sampling frequency settings, as the
added load of the perf interrupt gets reflected in its own
measurements; this is a further deterrent against needlessly
using high sample rates.

C. Test case evaluation

To conclude the evaluation section, we now present some
of the results that can be obtained with the methodologies
described in this paper. In all cases, the numbers were collected
on the setup described at the beginning of the section, and using
Network Stack Sampling with a 1 kHz sampling frequency.

First of all, we analyzed the CPU load associated with simple
synthetic network transfers via the iperf3 throughput testing
tool. Figure 6 shows two graphs depicting the receive and
send workloads respectively, performed at line-rate TCP and
averaged out over one minute of continuous testing. The graphs
provide a progressively increasing level-of-detail and are meant
to be read from left to right: the first pie shows the overall
subdivision of the CPU time between idle, user and kernel
modes; successive pies expand on the kernel time first, then
its networking and “other” component (i.e. everything that can
not be classified as networking).

For these basic workloads, most of the kernel time
is spent within networking functions, such as the
NET_RX_SOFTIRQ’s handler, as well as sock_recvmsg()
and sock_sendmsg(). The rest of the privileged code
being run is largely due to various forms of overhead, like
that of system entry and exit. The most notable difference
between the two transfer directions lies in the amount of
recorded idle time, which indicates that the receiver side of
the communication is the more resource intensive of the two.
During these iperf3 transfers, the Normalized Networking
Cost — i.e. the percentage of CPU utilization exclusively
attributable to the network stack, calculated disregarding the
idle time — is respectively 88% and 90% for receive and
send operations. This means that roughly nine out of ten clock
cycles are due to networking instructions.

To represent a workload that more closely resembles that
of production web servers, we tested Netto against Google’s
Online Boutique microservices demo [2] being hit with roughly
1000 reqs/s. The application implements a fake web store as a
collection of collaborating microservices, which we deployed
on top of a KinD [9] Kubernetes cluster. Figure 7 shows
the collected measurements over a one minute period, once
again using the Network Stack Sampling backend with a 1 kHz
frequency.

This time, a sizeable portion of the total resources is
allocated to user-space mode, presumably by the multiple
microservices for processing requests and building responses.
Additionally, only 17% of the kernel time can be confidently
assigned to the networking domain; notably, an io_uring
SQPOLL kernel thread takes up one entire CPU core by busy
polling the ring’s submission queue. Various other system
calls then occupy most of the remaining registered kernel-
mode time. Overall, the Online Boutique records a circa 8%
Normalized Networking Cost.

VI. DISCUSSION

Netto has been designed from its inception to only tar-
get in-kernel networking tasks. This covers the majority of
the network-related work performed by typical servers up
to and including the transport layer, but it fails to consider
contributions from higher level protocols, as well as network
technology that is implemented in user-space. This includes
the QUIC reliable transport stack, user-space TLS, and ker-
nel bypass custom data planes, along with application-level
proxies that are becoming so common in the cloud-native
world. Furthermore, Netto intentionally ignores NIC drivers’
top halves, where the large variety of hardware vendors and
products would impose unreasonable and continuous efforts in
supporting all the possible configurations, though this aspect
would hardly represent a significant portion of the overall CPU
utilization.

In regard to future development, we believe the tool could
be extended in several directions; first off, the event breakdown
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Fig. 7: Detailed CPU allocation breakdown for a host serving
approximately 1000 requests every second of the Google
Online Boutique microservices demo.

capability could be expanded to consider additional and more
specific events that might be significant for some kinds of
workload. Additionally, more work is required to give Netto a
production-ready interface to show and log the captured metrics
that can elegantly scale to data center sizes, as the current
solution is based on a real-time Grafana Pyroscope dashboard,
which offers no support for offline viewing of the sampled
traces.

Furthermore, as mentioned in Section V-A, some extra
performance can be gained for Network Stack Sampling by
adopting perf as the sampling backend, thus making Netto a
lightweight metrics filter and user interface with a networking-
centric focus.

VII. CONCLUSIONS

In this paper we investigated the applicability of modern
tracing technologies available in the Linux kernel (like eBPF)
for achieving real-time instrumentation and visibility of the
system’s network stack. Specifically, we described two different
paradigms that accomplish this goal: Full Functions Tracking
and Network Stack Sampling. The former is based on the exact
measurement of the execution time of each of the required
kernel functions, while the latter approximates the same metrics
by sampling the kernel’s network stack and relying on its user-
space component to perform the actual metrics extraction and
implementing the measurement logic.

The subdivision of responsibilities that Network Stack Sam-
pling provides is crucial to keeping the data path overhead low
and minimizing the impact that the diagnostic solution causes
to the overall system performance and responsiveness.

By contrast, Full Functions Tracking maintains the entire
measurement stack inline with the network packet process-
ing itself, causing slowdowns and inefficiencies. Additionally,
hooking to network functions directly makes the eBPF probe
invocation rate dependant on the host network activity, linking
the measurement cost with the amount of packets processed by
the system.

By applying these methods on a set of test workloads,
we validated their results and assessed the effect on system
performance, which — especially in the case of Network Stack
Sampling — proved decidedly compatible with deploying as
a background daemon in a production environment. Finally,
we calculated a Normalized Networking Cost factor for all the
above tests, which expresses the portion of the non-idle CPU
time spent within the kernel’s network stack, and found it to
vary wildly between purely synthetic workloads (∼ 90%) and
realistic web server jobs (∼ 8%).
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