
23 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On Detecting Anomalous TLS Connections with Artificial Intelligence Models / Berbecaru, Diana Gratiela; Giannuzzi,
Stefano. - ELETTRONICO. - (2024), pp. 1-6. (Intervento presentato al convegno ISCC-2024: IEEE Symposium on
Computers and Communications tenutosi a Paris (FRA) nel 26-29 June 2024) [10.1109/ISCC61673.2024.10733669].

Original

On Detecting Anomalous TLS Connections with Artificial Intelligence Models

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISCC61673.2024.10733669

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991693 since: 2024-12-12T12:28:14Z

IEEE

On Detecting Anomalous TLS Connections with
Artificial Intelligence Models

Diana Gratiela Berbecaru
Department of Control and Computer Engineering

Politecnico di Torino, Italy
diana.berbecaru@polito.it

Stefano Giannuzzi
Politecnico di Torino, Italy

Corso Duca degli Abruzzi 24, 10129, Torino (ITALY)

Abstract—In recent years, anomaly-based intrusion detection
systems using machine learning (ML) and deep learning tech-
niques have started to be developed to mitigate cybersecurity
attacks. An anomaly-based intrusion detection system performs
traffic analysis by exploiting supervised or unsupervised ML
algorithms and raises alerts if a suspicious pattern is encountered.
In this paper, we exploit the Autoencoder neural network model
to detect variants of a very famous attack discovered in 2014,
namely Heartbleed. The attack was caused by an implementation
flaw in the OpenSSL library, widely used in web servers, database
systems, or e-mail servers to support the Transport Layer
Security (TLS) protocol. To evaluate our model, we exploited
the CIC-IDS2017 dataset and a custom one created on purpose.
The proposed model recognized the anomalous TLS connections
containing variants of the Heartbleed attack and distinguished
them from the benign traffic in 85% of the cases.

Index Terms—TLS protocol, attack detection, anomalous con-
nection, Heartbleed

I. INTRODUCTION

The TLS protocol is the most widely used security protocol
nowadays. It provides security features, like data authentica-
tion and integrity, confidentiality, peer authentication, protec-
tion from replay and filtering attacks to many application-level
protocols, such as secure web and e-mail. At the same time, at-
tackers continuously investigate the TLS protocol to find ways
to circumvent it. Consequently, the protocol suffered various
modifications and enhancements, the most recent version is
TLS 1.3 [1], although the TLS version 1.2 is still in use.

The TLS attacks have been classified in different classes
in [2] [3]: core cryptography, crypto usage, TLS protocol
functionality, TLS configuration errors, or TLS implemen-
tation flaws. In core cryptography attacks, an attacker aims
to exploit the vulnerabilities of the cryptographic algorithms
used in the TLS protocol, like RC4, or MD5. In the crypto
usage attacks, an adversary tries to exploit the mode of
operation rather than the algorithm used, such as the attacks
against the Cipher Block Chaining (CBC) mode. In the TLS
protocol functionality attacks, an attacker targets particular
features like the compression of the TLS Record Layer or
protocol extensions. Another class of attacks is due to TLS
configuration errors. Since the TLS protocol exploits X.509
certificates [4], these must be properly configured on the end
nodes (including the trusted CA certificates). At least for the
TLS server, the certificate is mandatory, while on the client

side, the certificate is optional as users may employ alternative
user-friendly authentication methods at application level, such
as static passwords, one-time password generated by crypto
tokens, smartphones, or other authentication methods recog-
nized at local, national, or enterprise level [5] [6]. A possible
attack is the Man In The Middle (MITM) attack [7] in which
the attacker succeeds in corrupting the trusted CA store on
the client side or manages to issue a malformed or self-signed
certificate for the server (or obtain it from a compromised
CA) and then convinces the client that the fake TLS server
he puts in place (and the corresponding certificate) is valid.
The end user’s behavior makes MITM attacks still possible
because users wrongly accept such bogus X.509 certificates in
transactions. In the attacks due to errors in the implementation
of TLS libraries, the adversaries look for bugs or development
flaws that could be catastrophic in some cases, like the
Hearbleed attack that was even called a “security disaster” [8]
due to the severe impact (and cost) it generated. Throughout
the years, several TLS libraries occurred, like OpenSSL, NSS,
Bouncy Castle, Polar SSL, CyaSSL, MatrixSSL, MbedTLS,
wolfSSL, BoringSSL, and GnuTLS.

Several TLS vulnerabilities have been discovered so far,
such as [9] [10] [11] [12] [13] [14], and different counter-
measures can be adopted for defending systems from the
various TLS attack types. In case of cryptographic algorithms’
vulnerabilities, the only efficient way is to deprecate the
algorithm itself and recommend not to use that algorithm any-
more in applications and libraries. To counter attacks targeting
the certificates issued by CAs, some authors have proposed
to use blockchains as decentralized storage for certificate-
related data, and the TLS endpoints have been adapted to
fetch such data from the blockchains [15] [16]. For the TLS
implementation flaws, a classical solution is performing the
following steps: i) individuate the bug that makes the (TLS)
library/code prone to attacks; ii) implement a patch to fix the
individuated error; and iii) make that patch available as widely
as possible, and notify potential victims to apply the patch in
short time. The window of exposure varies depending on the
time required to perform each of the above steps.

A famous bug that affected the implementation of TLS
protocol is the Heartbleed attack, which is a buffer overflow
attack. To protect from this attack, the users have been advised

to install an updated OpenSSL version. To check whether a
host is vulnerable to Heartbleed, a solution is given in [8].
The authors have modified Zmap to send Heartbeat requests
with no payload nor padding, and the length set to zero and
then checked whether the library correctly discarded the result.
Nevertheless, we observe that a node might be corrupted by an
internal attacker (e.g., by installing an old vulnerable version)
or the attack could still occur in other variants. While remote
attestation of installed nodes could by done to check whether
the end points runs the correct software and version [17] [18],
for the second case, more efficient methods (other than simply
applying a patch or remote attestation) are needed to detect
Heartbleed attack variants.

We propose a model that can identify potential Heartbleed
attacks or variants of the attack in anomalous TLS connections
by analyzing the network traffic. The anomaly-based concept
is similar to allow listing: when the system detects a behavior
outside an acceptable range, it is considered an anomaly. For
this reason, an anomaly-based Intrusion Detection System
(IDS) is more efficient for detecting unknown or zero-day
attacks compared to a signature-based IDS system, which
recognizes (only) the attacks discovered in the past that have
known attack signatures.

Many anomaly-based IDS models exploit supervised ma-
chine learning models [19] that classify objects in a pool
using a set of known features. Unfortunately, these IDS types
do not recognize unknown attacks because they classify the
network traffic based on what the model has learned in the
training phase. If there is an “unknown” attack, their accuracy
decreases since they have not been trained (in advance) on
its features. In contrast, the unsupervised machine learning
techniques form groups among the objects in a pool by
identifying their similarity and then using them to classify the
unknown samples.

In this work, we apply an autoencoder-based model previ-
ously proposed in [20] [21], to identify Heartbleed attacks in
anomalous TLS connections. The autoencoder [22] recognizes
the unknown attacks based on several TCP flow characteristics.
We used the CIC-IDS2017 dataset1, the TORSEC datasets
[23], and a custom Heartbleed dataset (described in Sect.
III) created on purpose. Compared to the Zavrak model in
[24], which has used the same strategy, the model in [21]
could detect the attacks with the CIC-IDS2017 dataset more
effectively. Thus, we have exploited the above model for the
Heartbleed attack detection.

The paper is organized as follows: Section II describes
the Heartbleed attack as well as related work on detecting
network anomalies through machine learning. Section II-B
describes the Autoencoder model, Section III describes the
adopted model and the datasets used for Heartbleed attack
detection. Finally, Section IV resumes the conclusions and
indicates future works.

1https://www.unb.ca/cic/datasets/ids-2017.html

II. RELATED WORK

A. Heartbleed TLS attack

The extension called Heartbeat allows either end point of
a TLS connection to check whether its counterpart is still
present. It is very useful in those cases where neither of the
nodes performs any action (download or upload) for a consid-
erable period of time. The extension was motivated by the need
of session management in DTLS (Datagram TLS), a variant of
the protocol running over unreliable transport protocols. The
standard implementation of TLS running over TCP do not
require such extension because the reliable transport protocol
supports the session management.

An endpoint indicates support for the Heartbeat extension
during the initial TLS handshake phase. After a certain time,
following the negotiation of security parameters, one of the
two nodes sends the other some encrypted data within a
message called Heartbeat Request, to verify connectivity. The
second node responds with an exact copy of the sequence
encrypted data received, to prove that the connection is still
active. Introduced originally in February 2012 in RFC 6520,
the extension was first released in the OpenSSL version 1.0.1
implementation, and rendered available on March 14, 2012.
In March 2014, a security engineer from Google Security
discovered a bug related to the implementation this extension,
which could lead to the theft of sensitive data, in particular the
private memory, potentially including information transferred
over the secure channel and cryptographic secrets.

The bug involved the length of the Heartbeat Request
present in the message itself. When a computer receives a
Heartbeat Request, it reads the information regarding the
length of the message and allocates a memory buffer equal
to that length in which it saves the encrypted data, finally
reads the data again and sends it as a reply to the other
computer. The vulnerability occurred because the OpenSSL
implementation in question did not check the length of the
message in order to verify that it was actually equal to the one
declared inside. The attack was particularly damaging because
in the extra data released could have been stored sensitive data,
like a server’s private key. Thus, as a consequence of this
attack, a huge amount of certificates have been revoked. This
operation was costly in terms of money (CloudFlare estimated
a corresponding cost of approximately $400,000 per month
[26]) and size of Certificate Revocation Lists (CRLs) that had
to be downloaded by the clients, which has grown from a
few KB to about 4.7 MB due to CloudFlare’s revocations [8].
Moreover, Heartbleed had the potential to affect any service
that used OpenSSL to establish TLS connections, including
database servers, e-mail servers, or popular web sites. As
stated in [8], “between 24-55% of HTTPS-enabled servers in
the Alexa Top 1 Million were initially vulnerable, including
44 of Alexa Top 100”.

B. Autoencoder-based model for anomaly detection

Autoencoder (AE) is an unsupervised Artificial Neural
Network that learns to compress data and learns how to rebuild

it, reproducing the original input. The autoencoder has the
characteristic that it ignores the input noise and lowers the
dimensions of the dataset [22]. An early proposal to use
Autoencoders for anomaly detection and condition monitoring
is given in [27]. The article presented a problem of predicting
bearing failure in a factory and used only the “known good”
to train the autoencoder.

Fig. 1. Autoencoder model representation.

The autoencoder, “by design, reduces data dimensions by
learning how to ignore the noise in the data” [28]. While the
autoencoder creates a compressed representation of a dataset,
it attempts to maintain enough variance to reconstruct the
original data. As the autoencoder ignores the noise, it looks
for correlations (unique) between various features and extracts
those correlations for data reconstruction. As shown in Fig. 1,
the autoencoder consists of three parts: an encoder, which is
used by the model for learning to compress and reduce the
dimensionality of input data, a bottleneck, which contains the
data compressed and is the layer with fewer neurons in the
model, and a decoder, which is used by the model for learning
to reconstruct the original input data. At the end of the process,
the Reconstruction Error (RE) is used to understand how well
it performs the autoencoder: the trained AE will reconstruct
normal input with very low RE, whereas it is unsuccessful to
do so with anomalous data.

Several researchers have addressed the problem of detecting
unknown attacks through anomaly-based solutions. In [29],
researchers have shown how an ensemble model composed
of different decision trees is more efficient in identifying an
atypical attack, that is attacks with different profiles, than a
single model like a Linear Support Vector Classifier or a Dense
Neural Network. These models used only supervised learning
techniques but they did not simulate how the model behaves
if there is an unknown attack, i.e., attack for which the model
was not trained.

To detect unknown attacks, the authors in [24] exploited
two approaches, namely an autoencoder (AE) or a Variant
Autoencoder (VAE), to detect network anomalies. The authors
used a semi-supervised learning strategy, and only benign
data flow was utilized in the construction of the models from
the CIC-IDS2017 dataset. The AE and VAE models were
evaluated by using both normal and anomaly data. Their
results were quite good, the proposed AE model had an AUC
of 73%, while the VAE model had an AUC of 76%. While

the previous works detect generic attacks, malware detection
in encrypted TLS traffic by using machine learning analysis
has been addressed in [25].

III. EXPLOITING AUTOENCODER-BASED MODEL FOR
HEARTBLEED TLS ATTACK DETECTION

In the autoencoder-based models described in [24], the
authors trained the model only on benign traffic and not on
the attacks, meaning that the model recognizes only the benign
traffic, and anything else is considered anomaly. We used the
same procedure in our work. As explained in Section II-B,
the autoencoder compresses data and learns how to rebuild it.
In this process, it generates an RE. So, if the AE was only
trained on benign traffic, then it recognizes it when (benign
traffic) is encountered, making a very small RE. If the encoder
encounters traffic that it has not been trained to recognize,
it generates a large RE and over a threshold, it considers it
as an “anomaly”. More precisely, the AE only distinguishes
normal and anomalous traffic. In the testing process, all the
classes (DoS Slowloris, DoS SlowHttpTest, Bruteforce SSH,
Heartbleed, Infiltration, Bot, ...) have been re-called “anomaly”
to understand if the methods can distinguish the unknown
attacks from normal traffic. For the single class evaluation, the
authors selected the attack class they wanted to evaluate, they
excluded the other attack classes. For example, to evaluate only
the DoS Slowloris attack, the authors have got all the records
with the label DoS Slowloris, next they combined them with
the benign traffic, and then they processed the resulting set
with their AE model.

Given the good results reported in [24], we have also
adopted the AE model described therein given its ability to
detect new types of attacks and, thus, its proven efficiency
in anomaly-based detection. We have however increased the
number of hidden layers to 4. We have also used additional
datasets in the training and testing phases, as described below.

a) Datasets: We have exploited the CIC-IDS2017 dataset
for the training, validation, and testing phases. This dataset
covers several attacks like Denial of Service (DoS), Distributed
Denial of Service (DDoS), Brute Force, XSS, SQL Injection,
Infiltration, Port Scan, Botnet, and Heartbleed attacks. The
dataset contains 84 features for each TCP connection, includ-
ing the label that classifies the type of traffic created.

In the testing phase, we also used the Heartbleed dataset that
we have created to test our model for this vulnerability. We
used these two datasets to understand how our proposed model
behaves with a different dataset for which it is not trained.

To increase the number of Heartbleed cases used in testing
the model, we created the Heartbleed dataset by exploiting a
lab testbed in which we have set up 3 Ubuntu virtual machines
(VMs) and 1 Ubuntu VM server. On the Ubuntu Server
machine, we installed a container docker (jas9reet/heartbleed
2) that uses the OpenSSL version library (1.0.1) vulnerable to
the Heartbleed attack, and an Apache server on port 8443. The
clients running on the three Ubuntu VMs run a script written

2https://github.com/jas9reet/heartbleed-lab

in bash that gets the page from the Apache server (via HTTPS)
at different times.

To generate benign traffic the clients have accessed the
web server, which showed a login page asking to insert the
login credentials. In this way, we simulated real traffic with
access credentials. To increase benign traffic, this traffic was
combined with some parts of the benign traffic of the TORSEC
dataset [23], which contains traffic for the Bot and DoS attacks
(GoldenEye, Hulk, Slowloris, and Httptest).

To generate Heartbleed traffic, we exploited a machine
running Kali Linux distribution and Metasploit 3. Then, the
command for the heartbleed vulnerability exploit was used 4.
Finally, the generated traffic was captured with TCPdump tool
which generated three pcaps (2 benign and 1 malicious) that
were converted to .csv files by using the CICFlowMeter tool.
Table I shows the characteristics of the exploited datasets.

Dataset Label Number of samples
CIC-IDS2017 BENIGN 1652527

Denial of Service Hulk 171974
Distributed Denial of Service 128011
Denial of Service GoldenEye 10281
FTP-Patator 5931
Denial of Service Slowloris 5276
Denial of Service SlowHttptest 5186
SSH-Patator 3153
PortScan 1922
Web Attack Brute Force 1427
Bot 1337
Web Attack XSS 652
Infiltration 36
Web Attack SQL Injection 20
Heartbleed 11

TORSEC Denial of Service GoldenEye 343258
Denial of Service Hulk 193718
BENIGN 40514
Denial of Service Slowloris 5500
Denial of Service SlowHttptest 3838
Bot 3598

Heartbleed BENIGN 2713
Heartbleed 866

TABLE I
DATASETS EXPLOITED.

b) Features: We randomly split the CIC-IDS2017 dataset
into 64% for the training set, 16% for the validation set, and
20% for the test set. Starting from the 84 features of the CIC-
IDS2017 dataset, we performed a feature selection using a
random forest classifier to select the most promising attributes.
We ignored features like the flow ID, source and destination
IP addresses, protocol, and source and destination ports, as
they do not bring relevant information. For each feature, we
computed the distributions based on the value assumed by a
label and the normalized frequency that the value has assumed.
The frequency has been transformed into a value in the range
[0,1]. If a significant difference between the benign traffic
and its malicious traffic counterpart was encountered, then
that feature was selected, otherwise, it was discarded. The
remaining features that we used are shown in Table II.

3https://www.metasploit.com/
4https://github.com/jas9reet/heartbleed-lab

TABLE II
SELECTED FEATURES AFTER THE FEATURE SELECTION.

Feature name Description
1 Flow duration Duration of flow in microseconds
2 Bckwd pkt len max Maximum size of packets in backward

direction
3 Bckwd pkt len std Standard size of packets in backward di-

rection
4 Flow time mean Average time between two packets sent in

the flow
5 Flow time std Standard time between two packets sent

in the flow
6 Flow time max Maximum time between two packets sent

in the flow
7 Fwd time tot Total variation time between two packets

sent in forward direction
8 Fwd time mean Mean variation time between two packets

sent in forward direction
9 Fwd time std Standard variation time between two pack-

ets sent in forward direction
10 Fwd time max Maximum time between two packets sent

in the flow
11 Pkt len max Maximum length of a packet (payload +

header), the MTU (Maximum Transmis-
sion Unit)

12 Pkt len mean Mean length of a packet (payload +
header)

13 Pkt len std Standard packet length (payload + header)
14 Pkt len var Variance packet length (payload + header)
15 Bckwd time tot Total variation time between two packets

sent in backward direction
16 Pkt size avg Average packet size (payload only), equal

to MSS (Maximum Segment Size)
17 Bckwd seg size avg Average packet size (payload only) in the

backward direction, equal to MSS
18 Fwd pkt len std Size of packets in forward direction (Stan-

dard)
19 Fwd pkt len max Size of packets in forward direction (Max-

imum)
20 Bckwd pkt len min Size of packets in backward direction

(Minimum)

c) Implementation details: The Autoencoder-based
model is similar to the one in [24], and is composed of three
parts: 1) the encoder, composed of 4 layers of 512 neurons,
64 neurons, 16 neurons, and 8 neurons; 2) the bottleneck,
composed of 2 neurons; 3) the decoder, composed of 4 layers
of 8 neurons, 16 neurons, 64 neurons, 512 neurons. To avoid
overfitting, for each layer excluding the input, the output, and
the bottleneck layer, we put a dropout layer with a probability
of 0.2 [30]. The training and validation are performed only on
benign traffic, which means that all the attack labels are not
considered. The flowcharts for AE training algorithm and for
the AE-based anomaly detection algorithms are provided in
[24]. The optimal hyperparameters were determined through
trial and error and are 1e−4 for the learning rate and 512 for
the batch size.

To implement the model, we used Python 3.9.0 with
Tensorflow 2.9.1 and Keras 2.9.0. In particular, to reduce
the training time and use the GPU, we used the Conda
version of Tensorflow 2.9.15 with cudatoolkit 11.26. For the

5https://www.tensorflow.org/install/pip#linux
6https://developer.nvidia.com/cuda-toolkit

TABLE III
AUC RESULTS OF TESTS WITH THE CIC-IDS2017 DATASET.

LABEL RF XGB OUR
MODEL

ZAVRAK
[24]

Bot 1.0 1.0 0.51 0.62
Denial of Service
GoldenEye

1.0 1.0 0.94 0.75

Denial of Service
Hulk

1.0 1.0 0.96 0.83

Denial of Service
Slowhttptest

1.0 1.0 0.92 0.85

Denial of Service
Slowloris

1.0 1.0 0.81 0.84

FTP-Patator 1.0 1.0 0.70 0.74
Heartbleed 1.0 1.0 1.0 0.98
Infiltration 0.86 0.98 0.90 0.89
SSH-Patator 1.0 1.0 0.77 0.68
micro AUC 1.0 1.0 0.94 0.73
balanced
accuracy

0.89 0.91 0.89 -

data preprocessing, as well as to create the confusion matrix
and the ROC (Receiver Operating Characteristics) curve, we
used scikit-learn, matplotlib, and seaborn7. For creating the
Heartbleed dataset, the tool CICFlowMeter8 was used to create
the csv file from the pcap files. To open the csv file we used
pandas9 and numpy10.

d) Results.: Tests with CIC-IDS2017 dataset. Next, the
testing results obtained with the CIC-IDS2017 dataset are
presented, as well as a comparison with Random Forest
(RF) and (eXtreme Gradient Boosting) XGB models and the
model in [24]. We trained first the proposed model only
with the benign traffic in the CIC-IDS2017 dataset. Thus,
all the anomalous traffic in this dataset was discarded in the
training and validation phases. Then, in the testing phase, we
considered only one attack class and excluded the others, i.e.,
DoS Slowloris, Next, we tested our model with that attack
class joined with some benign traffic. Then, we repeated
the same process for the other attack classes, including the
Heartbleed attack class.

Since the proposed model has been trained to recognize only
benign traffic, it generates a high RE when it encounters traffic
not seen before. In this case, the error for benign traffic is
lower than 0.10-0.15, while for anomaly traffic, it reaches 0.30.
We chose a threshold with the trial and error strategy, which
was set to 0.01. Under this threshold, the traffic is considered
benign, otherwise, it is considered an anomaly.

For comparison, we have also trained and tested with the
same dataset two supervised ML models, namely RF and
XGB. Table III shows that the proposed model has a high
accuracy (AUC) for the Heartbleed attack, comparable with
the supervised models and better than the original model [24].

Tests with CIC-IDS2017 and Heartbleed datasets. In these
tests, the proposed model was trained with the benign traffic

7https://seaborn.pydata.org/
8https://www.unb.ca/cic/research/applications.html
9https://pandas.pydata.org/
10https://numpy.org/

Fig. 2. RE of the proposed model tested with the Heartbleed dataset.

from the CIC-IDS2017, and then it was tested with the
Heartbleed dataset.

Fig. 3. Proposed AE-based model tested with the Heartbleed dataset.

By analysing the RE shown in Fig. 2 we observe that there
is a distinct division between the benign and the Heartbleed
anomalous traffic, just a few benign records are over the
threshold, which is also set using the trial-and-error strategy.

Fig. 3 shows the confusion matrix of the proposed model
for the testing phase with the Heartbleed dataset. In this case,
there are few false negatives, if we consider the benign traffic,
and just some false positives. The model recognizes the benign
traffic (of the Heartbleed dataset), considering it has never seen
that traffic before because it is trained with the benign traffic
of the CIC-IDS2017 dataset. Moreover, it distinguishes the
Heartbleed anomalies from the benign traffic. In this test, the
proposed model has 88% of balanced accuracy.

The ROC curve, shown in Fig. 4, indicates that the model is
able to distinguish the positive and negative classes. It achieves
an AUC value of 0.85, which means that the model recognizes
the anomalies caused by the Heartbleed and it distinguishes
them from the benign traffic in 85% of cases.

Fig. 4. ROC curve of the proposed model for the Heartbleed dataset.

IV. CONCLUSIONS

While the encrypted TLS connections are increasing con-
tinuously, more efficient solutions are required to detect the
anomalous ones, which could be used for performing attacks,
malware distribution, or data exfiltration. Herein, we con-
sidered the Heartbleed attack, which affected the OpenSSL
library several years ago. To detect variants of the attack,
we exploited an autoencoder unsupervised model trained in a
semi-supervised learning manner. Through experimental tests
with the considered datasets, we show that the model can
detect the Heartbleed attacks with a performance comparable
to the supervised learning methods.

Acknowledgments. Dr. Diana Gratiela Berbecaru carried out this study within the
Ministerial Decree no. 1062/2021 and received funding from the FSE REACT-EU -
PON Ricerca e Innovazione 2014-2020. Stefano Giannuzzi performed his work during
preparation of his graduation thesis at Politecnico di Torino. This manuscript reflects
only the authors’ views, findings, conclusions, and opinions, neither the European Union
nor the European Commission can be considered responsible for them.

REFERENCES

[1] E. Rescorla, “The Transport Layer Security (TLS) Protocol: Version
1.3,” IETF RFC 8446, https://tools.ietf.org/pdf/rfc8446.pdf.

[2] D. Stebila, “Attacks on TLS,”https://www.douglas.stebila.ca/research/
presentations/tls-attacks/.

[3] D. G. Berbecaru and G. Petraglia, “TLS-Monitor: A Monitor for TLS
Attacks,” 2023 IEEE 20th Consumer Communications & Network-
ing Conference (CCNC), Las Vegas, NV, USA, 2023, pp. 1-6, doi:
10.1109/CCNC51644.2023.10059989.

[4] D. Cooper et al., “Internet X.509 Public Key Infrastructure Certifi-
cate and Certificate Revocation List (CRL) Profile.” IETF RFC 5280,
https://www.rfc-editor.org/rfc/rfc5280.txt.

[5] D. G. Berbecaru, A. Lioy, and C. Cameroni, “Providing Login and Wi-
Fi Access Services With the eIDAS Network: A Practical Approach,”
IEEE Access, 2020, vol. 8, pp. 126186-126200, doi: 10.1109/AC-
CESS.2020.3007998.

[6] D. G. Berbecaru, A. Lioy, and C. Cameroni, “On enabling additional
natural person and domain-specific attributes in the eIDAS network,”
IEEE Access, 2021, vol. 9, pp. 134096-134121, doi: 10.1109/AC-
CESS.2021.3115853.

[7] S. Stricot-Tarboton, S. Chaisiri and R. K. L. Ko, “Taxonomy of Man-in-
the-Middle Attacks on HTTPS,” 2016 IEEE Trustcom/BigDataSE/ISPA,
Tianjin, China, 2016, pp. 527-534, doi: 10.1109/TrustCom.2016.0106.

[8] Z. Durumeric et al., “The Matter of Heartbleed,” In Proc. of the 2014
Conference on Internet Measurement Conference (IMC ’14). ACM, New
York, NY, USA, 475–488. doi: 10.1145/2663716.2663755.

[9] D. Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1,” In: CRYPTO ’98, pp. 112,
London, UK, 1998, Springer-Verlag. doi: 10.1007/BFb0055715.

[10] N. Aviram et al., “DROWN: breaking TLS with SSLv2,” In: 25th
USENIX Security Symposium, August 10–12, 2016, Austin, TX (USA),
https://www.usenix.org/system/files/conference/usenixsecurity16/
sec16 paper aviram.pdf.

[11] K. Bhargavan and G. Leurent, “Transcript collision attacks: breaking
authentication in TLS, IKE and SSH,” In: 23rd Annual Network and
Distributed System Security Symposium, NDSS, Feb 2016, San Diego,
United States, doi: 10.14722/ndss.2016.23418.

[12] Heartbleed Bug, https://heartbleed.com.
[13] Y. Gluck, N. Harris, and A. Prado. “BREACH: reviving the CRIME

attack,” 2013, http://breachattack.com/.
[14] M. Green, “A Diversion: BEAST Attack on TLS/SSL Encryp-

tion,” 2011, https://blog.cryptographyengineering.com/2011/09/21/brief-
diversion-beast-attack-on-tlsssl/.

[15] D. G. Berbecaru and L. Pintaldi, “Exploiting Emercoin Blockchain
and Trusted Computing for IoT Scenarios: A Practical Ap-
proach,” 2023 IEEE Symposium on Computers and Commu-
nications (ISCC), Gammarth, Tunisia, 2023, pp. 771-776, doi:
10.1109/ISCC58397.2023.10217961.

[16] S. R. Garzon, D. Natusch, A. Philipp, A. Küpper, H. J. Ein-
siedler, D. Schneider, “DID Link: Authentication in TLS with
Decentralized Identifiers and Verifiable Credentials,” May 2024,
http://https://arxiv.org/abs/2405.07533v2.

[17] E. Bravi, D. G. Berbecaru and A. Lioy, “A Flexible Trust Man-
ager for Remote Attestation in Heterogeneous Critical Infrastructures,”
2023 IEEE Intl. Conf. on Cloud Computing Technology and Sci-
ence (CloudCom), Naples, Italy, 2023, pp. 91-98, doi: 10.1109/Cloud-
Com59040.2023.00027.

[18] D. G. Berbecaru et al., “Mitigating Software Integrity Attacks With
Trusted Computing in a Time Distribution Network,” in IEEE Access,
vol. 11, pp. 50510-50527, 2023, doi: 10.1109/ACCESS.2023.3276476.

[19] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning Intrusion
Detection: Supervised or Unsupervised?” In: Roli, F., Vitulano, S. (eds)
Image Analysis and Processing – ICIAP 2005. ICIAP 2005. LNCS, vol
3617. Springer, Berlin, Heidelberg. doi: 10.1007/11553595 6.

[20] D. G. Berbecaru, S. Giannuzzi and D. Canavese, “Autoencoder-SAD: An
Autoencoder-based Model for Security Attacks Detection,” 2023 IEEE
Symposium on Computers and Communications (ISCC), Gammarth,
Tunisia, 2023, pp. 758-763, doi: 10.1109/ISCC58397.2023.10217930.

[21] S. Gianuzzi, “Artificial Intelligence for Security Attacks Detection,”
Master Degree Thesis, Politecnico di Torino, Italy, Dec. 2022.
https://webthesis.biblio.polito.it/secure/25562/1/tesi.pdf.

[22] Y. Song, S. Hyun, and Y-G. Cheong, “Analysis of Autoencoders
for Network Intrusion Detection,” Sensors, 2021; 21(13):4294, doi:
10.3390/s21134294.

[23] D. Canavese, L. Regano, C. Basile, G. Ciravegna, and A. Lioy,
“Data set and machine learning models for the classification of net-
work traffic originators,” Data in Brief, Vol. 41, 2022, 107968, doi:
10.1016/j.dib.2022.107968.

[24] S. Zavrak and M. İskefiyeli, “Anomaly-Based Intrusion Detection From
Network Flow Features Using Variational Autoencoder,” IEEE Access,
vol. 8, pp. 108346-108358, 2020, doi: 10.1109/ACCESS.2020.3001350.

[25] B. Scarbrough, “Malware Detection in Encrypted TLS Traffic Through
Machine Learning,” https://www.giac.org/paper/gcia/14008/malware-
detection-encrypted-tls-traffic-machine-learning/157200.

[26] M. Prince, “The Hidden Costs of Heartbleed,” April 2014,
https://blog.cloudflare.com/the-hard-costs-of-heartbleed.

[27] V. Flovik, “How to use machine learning for anomaly detection and
condition monitoring,” 2018, https://towardsdatascience.com/how-to-
use-machine-learning-for-anomaly-detection-and-condition-monitoring-
6742f82900d7.

[28] W. Badr, “Auto-Encoder: What Is It? And What Is It Used For? (Part 1)”,
2019, https://towardsdatascience.com/auto-encoder-what-is-it-and-what-
is-it-used-for-part-1-3e5c6f017726.

[29] U. Sabeel, S. S. Heydari, K. Elgazzar and K. El-Khatib, “Building
an Intrusion Detection System to Detect Atypical Cyberattack Flows,”
in IEEE Access, vol. 9, pp. 94352-94370, 2021, doi: 10.1109/AC-
CESS.2021.3093830.

[30] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,”, 2012, doi: 10.48550/arXiv.1207.0580.

