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1. Introduction

Natural gas storage in geological 
formations can play a fundamen-
tal role in the transition to a de-
carbonized and more sustainable 
energy future (Benetatos et al., 
2021). In the last decades, wide 
experience has been gained in the 
underground storage of natural 
gas (Verga, 2018) and CO2 cap-
ture, utilization and geological 
sequestration (Bellini et al., 2022; 
Benetatos et al., 2021; IEA, 2020; 
Liu et al., 2023). More recently, 
large-scale storage of chemical 
energy has been approached with 
increasing interest. Indeed, hy-
drogen stands out as a promising 
energy carrier since it holds the 
potential for megaton-scale sto-
rage, equivalent to terawatt-hours 
(TWh) of energy, within deep ge-
ological formations such as deple-
ted gas/oil reservoir, salt caverns 
and brine-saturated porous rocks 
(Hematpur et al., 2023; Miocic et 
al., 2023; Shi et al., 2020; Vasile et 
al., 2023). Given the extension and 
complexity of the underground 

geological systems in terms of geo-
metry, stratigraphy, lithology, and 
rock characterization, as well as the 
multi-physic nature of storage pro-
blems typically involving fluid flow 
in porous media, geochemical inte-
ractions between rock and fluids, 
and rock deformation, coupled 3D 
numerical models are required to 
simulate the system response (Be-
netatos et al., 2017, 2021; Ramesh 
Kumar et al., 2023). Both current 
regulations and public concerns 
call for geomechanical analyses to 
assess the system safety in terms 
of stored fluids containment and 
potentially induced micro-seismic 
and subsidence phenomena (Bene-
tatos et al., 2023; Fibbi et al., 2023; 
Paluszny et al., 2020). Thus, one of 
the main issues to address is the 
coupled modeling of fluid dynami-
cs and geomechanics. To this end, 
a key aspect is the selection of the 
most representative constitutive 
stress-strain relation, describing 
deformations (strain) induced by 
an external force (stress).

Elasticity is the property of solid 
material to deform under the ap-
plication of an external force and 

to recover its original shape after 
the force is removed (Fjær et al., 
2008). In the case of geological sto-
rage, the external force is the pore 
pressure variation occurring when 
fluids are injected underground. In 
relatively shallow unconsolidated 
formations pore pressure varia-
tions can cause significant volume 
reduction/increase, which in turn 
can lead to reversible subsidence/
rebound phenomena (Benetatos 
et al., 2020; Codegone et al., 2016; 
Coti et al., 2018; Ferronato et al., 
2013; Teatini et al., 2011). Con-
versely, according to the theory of 
plasticity solids subject to loading 
conditions may sustain perma-
nent deformations when com-
pletely unloaded. (Krabbenhøft, 
2002; Neto et al., 2008; Szyman-
ski, 1996).

The project we developed is de-
dicated to the application of Vir-
tual Element Methods (Beirão 
da Veiga et al., 2013a, 2015), a 
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generalization of traditional con-
forming finite elements (FEM), 
to the solution of the equilibrium 
equation coupled with an elasto-
plastic constitutive law to deter-
mine the deformations induced by 
pore pressure variations in a deep 
geological formation. The core of 
the problem is to opportunely di-
scretize the rock volume and cal-
culate the displacement maps on 
the identified nodes. One of the 
peculiarities of VEM, which ma-
kes it preferable over a classical 
FEM approach, is that the test 
and trial functions are not expli-
citly defined inside the polygons 
in the VEM space. This makes the 
formulation simpler and easily ge-
neralized to polyhedral elements. 
However, a stabilization term in 
the shape functions, in the form 
of the projector, needs to be in-
troduced to assure the stability of 
the method. Stabilization criteria 
are strongly problem-dependent 
and represent one of the intrinsic 
difficulties of the method. Here we 
present the two alternatives that 
we elaborated for the stress-strain 
equilibrium equations applied to 
ILE constitutive law coupled with 
Mohr-Coulomb yield criteria in 
the underground fluid storage 
context. The two stabilization ter-
ms are suited for elastic and plastic 
simulations such that the results 
are in the same order as the local 
cell operator (Ahmad et al., 2013; 
Beirão da Veiga et al., 2017). The 
general theoretical framework 
presented refers to previous wor-
ks (Beirão da Veiga et al., 2013b; 
Benedetto et al., 2014; Benlalam 
et al., 2022; Berrone et al., 2021a, 
2021b; Berrone and Raeli, 2022; 
Gain et al., 2014; van Huyssteen 
et al., 2022).

The implemented model has 
already been successfully applied 
to stress-strain simulations un-
der the ILE hypothesis in previous 
works (Benlalam et al., 2022; Se-
razio, 2021). The discretization 
approach is based on conforming 

general meshes. In this paper the 
elastoplastic problem, with a focus 
on the implemented constitutive 
law, is presented, followed by the 
first interpolation order VEM im-
plementation. An injection test on 
a synthetic reservoir with a sim-
plified geometry (disk-shaped) is 
then discussed. Results, in terms 
of stress and displacement varia-
tions induced by a pore pressure 
increment, are verified via a com-
mercial FEM solver for geomecha-
nical simulations largely used in 
the oil and gas industry.

2. The Problem Model

2.1. Stress and Strain

We briefly recall the theoretical 
fundamentals necessary for the 
presented application. Refer to 
(Fjær et al., 2008; Lancellotta, 
2008; Neto et al., 2008) for further 
details.

Cauchy’s Theorem and the fol-
lowing theory show that the com-
plete stress state of a point in R3, 
within a continuous medium, can 
be represented by a second-or-
der tensor (σ) called Cauchy stress 
tensor or simply stress tensor. It is 
possible to prove that σ is sym-
metric and if the characteristic 
equation of the stress tensor is 
solved for a generic point of the 
continuum medium three ortho-
gonal planes are identified, called 
principal planes, on which only 
normal stresses act. The normal 
stresses acting on these planes are 
called principal stress and are in-
dicated as: σ1 (maximum principal 
stress), σ2 (intermediate principal 
stress), and σ3 (minimum princi-
pal stress).

Focusing on the analysis of 
small deformations, the state on 
each point of the continuum me-
dium is represented through a 
second-order tensor called infini-
tesimal strain tensor (ε). Its defini-

tion arises from the Cauchy-Green 
tensors of deformation, and it has 
the following expression:

 
ε ∇ ∇( )1

= +
2

u uT  (1)

where u is the displacement vector. 
ε is symmetric, thus only 6 com-
ponents are independent (εij = εji).

The planes on which only longi-
tudinal deformations act (εij = 0) 
can be derived. Analogously to the 
stresses, they are called principal 
strains: ε1, ε2, ε3. In an isotropic 
medium, the directions of the 
main stresses and deformations 
coincide.

The stress caused by a fluid 
injection is modeled by an inte-
raction between solid and fluid 
phases. Terzaghi’s principle of 
effective stress (Terzaghi, 1936), 
initially developed for soils, consti-
tutes the universally adopted law 
of interaction between phases and 
porous rocks (Bouteca and Guég-
uen, 1999) and it is expressed by 
the relation:

	 σ′ = σ – αpI (2)

where p is the neutral pressure 
(or pore pressure), and α is called 
Biot’s coefficient. The theoreti-
cal formalization of the effective 
stress concept and its generali-
zation to three-dimensional pro-
blems were performed by Biot in 
the soil consolidation framework 
(Biot, 1941), which constitutes the 
basis of poroelasticity theory and 
it can be expressed as:

 
–

ʹ
1

K
KS

α=  (3)

where K′ is the frame modulus, i.e. 
the bulk modulus of the solid ske-
leton, and KS is the bulk modulus 
of the rock grains. Since K′ << KS, 
α is assumed to be equal to unity 
(Geertsma, 1973).

In the following, we will refer 
to the stress as the effective one 
with α fixed to one, concerning 
the code implementation. The ini-
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tial effective stress configuration is 
also given as an initial equilibrium 
condition.

2.2. Linear Momentum 
Balance Equations

In the introduced framework and 
under the hypothesis of infinitesi-
mal deformations and quasistatic 
conditions, the linear momentum 
balance problem can be expressed 
as:

( ) = –· · ( )
=

=

u pI in

u on

n on

D

N

0

0

∇ ∇ʹσ

·́σ

� Ω
�
�

 (4)

where Ω represents the domain 
and Γ its boundary, with Dirichlet 
(D) and Neumann (N) partitions, 
respectively. The goal of the reso-
lution of the equilibrium equa-
tions is to produce a displacement 
vector (u) such that the associated 
effective stresses (σ′) balance the 
pore pressure variations Δp.

To sum up the problem, it is ne-
cessary to introduce a constitutive 
equation that aims to model the re-
lation between strain and stresses, 
the specific one used in this project 
is briefly described in the following.

2.3. The Elastoplastic Model

In the project, the implemented 
constitutive model, i.e. the rela-
tion between stress and strain, is 
a homogeneous isotropic linear 
elastic (ILE) model coupled with 
a perfectly plastic (i.e. no harde-
ning law) yield surface, defined 
by Mohr-Coulomb failure criteria 
with the non-associated plastic 
flow (i.e. the yield surface and the 
plastic potential do not coincide) 
(Abbo et al., 2011; Abbo and Sloan, 
1995; Krabbenhøft, 2002; Neto et 
al., 2008). The fundamental assu-
mption of this elastoplastic theory 
is that the strain can be decompo-
sed in the sum of an elastic or re-

versible component (εe) and a pla-
stic or irreversible one (εp):

	 ε = εe + εp (5)

Thus, the stress corresponding to 
a configuration with total strain ε 
is given by:

	 σ = D(ε – εp) (6)

Where D is the elastic constitutive 
matrix. In the elastic domain, the 
generalized Hooke’s law describes 
the stress-strain relation in R3: 

  σ′ = 2με + [λtr(ε) – αp]I (7)

where μ and λ are the Lamé Elastic 
Constants

 
=

+( )
E

2 1
μ

ν  

 
=

+( ) –( )
E

1 1 2
ν

ν
λ

ν
 (8)

E is Young’s modulus and ν is Pois-
son’s ratio. In general, the elastic 
domain is bounded by the yield 
stress function, above which pla-
stic deformation takes place. Cou-
lomb (Coulomb, 1776) postulated 
that the shear strength of rocks 
and soils is composed of two par-
ts: a constant cohesion c and a 
friction component dependent 
on the normal stress (characteri-
zed by the friction angle φ). Fol-
lowing (Abbo et al., 2011; Abbo 
and Sloan, 1995), we present the 
Mohr’s-Coulomb yield criterion 
in terms of principal stresses with 
the assumption σ′1 ≥ σ′2 ≥ σ′3. The 
general expression of the yield sur-
face is reported in equation 9.

 

i i i i1 2 1 2
1 1, ( ) ( )( )sin sʹσ� φ ʹσ– +=

i i c
1 2

1 1 2( )( ) ( )n sin cosφ φʹ ʹσ– –+
 (9) 

 i1, i2 = 1,2,3  i1 ≠ i2

It follows that its multi-surface 
representation in the space of the 
principal stresses is a pyramid with 
a hexagonal base and the axis coin-
ciding with the hydrostatic ones, 
as shown in Figure 9.

When applying the Mohr-Cou-

lomb yield criterion to rock ma-
terials, a non-associated plastic 
flow is usually introduced and a 
flow potential Ψ is defined. Such 
a choice is due to the necessity to 
control the dilatancy effect, usual-
ly overestimated by associative 
plastic flow. In the Mohr-Coulomb 
yield model, the flow potential is 
similar to the yield surface, i.e. the 
friction angle φ is substituted by 
the dilatancy angle ψ (Neto et al., 
2008; Fjær et al., 2008):

Moreover, to ensure that the 
rotation of the coordinate system 
does not influence the conditions 
at which the material yields, crite-
ria are expressed in terms of stress 
invariants. In particular, the mean 
normal stress has the expression

 
= +( )m x y z

1
3

ʹσ ʹσ ʹσ ʹσ+  (10)

the deviatoric stress component, 
instead

 = J2ʹσ–  (11)

J s s sx y z xy yz xz2
2 2 2 2 2 21

2
= + +( ) + τ + τ + τ ,

 
where si = σ′i – σ′m are the deviato-
ric stresses. 

The Lode angle (Han and Chen, 
1987) is developed here in terms 
of the deviatoric stress component

 
=

1
3

3 3
2

1 3
3sin

J
.–θ

ʹσ( )–

 (12) 
J3 = sxsysz + 2τxyτyzτxz + 
– sxτ2

yz –syτ2
xz – szτ2

xy

We omit calculus details presen-
ting a form of the Mohr-Coulomb 
criterion proposed by (Nayak and 
Zienkiewicz, 1972), the Yield sur-
face (Φ) is expressed in function of 
stress invariants:

 

+msin a2 2ʹσ ʹσφ –=� κ

φ+ ( ) + +a sin2 2 2 2( )ʹσ– θκ
φ– ( )ccos

 (13)

where
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( ) = ( ) +cosκ θ

– ( ) ( )sin
1
3

sin θφ

φ
 (14)

is a function controlling the shape 
of the surface in the plane orthogo-
nal to the hydrostatic axis. The pro-
posed formulation considers tensile 
stresses as positive. Furthermore, it 
is observed that in equation 13 a re-
gularization term a2sin2(φ) is intro-
duced to make the Yield function C2 
continuous in all stress states. In the 
following tests the parameter a is set 
equal to 0.05 as suggested in (Abbo 
and Sloan, 1995). The interested re-
ader is invited to refer to (Abbo et al., 
2011) for further details.

From the previous considera-
tion, it follows that the general 
expression of the differential form 
of the constitutive law is

 = Dep· ·ʹσ ε (15)

where Dep represents the elasto-
plastic constitutive matrix:

 

D D
D D

D

( )
( )

ep

T

T= –

∂
∂

∂
∂

∂
∂

∂
∂ ʹσʹσ

ʹσ ʹσ
��

��
 (16)

Equation 15 uniquely defines the 

stress increment due to a total 
strain increment. Moreover, Dep 
depends on the current stress sta-
te, thus introducing a non-linear 
relation in the discretized equili-
brium equations.

3. VEM Discrete 
approximations

Under hypothesis of small defor-
mation and generalized Hooke’s 
law, the variational formulation of 
the model problem (4) has general 
expression

find  u ∈ V :  
 a(u, v) = b(v), ∀v ∈ V

 (17)

where a(u, v) = ∫Ωσ′(u): ε(v)dΩ is a 
bilinear form, b(v) = –∫Ω ∇ ·(ΔpI) vdΩ 
the forcing term, V H D:

,
= ( )

0
1
�

�  the 
solution and test space and (∙,∙) is 
the L2-scalar product. Analogously 
to classical FEM, the solution of 
the model problem (17) through 
VEM is performed introducing a 
discrete approximation of the do-
main Ω, the space V, the bilinear 
form a and forcing term b. Thus, a 
tessellation {Th}h of Ω into disjoint 
non-overlapping convex polyhe-
dral elements P is introduced and, 

in accordance with the Galerkin 
approximation, it is possible to in-
troduce a finite dimensional space 
Vh ⊂ V with diameter h:

 Vh = {vh ∈ V : vh|p ∈ Vh(P), ∀P ∈ Th}
 (18)
Then the symmetric bilinear form 
is split on each element P(aP)

 

a u v a u v

u v V

h h
P

P Th
h h

h h h

( , ) ( , )

,∀ ∈
∈

=∑
 (19)

and the discrete model problem 
becomes

find u ∈ Vh :  
 a(uh, vh) = b(vh), ∀vh ∈ Vh

 (20)

The solution of problem (20) re-
quires the computation of the local 
stiffness matrix on each element, 
i.e., the calculation of weak form 
integrals through evaluation of 
interpolation functions. The core 
idea of VEM is to define an ade-
quate (virtual) space Vh such that 
it contains the polynomials of 
degree ≤ k (where k is the order of 
accuracy of the method), plus ad-
ditional functions (in general not 
polynomials) that are never requi-
red to be computed thanks to the 
careful choice of degrees of free-

Fig. 1 – (a) Representation of the yield function defined by the Mohr-Coulomb criterion in the space of the principal stresses. As an example, 
c = 2.5 bar and φ = 25 ° where imposed. In (b) projection of the function on the deviatoric plane

(a) (b)
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dom (DOFs) and the introduction 
of an approximation ah of the bili-
near form. Operatively, it is neces-
sary to construct a local projector 
on the space of polynomials of 
degree ≤ k. In the following the 
order of accuracy k is set equal to 
1. Refer to (Ahmad et al., 2013; 
Beirão da Veiga et al., 2013a, 2016) 
for details on the construction of 
the local VEM space Vh(P) and the 
derivation of L2(P)-orthogonal 
projection operators. Here we re-
call its definition.

V
H P v P P

h
P ( ) ( ){ }

1
1: ,

=
�∈ ∈

v

v

V f P v C Ph
f ( )0∂ ∂∈∈ ∈∀, ,  

 (21)
where H1(P) is the space of fun-
ctions having a square-integrable 
gradient on P, ∂P indicates the set 
of faces of the polyhedron, and Vh

f  is 
defined similarly to Vh

P, as follows:

V
H f v P f v P

h
f ( ) ( )1

1 1: ,
=

�∈ ∈ ∈
v
v

P e e f v C f( ) ( )1
0∂ ∂∈∈ ∈∀{ {,

, ,

 (22)

The approximation of the bilinear 
form has the form:

a u v a u v S u vh
P

h h
P

h h
P

h h( ) ( ) ( ), : , ,= +∇ ∇, ,

u v V Ph h h ( ), ∈∀  
 (23)
In the specific case the two terms 
have the expressions
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h h P hE
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0
0
0∫ ε∇ ∇� �  
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where Π∇
1,P is the H1(P)-orthogo-

nal projection operator and Π0
0,P∇ 

is L2(P)-orthogonal projection ope-
rator of gradients onto constant, 
returning the integral mean of the 
gradient of a function. Projection 
operators on a generic d-dimensio-
nal object E (i.e. d = 2 for polygon, d 

= 3 for polyhedron) are defined as

 

( ) ( )v H p P EE1 1∈ ∈∀ ∀
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Where P0(E) is the space of con-
stant-valued functions. From the 
definition of the projector’s opera-
tors, it follows that for any function 
in the space Vh

P it is possible to com-
pute the above operators knowing 
only the values of the function at 
the vertices of P, which are chosen 
as degrees of freedom of the spa-
ce. More details can be found in 
(Beirão da Veiga et al., 2014).

If χi(v) is the DOF operator, i.e. 
the evaluation of the ith degree of 
freedom of v and a local basis fun-
ction φi ∈ Vh(P) such that χi(φj):= 
δij, it follows Lagrange-type inter-
polation identity

 
v v v V Ph i h i h h

i

nDOF

=
( ) ( )

1
= χ φ ∈∑ ∀,  (26)

and consequently SP,∇ is evaluated 
defining as (Beirão da Veiga et al., 
2013b, 2014; Gain et al., 2014)

 

S u vP
h h

, ( ),

cs
k

nvE

=
=

=

1
∑

∇

Ik h( )( )1 vχ ∇�–Ik h( )( )1 uχ ∇�–
  (27)

The presence of non-linearities af-
fects the choice of the coefficient 
cs associated with the stabilization 
term SP,∇. For the validation test in 
the elastic domain cs is set as con-
stant and it is equal to 2μ + λ (see 
equation 8). In the more general 
elastoplastic case, instead, it is defi-
ned cell by cell as the infinity norm 
of the deviatoric part of the tangent 
matrix Dep appearing in the lineari-
zed stress-displacement constitu-
tive relation, that is computed by 

a return-mapping algorithm (see 
Equation 16 and Section 3.1). This 
new definition aims to guarantee 
the non-singularity of the matrix 
operator and, at the same time, to 
scale the contribution of the stabi-
lization term accordingly with the 
plastic contribution.

In the following, some details 
on the implemented algorithms 
for the resolution of the equili-
brium equation coupled with the 
non-linear constitutive problem 
are presented. The applied re-
turn-mapping algorithm (Neto 
et al., 2008) for the constitutive 
initial value problem is quickly 
sketched in Section 4.

We also provide the implemen-
tation of a state update procedure si-
milar to the one proposed by (Neto 
et al., 2008) using a pseudo-time 
increment [tn, tn + 1] for the nume-
rical integration of the rate ela-
stoplastic evolution equation; the 
update procedure gives the stress 
σ′n + 1 at the end of the loading 
step as a function of the internal 
variables αn of the previous incre-
ment and the current strains:

   σ′n + 1 = σ̂(αn, εn + 1) (28)

Where the functional σ^ assembles 
the internal force vector. In the cur-
rent implementation, the internal 
variable αn encodes information on 
the previous state of equilibrium. 
Indeed, when plastic deformation 
occurs at each loading step the 
updated material stress state de-
pends on the previous ones, for-
ming the so-called stress path. It 
follows that to set up a geomecha-
nical simulation it is necessary to 
provide the in situ stress state, i.e. 
initial equilibrium stress map as-
sociated with the investigated vo-
lumes. Formally such a state needs 
to consider the depositional/ero-
sional history of the sedimentary 
basin. Different models have been 
proposed to characterize such maps 
and several studies were dedicated 
to the assessment of the main pa-
rameter values. Within the litho-
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sphere, stress is conventionally de-
scribed by three main components 
of compressive stress: a vertical 
component (σv) and two horizon-
tal components, corresponding to 
the maximum horizontal stress 
(σH) and the minimum (σh). In the 
following, assuming that the surfa-
ce topography is regular and in ab-
sence of discontinuities, the three 
main components characterizing 
the in situ stress are supposed to 
coincide with the main stress axes. 
Moreover, the vertical component, 
called lithostatic pressure, depends 
on the weight of the overburden 
rock, i.e. thickness and nature of 
the sediments and saturating flu-
ids as well as on the depositional 
history. Horizontal components 
instead are derived by exploiting 
correlations between components 
that have been proposed as a fun-
ction of rock type and tectonic re-
gime (Zang et al., 2012).

In our specific case, the Newton 
Iterative algorithm proposed in 
(Krabbenhøft, 2002) for the resolu-
tion of equilibrium equations is im-
plemented using a VEM (Beirão da 
Veiga et al., 2013a, 2013b) formula-
tion and that can be resumed in the 
algorithm sketched in figure 2.

NLoads is the number of loading 
steps set to split the imposed Δp 
and the stress state σ′ is updated at 
the end of the process. The inter-
nal iterative algorithm stops when 
at least one of the two imposed 

conditions is true i.e. a maximum 
number of iterations is reached, or 
a tolerance value inequality is sa-
tisfied. In the presented tests the 
tolerance Tol is set equal to 10–3 
and the maximum iterations para-
meter (Imax) is fixed to 25.

Furthermore, it is observed that 
Newton’s method applied to the 
nonlinear elastoplastic problem 
does not ensure a reasonable con-
vergence of the solution, thus, in 
the current version of the code, 
a Line Search backtracking algori-
thm is nested to Newton’s cycle: 
an Armijo (Velez et al., 2018) rule 
is applied to each step solution ui 
following the algorithm sketched 
in figure 3:

In our implementation β is a 
multiplier parameter and α is the 
control parameter applied to the 
current step solution. The maxi-
mum of iterations number maxIts 
is set equal to 10.

The forcing term is defined as 
the recorded difference in pore 
pressure due to injection/pro-
duction operations.

3.1. Single-cell stress state 
update

As already introduced, the resolu-
tion of the elastoplastic constitu-
tive problem requires the imple-
mentation of an iterative dedicated 
algorithm that aims to update the 

current stress state σ′A of each cell, 
singularly. In this specific case, a 
return mapping algorithm is coded 
following (Krabbenhøft, 2002).

Here the trial state of stress (σ′0) 
is returned to the yield surface 
Φ(σ′) on a point P, named projected, 
as sketched in figure 4.

In figure 5, the main steps of the 
coded algorithm are shown.

Fig. 2 – Newton’s Iterative Scheme for the resolution of the equi-
librium equation. Fig. 3 – Line Search Algorithm associated with Newton Iteration.

Fig. 5 – Return Mapping Algorithm for the 
resolution for the initial value elastoplastic 
constitutive model.

Fig. 4 – A sketch of the return mapping step.
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In particular, Ψ is the gradient 
flow potential associated with the 
Mohr-Coulomb Yield surface. In 
this context, λ represents the La-
grangian Multipliers of the con-
strained problem.

3.2. Implementation Details

The code presented in this work 
is developed in collaboration with 
the Department of Mathematical 
Sciences of Politecnico di Torino. 
In particular, the library used to 
approximate the VEM formula-
tion is developed by the GEOSCO-
RE++ (https://areeweb.polito.it/
geoscore/) team. The library is still 
an on-course project available on 
demand for interested developers.

The language used for the code 
implementation is C++ and Eigen 
(Guennebaud et al., 2010) is the 
external library used to optimize 
matrix-vector products. The grid 
parser and the VEM solver import 
links to a later released version of 
VTK 9.2.0, meanwhile, the remai-
ning external libraries (i.e. Triangle 
(Shewchuk, 1996) and Eigen) can 
be downloaded with the source.

A parameter isPlastic is used in 
the implementation to distinguish 
the constitutive law (plastic or not) 
associated with the current model. 
Such a parameter allows us to op-
timize the memory storage han-
dling of large systems. When the 
problem is purely elastic the VEM 

operator matrix is symmetric thus 
only a triangular part of it is sto-
red and computed by a Preconjuga-
te Gradient solver. When plasticity 
can occur, the numerical operator 
is no more symmetric and the 
Bi-conjugate Gradient is applied. 
This implementation allows us to 
handle the elasticity efficiently in 
terms of CPU memory.

3.3. Numerical Results

The validation of the implemented 
algorithm for the resolution of the 
elastoplastic constitutive model 
coupled with VEM is performed 
on an injection test on a synthetic 
reservoir with a simplified geome-
try as sketched in figure 6. This is 
a disk-shaped, isotropic and ho-
mogeneous reservoir (in red) with 
the vertical axis as the symmetry 
and thickness vs radius ratio (H/R) 
equal to 0.1. The relevant model 

parameters are listed in Figure 6. 
The Mohr-Coulomb yield surface is 
completely defined by two parame-
ters, i.e. friction angle (φ) and cohe-
sion (c). Plastic flow is non-asso-
ciated, thus a dilatancy angle (ψ) is 
assigned. No hardening parameters 
are set due to the perfect plasticity 
hypothesis. To force some nodes of 
the disk to reach plasticity it is ne-
cessary to impose a pore pressure 
variation of 25 MPa at a depth of 
400 m (where the initial value is of 
the order of 4 MPa). The boundary 
conditions provide a null contribu-
tion from the lateral boundaries and 
the bottom face of the domain. The 
imposed pore pressure variation Δp 
is given as an input parameter.

The investigated volume has 
an extension of 14 km × 14 km 
× 4.5 km and it is discretized in a 
structured hexahedral grid with 
a local refinement in the rectan-
gular region reaching 4.3 105 no-
des involving 1219779 degrees 
of freedom, corresponding to the 
number of rows of the numerical 
operator. The local grid refinement 
region is identified as the grey box 
in Figure 6. A FEM solution obtai-
ned from a commercial software is 
taken as a reference.

The simulation is set up assu-
ming an initial stress equilibrium. 
As already discussed, in this speci-
fic case it can also be assumed that 
the three main components of the 
compressive stress σV, σH, and σh 
coincide with the main stress axes. 
The vertical component depends 

Tab. 1 – Disk-shaped reservoir model. Load term and elastoplastic constitutive model 
parameters.

Parameter Description Value
Δp Imposed reservoir pore pressure variation 2.5 106 Pa

E Young’s Modulus 2 109 Pa

v Poisson’s Ratio 0.25

φ Friction angle 25°

c Cohesion 1.6 105 Pa

ψ Dilatancy angle 5°

Fig. 6 – A sketch of the disk-shaped model.



42 Dicembre 2023

georesources and mining

on gravity, and it is related to the 
weight of the overburdened rock. 
The value of the σH component is 
the most difficult to calculate and 
is typically derived from a direct 
correlation with the value of σh. 
Different correlations between, 
σH, σh and σV have been proposed 
as a function of the rock type and 
tectonic regime (Zang et al., 2012). 
Referring to (Caporali et al., 2018) 
it is possible to identify an area wi-
thin the Po-plain basin where the 
trust faulting regime is dominant, 
i.e. σH > σh > σV. Under this assu-
mption, the model is initialized as

	 σV = σlithostatic  
 σH = σh = 1.1 σV 

 (29)

The forcing term Δp is imposed on 
the reservoir cells. The load is divi-
ded into 5 steps of 5 105 Pa each. 
Accordingly, 3 steps occur in the 
linear-elastic domain and 2 steps 
occur in the plastic regime. Since 
the resolution of the model in the 
plastic regime introduces strong 
nonlinearities which make the 
convergence of the implemented 
iterative algorithm less efficient, 
the last step is further divided into 
5 sub-increments of 1 105 Pa each, 
as sketched in figure 7.

The comparison between the so-
lution computed by the FEM and 
VEM solver is performed in terms 
of domain cells that fail in the pla-
stic domain. It is observed that the 
two regions essentially overlap, as 
shown in figure 8.

The comparison of the evolu-
tion of the stress path and yield 
function is performed on a se-
lected probe cell (highlighted in 
yellow in figure 8) of the reservoir. 

A satisfactory match between the 
solutions calculated with the two 
methods is shown in figure 9: (a) 
the evolution of the yield function 
with respect to the loading steps 
is observed; (b) the stress path re-
presented in terms of mean stress 
and deviatoric stress is depicted. 
In agreement with the FEM so-
lution, the compression stress is 
here considered positive.

The comparison between the 
two solutions in terms of displace-
ment field is performed at the sur-
face (z = 0 m) along section HH’, 
as shown in figure 10a where the 
colormap refers to the subsidence 
of the VEM solution expressed in 
m. In figure 10b the comparison 
of the z-direction displacement, 

calculated with the two methods 
along the HH’ section, shows a sa-
tisfactory correspondence betwe-
en the solutions.

Analogous colormap and plot 
are depicted for the displacement 

Fig. 7 – Loading step sequence.

Fig. 9 – (a) Yield function evolution on probe cell with respect to loading step. (b) Stress path 
of the probe cell. Initial stress state in green and dotted line for the yield function projection.

Fig. 8 – Comparison of cells in the plastic 
domain at the last loading step. FEM blue 
wireframe and VEM red surface.

(a) (b)

Fig. 10 – (a) Top view of the model. The colormap refers to the displacement component 
W along the z-axis expressed in m at the last loading step. (b) comparison of the subsidence 
along the dotted green segment HH’ in (a).

(a) (b)
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along the x-direction in figures 11a 
and 11b, respectively. Due to the 
radial symmetry of the problem the 
y-component is not shown. A com-
parison is performed also on the ef-
fective stress map. As an example, 
the σ′xx map calculated at the final 
equilibrium (i.e. when the whole 
Δp is imposed) and the evolution 
along the HH’ section are shown in 
figures 12a and 12b, respectively. 

Agreement among the solutions 
is also verified through a section 
along the vertical segment OO’. 

The comparison of the vertical 
component of displacement (W) is 
depicted in figure 13, while Δσ′zz, 
i.e. the variation of the zz-compo-
nent of the effective stress tensor, 
between step 4 and step 5 is shown 
in figure 14.

4. Conclusion

In this paper, we explore the possi-
bility to describe the geomechanical 

behavior of underground forma-
tions used for fluid storage throu-
gh the application of VEM to con-
forming mesh for the resolution of 
stress-strain equilibrium equations. 
Under the hypothesis of small de-
formations, the solution algorithm 
for an ILE constitutive law coupled 
with Mohr-Coulomb perfectly pla-
stic yield criterion is implemented 
and tested on a scenario with reali-
stic parameters and simplified geo-
metry. In particular it is worthwhile 
to mention the implementation of 
a regularization of the yield fun-
ction which is C2 continuous in all 
stress states as proposed by (Abbo 
et al., 2011) and the integration of 
a backtracking algorithm in the two 
nested Newton’s iteration in order 
to enforce convergence. Results 
are compared with the solution of 
a first-order FEM obtained from a 
commercial solver, showing a good 
agreement in terms of displace-
ment and stress maps. The added 
value of the current implemen-
tation is given by the promising 
stabilization term associated with 
VEM projectors in the case of the 
non-linear constitutive model. The 
obtained results allow us to expand 
the analysis to more complex geo-
metries through the introduction 
of polyhedral cells (for which VEM 
generalization is straightforward) 
and the simulation of topological 
discontinuities such as faults.
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