
12 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A tool for IoT Firmware Certification / Bianco, G. M.; Ardito, L.; Valsesia, M.. - ELETTRONICO. - (2024), pp. 1-7.
(Intervento presentato al convegno ARES 2024: The 19th International Conference on Availability, Reliability and
Security tenutosi a Vienna (AUT) nel 30 July 2024- 2 August 2024) [10.1145/3664476.3670469].

Original

A tool for IoT Firmware Certification

Publisher:

Published
DOI:10.1145/3664476.3670469

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991671 since: 2024-08-12T13:38:30Z

Association for Computing Machinery

A Tool for IoT Firmware Certification
Giuseppe Marco Bianco

Department of Control and Computer
Engineering

Politecnico di Torino
Torino, Italy

giuseppe.bianco@polito.it

Luca Ardito
Department of Control and Computer

Engineering
Politecnico di Torino

Torino, Italy
luca.ardito@polito.it

Michele Valsesia
Department of Control and Computer

Engineering
Politecnico di Torino

Torino, Italy
michele.valsesia@polito.it

ABSTRACT
The rapid growth of the Internet of Things (IoT) has created a
fragmented ecosystem, with no clear rules for security and relia-
bility. This lack of standardization makes IoT devices vulnerable
to attacks. IoT firmware certification can address these security
concerns. It empowers consumers to make informed choices by
readily identifying secure products. Additionally, it incentivizes de-
velopers to prioritize secure coding practices, ultimately promoting
transparency and trust within the IoT ecosystem. Several existing
IoT device certifications (e.g. Cybersecurity Assurance Program,
British Standards Institution, ioXt Alliance) prioritise cybersecurity
through risk and vulnerability assessments. This paper proposes a
complementary approach. Our tool focuses on identifying firmware
functionality by analysing system calls through static analysis. This
allows to publicly identify APIs to assess the actual behaviour of
a firmware. The analysis culminates in the generation of JSON
manifests, which encapsulate the relevant information gathered
during the case study. In particular, this analysis verifies whether
the actual behaviour is in line with the developer’s statements about
the device’s functionality, contributing to the security and relia-
bility of a device. To evaluate tool’s performance, we conducted a
benchmarking analysis which has demonstrated efficient handling
of binaries written in various languages, even those with large file
sizes. Future will be based on refining the API search and syscall col-
lection algorithms, other than incorporating vulnerability analysis
to further strengthen the security of an IoT device.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation; Embedded software; Software maintenance tools; • Com-
puting methodologies → Ontology engineering; • Security and
privacy → Domain-specific security and privacy architec-
tures.

KEYWORDS
Certification; IoT; IoT Firmware; Behaviour; Static analysis; Binary
analysis; ELF file; IoT devices; Rust; Detection;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2024, July 30–August 02, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1718-5/24/07
https://doi.org/10.1145/3664476.3670469

ACM Reference Format:
Giuseppe Marco Bianco, Luca Ardito, and Michele Valsesia. 2024. A Tool
for IoT Firmware Certification. In The 19th International Conference on
Availability, Reliability and Security (ARES 2024), July 30–August 02, 2024,
Vienna, Austria. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3664476.3670469

1 INTRODUCTION
The proliferation of Internet of Things (IoT) devices has introduced
numerous benefits such as increased efficiency, connectivity, and
automation. However, this rapid growth has also brought signifi-
cant challenges, particularly in security, privacy and reliability[3, 7].
The lack of standardized practices for firmware development and
certification has made IoT devices vulnerable to threats, undermin-
ing users’ trust and systems integrity. A firmware is a software
which interfaces directly with hardware and is crucial for IoT de-
vice functionality and security, making its integrity and reliability
essential.

Current IoT security solutions mainly focus on network pro-
tocols, encryption and device authentication[5], relying on the
IoT Security Testing Framework[8], but often ignoring firmware
security. The resource-constrained nature of IoT devices makes
them attractive targets for cyberattacks, and although advanced IoT
platforms, such as Apple’s HomeKit and Intel’s IoTivity, offer vary-
ing degrees of security, most platforms do not adequately address
firmware security[2]. Additionally, IoT security and privacy chal-
lenges are exacerbated by the interconnectivity of devices, exposing
networks to threats from anonymous and untrusted actors[12]. Fre-
quent security breaches have highlighted the vulnerabilities of IoT
technologies, and a proper consideration of firmware security can
help mitigate these risks.

Although established tools for static analysis of ELF (Executable
and Linkable Format) binaries such as Radare2, Ghidra, and Binary
Ninja already exist, the tool introduced in this paper is distinguished
from them by its ability to perform automated reverse engineering,
specifically aimed at detecting system calls. This static analysis
highlights the actual behaviours of the public APIs contained in an
IoT device firmware, providing the information needed to assess
whether the behaviour of each one is consistent with what the
developer has declared.

Another distinguishing feature of this tool is that we developed it
entirely in Rust, a modern, efficient, andmemory-safe programming
language[14]. Rust’s intrinsic characteristics contribute to improve
the security and reliability of a software, minimising the risk of
memory management vulnerabilities, as opposed to, for example,
software written in C and C++.

The remainder of this paper is organized as follows: Section 2
provides a review of the state of the art in the IoT landscape and

https://doi.org/10.1145/3664476.3670469
https://doi.org/10.1145/3664476.3670469
https://doi.org/10.1145/3664476.3670469
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664476.3670469&domain=pdf&date_stamp=2024-07-30

ARES 2024, July 30–August 02, 2024, Vienna, Austria Giuseppe Marco Bianco, Luca Ardito, and Michele Valsesia

motion_detection

Behaviour
analysis

video_streamingcamera_control

API detection

API detection

motion_detection
video_streamingcamera_control

Behaviour
analysis

Manifests JSON

Manifests JSONFirmware
Certified

Firmware
Not

Certified

Figure 1: Example of the certification process

device firmware certification. Section 3 delves into the exploration
of analysis methodologies employed for firmware analysis with
the goal of identifying certifiable parameters. Section 4 provides an
in-depth elucidation of the mainfest-producer1 tool’s functionality,
specifically tailored to aid in firmware certification analysis. Sec-
tion 5 elucidates on data collected during the analysis, presented
in the form of a JSON manifest. Section 6 aggregates a series of
performance analyses made on the tool concerning execution times
and memory usage obtained during the analysis of specific ELF files.
Finally, Section 7 concludes this paper, outlining possible future
works.

2 BACKGROUND AND RELATED WORK
The landscape of IoT, despite its advantages in terms of efficiency
and convenience, is often plagued by concerns regarding the secu-
rity and reliability of connected devices and systems. Particularly,
the lack of standardization[1, 5, 11] represents a significant gap in
this context. This deficit creates an environment where the security
and reliability of IoT products can be compromised[9], also because
there is no formal guarantee of the quality and conformity of the
firmware used[4, 6]. TheCertification of IoT devices could address
this issue, offering numerous advantages.

Current certification systems often rely on several established
techniques, such as risk analysis, assessment of known vulnerabili-
ties, penetration testing, and code analysis[5, 13]. However, none of
these techniques directly address the static analysis of a firmware
and fully understand the behaviour of the device, ensuring com-
pliance with the behaviour specifications defined by a developer.
Firmware requires particular attention to ensure security and relia-
bility [10], given the extensive interconnection and data collection
involved in the IoT ecosystem. There is still a gap in the static
evaluation of IoT firmware devices, which can hide issues[13, 15]
that could allow non-compliant and potentially harmful behaviour,
even if no threats are detected in the code.

For example, a home security camera has firmware which cap-
tures and saves images in local memory, through the API provided,
without using an external server for storage. However, if not doc-
umented or improper behaviour emerges during firmware static
analysis, such as sending the captured images to a third-party server,
this could be the starting point for possible malicious behaviour.

1GitHub repository: https://github.com/SoftengPoliTo/manifest-producer

Although security certifications for IoT devices are based on
many established cybersecurity techniques, the introduction of
static firmware analysis also integrated into existing risk assess-
ment steps, could improve the effectiveness of such certifications
in identifying non-compliant behaviours and protecting users from
potential threats.

2.1 Motivations for analyzing ELF binary
In firmware certification for IoT devices, an important aspect is the
analysis of Executable and Linkable Format (ELF) binary. This
section aims to introduce such analysis, highlighting its potential
and problems, as well as the rationale behind its consideration.
Firstly, this format is widely used in Unix-like operating systems,
particularly Linux versions, making it a natural choice, given the
widespread adoption of such systems in the IoT ecosystem. Addi-
tionally, ELF binary files contain detailed information about the
structures and functionalities of a program, providing a compre-
hensive firmware overview. ELF binary analysis enables the exami-
nation of a firmware at a lower level, providing a detailed view of
program instructions and data structures. This approach offers the
opportunity to identify potential security vulnerabilities, enables
an understanding of firmware behaviour and allows verification
of compliance with security standards and development policies.
Furthermore, ELF binary analysis can facilitate the creation of pre-
ventive measures and vulnerabilities correction, thereby improving
the overall security of an IoT firmware.
However, ELF binary analysis may present some problems, includ-
ing the complexity of program structure (such as division into
sections) and the need for specialized skills to conduct an in-depth
analysis. Additionally, an ELF binary analysis may not reveal all
vulnerabilities present in a firmware, necessitating the adoption
of complementary approaches to ensure a comprehensive security
assessment.

3 EXPLORING STRATEGIES
3.1 Preliminary Analysis
The developmental trajectory of the manifest-producer tool started
with a preliminary analysis aimed at probing the inherent chal-
lenges associated with the analysis of ELF binaries within firmware
certification for IoT devices. In this phase, the use of tools such as

https://github.com/SoftengPoliTo/manifest-producer

A Tool for IoT Firmware Certification ARES 2024, July 30–August 02, 2024, Vienna, Austria

radare22 and objdump3 was crucial. This preliminary analysis
provided an understanding of the structure of an ELF, enabling the
identification of areas relevant for firmware certification. Specif-
ically, the analysis, initiated through code disassembly and fo-
cused on system calls, deemed crucial in clarifying the authentic
behaviour of a firmware. Indeed, system calls allow user programs
to obtain functionality that requires access to operating system
privileges, such as file and memory management, communication
with I/O devices, and many other kernel operations. However, de-
spite the granular control offered by the analysis with radare2 and
objdump, it became imperative to adopt an automated solution,
given the laboriousness and impracticality of using these tools in
this direction. Furthermore, it is important to note that since Rust
has been chosen as the programming language for the develop-
ment of the manifest-producer tool, radare2 and objdump do not
offer adequate support for direct integration within a Rust program.
Consequently, it was not possible to implement into the manifest-
producer these tools to obtain references to the various system
calls during the analysis of the binaries. After a comprehensive
preliminary study, two primary approaches for ELF binary analysis
have been delineated: static analysis and dynamic analysis.

Static analysis entailed the exploration of two distinct method-
ologies.
The first conceived method involved the use of hexadecimal pat-
terns: they make it possible to identify and compare particular
byte sequences in a hexadecimal representation, which is useful for
detecting specific behaviour concerning system call instructions.
However, this strategy was immediately recognized as complex and
onerous in terms of computational resources, as it required the gen-
eration and management of a large corpus of hexadecimal models
to cover every supported architectures since most of them do not
share the same syscall patterns. Moreover, the requirement to keep
these models constantly updated, thus adapting them to changing
architectures, would involve a considerable effort. However, recog-
nition of this pattern alone may not be sufficient to reliably identify
syscalls, as there may be other instructions involved in the code,
those which load the syscall number into the appropriate register
and those which invoke it. Therefore, analysis based on hexadec-
imal patterns requires careful context consideration and may be
prone to errors if not implemented with attention and a thorough
understanding of binary code. The second method was to create a
system callmapping table, a systematic approach to correlate sys-
tem call numbers with their respective names. As explained in the
previous point, by convention the operating system uses positive
integers as identifiers for the various syscalls. This methodology
inherently exploits the insights of the prior approach by focusing
on the .text section of an ELF file, where a program executable code
is contained. Through an analysis of this section, the mapping pro-
cess establishes a consistent association between the system calls
numerical identifiers and their semantic representations. Compared
with the use of hexadecimal patterns, this approach significantly
improves code readability and generalizability, as it can be applied
to different architectures (such as x86, x86-64, ARM, ...) without
requiring substantial modification or adaptation. However, despite
2radare2 is a complete framework for reverse-engineering and binary analyzer.
3objdump is a program for displaying various information about Unix-like operating
systems object files.

these inherent advantages, it is important to note that the possible
absence of a system call in the mapping table could result in an
incomplete categorization, compromising the whole integrity of
the analysis.

Dynamic analysis is characterized by its ability to provide a
probable and contextualized representation of firmware behaviour
by focusing on tracking system calls during its execution using the
strace tool4. However, the effectiveness of this approach depends
on the availability and functionality of strace in the target system.
Specifically:

(1) Aviability: Strace must be installed on the target system. If
strace cannot be installed, this method of analysis cannot be
used.

(2) Functionality: Strace must be able to operate correctly.
Some systems may have security restrictions or configu-
rations that prevent strace from monitoring system calls.
Additionally, appropriate permissions (such as administrator
privileges) might be necessary to use strace effectively.

The presence of strace and its ability to provide interpretable output
play a crucial role in determining the accuracy and usefulness of
the dynamic analysis. Another significant aspect is that dynamic
analysis records the execution flow of a single firmware instance.
Therefore, it omits consideration of any other possible alternative
path that other instances might travel in different contexts or with
different inputs. This implies that although dynamic analysis pro-
vides realistic and immediate data, its coverage is inherently limited.
To obtain a complete and in-depth understanding of firmware be-
haviour, it may be necessary to run a great number of instances to
explore all possible combinations of scenarios and input configura-
tions.

3.2 Definitive analysis
A preliminary study aimed at comprehending the structure of ELF
files and configuring an analysis to identify suitable parameters
for certification highlighted the necessity for a more precise and
targeted methodology. In particular, greater emphasis has been
placed on the implementation of individual public APIs rather than
only relying on an entire firmware execution. This approach allows
the analysis to focus on specific code blocks, thereby enhancing
the granularity and precision of the evaluation, and enabling the
division of firmware functionalities among different APIs. This
static analysis helps identify the main functions and their memory
addresses, allowing for correct code disassembly and detailed anal-
ysis of system calls. Additionally, it is important to identify library
function calls, even for dynamically linked firmware.

4 HOWMANIFEST-PRODUCERWORKS
The manifest-producer tool, developed in Rust, has been designed
to perform the firmware certification process through the analysis
of ELF binaries. Its primary objective consists of ensuring firmware
integrity and compliance through two key steps:

(1) API Detection: For firmware certification, developers are
required to submit an ELF binary along with a documented

4strace is a diagnostic and debugging utility for Linux.

https://en.wikipedia.org/wiki/Radare2
https://en.wikipedia.org/wiki/Objdump
https://en.wikipedia.org/wiki/Objdump
https://en.wikipedia.org/wiki/Strace

ARES 2024, July 30–August 02, 2024, Vienna, Austria Giuseppe Marco Bianco, Luca Ardito, and Michele Valsesia

list of public APIs. These APIs represent the externally acces-
sible functions offered by the firmware’s libraries. This list is
the analysis starting point since each API is independently
examined to assess its adherence to the intended behaviour.

(2) Behavioral Analysis: Once the APIs provided by a de-
veloper are identified, the tool disassembles its code and
searches for system calls and external library functions, eval-
uating whether the APIs align with the expected behaviour
or exhibit undesired characteristics.

Through this process, the manifest-producer tool enables validation
of firmware compliance with security, reliability, and acceptable
performance. Ultimately, it generates three distinct JSON format
manifests, which encapsulates the extracted and processed infor-
mation. In essence, the manifest-producer serves as an instrument
for binary firmware certification, offering a systematic approach to
validate every aspect of a firmware behaviour.

4.1 API Detection
The first analysis step aims to examine each public API provided
by a firmware developer, to assess its adherence to specifications
and ensure its integrity and compliance. Initially, the tool checks
for the presence of the debug sections within the ELF file. Debug
sections contain symbols which represent variables, functions and
other code entities. This information is essential for identifying and
understanding a firmware structure. Once these sections have been
checked, the tool proceeds to detect the APIs provided by a firmware
developer. This list, consisting of a set of strings representing API
names, guides the search process within the symbol table5 of an
ELF file. A binary symbol table contains symbols, thus information
on variables, functions and other code entities, along with their
memory addresses which an operating system links to data and
executable code necessary for executing a program. Subsequently,
the tool then scans the symbol table, examining each symbol to
determine whether it is a function and if it can be associated with
a valid code section. For each symbol that satisfies the previous
criteria, the tool evaluates whether a function name matches one of
the API list names. If there is a match, the tool obtains the starting
address and size of the code block associated with that API. Starting
from this code block information, the end address of the code block
is calculated through a simple addition. Each API in the list has the
following data structure once all operations have been completed:

• Name
• Starting address
• End address
• Sequence of invoked syscalls

In addition, the structure allows recording each system call asso-
ciated with an API, offering a broader context for evaluating the
behaviour and an API in a firmware. To summarize, the process
above represents the first fundamental step in the firmware certifi-
cation process, leading to the detection of public functions within
the code, and thus providing a solid base for the subsequent steps
of a firmware analysis. Figure 2 shows the workflow of the first
phase performed by the tool.

5symbol table holds all necessary information to locate and relocate program’s symbols
definitions and references.

Figure 2: API Detection workflow.

4.2 Behavioural analysis
The second phase of the process begins with the information stored
in the previous phase. As shown in figure 3, this new phase is
mainly divided into two sub-phases:

(i) Code Disassembly: In this first sub-phase, the process an-
alyzes the executed instructions to list the operations performed
by a function. This step translates the machine code into readable
and understandable instructions, i.e. assembly code. This transla-
tion simplifies the execution flow analysis and makes easier the
system calls retrival. In particular, the attention is focused on iden-
tifying two specific instructions: call and lea. The call instruction
is designed to invoke a function. It takes a single operand, which
specifies the target function’s address. This address can be provided
in two ways:

• Direct Addressing: The address of the function is directly
encoded in the instruction, represented as a hexadecimal
value (e.g., call 0x1352).

• Register Indirect Addressing: The address is stored in a
specific register (e.g., rax) and passed through that register
during the call instruction (call rax).

The lea instruction, short for load effective address, loads the
address of a function into a specific register. For example, a lea state-
ment might have the following syntax: lea 0x6452(%rip), %rax.
These two instructions are fundamental for the analysis of the dis-
assembled code since they allow to identify all system calls invoked
by a function.

(ii) System Call Identification: In this second sub-phase, sys-
tem calls invoked by a function are detected and logged. These
calls are significant for the analysis since they offer insights into an
API behaviour. For example, the detection of a sendto system call
implies potential involvement in network operations, as sendto is
typically employed to transmit data within a network environment.
In this context, it is very important to acknowledge how certain sys-
tem calls are not identified. This could occur when API operations
are conducted within functions called from external libraries. Even
in these situations, the tool can obtain the function name present in
the external library called by an API. Once every address has been
obtained from lea or call instructions, it is necessary to consider
how external dependencies are managed during a building process.
Two different alternatives can be considered: static linking, where
identifying the function invoked is a relatively simple process since
the function is contained in the .text section of the binary. This

https://refspecs.linuxbase.org/elf/gabi4+/ch4.symtab.html

A Tool for IoT Firmware Certification ARES 2024, July 30–August 02, 2024, Vienna, Austria

Figure 3: Code disassembly and syscall identification.

structure streamlines access to a function’s memory allocations.
By referencingg the symbol table directly, the tool can efficiently
retrieve the function’s index within the string table. This index
directly translates to the function’s name invoked by the API. In
the dynamic linking case, the process is a bit more cumbersome.
During dynamic linking, not all addresses are resolved at compile
time. So it is necessary to access the Procedure Linkage Table
(PLT)6 to retrieve the functions name present in external libraries.
These addresses are dynamically resolved at runtime, making the
entire process more intricate and dynamic. To simplify this pro-
cess, the tool adopts a simpler strategy. At first, it identifies the .plt
section containing the PLT table. Next, it loads all the addresses
associated with functions name into a hash table. This choice signif-
icantly speeds up the search because the tool can perform a simple
query against the hash table rather than performing more heavy
operations.

5 MANIFESTS GENERATION
Json manifests generation is the last in the binary analysis phase,
where the crucial information gathered from the firmware analysis
is presented in a textured way. These manifests provide an impor-
tant overview of the information extracted from an analyzed ELF
file and its interactions with system calls and library functions.
Manifest for basic information provides general information
about an ELF file, such as its file name, its programming language,
its target architecture, and its dependency linking type: static or
dynamic. Additionally, it lists all public library APIs, providing a
preliminary indication of the functionalities offered by a firmware.
Manifest for syscall flow provides a detailed overview of sys-
tem calls and library functions of each firmware API. This report
provides a sequence of the operating systems functions performed
during the execution of the various public user-space functions.
The peculiarity of this static analysis lies in its ability to capture
the API interactions with operating system libraries, considering
all possible execution paths that may not be explored when a single
dynamic instance of the program is executed. This manifest con-
tributes to a detailed and comprehensive understanding of an API
behaviour and provides a solid base for evaluating the security and
6PLT is a table which manages function calls present in dynamically linked libraries.

performance of a firmware.
Manifest for features classifies APIs according to their function-
alities offering a structured overview of of a firmware capabilities.
This categorization occurs through a systematic process that eval-
uates the tasks performed by system call and groups them into
meaningful categories. The categorization process is based on a
predefined set of functional categories, such as file manipulation,
network access, device management, and encryption. This approach
facilitates the classification of APIs according to their capabilities,
providing a clear view of the main features of a firmware.

6 PERFORMANCE ANALYSIS
The performance analysis of the manifest-producer tool aims to as-
sess its capability in analysing a series of ELF files written in C/C++
and Rust languages. Some of of these binaries simulate the IoT
device firmware behaviour, while others are well-known projects
such as FFmpeg, xi-core and OpenCV. The aforementioned projects
are open-source, thus their source code can be consulted publicly.
FFmpeg7 is a library for digital media manipulation and it has been
chosen for its variegated code. The complexity of its source code,
primarily written in C with some of its critical parts optimized in
assembly, allows to assess the manifest-producer performance in
scenarios where complexity may impact the analysis of ELF files,
making it a relevant case study to evaluate the tool performance in
real contexts. OpenCV8 is a tool written in C++ and it has been in
this analysis to examine the manifest-producer performance on ELF
files involving complex computational calculations and intensive
processing. The xi-core9 project is written in Rust and represents
an opportunity to evaluate the tool’s capabilities on analyzing ELF
binaries from projects that require optimal performance and effi-
cient management of system resources.

This small but specific range of ELF binaries provides a compre-
hensive methodology for evaluating the performance of this tool in
real-world contexts, allowing it to detect its strengths and possible
areas for improvement.

6.1 Selected tools
Two performance analysis tools, Hyperfine and Heaptrack, have
been used to conduct a time and memory analysis. Hyperfine10,
is a benchmarking tool that plays a role in analyzing the perfor-
mance of the manifest-producer. It measures the execution times
of a program, providing valuable insights into the duration of the
analysis for each considered ELF binary file. Hyperfine’s repeated
benchmark offers an overview of the speed and responsiveness
of the manifest-producer tool. By default, Hyperfine warms up
the system with 100 iterations before performing 1000 actual mea-
surements. This two-step process guarantees a stable execution
environment, eliminating the influence of initial setup or caching
on performance. Consequently, Hyperfine results offer clean data,
ideal for comparing execution times across different ELF binaries.
Heaptrack11 is a tool designed to provide a memory introspection

7Github repository:https://github.com/FFmpeg/FFmpeg
8GitHub repository: https://github.com/opencv/opencv
9GitHub repository: https://github.com/xi-editor/xi-editor
10GitHub repository: https://github.com/sharkdp/hyperfine
11GitHub repository: https://github.com/KDE/heaptrack

https://github.com/FFmpeg/FFmpeg
https://github.com/opencv/opencv
https://github.com/xi-editor/xi-editor
https://github.com/sharkdp/hyperfine
https://github.com/KDE/heaptrack

ARES 2024, July 30–August 02, 2024, Vienna, Austria Giuseppe Marco Bianco, Luca Ardito, and Michele Valsesia

into memory usage during the execution of a program. It moni-
tors and evaluates the memory allocation of the software under
examination by recording information about memory consumption
peaks, temporary allocations, and possible memory leaks. The abil-
ity to identify memory management issues is essential for assessing
memory allocations in a software.

6.2 Programming language comparisons
Using binaries generated from libraries conceived to simulate IoT
devices firmware behaviours12, a comparative analysis was con-
ducted among the various considered programming languages. rust-
dynamic shows the largest size at 54.0 MB, followed by C-dynamic
at 18.2 MB and Cpp-dynamic at 7.3 MB. This variation may indicate
differences among programming languages building optimizations.
Regarding execution times, Cpp-dynamic is the fastest at 10.7 ms,
followed by C-dynamic at 15.8 ms and rust-dynamic at 43.6 ms.
Interestingly, there is no direct correlation between file size and
execution times. While the file size-to-execution time ratio may
suggest increasing times with larger file sizes in the case of the Cpp
version, this fact is not confirmed in C and Rust versions, which
exhibit accessible execution times despite their larger sizes. This
suggests that factors, such as code complexity and resource man-
agement, significantly influence performance. Figure 4 shows the
relationship between file size and execution time in the considered
binaries.

Figure 4: Execution time vs. file size for IoT library variants.

The comparison takes an in-depth look at the functionality of-
fered by FFmpeg, OpenCV and xi-core, exploring how each library
implements its functionality, beyond the programming languages
used. FFmpeg, with a file size of 409.9 kB, exhibits an execution
time of 6.3 ms, while OpenCV, with a smaller file size of 177.3 kB,
shows a faster execution time of 4.0 ms. In contrast, xi-core stands
out with a significantly larger file size of 74.6 MB, resulting in a
longer execution time of 34.7 ms. This disparity suggests that larger
file sizes generally correspond to longer execution times. However,
it is interesting to note that, similar to the analysis conducted previ-
ously, there is no significant growth in execution times as file sizes
increase, contrary to the trend observed for FFmpeg and OpenCV
files. The graph in Figure 5 shows this comparison.
12GitHub repository: https://github.com/SoftengPoliTo/dummy-firmware-device

Figure 5: Execution time vs. file size for open-source projects.

Analyzing the trends in memory usage, as reflected by both
peak heap memory consumption and peak RSS (Resident Set Size),
offers valuable insights into a program’s resource management
efficiency. Despite the obvious differences in file sizes, a consistent
pattern emerges, showing uniform growth ratios in both heap and
maximum physical memory usage. This trend is illustrated in Figure
6. Despite having smaller file sizes, FFmpeg and OpenCV exhibit
a memory usage growth pattern similar to the largest xi-core file.
This suggests the tool’s memory consumption primarly depends
on factors other than the input file size, leading to consistent and
predictable memory usage behaviour.

Figure 6: Memory usage comparison.

7 CONCLUSIONS AND FUTUREWORKS
The manifest-producer emerges as a complementary tool in the
firmware certification for IoT devices. It analyzes ELF binaries in
a structured way and creates detailed reports (manifests) summa-
rizing key information. These reports reveal how the firmware
works, what system components it relies on, and how it interacts
with the device’s hardware. Performance analysis reveals the tool’s
strengths in handling various ELF files. Interestingly, the data shows
that file size alone does not determine how long a program takes
to run. Notably, significant variability in execution times, not di-
rectly proportional to file sizes, was observed, particularly in C

https://github.com/SoftengPoliTo/dummy-firmware-device

A Tool for IoT Firmware Certification ARES 2024, July 30–August 02, 2024, Vienna, Austria

language files. Moreover, memory allocation analysis revealed dis-
tinct resource utilization patterns among different types of ELF
files, indicating varying efficiency levels. Despite differences in
programming languages and file sizes, the tool exhibits uniform
performance across various contexts, suggesting a high level of
adaptability and robustness. Looking towards future developments,
efforts could be directed towards further enhancing the tool’s ef-
fectiveness in IoT device firmware certification. This may involve
improving the API discovery algorithm to allow a comprehensive
search for public functions without explicitly requesting a list of
API names from a firmware developer. A thorough analysis of ex-
ternal library functions could also enhance the tool’s functionality
in retrieving system calls. While the tool currently only retrieves
names of external library functions, it has the potential to become
even more powerful. By recursively resolving the code of these
functions, it could also capture system calls hidden within them.
This would provide a more complete picture of the firmware be-
haviour. A comprehensive study of potential vulnerabilities in IoT
device firmware code could be conducted, aiming to implement an
analysis focused on highlighting device security problems. Such
an initiative could significantly contribute to bolstering the overall
security of IoT devices.

ACKNOWLEDGMENTS
This study was carried out within the AsCoT-SCE project – funded
by the European Union – Next Generation EU within the PRIN
2022 program (D.D. 104 - 02/02/2022 Ministero dell’Università e
della Ricerca). This manuscript reflects only the authors’ views and
opinions and the Ministry cannot be considered responsible for
them

REFERENCES
[1] Sarah A. Al-Qaseemi, Hajer A. Almulhim, Maria F. Almulhim, and Saqib Rasool

Chaudhry. 2016. IoT architecture challenges and issues: Lack of standardization.
In 2016 Future Technologies Conference (FTC). 731–738. https://doi.org/10.1109/
FTC.2016.7821686

[2] Stefan-Ciprian Arseni, Simona Halunga, Octavian Fratu, Alexandru Vulpe, and
George Suciu. 2015. Analysis of the security solutions implemented in current
Internet of Things platforms. In 2015 Conference Grid, Cloud & High Performance
Computing in Science (ROLCG). 1–4. https://doi.org/10.1109/ROLCG.2015.7367416

[3] Abeer Assiri and Haya Almagwashi. 2018. IoT Security and Privacy Issues. In
2018 1st International Conference on Computer Applications & Information Security
(ICCAIS). 1–5. https://doi.org/10.1109/CAIS.2018.8442002

[4] Taimur Bakhshi, Bogdan Ghita, and Ievgeniia Kuzminykh. 2024. A Review of
IoT Firmware Vulnerabilities and Auditing Techniques. Sensors 24, 2 (2024).
https://doi.org/10.3390/s24020708

[5] André Cirne, Patrícia R. Sousa, João S. Resende, and Luís Antunes. 2022. IoT se-
curity certifications: Challenges and potential approaches. Computers & Security
116 (2022), 102669. https://doi.org/10.1016/j.cose.2022.102669

[6] Xiaotao Feng, Xiaogang Zhu, Qing-Long Han, Wei Zhou, Sheng Wen, and
Yang Xiang. 2023. Detecting Vulnerability on IoT Device Firmware: A Sur-
vey. IEEE/CAA Journal of Automatica Sinica 10, 1 (2023), 25–41. https:
//doi.org/10.1109/JAS.2022.105860

[7] Fatima Hussain, Rasheed Hussain, Syed Ali Hassan, and Ekram Hossain. 2020.
Machine Learning in IoT Security: Current Solutions and Future Challenges. IEEE
Communications Surveys & Tutorials 22, 3 (2020), 1686–1721. https://doi.org/10.
1109/COMST.2020.2986444

[8] Bryer Jeannotte and Ali Tekeoglu. 2019. Artorias: IoT Security Testing Framework.
In 2019 26th International Conference on Telecommunications (ICT). 233–237. https:
//doi.org/10.1109/ICT.2019.8798846

[9] Basem IbrahimMukhtar, Mahmoud Said Elsayed, Anca D. Jurcut, andMarianne A.
Azer. 2023. IoT Vulnerabilities and Attacks: SILEXMalware Case Study. Symmetry
15, 11 (2023). https://doi.org/10.3390/sym15111978

[10] Ibrahim Nadir, Haroon Mahmood, and Ghalib Asadullah. 2022. A taxonomy of
IoT firmware security and principal firmware analysis techniques. International
Journal of Critical Infrastructure Protection 38 (2022), 100552. https://doi.org/10.
1016/j.ijcip.2022.100552

[11] Jibran Saleem, Mohammad Hammoudeh, Umar Raza, Bamidele Adebisi, and Ruth
Ande. 2018. IoT standardisation-Challenges, perspectives and solution. In ACM
International Conference Proceeding Series.

[12] Lo’ai Tawalbeh, Fadi Muheidat, Mais Tawalbeh, and Muhannad Quwaider. 2020.
IoT Privacy and Security: Challenges and Solutions. Applied Sciences 10, 12 (2020).
https://doi.org/10.3390/app10124102

[13] Chin-Wei Tien, Tsung-Ta Tsai, Ing-Yi Chen, and Sy-Yen Kuo. 2018. UFO - Hidden
Backdoor Discovery and Security Verification in IoT Device Firmware. In 2018
IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW). 18–23. https://doi.org/10.1109/ISSREW.2018.00-37

[14] Paul C. van Oorschot. 2023. Memory Errors and Memory Safety: A Look at Java
and Rust. IEEE Security & Privacy 21, 3 (2023), 62–68. https://doi.org/10.1109/
MSEC.2023.3249719

[15] Muhammad Shaharyar Yaqub, Haroon Mahmood, Ibrahim Nadir, and
Ghalib Asadullah Shah. 2022. An Ensemble Approach for IoT Firmware Strength
Analysis using STRIDE Threat Modeling and Reverse Engineering. In 2022
24th International Multitopic Conference (INMIC). 1–6. https://doi.org/10.1109/
INMIC56986.2022.9972941

Received 15 May 2024; revised 15 May 2024; accepted 30 May 2024

https://doi.org/10.1109/FTC.2016.7821686
https://doi.org/10.1109/FTC.2016.7821686
https://doi.org/10.1109/ROLCG.2015.7367416
https://doi.org/10.1109/CAIS.2018.8442002
https://doi.org/10.3390/s24020708
https://doi.org/10.1016/j.cose.2022.102669
https://doi.org/10.1109/JAS.2022.105860
https://doi.org/10.1109/JAS.2022.105860
https://doi.org/10.1109/COMST.2020.2986444
https://doi.org/10.1109/COMST.2020.2986444
https://doi.org/10.1109/ICT.2019.8798846
https://doi.org/10.1109/ICT.2019.8798846
https://doi.org/10.3390/sym15111978
https://doi.org/10.1016/j.ijcip.2022.100552
https://doi.org/10.1016/j.ijcip.2022.100552
https://doi.org/10.3390/app10124102
https://doi.org/10.1109/ISSREW.2018.00-37
https://doi.org/10.1109/MSEC.2023.3249719
https://doi.org/10.1109/MSEC.2023.3249719
https://doi.org/10.1109/INMIC56986.2022.9972941
https://doi.org/10.1109/INMIC56986.2022.9972941

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Motivations for analyzing ELF binary

	3 Exploring Strategies
	3.1 Preliminary Analysis
	3.2 Definitive analysis

	4 How manifest-producer works
	4.1 API Detection
	4.2 Behavioural analysis

	5 Manifests Generation
	6 Performance Analysis
	6.1 Selected tools
	6.2 Programming language comparisons

	7 Conclusions and future works
	Acknowledgments
	References

