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Comparative Analysis of Electric Vehicle Simulator
for Accurate Battery Pack Internal Signal

Generation
Raimondo Gallo, Tommaso Monopoli, Marco Zampolli, Rémi Jaboeuf, Paolo Tosco,

Alessandro Aliberti, and Edoardo Patti

Abstract—The definition of accurate electric vehicle (EV)
simulators can help mitigate the lack of large-scale public battery
pack datasets in literature. This work compares two developed
Simulink-based EV simulators that generate realistic EV battery
pack signals from input driving sessions. The two EV simulators,
referred to as simplified and advanced respectively, share the
same architecture. However, they are equipped with internal
blocks characterized by different complexity and precision. Both
simulators generate time series of the vehicle’s speed, and battery
pack’s current, state of charge (SOC), voltage, and internal
temperature. Additionally, the simulators incorporate thermal
and aging models, allowing for the emulation of a wide range
of environmental conditions and aging statuses of the battery
pack. A subset of inner parameters has been set, sourcing from
online technical data sheets, to enable both virtual-EVs to mimic
the same 2017 Volkswagen eGolf EV model. Indeed, given the
availability of an acquired and ample real dataset specific to
the same EV model, it is possible to perform an extensive and
thorough validation of the simulated data. Both virtual-EVs prove
to be accurate at simulating a battery pack under different
aging conditions, although the comparison highlights the benefits
of more sophisticated design choices, demonstrating the higher
accuracy of the advanced virtual-EV over the simplified one.
Indeed, the advanced virtual-EV achieves overall RMSE and R2

values, for current, voltage, and SOC of 43.34 A, 4.07 V, 4.84%
and 0.28, 0.93, and 0.96, respectively. The main design differences
between the two virtual-EVs are presented, and, upon examining
their computational burden, distinct utilization scenarios are
proposed based on the user’s needs.

Index Terms—Electric vehicle, Battery pack, Simulation, Mat-
lab, Simulink

NOMENCLATURE
BOL Beginning-of-Life
DC Driving Cycle
DOF Degree of Freedom
EFC Equivalent Full Cycles
EOL End-of-Life
EV Electric Vehicle
HEV Hybrid Electric Vehicle
LIB Lithium-ion Battery
ML Machine Learning
OCV Open-Circuit Voltage
R0 Terminal Resistance
RMSE Root Mean Squared Error
R2 Coefficient of Determination
SOC State of Charge
SOH State of Health
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I. INTRODUCTION

One of the most important challenges of this century is
thought to be climate change mitigation. According to esti-
mates, the transportation industry is responsible for 27% of
all greenhouse gas emissions in the world. More precisely,
road travel is responsible for 75% of all CO2 emissions in
the transportation sector [1]. Both in the private and public
transportation sectors, EVs have received widespread accep-
tance as a dependable and clean substitute for conventional
vehicles, and it is expected that they will soon take over the
market in the future years [2]. Investigating novel technologies
that can improve EV performance is crucial.

The battery pack, which is the essential element of an EV,
is normally constructed from many battery cells linked in
parallel and in series. Due to their numerous advantageous
characteristics, the cells composing a lithium-ion battery (LIB)
are currently the most crucial technology in battery pack
design [3]–[5]. Due to a variety of chemical and mechanical
changes to the electrodes during time and operation, LIB cells,
like other batteries, are susceptible to degradation events. It is
crucial to analyze the EV battery pack to grasp the basics
of its health condition and lifespan. Data-driven procedures,
such as machine learning (ML) approaches, can produce
state-of-the-art achievements in many disciplines, given the
capacity of such models to resolve non-linear issues. Indeed,
academia and business have recently shown significant interest
in developing novel methods for measuring the performance
of EVs by integrating ML algorithms, such as predicting LIB
performances [6] or spotting battery failure signs [7].

Nonetheless, in order to adopt data-driven procedures, huge
amounts of measurements are required. Unfortunately, the data
that are available are either scarce or challenging to retrieve.
Users can access a few open battery datasets [8] [9], but
they include monitoring information gathered from lab tests
performed on a single cell or a small group of cells, which
cannot accurately reflect an EV battery pack as a whole.
Several private EV fleet management companies, through
onboard diagnostic tools, can gather a substantial quantity of
battery pack data. But such data are either inaccessible or sold
at a very high price. Thus, it becomes quite challenging ob-
taining large-scale and open datasets of actual EV monitoring
data [10] to investigate and improve EV technologies. Hence,
the definition of EV simulators would enable the generation
of synthetic data for the full battery pack, filling the data
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availability gap. This would allow researchers to train the
suggested ML models using EV-simulated data, enabling them
to create new data-driven methods for monitoring the EV’s
battery pack.

In previous works [11] [12], two EV model simulators
have been developed, which are referred to as simplified
and advanced virtual-EVs, respectively. Both mimic the same
specific real-world EV model, a 2017 Volkswagen eGolf,
and are designed using MATLAB and Simulink programing
frameworks. The two virtual-EVs reproduce an entire EV
system made up of numerous mutually dependent subsystems,
such as an electric motor, battery pack, wheels, and braking
system, enabling the generation of battery pack signals, taking
into account complex interactions among all subsystems. The
simplified and advanced simulators share the same architecture
in terms of blocks, although some of the inner blocks im-
plement the EV subsystems with different levels of precision
and realism. Indeed, as the name suggests, the advanced
EV simulator improves several aspects of the simplified one
related to the motor and battery blocks, the vehicle body,
the thermal and aging models embedded in the battery pack,
the inclusion of customizable wind resistance, and overall
contribution of onboard auxiliary devices. Both EV simula-
tors generate synthetic time series of speed, battery current,
voltage, state of charge (SOC), and internal temperature.

In this work, an exhaustive comparison of the two virtual-
EVs is carried out, analyzing the main different design choices.
Moreover, a thorough validation of the simulation results is
achieved utilizing data from actual driving sessions. The real
EV data have been collected from the same real-world EV
model, mimicked by both virtual-EVs, throughout its lifespan,
hence characterized by different aging conditions of the battery
pack, with its state of health (SOH) ranging from 85% to
99%. Indeed, the EV battery pack’s SOH generally ranges
from 100%, corresponding to a brand-new battery at the
beginning-of-life (BOL), to 80% at the end-of-life (EOL) when
the battery must be replaced. Given the heterogeneity of the
acquired actual data, covering almost entirely the lifespan of
the battery pack, it becomes possible to precisely determine
the accuracy of both virtual-EVs in different environmental
and internal conditions.

Firstly, sourcing from online technical data sheets specific
for the selected 2017 Volkswagen eGolf EV model, a subset
of the blocks’ inner parameters has been tuned to optimally
represent the actual operations of the chosen real-world EV.
Then, the synthetic outputs from both simplified and advanced
virtual-EVs are independently validated by utilizing the ac-
quired actual signals. The modularity of the proposed virtual-
EVs, along with the possibility to freely tune the blocks’
parameters, allows the emulation of, potentially, a vast variety
of EV models.

Both virtual-EV can be utilized to generate accurate and
realistic EV battery datasets, enriching the selection of the data
collections available in literature. Moreover, the comparison of
the simulated data demonstrates the overall higher precision
of the advanced virtual-EV over the simplified one, at the cost
of a greater computational burden. Nonetheless, considering
the trade-off between precision and complexity of the two

simulators, it is advised the employment of the simplified
virtual-EV to simulate EVs, seen as floating batteries, in
a collective and large scenario, fastening the retrieval of
the results with a lower precision. Conversely, the advanced
virtual-EV could be utilized to precisely simulate individual
EVs, collecting more accurate outputs at the expense of faster
data retrieval.

The rest of this paper is structured as follows. Section II pro-
vides a general outlook of the available EV simulators in the
literature, and their characteristics; while, Section III provides
a detailed description of the proposed simplified and advanced
virtual-EVs structure, design differences, and required inputs
and outputs. Section IV discusses the experimental results.
Finally, Section V provides concluding remarks and plans for
further research.

II. RELATED WORK

Numerous studies in literature focus on enhancing EV
performance monitoring with ML. However, in order to use
data-driven approaches, substantial and detailed datasets are
required. Therefore, by defining EV simulators, it may be
possible to gather enough data to provide ML algorithms with
input.

Large-scale EV modeling and simulation has undergone sig-
nificant work in order to analyze the load exchanged between
EVs and the power grid. Indeed, Canizes et al. [13] created a
travel simulation application that simulates an actual environ-
ment, including trips and charging stations to build customized
profiles, itineraries, and schedules, considering the behavior of
real users. The technology being used focuses on how changes
in energy pricing affect how EV customers behave, emphasiz-
ing that consumers benefit more from variable-rate electricity
prices. A Java-based tool called EVLibSim, proposed by Rigas
et al. [14], enables simulation of EV operations at the level of
charging stations in a smart grid setting. A charging station
can be designed using EVLibSim, an event-based simulation
framework, based on the needs of the user. In this way, EV
queues charges and discharges can all be precisely simulated.
Emobpy is an open-source Python tool developed by Gaete-
Morales et al. [15] that generates EV time series sourcing
from 200 input vehicle profiles in Germany. Emobpy provides
four output time series with adjustable length and resolution
based on empirical mobility statistics and physical features
of vehicles. The output time series contain data on vehicle
mobility, driving electricity consumption, grid availability,
and grid demand. Large EV fleets can be monitored using
the simulation tool, which also provides essential inputs for
energy, environmental and economic applications.

The availability of EV-to-Grid simulators helps understand
the impact of large EV fleet over the electrical grid, allowing
to suggest the best charging strategies minimizing the peak
load required by the EVs. On the other hand, being able to
simulate the internal behavior of an EV’s battery pack would
help the investigation of novel techniques to improve the EV
technologies.

Ciabattoni et al. [16] developed an entirely programmable
event-based simulator that can generate plug-in/out, charge,
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and discharge events for a collection of EVs or a single EV.
To increase the tool’s functionality and enable integration into
different applications, it is developed as a web simulator called
ePopSimulator and a Matlab/Simulink block. The simulator’s
ability to enable users to change the simulation scenario and
receive both aggregated and individual EV statistics makes it
perfect for researching vehicle-to-grid solutions. FASTSim is
an open-source vehicle simulation tool developed by Brooker
et al. [17] that can design both conventional and electric
automobiles. It accurately models vehicle parts while retaining
high accuracy, which is made possible by validating the
results using information from numerous cars. Researchers can
use the tool to investigate ways to enhance EV technology,
including the estimation of energy use.

For other scenarios, it is instead useful simulating inner the
battery pack of an EV, along with its other subsystems, to
investigate how the involved technologies impact on efficiency
and driving experience of the vehicle. Lee et al. [18] modeled
a lithium-polymer battery pack utilizing the Advanced Light-
Duty Powertrain and Hybrid Analysis (ALPHA), created by
EPA, along with its thermal model and typical hybrid electric
vehicle (HEV) BMS cooling strategies. The battery simulator
generates output signals of voltage, current, SOC, and tem-
perature, which are validated using reference real EV data
achieving a voltage error of 2.2V

Hanifah et al. [19] developed an EV system, including
a simple battery system, to investigate the different battery
technologies in EV achieving the best travel range. Comparing
the output SOC and vehicle range, they demonstrated that
LIB allow to cover higher distances due to their higher
energy density. Hederić et al. [20] proposed an EV simulator
in Matlab/Simulink, parameterized with actual data retrieved
from the catalogue of the mimicked EV manufacturer. The
simulation results highlight the dynamic characteristics of the
modeled LIB for distinct standardized charge and discharge
regimes. Kroeze et al. [21] programmed a Matlab/Simulink
battery model predicting SOC, terminal voltage, and power
losses. After a careful tuning of the parameters, accomplished
through laboratory tests, they tested the battery model in a
plug-in HEV simulator, verifying the accuracy of the simulated
outputs.

Qin et al. [22] developed a Modelica LiFePO4 battery
pack tuned through experiments conducted over a real battery.
Given the input current, the output voltage achieves a maxi-
mum error of 1.78%. The battery model was then coupled with
a Modelica EV simulator which can accurately estimate the
driving mileage. Simic et al. [23] built a HEV model, using
Modelica packages, featuring an ideal battery pack. Using
accessible measurements and data sheets, they parameterized
the EV model and used the actual measured current as a
reference signal. The battery voltage validation shows a 5%
difference between the observed and simulated data. Shin et
al. [24] presented a vehicular LIB parameterized utilizing data
collected through a chassis dynamometer test. They tested
different battery models obtained by scaling up and down the
cell and battery parameters, respectively. The battery models
are then applied to EV model simulation proving comparable
levels of accuracy.

Table I reports a summary of the discussed works, with
their main characteristics, simulating the inner behavior of
the battery pack, also in a vehicular context. Particularly,
Table I includes information regarding the modeled system,
the simulator’s inputs, environmental inputs, and outputs, the
output granularity (if specified), and whether the impact of the
battery aging is investigated from the simulation outputs. It is
also reported whether the results have been validated with real
data and, finally, the numeric performances achieved.

The proposed scientific novelty in this work includes a
thorough comparison between the two developed virtual-
EVs [11] [12], starting from the general description of the
two simulators’ main design differences, highlighting the
improvements introduced by the advanced virtual-EV over the
simplified one. Through the specification of a set of inputs,
both EV simulators produce output signals for the battery
pack’s current, voltage, SOC, and internal temperature. The
possibility of specifying environmental inputs, such as road
slope, wind resistance, and external temperature, makes the
simulated data closer to a realistic scenario.

Observing Table I and comparing the proposed simulators
with those in literature, this work evaluates the accuracy of the
virtual-EVs comparing their outputs with actual benchmark
data collected from battery packs, within the same mimicked
real-world EV, at different aging conditions. Indeed, thanks to
the higher availability of reference data, it is possible to ex-
tensively analyze the performances of the proposed simulators
considering the battery aging and the effect of environmental
factors acting over the modeled EV.

Although sharing the same general modular structure, the
comparison highlights the higher precision of the advanced
virtual-EV with respect to the simplified one, justifying the
more sophisticated adopted design choices. Indeed, the ad-
vanced virtual-EV reduces the overall RMSE for voltage and
SOC by 5.23 V and 7.60%, respectively. As demonstrated,
both simulators achieve low errors for different aging condi-
tions of the battery pack, making the virtual-EVs robust for a
wide range of environmental and internal conditions.

By sourcing from online specific and technical data sheets,
it is possible to parameterize the inner block of the simula-
tors mimicking, potentially, any EV model of interest. With
the employment of the advanced virtual-EV, the user could
generate synthetic and realistic signals of internal battery pack
signals. In this way, the user could do without time-consuming
laboratory experiments or costly devices collecting data from
the EV’s battery management system. The generation of
realistic and accurate battery EV data enables the development
of data-driven ML techniques to conduct in-depth research on
battery performances. Conversely, the user could utilize the
simplified virtual-EV, for instance, to create a fleet of EVs,
seen as floating batteries, to propose charging strategies in a
large urban scenario.

III. MATERIALS AND METHODOLOGY

This section presents the general and common inner struc-
tures of the simplified and advanced virtual-EVs, highlight-
ing their differences which will, inevitably, lead to different
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TABLE I
THE SUMMARY OF SIMULATORS IN LITERATURE WITH THEIR MAIN CHARACTERISTICS, MODELING EITHER THE BATTERY PACK ALONE OR IN A FULL EV

ENVIRONMENT.

Validated performance with real dataAuthors Modeled system Inputs Environmental inputs Outputs Output granularity [s] Aging analysis # real sessions Performance

Lee et al. [18] Battery pack Technical parameters ✗
Battery’s voltages, currents,
SOC, internal temperature ✗ ✗ 3 Battery voltage

RMS 2V

Hanifah et al. [19] Battery pack + EV system Technical parameters ✗
Battery’s voltage, current, SOC,

EV’s range and speed ✗ ✗ ✗ ✗

Hederic et al. [20] Battery pack + EV system Technical parameters, speed Rolling resistance,
air resistance

Battery’s voltage, current, SOC,
EV’s speed and motor power ✗ ✗ ✗ ✗

Kroeze et al. [21] Battery pack + EV system Technical parameters, speed ✗
Battery’s voltage, current,

power response ✗ ✗ 1
Battery

terminal voltage 0.199%
SOC 1.00%

Qin et al. [22] Battery pack + EV system Technical parameters, speed Rolling resistance,
air resistance

Battery’s voltage, current, SOC,
EV’s mileage ✗ ✗ 1 Battery voltage 1.78%

EV mileage 0.54%

Simic et al. [23] Battery pack + HEV system Technical parameters, current Rolling resistance,
air resistance Battery’s voltage ✗ ✗ 1 Battery voltage

lower than 5%

Shin et al. [24] Battery pack + EV system Technical parameters, speed Rolling resistance Battery’s voltage, current, SOC,
EV’s speed, motor RPM and torque ✗ ✗ 2

Battery voltage
RMSE 3.93V (at high SOC)
RMSE 2.27V (at low SOC)

Proposed
simplified virtual-EV Battery pack + EV system Technical parameters, speed

Rolling resistance,
air resistance,

road slope,
environmental
temperature

Battery’s voltage, current, SOC,
internal temperature 0.2 ✓ 23

Overall battery
current R2 0.26
voltage R2 0.65
SOC R2 0.75

internal temp. R2 0.95

Proposed
advanced virtual-EV Battery pack + EV system Technical parameters, speed

Rolling resistance,
air resistance,

road slope,
environmental
temperature

Battery’s voltage, current, SOC,
internal temperature 0.1 ✓ 23

Overall battery
current R2 0.28
voltage R2 0.93
SOC R2 0.96

internal temp. R2 0.97

Fig. 1. (a) General and common inner structure of the simplified and advanced virtual-EVs. (b) The description of the two virtual-EVs’ main design differences.

levels of accuracy and precision of their synthetic outputs.
Finally, the required simulation inputs and the characteristics
of the generated synthetic internal battery pack’s signals are
discussed.

A. Dataset

The employed dataset consists of actual data gathered dur-
ing 23 distinct real driving sessions from EVs belonging to the
same 2017 Volkswagen eGolf model. A driving session refers
to information related to the user’s driving experience, includ-
ing time series of: vehicle’s speed [km/h], battery’s voltage
[V], current [A], internal and environmental temperatures [°C],
and SOC [%]. The internal temperature refers to the global
inner temperature of the battery pack; while the environmental
temperature corresponds to the outdoor one, which has an
impact on the battery pack’s internal temperature. The real
data are utilized to tune a subset of the simplified virtual-
EV’s parameters and to validate the performances of both
virtual-EVs independently. Each real driving session, at the
time data was collected, is characterized by different internal
and environmental conditions, such as the initial SOH of the
battery pack and outside temperature.

Indeed, thanks to the variability of the battery pack’s SOH
for the available driving sessions, it is possible to analyze the
simulators’ performance throughout almost the full lifespan
of the EV’s battery pack, ranging from 85% to 99%, close to
the battery lifespan extremes, BOL and EOL. Hence, with the
data at disposal, the accuracy of the simplified and advanced
simulators can be quantified in different driving conditions,
accounting also for distinct aging statuses of the battery pack.

In Table II, reports the description of the available real
driving sessions, with their main distinctive traits. Throughout
the manuscript, the terms driving session and Driving Cycle
(DC) are used interchangeably, although DC refers to the sim-
ulators’ inputs, including the speed time series, to which the
EV was subjected, along with other internal and environmental
conditions.

Additionally, the onboard device, gathering the actual sig-
nals, samples the data at different sampling frequencies. The
original sample frequency for each signal acquired from the
real-world EVs is reported in Table III. The real data are
independently resampled using linear interpolation, with a
common frequency matching the output one of the virtual-
EVs, that is 0.2 and 0.1 seconds for the simplified and
advanced simulators, respectively, as also discussed in Sec-
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TABLE II
THE AVAILABLE REAL-WORLD EVS DRIVING SESSIONS ALONG WITH

THEIR MAIN CHARACTERISTICS.

Driving cycle SOH
[%]

Duration
[s]

Avg. speed
[km/h]

Avg. SOC
[%]

Environmental
temp. [°C]

DC1 85 10606 41.16 61.98 -2.33
DC2 85 9333 41.86 41.95 1.12
DC3 85 7575 20.19 77.49 2.70
DC4 88 10639 63.07 58.04 -0.63
DC5 88 9124 34.09 76.55 9.06
DC6 88 17130 28.58 60.10 8.49
DC7 92 4374 49.52 85.09 15.65
DC8 92 8899 50.77 29.79 24.86
DC9 93 6089 67.01 81.82 20.04
DC10 93 2418 48.90 21.87 30.38
DC11 93 16431 37.30 49.71 24.03
DC12 94 3461 31.32 31.25 0.09
DC13 94 4584 97.75 53.49 10.03
DC14 94 4249 60.57 78.16 19.78
DC15 95 3039 58.03 84.21 17.60
DC16 95 1591 49.34 49.08 12.40
DC17 95 313 30.71 91.85 1.00
DC18 96 3045 46.71 81.63 15.29
DC19 96 3063 87.09 48.74 14.20
DC20 98 2198 86.24 60.25 31.14
DC21 99 3510 20.26 92.77 22.75
DC22 99 4919 44.21 76.04 20.82
DC23 99 8570 36.04 38.76 17.78

tion III-B2. Such a resampling ensures consistency across real
and synthetic signals, allowing the correct validation of the
simulation results. A fast sampling rate may capture high-
frequency changes in the signals more precisely but at the
expense of a longer simulation time. The choice of sampling
rate consists of a trade-off between computing time and the
quality of the signal.

B. The virtual-EV

The main focus of this work is to present a virtual-EV model
simulator to generate accurate battery pack’s current, voltage,
internal temperature, and SOC signals, allowing the moni-
toring of battery conditions throughout the EV’s operational
time. As a result, the battery pack becomes the most important
virtual-EV’s component. In fact, the lack of specific internal
design parameters in the literature makes modeling an EV bat-
tery pack challenging. Figure 1 (a) shows the schematization of
the inner structure of the simulator, shared by both simplified
and advanced virtual-EVs. While, Figure 1 (b), describes the
main high-level design differences block by block between
the two simulators, although exhaustively discussed later on
in this same section.

1) The general inner structure: The virtual-EV is defined as
several mutually dependent subsystems interconnected to each
other, mimicking the operations of an actual EV. Particularly,
the same Driver, Drivetrain, Wheels and Brakes blocks are
shared between simplified and advanced virtual-EVs; while
the implementation of the Motor, Battery pack, and Vehicle
dynamics blocks is different, and they contribute to the higher
precision of the advanced simulator over the simplified one.
Specifically, the Driver block implements a discrete-time

TABLE III
THE SAMPLING RATES OF THE COLLECTED REAL SIGNALS.

Data signal Sampling rate [s]
Speed 19

Current 0.1
Voltage 0.1

SOC 11
Internal temperature 41

Environmental temperature 110

proportional-integral controller that simulates a human driver
for the car. The controller attempts to match the simulated
vehicle speed, at each time step, with the input reference
DC speed signal by operating on the brake and accelerator
pedals. The Drivetrain block, belonging to the Powertrain
Blockset [25], consists of a complex arrangement of rotating
shafts, gears, and other components that work together to
efficiently and effectively distribute power. Hence, it plays a
crucial role in transmitting the mechanical power generated by
the electric motor to the wheels, allowing the vehicle to move.

The Wheels and Brakes block, implemented using the
Longitudinal Wheel with Disc Brake Simulink block provided
by Powertrain Blockset library [26], represents the behavior
of the wheels and the braking system, which incorporates the
friction braking and regenerative braking. The former is the
standard braking system that is activated by applying pressure
to the brake pad, creating friction force that is opposed to the
wheel’s direction; the latter, while slowing down the vehicle,
recharges the EV’s battery pack. The Motor block enacts a
mathematical representation of an electric motor running in
torque control mode. The Battery pack block represents the
EV’s battery subsystem, and it embeds thermal and aging
models to further characterize the synthetic driven session
and to improve the quality of the virtual-EV’s output signals.
Finally, the Vehicle dynamics block simulates the longitudinal
motion of a vehicle’s body, and it takes into account various
forced and factors affecting the vehicle’s motion, such as the
wind resistance and road slope.

The detailed list of the parameters specific to the mimicked
reference EV model and utilized to parameterize the main
blocks of the two virtual-EVs is reported in Table IV.

TABLE IV
DETAILED INFORMATION FOR BATTERY, MOTOR, AND VEHICLE

BELONGING TO THE MIMICKED 2017 VOLKSWAGEN EGOLF EV MODEL.

Description Value
Battery pack Type Lithium-ion

Capacity [kWh] 35.8
Voltage [V] 323
Number of cells 264
Number of modules 24
Cell weight [kg] 0.692

Motor Type Synchronous AC
Permanent Magnet

Maximum torque [lb-ft] 214
Vehicle Drag Coefficient 0.27

Curb Weight [kg] 1567
Gross Vehicle Weight [kg] 2010
Frontal area [m2] 2.19
Wheels radius [m] 0.26
Tire rolling resistance 0.01

2) Simplified Vs advanced virtual-EVs: Since, as previously
described, the Driver, Drivetrain, Wheels and Brakes blocks
are shared between simplified and advanced virtual-EVs, the
main differences between the two simulators lie on the design
and implementation of the Motor, Battery pack (along with
its thermal and aging models), and Vehicle dynamics blocks.
Referring to Figure 1 (b), the Motor block is implemented
using the Simulink Mapped Motor [27] and the Simscape
library [28] for the simplified and advanced simulators, respec-
tively. Although belonging to distinct libraries, both blocks
implement an electric motor operated in torque-control mode.
However, the motor block within the advanced virtual-EV,
directly connected to the thermal model, allows the modelling
of losses converting power to heat, making it more accurate.
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The Vehicle dynamics block within the simplified virtual-
EV represents the vehicle body as a one degree-of-freedom
(1DOF) rigid body with constant mass, solely undergoing
longitudinal dynamics, and it is implemented using the Vehicle
Body 1DOF Longitudinal Simulink block [29]. Conversely, in
the advanced virtual-EV, such a block defines the vehicle body
as a three degree-of-freedom (3DOF) rigid body with constant
mass undergoing longitudinal, vertical, and pitch motion, and
it is modeled with the Vehicle Body 3DOF Longitudinal
block [30]. Also, in contraposition to the simplified virtual-
EV, through the Vehicle dynamics block within the advanced
virtual-EV, a constant longitudinal wind resistance of 4 m/s is
imposed, although customizable by the user, with the intention
of generating more realistic output signals.

The main core difference between simplified and advanced
virtual-EVs lies on the definition of the battery pack sub-
system. Indeed, in the simplified simulator, the battery pack
is modeled using the Generic Battery Model (GBM) block
from the Simscape electrical Simulink library [31], and it
is approximated to a single high-voltage cell. The simplified
battery pack, as reported in Figure 1 (b), embeds a thermal
model that describes the discharge characteristics at a second
operating condition (different from the nominal one), char-
acterized by a chosen environmental temperature. Moreover,
battery-to-ambient thermal interaction is described by the two
parameters, thermal resistance and thermal time constant.

The GBM block features a simple aging model of the
battery, which is described by a set of parameters including
the battery age, defined as number of Equivalent Full Cycles
(EFC), which characterizes the battery pack’s aging throughout
the simulation. A virtual cycle of the battery’s charge and dis-
charge is referred to as an EFC, and it occurs at a specific depth
of discharge (usually, Depth of Discharge (DOD) = 100%,
meaning a full charge and complete discharge).

Due to the unavailability of a specific data sheet, the set of
parameters describing the battery pack’s aging model of the
simplified virtual-EV has been discovered through an iterative
procedure that minimized the error between simulated and real
battery signals [11]. Also, a linear relationship between EFC
and SOH, depicted in Figure 2, arose through few conducted
experiments over the Simulink’s generic battery model, which
allows the user to easily specify the battery pack’s aging in
terms of EFC, knowing its corresponding SOH percentage
values [11]. The finding reveals the relationship between EFC
and SOH for the Simulink’s generic battery model to be
linear, although for real batteries such a relation is generally
not linear. Finally, the simplified virtual-EV generates output
battery signals with a sampling frequency of 0.2 seconds.

Conversely, the advanced virtual-EV embeds a battery pack
defined as multi-cell subsystem, sourced from Simscape Bat-
tery library [32], replicating the structure of a real EV battery
pack. Indeed, it consists of individual cells organized into mod-
ules and connected in series and parallel, as shown in Figure 3,
mirroring the actual configuration of an EV battery pack. The
output battery’s current, SOC, and internal temperature are
obtained averaging the outputs of the individual cells; while,
the aggregated voltage corresponds to the sum of the individual
cell voltages.

Fig. 2. The assessed linear relationship between EFC and SOH [%].

Also, the advanced simulator allows the definition of a
constant current offset customizable by the user, modeling
the contribution of auxiliary devices onboard the EV, which
is totally missing in the simplified virtual-EV. However, the
available real and target currents already embed the contribu-
tion of possible auxiliary devices. Hence, for the sake of the
simulator’s results validation, the current offset is set to 0 A
avoiding an additional, and superfluous, contribution of the
auxiliary devices.

Then, a thermal model, defined as a state flow chart and
shown in Figure 4, has been added to the advanced battery
pack, which acts as a thermal cooler management model,
computing the heat to be released in the environment. The
current value of the battery’s internal temperature Batt. temp
is utilized as condition for state transitions from and into
source and destination states T , respectively. The heat is
computed utilizing, referring to Figure 4, the instant current i
and voltage volt, and scalar coefficients weighting the amount
of heat to be exchanged according to the current internal
temperature. Indeed, the higher is the temperature, the higher
is the heat to be exchanged. In this way, the battery pack’s
internal temperature lies within the range 25°C and 45°C,
which is the realistic operational range of temperature for the
battery [33]. The thermal model coefficients, i.e., 0, 0.005,
0.01, 0.025, and 0.1, utilized to compute the heat, and the
state transitions Batt. temp values, i.e., 32, 33, 34, 35, 36.5,
37, 38, and 40, as reported in Figure 4, have been discovered
after a few trial-and-error tests, minimizing the overall error
of the simulations’ outputs.

The aging model of the advanced battery pack sets its initial
aging conditions employing the following equation:

SOH =
Cactual

Cnominal
(1)

where, SOH is the desired input aging status, expressed as
a percentage, Cnominal is the nominal capacity of the battery
pack, retrieved from online technical data sheets specific to the
modeled real-world EV, and Cactual is the actual and current
capacity of the battery pack. In this way, a 1% decrease in

Fig. 3. The hierarchical structure of an EV battery pack [34].
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SOH results in a 1% reduction in the nominal capacity. This
relationship allows us to calculate the actual capacity, which
is then assigned to the battery pack subsystem in the EV
simulator at the beginning of the simulation.

The thermal and aging models included in the advanced
virtual-EV, however, remain separate. Indeed, the capacity
fading of the battery pack is solely managed by the battery
pack block. However, the thermal model, depicted in Figure 4,
requires the ongoing current and voltage, provided by the
battery block to compute the heat to be exchanged.

Moreover, two parameters for each battery cell, namely the
terminal resistance (R0) [mΩ] and open-circuit voltage (OCV)
[V], have been set to further improve the characterization
of the battery pack’s aging status. Following the available
documentation [35], the R0 and OCV parameters have been
defined as matrices with dimension 7×3, and each element of
the matrix corresponds to a value for a specific SOC within the
range [0, 10, 25, 50, 75, 90, 100]% (rows) and temperature
in [278, 293, 313]K (columns). Given the current values of
SOC and internal temperature during the simulation, the values
of R0 and OCV change accordingly, interpolating within the
corresponding matrix. The reference element values of the two
R0 and OCV matrices have been modified after a few trial-
and-error tests, and their final form is reported below:

R0 =


2.6100 1.8961 2.0077
2.4538 1.8961 2.0077
2.5430 1.9407 2.0523
2.3869 1.8292 1.9630
2.3869 1.8515 2.0300
2.5207 1.8961 1.9853
2.5876 1.8961 1.9853

OCV =


3.4352 3.4355 3.4357
3.5335 3.5337 3.5338
3.6120 3.6140 3.6180
3.7048 3.7049 3.7051
3.8636 3.8637 3.8637
4.0390 4.0390 4.0390
4.1600 4.1600 4.1610


Lastly, the advanced virtual-EV generates output battery sig-
nals with a sampling frequency of 0.1 seconds that, being
smaller than the simplified virtual-EV’s, allows the capturing
of even tinier signal variations.

IV. THE SIMULATION

The distinct design choices for the simplified and advanced
virtual-EVs, as discussed in Section III-B, inevitably lead to
results characterized by different precision and accuracy. In
Section V, the simulation results from both virtual-EVs are
thoroughly confronted.

However, despite the block design differences and the
dissimilar temporal granularity of the outputs, the set of inputs
and generated outputs for the two simulators remains the
same. Indeed, as shown in Figure 5, both simplified and
advanced virtual-EVs receive the input DC as a time series of
speed measurements, the initial battery’s SOC, SOH, internal
temperature, and environmental temperature (as a constant or

Fig. 4. The inner structure of the thermal model state flow chart.

time series). The virtual-EV’s inputs and initial values, for
each simulation, are selected sourcing from the corresponding
real driving session, attempting to replicate the same internal
and environmental conditions.

The generated output time series for the battery pack, in-
stead, include current, voltage, SOC, and internal temperature.
These variables are computed and updated at each simulation
time step based on the given inputs. The simulation evolves in
time according to the input speed time series, which globally
describes the driving pattern, hence, the length of the input
speed signal determines how long the simulation will last.

Furthermore, the real battery signals are individually re-
sampled using linear interpolation with a time step of 0.2
and 0.1 seconds for the simplified and advanced virtual-
EVs’ outputs, respectively. In this way, a consistent time
base is ensured to objectively compare the simulated and
real time series with the proper temporal granularity. During
the validation phase of the simulators, 23 simulations are
independently executed for both virtual-EVs, matching the
available real driving session data described in Table II. The
selection of the inputs and the real data resampling procedure
ensure consistency between synthetic and reference time series
during the validation phase.

The simulations were run over an NVIDIA GeForce RTX
3070 Ti GPU, and Table V reports the execution time for each
input DC and for both virtual-EVs, averaged over five simu-
lation instances. Generally, the advanced simulator requires
longer execution times than the simplified one, mainly due to
its higher temporal granularity of the outputs. The simulation
results are discussed in the following Section V, while Sec-
tion VI provides different application scenarios considering
the trade-off between execution times and accuracy of the two
virtual-EVs.

TABLE V
THE AVERAGE EXECUTION TIMES, IN SECONDS, FOR EACH SIMULATED

DC AND FOR BOTH VIRTUAL-EVS.

Driving
cycle

Simplified
virtual-EV [s]

Advanced
virtual-EV [s]

DC1 81.90 144.30
DC2 47.01 125.38
DC3 37.24 102.50
DC4 53.09 140.58
DC5 44.15 222.41
DC6 80.90 123.25
DC7 12.12 26.41
DC8 45.04 51.28
DC9 31.04 38.48

DC10 18.01 46.54
DC11 77.21 216.00
DC12 18.95 84.60
DC13 23.86 65.06
DC14 22.45 61.31
DC15 16.95 28.04
DC16 10.88 46.28
DC17 5.06 46.14
DC18 17.05 35.74
DC19 18.47 52.46
DC20 13.46 69.23
DC21 20.83 115.65
DC22 27.39 63.31
DC23 41.48 104.91
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Fig. 5. The general inner structure of the virtual-EV along with its inputs
and outputs.

V. EXPERIMENTAL RESULTS

In this section, the simulation results obtained by the sim-
plified and advanced virtual-EVs are discussed and compared.
The Root Mean Square Error (RMSE) and Coefficient of de-
termination (R2) are utilized to measure the deviation between
actual and synthetic output signals. The RMSE assesses the
average difference between the simulated and actual values,
whereas the R2 measures the proportion of the observed
values’ variability that can be explained by the predicted
values. The performance metrics are defined as follows,

RMSE =

√∑N
n=1(ysim,n − yreal,n)2

N
(2)

R2 = 1−
∑N

n=1(yreal,n − ysim,n)
2∑N

n=1(yreal,n − yreal)
2

(3)

where ysim refers to the simulated value, yreal is the actual
value, yreal refers to the mean value of the actual values,
and N is the total number of samples. The performances
of the two virtual-EVs are independently assessed comparing
the synthetic outputs of current, voltage, SOC, and internal
temperature with the corresponding real signals, for each
driving session in Table II and globally.

Figure 6 shows the simulation outputs of both simplified and
advanced virtual-EVs against the actual battery pack’s signals,
for three driving sessions, namely DC4, DC11, and DC23.
Observing the curves in Figure 6, the simulated signals gen-
erated by the two virtual-EVs, generally, follow the measured
ones, and a precise matching can be observed. Nevertheless,
the higher precision of the advanced over the simplified one
can be detected observing, for instance, the curves of SOC
and temperature, which closely follow the target real signals.
Comparing the values of the synthetic voltage curves with
those of the target signal, the voltage generated by advanced
virtual-EV assumes values closer to those of the target volt-
age. Regarding the output synthetic current, both virtual-EVs
perform similarly, although the advanced simulator remains
more accurate.

However, observing Figure 6, the reader can notice a quite
remarkable difference, in terms of spikes and variability,
between the synthetic currents and voltages and the respective
real signals. Indeed, as reported in Table III, the EV speed,
utilized as one of the inputs for the two simulators, has

been collected with a sampling frequency of 19 seconds, in
contraposition to the 0.1 seconds of current and voltage.

As described in the Section IV, the simulation evolves in
time according to the input speed time series, which perforce
does not keep all driving variations due to its low sampling
frequency. Conversely, the signals of current and voltage in-
clude much more information about smaller changes in the real
driving behavior. Therefore, the different temporal granularity
of the real signals inevitably leads to an approximation of
the results, making the synthetic current and voltage curves
less informative than the relative real ones. Nevertheless, the
virtual-EVs, mainly the advanced one, exhibit good accuracy
which stands out when comparing synthetic curves of SOC
and internal temperature with the real signals, characterized
instead by a lower sampling frequency.

Table VI reports the performances of both simplified and
advanced virtual-EVs in terms of RMSE and R2, respectively,
for each driving session, presented in Table II, and globally.
Observing Table VI, it is possible to demonstrate the higher
accuracy of the advanced virtual-EV which achieves overall
lower RMSE and higher R2 for all output signals, compared
to the simplified one. The RMSE reduction for the current
and voltage are substantial and systematic, reaching 4.85 A
for DC13 and 9.67 V for DC11, respectively. However, the
amplest improvement concerns the SOC. In fact, with the
advanced virtual-EV, it is possible to reduce the RMSE for
the SOC down to a few percentage points, in contraposition
to the simplified one. For example, the advanced simulation
for DC23 achieves an RMSE and R2 for the SOC of 1.11%
and 1.0, respectively, leading to a reduction of 8.46% for the
RMSE and an increase of 0.30 for the R2 over the simplified
simulation. Overall, the advanced simulator reduces the RMSE
for current, voltage, SOC, and internal temperature of 0.52 A,
5.23 V, 7.60%, and 0.66°C, respectively.

The simplified virtual-EV outperforms the advanced one,
mostly for DC7 and DC8. The explanation for such occurrence
lies on the parameterization of the simplified battery pack,
discussed in Section III-B2. During such a phase, the error
minimization step has been accomplished utilizing real data
signals belonging to a driving session taken when the EV’s
battery pack was characterized by an SOH of 93%. Therefore,
the simplified virtual-EV appears to be more precise for DC
marked with an SOH closer to 93%. On the contrary, the
advanced virtual-EV does not require such a parameterization,
which leads to a better adaptability in different environmental
and internal conditions for the EV.

To further demonstrate the virtual-EVs’ capacity at general-
izing over EVs equipped with a battery pack at different aging
statuses, the available driving sessions have been clustered
by their relative SOH value, and the performance metrics
are observed for each aging status alone. Table VII reports
the RMSE and R2 computed, comparing the synthetic curves
with the respective real ones for all DCs labeled with the
same battery pack’s SOH. Despite the low number of available
DCs, observing Table VII, the reader can notice the virtual-
EVs’ capability at generalizing over distinct initial SOH values
being the errors somehow comparable. For instance, the ad-
vanced virtual-EV achieves an R2 up to 0.33, 0.92, 0.97, and
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Fig. 6. The comparison between synthetic outputs of current, voltage, SOC, and internal temperature, generated by the simplified and advanced virtual-EVs,
and the relative target signals.

TABLE VI
THE VALIDATION RESULTS IN TERMS OF RMSE AND R2 ACHIEVED BY BOTH SIMPLIFIED AND ADVANCED VIRTUAL-EVS, OBTAINED BY COMPARING

THE SYNTHETIC OUTPUTS WITH THE RESPECTIVE TARGET ONES.

RMSE R2

Driving cycle Simplified virtual-EV Advanced virtual-EV Simplified virtual-EV Advanced virtual-EV
Current

[A]
Voltage

[V]
SOC
[%]

Battery internal
temp. [°C]

Current
[A]

Voltage
[V]

SOC
[%]

Battery internal
temp. [°C] Current Voltage SOC Battery internal

temp. Current Voltage SOC Battery internal
temp.

DC1 39.84 9.94 12.2 1.35 38.37 5.29 7.24 3.21 0.31 0.34 0.50 0.89 0.36 0.81 0.82 0.38
DC2 34.11 7.35 8.62 2.98 31.92 3.40 3.48 0.93 0.19 0.12 0.68 0.0 0.29 0.81 0.95 0.69
DC3 24.52 4.53 5.00 1.52 23.67 2.30 2.08 1.27 0.23 0.33 0.46 0.0 0.29 0.83 0.91 0.06
DC4 34.47 12.16 17.65 2.20 32.91 3.69 7.88 0.74 0.13 0.61 0.65 0.66 0.21 0.96 0.93 0.96
DC5 33.55 6.78 5.18 1.21 33.0 4.32 3.92 1.22 0.14 0.54 0.77 0.44 0.17 0.81 0.87 0.43
DC6 34.86 13.57 16.64 2.81 34.38 4.63 7.36 0.43 0.14 0.0 0.09 0.0 0.16 0.85 0.82 0.75
DC7 47.51 5.82 3.65 1.30 50.74 7.10 4.93 1.82 0.0 0.55 0.83 0.0 0.0 0.32 0.69 0.0
DC8 56.96 4.61 3.77 3.59 62.59 5.30 4.77 1.62 0.0 0.57 0.95 0.0 0.0 0.43 0.92 0.0
DC9 31.08 7.65 7.31 0.18 31.12 4.75 5.71 0.47 0.29 0.31 0.59 0.98 0.29 0.73 0.75 0.86

DC10 33.72 1.53 3.61 1.15 32.81 1.45 0.78 1.37 0.36 0.73 0.57 0.0 0.40 0.75 0.98 0.0
DC11 31.88 13.03 21.77 3.15 31.68 3.36 3.79 1.97 0.37 0.55 0.57 0.0 0.38 0.97 0.99 0.23
DC12 48.42 3.38 5.06 1.23 47.9 3.88 2.40 0.41 0.0 0.0 0.0 0.0 0.0 0.0 0.74 0.58
DC13 76.83 12.96 18.79 2.98 71.98 4.12 1.77 1.73 0.14 0.38 0.51 0.51 0.24 0.94 1.0 0.83
DC14 40.97 5.86 4.84 1.11 40.94 4.27 4.59 0.56 0.37 0.60 0.81 0.63 0.37 0.79 0.82 0.91
DC15 35.87 4.43 4.74 0.36 33.28 1.97 0.36 0.85 0.31 0.53 0.47 0.86 0.41 0.91 1.0 0.20
DC16 41.38 5.51 2.76 0.55 40.13 2.36 0.26 0.22 0.26 0.0 0.10 0.0 0.30 0.27 0.99 0.18
DC17 18.79 2.63 0.83 0.20 16.05 2.13 0.44 0.16 0.24 0.0 0.0 0.0 0.45 0.0 0.32 0.0
DC18 93.34 8.58 7.02 4.02 91.92 5.74 3.2 3.73 0.17 0.21 0.37 0.0 0.19 0.65 0.87 0.0
DC19 96.24 7.78 6.96 4.70 94.01 4.35 1.64 3.02 0.37 0.52 0.85 0.07 0.40 0.85 0.99 0.62
DC20 31.27 5.25 1.22 0.33 33.54 1.59 4.37 0.38 0.48 0.33 0.97 0.80 0.40 0.94 0.61 0.73
DC21 34.26 3.64 2.22 0.41 34.21 2.27 1.27 0.70 0.28 0.0 0.04 0.45 0.28 0.55 0.69 0.0
DC22 57.81 7.14 6.42 3.65 57.18 2.77 1.27 4.16 0.12 0.0 0.27 0.0 0.14 0.84 0.97 0.0
DC23 40.64 5.96 9.57 0.76 38.43 2.28 1.11 0.65 0.43 0.53 0.70 0.69 0.49 0.93 1.0 0.77

Tot 43.86 9.30 12.44 2.40 43.34 4.07 4.84 1.74 0.26 0.65 0.75 0.95 0.28 0.93 0.96 0.97

0.98, for current, voltage, and SOC, respectively, across all
available SOH values. Similar R2 ranges can be observed for
the simplified virtual-EV. However, the magnitude of the errors
is highly related to the DC itself, and the environmental and
road conditions are unknown to us. Hence, it is not possible
to conduct a complete and fair analysis per battery’s SOH.
Nonetheless, the errors across DCs clustered by SOH are
within comparable ranges, which proves the virtual-EVs to
be accurate at simulating different aged battery packs.

VI. CONCLUSION

In this work, two virtual-EVs have been compared, each
generating battery signals, given the input driving cycle,
with a different level of precision. The EV’s environmental
and internal conditions are highly customizable by the user
through the selection of inputs of interest. The simulation
results achieved by both simplified and advanced virtual-EV
are promising, and they demonstrate the effectiveness of the

suggested methodology, allowing the extension of the analysis
to, potentially, any EV of interest. Moreover, the modeling of
a multi-cell battery pack proved to be beneficial. Indeed, for
DCs characterized by a battery’s SOH spanning from 85% to
99%, the advanced virtual-EV achieves an RMSE lower than
6 V and an R2 generally higher than 0.90 for the voltage;
while, for the SOC, the RMSE does not exceed 7%.

Nonetheless, the two virtual-EVs might be utilized for dis-
tinct applications, considering their distinctive computational
burden and precision. Indeed, the simplified EV simulator is
generally more than twice as fast as the advanced simulator.
Therefore, the user could employ the simplified virtual-EV
to simulate EVs, seen as floating batteries in a collective
smart grid scenario, fastening the retrieval of the results with
a lower precision. Conversely, the advanced virtual-EV could
be utilized to simulate, at low-level, individual EVs collecting
more accurate outputs at the expense of faster data retrieval,
allowing, for instance, the development of machine learning
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TABLE VII
THE VALIDATION RESULTS IN TERMS OF RMSE AND R2 ACHIEVED BY BOTH SIMPLIFIED AND ADVANCED VIRTUAL-EVS, OBTAINED BY COMPARING

THE SYNTHETIC OUTPUTS WITH THE RESPECTIVE TARGET ONES GROUPING DCS WITH THE SAME BATTERY PACK’S SOH.

RMSE R2

SOH
[%]

# available
DCs

Simple virtual-EV Advanced virtual-EV Simple virtual-EV Advanced virtual-EV
Current

[A]
Voltage

[V]
SOC
[%]

Battery internal
temp. [°C]

Current
[A]

Voltage
[V]

SOC
[%]

Battery internal
temp. [°C] Current Voltage SOC Battery internal

temp. Current Voltage SOC Battery internal
temp.

85 3 34.23 7.88 9.46 2.08 32.67 4.02 5.05 2.17 0.27 0.65 0.78 0.46 0.33 0.91 0.94 0.41
88 3 34.43 11.81 15.0 2.33 33.62 4.30 6.85 0.78 0.18 0.39 0.54 0.69 0.22 0.92 0.90 0.96
92 2 53.73 5.08 3.73 2.97 58.57 6.01 4.83 1.69 0.0 0.91 0.98 0.0 0.0 0.87 0.97 0.27
93 3 31.87 11.24 18.07 2.58 31.66 3.63 4.18 1.67 0.36 0.60 0.66 0.80 0.37 0.96 0.98 0.92
94 3 58.66 8.81 12.12 2.04 56.19 4.11 3.17 1.13 0.25 0.69 0.78 0.93 0.31 0.93 0.98 0.98
95 3 36.94 4.72 4.04 0.42 34.86 2.11 0.34 0.68 0.29 0.87 0.95 0.99 0.37 0.97 1.0 0.96
96 2 94.80 8.19 6.99 4.37 92.97 5.09 2.54 3.39 0.30 0.72 0.90 0.61 0.33 0.89 0.99 0.77
98 1 31.27 5.25 1.22 0.33 33.54 1.59 4.37 0.38 0.48 0.33 0.97 0.80 0.40 0.94 0.61 0.73
99 3 45.19 5.95 7.69 2.04 43.96 2.43 1.19 2.31 0.30 0.85 0.89 0.83 0.34 0.97 1.0 0.78

models to estimate the battery pack’s SOH.
The future works include: investigating the current offset

contribution in relation to the EV’s aging status, and extending
it to the simplified virtual-EV; ii) embedding the virtual-EVs
in a wider co-simulation platform, extracting customizable
driving sessions retrieving more information about the road
conditions and slope, making the results even more accurate
and allowing the generation of a wide, real, and synthetic EV’s
battery pack dataset.
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