
07 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Deep Learning Strategies for Labeling and Accuracy Optimization in Microcontroller Performance Screening /
Bellarmino, Nicolò; Cantoro, Riccardo; Huch, Martin; Kilian, Tobias; Schlichtmann, Ulf; Squillero, Giovanni. - In: IEEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. - ISSN 0278-0070. -
ELETTRONICO. - (2024), pp. 1-1. [10.1109/tcad.2024.3436542]

Original

Deep Learning Strategies for Labeling and Accuracy Optimization in Microcontroller Performance
Screening

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/tcad.2024.3436542

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991464 since: 2024-08-03T14:22:38Z

IEEE

Deep Learning Strategies for Labeling and
Accuracy Optimization in Microcontroller

Performance Screening
Nicolò Bellarmino∗, Riccardo Cantoro∗, Martin Huch†,

Tobias Kilian†‡, Ulf Schlichtmann‡ and Giovanni Squillero∗

Abstract—In safety-critical applications, microcontrollers must
be compliant with the required quality constraints and perfor-
mance standards, particularly in terms of the maximum oper-
ating frequency (Fmax). Machine learning models have proven
effective in estimating Fmax by utilizing data extracted from on-
chip ring oscillators (ROs), making them a valuable instrument
for performance screening. However, the cost of obtaining labeled
samples and the stringent accuracy needed by the model create
hard challenges in this context. In order to address these, we
explored three deep-learning-based key strategies:

• Semi-Supervised Learning with Deep Feature Extractors:
we leverage the abundance of unlabeled production data in
a semi-supervised approach. Deep feature extractor models
are employed to transform data into higher-dimensional
spaces. These feature embeddings enable accurate perfor-
mance prediction using simple linear regression, with a
fraction of labeled data to reach baseline performances.

• Intra-family Transfer Learning: when introducing new mi-
crocontroller products, with slightly different characteristics
but the same set of ROs, previously trained deep feature
extractors can be used, in a transfer learning fashion. This
permits the use of significantly fewer labeled data compared
to traditional methods.

• Inter-family Transfer Learning: we extend the previous
transfer learning concept to new microcontroller products
with completely distinct characteristics. We aim to demon-
strate that adapting the features set and fine-tuning deep
learning feature extractors initially trained on specific legacy
product data permits to yield better performance.

Our research aims to provide a holistic framework for deep-
learning-based microcontroller performance screening to address
the challenge of limited labeled data. The proposed methodologies
significantly improve prediction accuracy and reduce the depen-
dency on a large number of labeled samples, thus enhancing the
efficiency and efficacy of machine-learning-based microcontroller
screening. The proposed framework enables models re-use, serv-
ing as a valuable baseline when new products are released.

Index Terms—Fmax, Speed Monitors, Ring Oscillators, Speed
Binning, Machine Learning, Device Testing, Manufacturing,
Transfer Learning, Deep Learning

I. INTRODUCTION

In safety-critical industries like automotive and aerospace,
the reliable performance of microcontrollers (MCUs) is

∗ Politecnico di Torino (Turin, Italy). † Infineon Technologies AG (Munich,
Germany). ‡ Technical University of Munich (Munich, Germany). Authors are
listed in alphabetical order.

paramount. Traditionally, the screening of MCUs has re-
volved around identifying devices that meet specific crite-
ria, particularly the maximum operating frequency (Fmax).
Conventional methods involve extensive testing at increasing
clock frequencies, a process that is not only time-consuming
but also relies on expensive test setups. Moreover, it only
provides categorical results. In response to these challenges,
machine learning (ML) regression models have been proposed
to predict Fmax of MCUs based on correlated data, offering
significant time savings compared to traditional methods [1]:
oscillation frequencies values from Ring Oscillators (ROs) can
be used to predict Fmax in different test cases (labels) by using
ML models. This latter technique is not intended to replace
structural testing, yet it is a much more informative process
compared to a simple speed binning [2]–[7]. A crucial factor
in the accuracy of supervised ML models is the availability of
high-quality labeled data. Unfortunately, collecting Fmax data
is a laborious task, and it can be challenging. Constructing
a new ML model from scratch under such circumstances is
time-consuming and not always feasible. Moreover, using a
pre-existing model trained on previous-generation data may
not yield accurate results due to shifts in data distributions,
introducing the need to re-train or fine-tune the model. This
paper addresses these challenges by optimizing the ML model
training process, reducing the need for a large number of
labeled samples, minimizing prediction errors, and defining
a framework to build predictive models that can be re-used
among product families. To achieve this, we employed deep
learning (DL) to extract relevant information and patterns from
unlabeled data collected from production lines, using semi-
supervised learning (SSL) and Transfer Learning approaches.
DL models are used as feature transformers. Resulting data
extracted by DL models are then utilized to train a simple
Linear Regression model to predict Fmax. The same deep
models, originally developed for one MCU product (A1), are
also leveraged to create predictive models for a different
product (A2), in a Transfer Learning fashion. Furthermore,
as an extension of previous work on Inter-Family Transfer
Learning [8], [9], we explored Transfer Learning techniques
from a legacy product family (A) to address data scarcity
when releasing a new MCU product (B1) of a different family
B, effectively reducing the effort and time required for label

acquisition. The experiments conducted in this study demon-
strate that these approaches substantially reduce the number of
labeled samples needed to build accurate models and enhance
their performance compared to traditional shallow-learning
baseline. This accelerates the deployment of ML predictive
models in production. Leveraging insights and models from
previous products saves substantial time in the ongoing re-
search and development process. Our proposed framework
establishes a solid groundwork for further investigation. With
each new product, testing and machine learning engineers can
explore novel models and techniques to refine performance
prediction accuracy. In the absence of comprehensive insights
regarding data, SMONs interaction, and the necessary number
of labeled samples for training reliable models, our framework
serves as a dependable benchmark, representing a noteworthy
advancement in MCU performance screening. Our experi-
ments involved real-world MCU products with the goal of
the development of models that transcend individual product
variations. By leveraging a diverse set of MCU samples,
our framework aims to capture the inherent characteristics
common to different products within the MCU domain. This
approach not only enhances the generalizability of our findings
but also addresses a gap in the existing literature. Code and
models are available in a public GitHub repository 1.

The rest of the paper is organized as follows: Section II
presents related works on the topic. Section III provides
the necessary background information, including data collec-
tion processes for ML algorithms (Sections III-A to III-C)
and an introduction to Deep Convolutional Networks, Semi-
Supervised and Transfer Learning (Sections III-D to III-F).
In Section IV, the motivations for deploying deep learning
models are given. In Section V, we detail the proposed ap-
proach. Sections VI and VII present the experimental setup and
evaluation. Finally, in Section VIII we draw the conclusions.

II. RELATED WORK

In recent years, the utilization of Machine Learning in both
design and testing has garnered considerable attention, with
a multitude of data analytic methods based on ML being
investigated [10], [11].

The interest in predicting the maximum operating frequency
(Fmax) of MCUs in safety-critical applications has grown.
The early utilization of ML models to establish a relationship
between structural and functional Fmax, firstly introduced
in [3], was studied by several researchers [1], [12], [13].
However, the majority of existing works rely on simulated
data [5] or have analyzed a few samples (tens) of data from
MCU [3].

In the literature, establishing a mapping between indirect
measurements (that can be acquired with little effort) and
circuit specifications is called “alternate test”. In the past, this
has been extensively analyzed in the analog domains, rather
than for digital circuits. Notably, the mapping between indirect
measurements, specifically on-chip ROs frequency values, and

1https://github.com/BellaNico4/DL-Strategies-in-MCU-Screening

Fmax has been a focal point of study in MCU performance
screening [1]. Appropriate ROs oscillation frequencies can be
measured via software during the productive test flow. ROs
frequencies can be used as Speed MONitors (SMONs), having
the potential to capture variations in the physical parameters,
enabling the prediction of the performance of the MCUs [1],
[14].

Researchers have further explored ML models for Fmax

prediction in the MCU domain. In [1], they correlated 27
SMONs values from wafer sorting with functional Fmax. In
[14], they found that polynomial ridge regression (Poly Ridge)
effectively serves as an ML model for MCU performance
screening. Active Learning (AL) was employed in [15] to
reduce the training set size by selecting informative samples
for model derivation, and outlier detection techniques were
evaluated to identify noisy data and outliers [16]. The signifi-
cance of feature selection in MCU performance screening was
addressed in [17].

Moreover, the research community has delved into the realm
of semi-supervised learning (SSL) and Transfer Learning
[18]–[20], with deep neural networks playing a pivotal role
in contemporary ML research. Various Deep SSL methods
have been developed to leverage unlabeled data effectively
[21]. Transfer learning has gained prominence as a technique
to apply knowledge from source domains to enhance perfor-
mance on target tasks. The concept of pretraining and fine-
tuning was introduced in [22], where a CNN is pre-trained on
a large-scale dataset and then fine-tuned for a specific target
task, yielding significant improvements in computer vision
tasks. Meta-learning [23], [24] aims to rapidly adapt to new
tasks or environments based on prior knowledge and limited
training data. These concepts have potential applications in
addressing the challenges posed by limited labeled data and
data distribution shifts in MCU performance screening.

III. BACKGROUND

A. MCU Performance Screening

Testing activities for integrated circuits (ICs) are conducted
at various stages throughout their life cycle. Initial validation
tests occur during the product design phase to ensure compli-
ance with specifications. Characterization tests are then per-
formed on the first prototypes to identify faults and potential
failures, possibly leading to product redesign.

After passing characterization tests, large-volume produc-
tion begins. On-wafer testing is done during production, before
dicing and packaging. Post-packaging tests confirm the proper
completion of this process, ensuring that the ICs meet quality
standards for market release. Subsequent in-the-field tests
are conducted to verify the correct functioning of specific
applications.

The testing phase for ICs is resource-intensive, both in
terms of time and money, with costs escalating rapidly as
integration levels increase. Functional tests aim to verify
adherence to specifications, but for digital microcontrollers,
exhaustive testing of each component’s functionality is often
impractical [25].

https://github.com/BellaNico4/DL-Strategies-in-MCU-Screening

Fig. 1. Data collection steps through the manufacturing

For MCUs or System on Chip with at least one micro-
processor, Software-Based Self-Test (SBST) [26] is a strategy
wherein the processor executes suitable test programs to assess
the device. These programs are loaded into the processor, stim-
ulating specific circuit components, and collecting responses
for evaluation. SBST is advantageous as it is non-intrusive,
eliminates the need for extra hardware, and allows tests to
be conducted at the processor’s operating frequency. This
approach enables defect screening at higher speeds, prevents
overtesting, and is applicable throughout the product’s lifetime
in the field, without requiring expensive test equipment.

MCU Performance Screening involves evaluating and iden-
tifying devices based on their operational capabilities, specif-
ically screening out those with the maximum operating fre-
quency Fmax below a predetermined threshold. This screening
process ensures that only microcontrollers meeting or exceed-
ing the specified frequency are considered suitable for further
use or deployment. This method helps guarantee that selected
devices can perform at the required speeds and meet the
performance expectations outlined for a particular application
or system.

B. Data Collection: Features

In the context of MCU performance screening, the ML
training process involves acquiring a suitable dataset, and thus,
characterizing the MCUs. The measured frequencies obtained
from the on-chip ROs, also known SMONs, serve as the
features for the ML models [1]. The SMONs consist of library
cells in series with an overall inverting behavior; thus, the
structures oscillate. These SMONs’ frequencies are accurately
measured during production, providing high-quality features
in a stable, fast, and straightforward process. The SMONs
measurement is part of the regular production test flow [14], as
depicted in Figure 1. Thus, the SMONs data is stored for every
produced MCU, possibly leading to millions of unlabeled
samples.

An internal counter is used to measure the oscillation
frequencies of the SMONs. The high-precision measurement
of the SMONs is ensured through a calibration process.
Prior to measurement, each SMON undergoes calibration to
guarantee the accuracy of the collected data. This calibration
process, combined with stable temperature conditions, results
in high-quality SMON data, minimizing any systematic errors
and variations in the measurement system. The average error
rate of less than 0.15%. It is worth noting that this low
error rate is achieved under the conditions of the minimum
voltage, denoted as Vmin. This described process is crucial for

generating high-quality features for machine learning models
and for maintaining the integrity of the dataset. All SMON
data are logged for further processing. The SMONs data are
acquired both before and after packaging the dies, to analyze
the effect of burn-in on the features.

The number of SMONs on a chip depends on the product
type, ranging from tens to hundreds. In a legacy product
technology family (here referred to as A), the number of
SMONs in the different products (A1, A2 . . .) remains con-
stant. Whereas in a new and different product technology fam-
ily (B), the number and the design of the SMONs may change
from product to product (B1, B2 . . .). For the legacy product
family A, each die contains 27 SMONs. In contrast, for the
new product family B, the MCU contains a significantly larger
number of SMONs, approximately 150, which are distributed
across the die.

The target automotive MCUs under study are produced
using mature CMOS technology. To capture a wide range of
technology behaviors for these MCU products, the manufac-
turer employs split-lot wafers during the production process.
These split lots are specifically manufactured for engineering
purposes and serve to simulate slow, typical, and fast dies
by adjusting technology parameters. In some of these split
lots, the n-MOSFETs are designed to be faster than the p-
MOSFETs, and in others, it may be vice versa. The extensive
variety of split lots covers nearly all potential technology
behaviors, enabling precise predictions and in-depth analysis.

The SMONs on the die can be categorized into five distinct
groups based on their structure, identified as INV, NAND,
NOR, EXT, and VM:

• INV: These SMONs consist of inverters from the standard
library of the design and reveal both n-MOSFET and p-
MOSFET behaviors.

• NAND: The NAND SMONs are designed to exhibit a
certain n-biased behavior on the die. They are charac-
terized by daisy-chained n-MOSFETs that dominate the
NAND cell behavior.

• NOR: The NOR SMONs display a p-biased behavior for
these gates, and this bias is further reinforced with the
placement of dedicated transistors.

• EXT: The EXT SMONs are more sophisticated and
involve replicating specific paths from the design, ef-
fectively converting them into ROs. These ROs behave
similarly to the selected paths from the original design.

• VM: The VM SMONs are primarily designed and placed
on the die for monitoring physical parameter variations
across the chip.

Notably, all five groups of SMONs are manufactured using
two major types of transistors, which are distinguished by their
threshold voltage:

• Regular Threshold Voltage (RegVT) transistors are fast
and offer high performance. However, they also con-
tribute significantly to leakage current due to their lower
threshold voltage.

• High Threshold Voltage (HVT) transistors have slower
switching behavior (low performance) but significantly
reduce leakage current.

The choice between RegVT and HVT transistors is made
based on the MCU’s specifications, either favoring high per-
formance or low power consumption. Typically, the final
design consists of a combination of both transistor types, with
some design paths containing transistors with homogeneous
threshold voltage and others having a mix of HVT and RegVT
transistors. The proportion of these transistors varies widely,
and it depends on the specific design requirements.

The diverse array of SMON types, combined with the
use of various split-lot wafers, provides a solid foundation
for investigating the MCU’s behavior across all corners of
its operational space. This diversity of data is invaluable
for data processing, analysis, and optimization during the
manufacturing and testing of these automotive MCUs.

C. Data Collection: Label

Labeling MCUs with their Fmax is a distinct and time-
consuming procedure [1], [14]. It is not integrated into the
regular production test flow and involves individual measure-
ments of each MCU using functional test patterns. These
patterns are designed to simulate real-world conditions and
are executed under worst-case voltage (Vcrit) and temperature
(Tcrit) settings [27]. During this process, the frequency of
each MCU is gradually increased until a functional failure
is observed, and the last working frequency Fmax is recorded.
To ensure the reliability of this data, the process is executed
several times (typically five) to confirm that the failing fre-
quency remains consistent. Multiple functional test patterns
are employed, resulting in a multi-label dataset. Notably, the
most critical pattern, identified as Pmin, is the one with the
lowest Fmax value, and this value can vary among different
MCUs.

Due to the substantial effort required, the labeling process
is performed on only a limited subset of the manufactured
devices, leading to a scarcity of labeled data. This scarcity
poses a significant challenge for ML-based applications [14],
[15]. The quality of the features and label measurements is
crucial for the accuracy of ML models and the effectiveness
of subsequent MCU performance screening. The accuracy of
label measurements is particularly susceptible to uncertainties
and noise stemming from minor variations in voltage or tem-
perature conditions, mechanical vibrations, or statistical noise.
While SMONs measurements provide high-quality features,
label acquisition introduces potential inaccuracies

Furthermore, it’s important to acknowledge that every
CMOS manufacturing process exhibits particular process vari-
ations that typically follow a Gaussian distribution [28]. This
means that the majority of devices fall within the expected
process variation. However, some devices may reside in the tail
region of the distribution and can be considered outliers. Tests
conducted in the production flow aim to identify defective
devices [29]. Nevertheless, some MCUs with certain defects
might escape the testing procedures.

To address these challenges and optimize the information
extracted from the available data, various techniques are em-
ployed. These include Outlier Detection [16], Active Learning
strategies [14], [15], and potentially Transfer Learning. These
techniques are crucial for enhancing the quality and reliability
of the dataset and ultimately improving the performance of
ML models in predicting MCU behavior.

D. Machine Learning

ML is a subfield of artificial intelligence (AI) that focuses
on the development of algorithms and models that enable
computers to learn from data and make predictions or de-
cisions without explicit programming [30]. The overarching
goal is to create systems that can automatically improve their
performance over time through experience. ML model can be
classified based on several frameworks [30]–[33]. In super-
vised learning, the algorithm is trained on a labeled dataset
(the training set), where each input (the features) is associated
with a corresponding output (the label). The model learns
to map inputs to outputs, and its performance is evaluated
on unseen data (the test set). Unsupervised learning involves
training models on unlabeled data to discover patterns, re-
lationships, or structures within the dataset. Clustering and
dimensionality reduction are common tasks in unsupervised
learning. Reinforcement learning focuses on training agents to
make sequential decisions by interacting with an environment.
The agent receives feedback in the form of rewards or penal-
ties, guiding its learning process. Supervised ML algorithms
can be categorized into linear and non-linear based on the
mathematical expression between input features and output.
Linear Regression fits a linear equation to observed data.
Ridge Regression [30] extends this concept by introducing
a regularization term to the linear regression objective func-
tion, penalizing large coefficients. Neural networks, especially
deep neural networks, can model highly complex and non-
linear relationships. They consist of layers of interconnected
nodes (neurons) and use activation functions to introduce non-
linearity into the model.

E. Deep Convolutional Neural Networks

Deep Convolutional Neural Networks (CNNs) have emerged
as potent ML models, particularly in the realm of computer
vision, where their applications have yielded state-of-the-
art results across an extensive spectrum of tasks, spanning
both supervised and unsupervised learning [34], [35]. This
impressive versatility encompasses image classification, object
detection, semantic segmentation, and the extraction of latent
features. CNNs architecture is often defined by a multi-
layer structure that includes convolutional, pooling, and fully
connected layers. These networks are meticulously designed
to autonomously acquire hierarchical representations of visual
data straight from the unprocessed input. The convolutional
layers within a CNN are responsible for the application of
a set of learnable filters to the input image, resulting in
the generation of feature-maps. Subsequently, these feature-
maps undergo non-linear transformations through activation

functions, such as rectified linear units (ReLU [36]), intro-
ducing essential non-linearity into the network. The pool-
ing layers downsample the feature maps, reducing spatial
dimensions. This process bolsters translation invariance while
improving computational efficiency. The final segment of a
CNN comprises the fully connected layers, which receive
the high-level features extracted by the preceding layers and
are primed for executing classification or regression tasks,
depending on the final activation function chosen. These layers
establish connections between all neurons within one layer to
all neurons in the next layer. Furthermore, CNNs find valuable
applications in unsupervised learning scenarios, such as those
calling for the acquisition of a meaningful representation from
unlabeled data. In this context, convolutional autoencoders
emerge as a popular choice. Comprising two integral parts—a
data encoder network that maps input data to a compressed
representation and a data decoder network for reconstructing
the input from the encoded representation—these models
motivate the network to grasp significant data representations
capturing essential features and structural patterns.

Unsupervised CNNs play crucial roles in a variety of tasks,
encompassing dimensionality reduction, feature extraction,
and image denoising, as previously noted. They also serve
as proficient pre-training mechanisms, initializing supervised
CNNs to enhance generalization and performance when faced
with limited labeled data.

In light of their remarkable capabilities, CNNs predomi-
nantly find application in the domain of image analysis due
to their exceptional prowess in capturing spatial structures in
data. The convolutional kernels within CNNs are intricately
designed to harness two key characteristics of input images:
local connectivity and spatial locality. The principle of local
connectivity dictates that each convolutional kernel operates on
a confined region of the input image during the convolution
process: the connections are local in space (along width and
height), but always extend along the entire depth of the
input volume. The assumption of spatial locality (or local
correlation) posits that closely related pixels being convolved
together yield meaningful feature representations. For instance,
a solitary convolutional kernel can adeptly discern edges,
textures, shapes, gradients, and other salient features.

CNNs can be adapted to tabular data, as evidenced by
recent research [37]. In such instances, tabular data can be
effectively transmuted into image-like structures, enabling the
seamless application of CNNs. Alternatively, one-dimensional
convolutions can be harnessed to process the columns of the
dataset, treating each sample with C dimensions as a one-
dimensional “image” of size (1, C).

F. Transfer and Semi-Supervised Learning

Transfer learning, a prominent technique in the realm of
ML, has emerged as a valuable approach for enhancing
performance in a variety of tasks by leveraging knowledge
already acquired from solving different problems [20], [38].
This approach proves particularly potent in the context of
Deep Neural Networks, where it entails harnessing pre-trained

models that have been trained on extensive datasets comprising
millions of samples.

These pre-trained models are used as a foundation for a
new task or dataset, rather than initiating the training of a
Deep Neural Network from scratch. Thus, they are fine-tuned.
To safeguard the integrity of the acquired representations, the
initial layers of the pre-trained network are held in stasis, or
frozen, preventing any weight modifications during subsequent
fine-tuning. These preserved pre-trained layers assume the role
of feature extractors, capturing general patterns and represen-
tations from the dataset [39].

The fine-tuning phase introduces further adaptability, as
it restricts the training to a final linear layer responsible
for bridging the network’s extracted features to the specific
task labels, be it classification or regression. This strategic
partitioning of the network’s functionality enables it to adapt
seamlessly to the requirements of the task at hand, ensuring
a synergistic blend of general knowledge and task-specific
expertise.

In parallel, SSL [40], [41] represents a distinctive approach
within the domain of ML. SSL exists in the intermediary realm
between unsupervised learning, which lacks labeled training
data, and supervised learning, which solely relies on labeled
data. This approach gains particular relevance when the cost
associated with producing labeled data is prohibitively high,
while an abundance of unlabeled data is readily available. The
key point of SSL is to use both labeled and unlabeled data to
derive ML models, in order to enhance the knowledge retrieval
from data, and reduce the amount of labeled data needed. It
can be interpreted as a Transfer Learning approach in which
we aim to transfer knowledge from unlabeled to labeled data.

Various SSL strategies have been developed [21], [40], [42].
The simplest among them, known as “Pseudo-Labeling” un-
folds in a three-step process: it initiates by training a learning
algorithm on a limited subset of labeled data, subsequently
applying the trained model to the unlabeled samples, thereby
obtaining approximate labels or predictions. Finally, it refines
the model using the entire labeled dataset, which includes both
actual and pseudo-labeled data.

For a more robust approach, “Self-Training” [40] emerges as
a noteworthy option. This iterative Pseudo-Labeling algorithm
selects only the most promising Pseudo-Labeled data based on
the probability of correctness or confidence intervals at each
iteration. These selected data points augment the labeled set.

Notably, the feasibility of these SSL approaches is contin-
gent upon the underlying model’s ability to compute con-
fidence intervals or probabilities of correctness for its pre-
dictions, making them particularly suitable for classification
models [42], in which they found the majority of application.
Even though, some research has been conducted in SSL for
regression tasks [43].

The combined concepts of Transfer Learning and Semi-
Supervised Learning can enhance the learning ability of
ML models, enabling them to acquire knowledge both from
unlabeled data and different task: while Transfer Learning
leverages pre-trained models to bolster performance in new

domains, Semi-Supervised Learning navigates the challeng-
ing landscape between labeled and unlabeled data, enabling
cost-effective knowledge acquisition. The underlying synergy
between these methods and the adaptability of convolutional
neural networks further underscores the depth and breadth of
possibilities within the field of machine learning, leading to
several benefits, including reducing the amount of required
labeled data, speeding up training time, and improving gener-
alization to new tasks.

G. Dimensionality Reduction

There are two primary methods for achieving dimensionality
reduction: Feature Selection (FS) and Feature Extraction (FE)
[30]. FS [44] involves identifying and selecting the most
relevant subset of features from a large pool of potential input
variables. The goal is to discard redundant or noisy features
that may lead to overfitting or poor generalization. On the other
hand, FE aims to reduce the dimensionality of a dataset by
extracting the most important features. Principal Component
Analysis (PCA) is a popular technique for FE [45]. Unlike
FS, FE creates new features by combining the original ones.
Methods for FS can be categorized into three main groups:
Filter Methods, Wrapper Methods, and Embedded Methods
[44]. In particular, Wrapper methods utilize an ML model to
evaluate the performance of different feature subsets and select
the best one based on error measures computed on a selected
test set, often employing cross-validation. Recursive Feature
Elimination (RFE) is a widely-used wrapper method [46]. In
certain scenarios, applying input space reduction techniques
in conjunction with Deep Learning (DL) can offer benefits
such as reducing computational complexity and memory re-
quirements of Deep Neural Networks, as well as improving
interpretability. It can also be advantageous when dealing
with datasets that contain noisy or irrelevant features that can
negatively impact the performance of DL models.

IV. REASONING BEHIND DEEP, SEMI SUPERVISED AND
TRANSFER LEARNING

Extensive research has been conducted in recent years
on predictive models for MCU performance screening [1],
[15], [16]. In this scenario, where data scarcity is a concern,
techniques such as Active Learning (AL) [15] and Outlier
Detection [16] have proven to be useful in creating an infor-
mative training set efficiently, thus facilitating the development
of robust ML models.

A first step towards training-set size reduction in ML-based
MCU performance screening was made in [14], where authors
proposed to use AL techniques to select the most informative
samples to achieve a higher quality training set. In [16], the
authors focused on how anomalies on the labels introduced
during measurements in the dataset creation phase can affect
ML regression models in the context of MCU performance
screening and showed a possible approach to recognize and
replace anomalies on the labels from the training set. But
these approaches, even if effective in halving the size of the
training set, may not be enough: in a context with a very

limited amount of samples, having a high-quality dataset helps
to create robust models, but the limitation in the number of
samples may lead to biased models, not able to well generalize
to unseen data.

The very first approach in building a new ML model
from scratch is starting from the early phase of obtaining
labeled data and training a shallow learning model. However,
this process requires waiting until a sufficient amount of
labeled data is collected to train a reliable model across the
feature domain of interest and evaluate its performance on an
appropriate test set. But this phase takes time, in particular
in the context of MCU performance screening: considering at
least 30 minutes to label one sample [1], obtaining a suitable
training set for learning the ML model would require 63
days of continuous labeling for about 3000 samples, with no
missing values and outliers. If we consider possible outliers
and noise in the label measurements and the fact that some
samples may be dropped because of that (about 1 over 4 [1]),
this time increases by a factor of 1.25. This duration does not
even consider the feature engineering phase, which is often the
most time-consuming aspect of developing a predictive model
and may take additional months.

In a context of scarce data, traditional shallow learning
models (SVM, Ridge Regression, ElasticNet etc.) tend to
outperform DL models, due to the increased complexity of
the latter which often leads to over-fitting. However, shallow
learning requires precise feature engineering as a preprocess-
ing step to build better models. This involves supervising the
learning process by incorporating domain knowledge, such as
applying polynomial transformations to raw features before
feeding them into a Linear Regression model [14]. In contrast,
deep learning models do not necessarily require this step or
do not consider it as crucial. DL models raised a huge amount
of interest thanks to their supremacy in terms of accuracy
when applied to big data. DL models are able to learn how
to represent the data by hierarchical concepts in a nested way,
with each concept defined in relation to simpler concepts [39],
and more abstract representations computed in terms of less
abstract ones, moving from input to output layers. They are
able to extract features and learn how to find the best data
representation autonomously, by manipulating input features,
rather than relying on a-priori hand-crafted features (as in
shallow learning). Also, the architecture of the networks can
be tuned without any limit.

However, when dealing with limited labeled data, the afore-
mentioned DL models cannot be applied. This situation com-
monly arises when manufacturing a new product, and only few
data are available. But DL models are flexible: it is possible
to pre-train a model on a certain training set (often composed
of a huge number of samples, millions) and then fine-tune
it on a related dataset, in which we want to solve a similar
task. This approach is the foundation of Transfer Learning (see
Section III-F). Instead of waiting to collect a sufficient number
of labeled data, Semi-Supervised and Transfer Learning can
be employed. In particular, Transfer Learning enables using
only a portion of the architecture of a DL model (e.g., the

first n layers) to extract a relevant feature embedding, using
the models as a features transformers or encoders.

When an MCU product reaches large-scale mass production,
millions of (unlabeled) data are produced and can be, in prin-
ciple, used to enhance the knowledge retrieved by successive
data analysis. Also, when a new product is engineered and then
deployed, typically, data and models from different or previous
products are still available. Even if applying the very same
model trained on legacy products to new ones is infeasible
as it leads to significant prediction errors, it is also true that
the aforementioned models have learned valuable information
from the data, which can be utilized to derive new models for
the new product. In particular, the latent space discovered by
deep neural networks can remain useful, making these models
suitable as feature extractors. Only the final layer, responsible
for linking the extracted features to the target variable, needs
to be trained. If the features extracted by deep neural networks
are sufficiently general, only a few samples would be required
to train these final supervised models.

For all these reasons, one can naturally think about switch-
ing to DL models, leveraging SSL and Transfer Learning
if only a small amount of labeled data is available. The
rationale behind using Transfer Learning becomes evident:
save time in the data collection phase by leveraging knowledge
acquired from similar (though not identical) domains. This is
accomplished by transforming the input features using a pre-
trained network and training a shallow supervised linear model
that connects these features to the target variable. This permits
to develop models that are transferable across different MCU
products, providing a foundation that can be applied across
various contexts. These models establish a robust baseline for
further investigation and refinement.

V. PROPOSED APPROACH

The approach followed in this work aims at extracting a
feature representation of the input data (i.e. the SMON values)
by means of DL models, used as transformers. We will first use
Semi-Supervised Techniques to pre-train the DL models on
both unlabeled data from production lots (available in millions
of samples) and labeled data from corner lots, to learn a
latent space in which project SMON values. In this way, DL
models are used to compute non-linear features interaction. By
using the transformed SMONs values, solving the successive
supervised task (i.e. linking the Fmax label to the transformed
SMON values) should be possible just with a linear model
(Ridge Regression, as an example). The final goals are:

• Increasing the prediction ability of the models with
respect to the classical shallow learning approach and
manual feature engineering.

• Reducing the amount of labeled data needed to train
these models, with a consequent reduction in the dataset
creation phase (i.e. labeling the samples).

Once that deep feature extractors are pre-trained on millions
of unlabeled data of a certain product, A1, it is possible to
use them even on different products with the same SMONs
set (here called A2), or even totally different SMONs set (here

Fig. 2. The proposed Inter and Intra families transfer learning protocol.

referred to as B1). Thus, the goal of this work is to implement
a transfer learning framework of two types:

• Intra-Family: we train the deep learning models on prod-
uct A1 of product family A, and we try to use the same
model as a feature extractor for a different product, A2,
of the same family A. Products in the same family have
the same SMONs set.

• Inter-Families: we train the deep learning models on
product A1 of product family A, and we try to use the
same model as a feature extractor for a different product,
B1, of a different family, B. Products of different families
have different SMONs set. Proper countermeasures to
adapt the different input spaces have to be taken.

The adopted Transfer Learning framework is shown in Fig. 2

The deep learning feature extractor creation phase consists
of four steps:

1) We train the deep learning models to perform a certain
(alternative) task Ti using the unlabeled data from A1.

2) We (optionally) fine-tune the deep models using the
labeled data, to adapt the parameters of the convolutional
kernels to the actual labeled data distribution: using
the model trained on the unlabeled data as a starting
point (i.e., we use the pre-trained layers’ weights as
initialization), we can run again the training optimization
on the labeled data, in a warm-start fashion.

3) We drop the last layer of the DL models (that actually
link non-linear features interaction, computed in the
previous layers, to the the task chosen in step 1). Every
model is now used as a data-transformer able to project
the data from the original space into a new one in
which solving the original performance prediction task
is easier.

4) Finally, we train a linear model (for example, a Ridge
Regression) using the features extracted in the previous
step as inputs. Such a model will combine them to
solve the performance prediction task (in the case of
the Ridge Regression, by means of an L2-regularized
Mean Squared Error loss).

An example of the proposed approach is shown in Fig. 3.
The step 2 is optional since it depends on the size of the

labeled dataset. Too few samples lead to overfitting, causing
the network to not be able to generalize on new unseen

samples, performing worse than the feature extractor with
no fine-tuning. However, if the representation learned by the
network on A1 is general enough, this step does not lead
to an enormous improvement in the prediction performances.
In the absence of fine-tuning, the deep models are used
”as-it-is”, in the sense that the layers are frozen, and no
parameters are changed. For step 1 of the proposed approach,
we need to pre-tain the DL models on and alternate task Ti

on the unlabeled data. We selected three popular pre-training
strategies, described in the following subsections.

A. Pseudo-labeling

We first build a supervised ML model as a prototype, using
the actual available labeled data. We then apply this model to
the unlabeled data, obtaining a pseudo-label for each unlabeled
sample. The goal is to create an augmented training set
X̂u = {(xu1

, ỹu1
), (xu2

, ỹu2
), . . . , (xun

, ỹun
)}. Each pseudo-

label ỹui
is directly correlated with the final task we aim to

solve (i.e., performance prediction). A supervised DL model
is then trained on X̂u. This model will acquire knowledge on
how to manipulate SMON values to generate features useful
to the performance prediction task. The model is then fine-
tuned on the actual labeled training set. The model is not
“blind” to the problem we aim to solve: it uses both labeled
and pseud-labeled data to enhance knowledge retrieval. We
expect that models built upon the feature extracted by using
pseudo-labeling will achieve higher accuracy with respect to
unsupervised DL feature extractor.

B. Auto-Encoder

The task is based on trying to reconstruct the ini-
tial input. We define the training set as X̂u =
{(xu1

, xu1
), (xu2

, xu2
), . . . , (xun

, xun
)}, so the input and the

output of the deep ML model are the same. The model can
be divided into two parts: the encoder projects the data into
an alternate space, X̃ and the decoder learns how to recover
the original data, X , from the alternate space X̃ (see Fig. 3).
This task is totally unsupervised because we are using only
the SMON values X of the unlabeled set. At the end of the
process, we drop the whole decoder, using only the encoder
as a features extractor (as depicted in Fig. 3). The features
manipulation, X̃ are then linked to Fmax by a linear regression
model. This task is “blind” and not aware of the actual
performance prediction task we aim to solve, and the features
extracted will be a more general non-linear manipulation of
the SMONs input features.

C. Denoising Auto-Encoder

Similar to the previous task, here the inputs of the
model are a noisy version of the data (with a super-
imposed Gaussian noise). The training set is thus X̂u =
{(x̃u1

, xu1
), (x̃u2

, xu2
), . . . , (x̃un

, xun
)}, in which x̃ui

is a
corrupted version of xui . The model should learn how to
recover data from their noisy version. The obtained model
can be again divided into an encoder and a decoder. Also, this
task is totally unsupervised and problem-unaware. At the end

Fig. 3. Example of training a deep convolutional feature extractor in a Semi-
Supervised fashion, using the Auto-Encoder alternate task. We first fed the
deep model with unlabeled data. We then use it as a transformer for labeled
data (for the same or different product). Finally, we train only a Linear Model
to link feature embeddings and labels.

Fig. 4. Example of the proposed transfer learning approach between A1 and
A2 product using the PL-CNN. We first transform the A2 dataset with the
pre-trained network. The network is frozen, and no convolutional layers are
updated. We then train a linear regression to link feature embeddings from
A2 and Fmax labels.

of the process, we drop the decoder and use only the encoder
as features extractor.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed methodology has been validated on a dataset
composed of 2986 labeled A1-devices and 1015 labeled A2-
devices from product family A. The deep neural networks
were pre-trained by using 1,496,248 A1-unlabeled samples
from production lots. A1 and A2 devices, coming from the
same product family, are equipped with the same SMONs
on board. Thus, for both products, we have 27 SMONs. For

A1, 10 labels are available, measuring the Fmax for different
functional test patterns. For A2, 20 labels are available. For
both products, the final performance of the devices and thus the
target label of our model (the maximum operating frequency)
is the artificial label Pmin (the minimum among the available
labels, see Section III-C).

For the product family B, the dataset is composed of
2002 labeled samples of product B1. In the experiments, 150
SMONs of the product B1 were considered.

Features are standardized by removing the mean and scaling
to unit variance, as a pre-processing step.

A preliminary Outlier detection technique was applied [16].
We used the Interquartile Range (IQR) method [47], applying
it on the input (SMONs) space. Samples that fall outside a
specific range [lb, ub] are considered outliers and removed
from the dataset. It involves to calculate Q1 and Q3, to
compute the IQR as Q3 − Q1, and finally to determine the
lower bound (lb) and upper bound (ub) as:

lb = Q1 − 1.5 · IQR ub = Q3 + 1.5 · IQR

As the baseline comparison model, we used a Ridge Regres-
sion with PCA with 14 components and polynomial trans-
formation of the input SMONs values [14] (namely, Poly
Ridge, PLR or PCA Poly Ridge). Previous research on A1
[14] showed that SMONs-Fmax relation is not exactly linear,
with Polynomial models better fit this relation. However, we
included a comparison with linear models (Ridge Regression,
called L. Ridge and Linear Regression, called L.Reg), in
addition to Random Forest [1], [3] and KNN-5 [3].

As a baseline, we first applied the very same Poly Ridge
model trained on A1 directly on A2, with no fine-tuning. This
shows the impossibility of re-using the very same model on
different products and the necessity of updating it. Next, we
trained the baseline Poly Ridge only on samples from A2,
without considering previous knowledge.

Once the deep feature extraction models are derived from
A1, they are applied on the new data from A2 and B1
obtaining the transformed datasets DA2 = (X̂A2, yA2) and
DB1 = (X̂B1, yB1), in which X̂A2 is the projection of XA2

in the latent space learned by the Neural Network. The same
holds for X̂B1. At this point, it is possible to train a simple
Linear Regression model (in our case, a Ridge Regression) on
DA2 and DB1, to learn how to map the transformed SMONs
values to the actual Fmax. In the test phase of these models
on A2 and on B1, the SMON values are first transformed with
the deep feature extractor. Then, the Linear Ridge Regressor
is applied to predict operating frequency Fmax. The order of
application of the DL models A1 − A2 − B2 follows data
availability and similarity among products. If data permit this,
it could be possible to change the order of training, taking
care of increasing the dimensionality of the features to adapt
A-SMONs set to B-models (instead of decreasing it, as done
in this paper).

We used a 5 train-test split with proportion 75%-25%,
generated by different random states, to build learning curves,
to eventually fine-tune the deep feature extractor, and to

evaluate the models: thus, each statistical prediction perfor-
mance is the mean of 5 values computed on 5 different
training/test splits of the dataset, avoiding biased prediction
error estimation. Results are presented in terms of normal-
ized Root Mean Square Error (nRMSE), normalized Mean
Absolute Error (nMAE), Learning Curves, the Area Under the
nRMSE Learning Curve (AUC-nRMSE), and Guardband G.
RMSE and MAE are popular regression performance indexes
[48], but normalized by the mean value of Fmax in the
test set, i.e. nRMSE = RMSE(ytrue, ypred)/mean(ytrue)
and nMAE = MAE(ytrue, ypred)/mean(ytrue), to obtain
a percentage of the error. The learning curve plots correlate
the training set size with the generalization capabilities of a
model. At each point of the curve, on the x-axis we have
the number of samples used to train the model and on the y-
axis a measure of prediction performance of the model on the
test set (in our case, the nRMSE). The learning curves were
created by extracting (for each point x-y) a random sample of
the training set of increasing size. These subsets were used to
train the final linear model and to eventually fine-tune the deep
models. The AUC-nRMSE value indicates the generalization
capability of a model: the lower this value, the better the ability
of the model to generalize with fewer labeled samples. We
computed AUC-nRMSE values for the first 20 points of the
learning curves, where only a few samples are available (until
300 labeled samples for B1, 600 for A1, and 170 for A2).

To accommodate potential errors and uncertainties in sta-
tistical predictions, a risk-based guardband is necessary [14],
[49]. This error guardband (G) surrounds the specified limit
and serves as a buffer beyond acceptable product limits. By
implementing the guardband, manufacturers can guarantee that
even slight variations or uncertainties do not compromise the
product’s quality standards or reliability. Practically speaking,
supposing that the screening frequency is fscreen, the effect of
G is to increase the threshold for the pass/fail screening from
fscreen to fscreen +G. Since G impacts the production yield
[14], [49], [50], it should be minimized. We can compute G
on a test set with true frequencies y, predicted frequencies ŷ,
and errors e = y − ŷ as:

G = µe + kσe

µe and σe are the mean and the standard deviation of the
error distribution and k is a parameter that permits the choice
of the defects’ level in ppm. k = 5.2 is an approximation for
0.1 ppm, but we used a more stringent value (k = 6). G will
be expressed in percent of the actual Fmax specification, as
described in the datasheet. As an additional evaluation metric,
we will use the number of samples needed to reach the 2%
of nRMSE on the test set. A 2% nRMSE typically signifies a
favorable level of error, allowing us to achieve a satisfactory
margin of safety G and consequently a desirable level of
predictive performance screening yield [50].

All experiments were performed in Python using PyTorch
tools for the DL models. Experiments run on a server equipped
with an Intel® Core™ i9-9900K CPU @3.60GHz x 16, 32GB
of RAM, and an Nvidia® 2080 TI GPU.

B. Inter-Family Transfer Learning setup
To implement the inter-family transfer learning protocol, a

first pre-processing step is needed to project the input space of
product B1 (of dimensionality of 150 SMONs) to the number
of inputs of the neural network (n, in our case with n = 27).
Several techniques are investigated:

• PCA-Projection: using PCA to match the SMONs spaces
• Random SMONs Sampling: a random choice of

n SMONs (namely, Dummy-Feature Selection CNN,
shortly Dummy-FS CNN or D-FS CNN). SMONs are
usually highly linearly correlated with each other, thus
a random choice of them is reasonable. This approach
is unbiased,requiring no additional information about
SMONs type and technology.

• Repeated SMONs Sampling: This approach extends the
previous method by iteratively sampling n SMONs from
the pool of 150 available, utilizing them to train an
ensemble of network. We created an ensemble of 10-
Dummy CNN models. Randomly sampling various in-
puts, permits exploring different areas of the SMONs
input space, allowing each model in the ensemble to
learn distinct feature interactions. Also, Random Features
Sampling has been demonstrated to effectively reduce
variance in predictions and enhance accuracy in classi-
fication tasks [51]. The final prediction is the average of
the 10 outcomes (hard-voting mechanism). This model
is referred to as Dummy-Feature Selection Voting CNN,
abbreviated as Dummy-FS Voting CNN or D-FS V-CNN.

• Best SMONs: An FS strategy based on choosing the best
n SMONs. If test engineers have a piece of information
on which are the best SMONs for the performance pre-
diction task (the ones the most linked to the performance
of the devices), they can manually select these to build
the ML models. We estimated the SMONs importance by
applying an RFE-based approach repeatedly on the whole
labeled training set [17]. We built a SMONs ranking, and
we selected the best 27 SMONs. We called this BEST-
FS. This should be the ”gold standard” and should be
considered only as a comparison because the importance
of each SMON was computed on the whole labeled set.

• Correlation Approach: Basing on [3], we identified the n
SMONs with the highest Pearson correlation coefficient
with the target Fmax. We called this Corr-FS.

In general, the reduction in the complexity of the model
(in terms of parameters/features analyzed) can also lead to
a reduction in the number of labeled samples to achieve a
certain generalization error. So, as a comparison, we will show
experiments of applying the aforementioned Feature Reduction
techniques (PCA, Best-FS) to the Polynomial Ridge, too. The
architectures and the training setup for the CNNs used are
described in the following section Section VI-C.

C. Deep-Learning Models
We trained and tested the following DL models on A1 as

described in Section V, but only the best will be chosen to be
fed with A2 and B1 data for the Transfer Learning protocol

1) A Soft-Ordering 1D-CNN with skip connection (namely
CNN with Pseudo-Labeling or PL-CNN): 1-dimensional
CNN with a fully connected layer as the first layer, with
CELU (Continuously Differentiable Exponential Linear
Units) activation function [36]. This first layer projects
the features into a higher dimensional space using a
non-linear combination of the SMONs(see Fig. 4). The
reason is given: since tabular datasets are not spatially
correlated (as in images), CNNs would not be able to
express their ability to catch local interactions between
features. But if we re-order the tabular features, a 1-D
convolutional layer may extract some relevant interac-
tions between them [52]. The output of the first layer
is then reshaped into image-like samples of dimension
(H, 1, C) (height H , length 1, and C channels). Each of
these corresponds to a group of H ordered features, and
we have C groups with different orderings. The output
of the network is then flattened again before going into
the final supervised model.

2) Fully-connected AE (AE-FC): Fully connected layers
that perform feature space augmentation. It does not
present a bottleneck but projects the data into a higher
dimensional space.

3) Denoising fully-connected AE (DAE-FC): as above, but
the input of the training procedure is a corrupted version
of the original data.

4) Convolutional AE (AE-CNNE): AE with soft-ordering,
1D convolutional encoder, and de-convolutional decoder.
The encoder performs feature space augmentation. The
output of the encoder is flattened before going into the
final supervised model (see Fig. 4).

5) Denoising Convolutional AE (DAE-CNN): as above, but
trained on a corrupted version of the data.

Each convolutional layer is preceded by a Batch Normalization
layer and a Dropout layer. The setup for training the DL
models on A1 is here described: 85% of the training data
set was used to train the models, which are validated on the
remaining 15%. The training procedure runs for a maximum
of 100 steps (epochs), or until we are not able to increase
the performance on the validation set with respect to the
last 10 epochs (early stopping, [53]). We used a Stochastic
Gradient Descent (SGD) optimizer [53] to tune the weights
of each layer, with learning rate lr equal to 1 × 10−4 and
momentum equal to 0.7 [53]. The lr decreases on loss plateau
until 1×10−5. The very same approach was used to eventually
fine-tune the deep models (fine-tuned models were clearly
indicated in the tables in Section VII-B). In the absence of
DNN fine-tuning, the only layers that are updated are the Batch
Normalizations, to adapt them to new data distribution (A2 and
B1).

VII. EXPERIMENTAL RESULTS

In the following section, we will present the results of a
deep-learning-based MCU performance prediction. We will
first present the results of applying Semi-Supervised tech-
niques to derive deep feature extractor models on A1 data.

We will show comparisons between these and the baseline
shallow-learning model (Polynomial Ridge), and the gain in
both prediction performance (percentage of error) and the
amount of labeled samples needed to reach baseline perfor-
mance. We then will choose the best deep feature extractor
models to implement the transfer learning framework between
A1 and A2 devices. In the end, we will show the results of
applying inter-families transfer learning on B1 samples.

A. Semi-Supervised Learning on A1 product

Experiments showed that almost all the DL models can
extract relevant information from the unlabeled data, with final
prediction errors aligned to baseline Polynomial Ridge (Table I
and Fig. 5). Linear models failed at fitting the data, with
the highest prediction error and AUC. For this reason, these
are not shown in Fig. 5. Non-linear models such as KNN-5
and RandomForest (RF) reached decent prediction errors, but
cannot stick with the baseline.

Even the features extracted by a simple fully connected
auto-encoder are appropriate to our goals.

The CNN-PL seems to be the best model for two reasons:
the first reason is that the achieved nRMSE on the test set and
the computed guardband are significantly lower with respect
to the baseline approach (1.48% vs 1.57% nRMSE, 9.43%
vs 10.04% G, see Table I). Since the guardband affects the
production yield, it is necessary to maintain it as lower as
possible. The second reason is that with just a fraction of
the labeled data (89 for PL-CNN), the nRMSE drops and
stably remains under the 2% of error: the learning curve
presents a plateau, where the error decreases very slowly
(see Fig. 5). This neural network has effectively found useful
features for the underlying regression problem, and it is able
to generalize to new unseen data even with a small training
set. With just 500 labeled samples, we were able to compete
with the performances of the baseline Polynomial Ridge
model (1.57% of nRMSE), obtained with the whole available
training set (2986 samples). The reduction in the number of
labeled data permits decreasing the effort during the MCU
characterization phase and data collection, thus reducing the
time required for acquiring a proper dataset for ML models.
Labeling a sample requires at least 30 min. To reach 1.57%
nRMSE, with the baseline Poly Ridge model we would require
30 min ·2986 samples = 89, 580 min ≈ 63 days of continuous
labeling. With CNN-PL, the dataset creation requires less than
1
6 of the time (≈ 10 days) This holds even for the other
DL models: we reached the target prediction error with fewer
samples, even if the reduction in the training set size is not
significant (Table I). However, with all the DL models we
are able to reach errors below the 2% (dotted line in Fig. 5)
with just tens of data (89 for PL-CNN, AE-FC and DAE-FC,
119 for AE-CNN, and 149 for DAE-CNN). The reason the
PL-CNN seems to be the best approach may be due to the
awareness of the performance prediction task. Consequently,
the features extracted using this method are directly finalized
to solve the actual problem, while the other methods perform
a more general feature manipulation. For this reason, this will

Fig. 5. Learning curves for different deep and shallow models. The x-axes
is the number of training samples (log scale, truncated at 400 samples) while
the y-axes is the nRMSE on the test set. The upper dotted line is the 2% of
nRMSE. The lower line is the baseline Poly Ridge prediction error, obtained
with the whole training set (1.57% nRMSE).

TABLE I
PREDICTION PERFORMANCE METRICS OF DEEP FEATURE EXTRACTORS

ON PRODUCT A1

Model nRMSE nMAE G Samples to
1.57% nRMSE AUC

Poly Ridge [14] 1.57% 1.17% 10.04% 2,986 12.1
L. Ridge [1], [3] 2.60% 1.95% 16.54% – 15.1
L. Reg. [3] 2.60% 1.95% 16.55% – 19.1
RF [1], [3] 1.63% 1.22% 10.31% – 11.0
KNN-5 [3] 1.69% 1.27% 10.31% – 11.5

PL-CNN 1.48% 1.09% 9.43% 477 9.83
AE-FC 1.56% 1.15% 9.96% 1,702 10.1
AE-CNNE 1.52% 1.13% 9.70% 1,971 10.4
DAE-FC 1.55% 1.14% 9.95% 1,702 10.1
DAE-CNN 1.54% 1.14% 9.85% 1,822 10.4

be the main feature extractor for the successive experiments on
A2 and B1 products. To compare it with another deep model,
we chose the AE-CNN, and we applied it on A2.

B. Transfer Learning on A2 dataset

As shown in Table II, applying a model trained on A1
directly on A2 leads to an enormous prediction error (first
row, 33.93% nRMSE). The coefficient of the model should
be adapted to the new product. The re-training of the shallow
Poly Ridge model on A2 is effective since we can reach good
accuracy (1.54% mean nRMSE, with a standard deviation of
0.11%, in 5 folds) with all the samples in the training set. But
to do this, we first need to have a training size big enough.
The final prediction performances reached by deploying deep
feature extractor are better in terms of nRMSE and guardband
(1.51% mean nRMSE with standard deviation 0.13% vs 1.54%
mean nRMSE and standard deviation of 0.11%, 11.01% mean
guardband with standard deviation 1.05% vs 11.19% mean
guardband with standard deviation 0.85%, with the model PL-
CNN, Table II). But these good results are reached with a
fraction of the labeled data: 227 samples are needed to obtain
1.54% of nRMSE with the PL-CNN, and 16 to 2% (Fig. 6).
Experiments showed that the feature extractor DL models,
trained on A1, can extract relevant information from A2. This is
true even without fine-tuning (FT, in the plots) the intermediate

Fig. 6. Learning curves for different models on A2 product. The x-axes is
the number of training samples (log scale) while the y-axes is the nRMSE
computed on the test set. The upper dotted horizontal line is 2% of nRMSE.
The lower horizontal line is 1.54% nRMSE, the final error obtained by the
Polynomial Ridge. With Transfer Learning and Deep Feature extractors, we
are able to obtain lower prediction error with a smaller training set.

TABLE II
PREDICTION PERFORMANCE METRICS OF INTRA-FAMILY TRANSFER

LEARNING ON PRODUCT A2

Model nRMSE nMAE G Samples to
2% nRMSE AUC

Poly Ridge (A1) 33.93% 33.63% 77.38% – -
Poly Ridge (A2) 1.54% 1.16% 11.19% 121 3.26
PL-CNN 1.51% 1.13% 11.01% 16 2.54
PL-CNN (FT) 1.52% 1.14% 11.05% 24 2.6
AE-CNN 1.54% 1.15% 11.21% 24 2.65
AE-CNN (FT) 1.74% 1.33% 12.68% 40 2.94

convolutional layers, meaning that the feature manipulation
performed by the neural networks is general enough, and can
be successfully applied to the different products. Fine-tuning
the intermediate layers model does not lead to improvement,
and this may be due to the low amount of training data from
A2, not sufficient to properly update the entire networks (that
have a number of parameters on ten-thousands of magnitude),
leading to over-fitting. The reduction in the number of labeled
data permits decreasing the effort during the MCU charac-
terization phase and data collection, thus reducing the time
required for acquiring a proper dataset for ML models. As we
stated in the previous section, labeling a sample requires at
least 30 min. By using the PL-CNN, building and deploying
ML-predictive model for the operating frequency of a new
MCU requires just 30 min ·16 samples = 480 min = 8 hours.
Also, no additional feature engineering phase is required, due
to the ability of the NNs to extract features autonomously.

C. Transfer Learning on B1 dataset

Finally, we implemented the inter-families transfer learning
protocol, trying to transfer knowledge from A to B. We
used the PL-CNN because of its superior performance in the
previous tasks. We compared it with Poly Ridge, KNN-5 [3]
and Random Forest [1], [3].

Figure 7 shows the learning curve for products B1. Even in
this case, concerning the baseline Poly Ridge, the CNN pre-
trained on millions of samples can obtain lower prediction
error with the need for fewer labeled samples.

Fig. 7. Learning curves for different models on product B1. The x-axes is
the number of training samples (log scale) while the y-axes is the nRMSE
computed on the test set. The upper dotted horizontal line is the 2% of
nRMSE. The lower horizontal is the 1.52% nRMSE, the final error obtained
by the Polynomial Ridge. Simplifying the model (with FS) and the use of
Transfer Learning can reduce the number of labeled samples needed for
models’ training.

TABLE III
AVERAGE RESULTS ON B1 FOR 5 DIFFERENT TRAINING-TEST SPLITS

Model nRMSE nMAE G Samples to
2% nRMSE

AUC
nRMSE

B-FS PLR1 1.49% 1.15% 9.04% 63 4.82
PCA-PLR [1], [14] 1.50% 1.16% 9.16% 106 5.24
PLR 1.52% 1.17% 9.26% 101 5.35
KNN-5 [3] 1.65% 1.27% 10.07% 87 5.36
RF [1], [3] 1.53% 1.17% 9.30% 35 4.91

B-FS CNN1 1.49% 1.16% 9.08% 35 4.52
D-FS V-CNN 1.50% 1.16% 9.17% 29 4.66
PCA CNN 1.52% 1.17% 9.25% 31 4.73
D-FS CNN 1.57% 1.21% 9.55% 63 5.06
Corr-FS CNN 1.60% 1.24% 9.76% 29 4.8

Applying feature reduction to Poly Ridge (PCA, BEST-
FS, see Section VI-A), is beneficial. BEST-FS Poly Ridge
has a better learning curve if compared to Poly Ridge with
and without PCA. In general, simplifying the model, reducing
its complexity in terms of the number of parameters, helps
for a reduction in the number of labeled samples needed to
reach a certain generalization error. With a simpler model,
the risk of overfitting is reduced when the number of training
samples is small. Among the other models, CNNs achieve
the lowest error in the first stage of the learning curve.
These are very good to generalize with a limited training set.
The best performance can be reached with the ensemble of
Dummy-CNN: having an ensemble of models helps reduce the
variance of the model itself and thus, increases the prediction
performance [54]. In the initial phase of the learning curve,
Random Forest shows comparable performance to CNNs, but
ultimately, CNNs exhibit lower prediction errors when trained
with the entire dataset.

The obtained CNNs are general enough to transfer the
knowledge from product A to B. They found a feature
representation that can be extended across product families.

VIII. CONCLUSIONS

We presented a deep learning-based framework for optimiz-
ing the MCU performance screening with ML techniques. This
approach, based on Semi-Supervised and Transfer learning,
permitted us both to reduce the prediction error of our models
and decrease the number of labeled samples needed to build
prediction models up to a factor of six for the product family
A. Using the available unlabeled samples, we were able to
build deep neural networks that act as feature extractors, by
projecting data into a higher dimensional space, in which a
simple linear Ridge Regressor can predict the performances
of the devices. The reduction in the prediction error permits
reaching lower guardband G, thus increasing the process yield,
since the number of good devices incorrectly discarded would
be reduced. The deep learning models we derived, pre-trained
on a legacy product A1, can serve as a base to develop
successive models for MCU products of the same or different
family, with the same or different SMONs. This enables the
use of Transfer Learning on a new product (A2), or to a
new family (B). Transferring knowledge between products
with the use of Deep Feature extractors helps in reducing the
training set size. The reduction in the number of labeled data
permits decreasing the effort during the MCU characterization
phase and data collection, thus reducing the time required for
acquiring a proper dataset for ML models. If carefully chosen
techniques are used, just tens of samples are needed to build
and deploy an ML-predictive model for MCU performance
screening. For product (A2), with deep feature extractors, we
need 1 over 4 of the labeled samples needed to obtain the
same amount of error of a baseline Poly Ridge, and just
units of samples (about 15) to have satisfactory prediction
error and guardband (2% of nRMSE, 9%-10% of guardband).
For product (B1), less than 30 samples are needed to have
satisfactory prediction error and guardband.

The developed SSL/Transfer Learning framework is general
and can be deployed in almost every scenario with a huge
amount of unlabeled data, such as MCU performance screen-
ing or alternate tests. Also, the feature extraction step (thus, the
transfer learning approach) presented in this paper can be used
in other scenarios in which pre-trained models are available,
to re-use previous knowledge on different but similar domains,
and when labeled samples are hard to obtain.

REFERENCES

[1] R. Cantoro et al., “Machine Learning based Performance Prediction
of Microcontrollers using Speed Monitors,” in IEEE International Test
Conference (ITC), 2020.

[2] J. Zeng et al., “On correlating structural tests with functional tests for
speed binning of high performance design,” in IEEE International Test
Conference (ITC), 2004.

[3] J. Chen et al., “Data learning techniques and methodology for fmax
prediction,” in IEEE International Test Conference (ITC), 2009.

[4] J. Chen et al., “Selecting the most relevant structural fmax for system
fmax correlation,” in 28th VLSI Test Symposium (VTS), 2010.

1Best Feature Selection (B-FS) should be considered as a ”gold standard”
for comparison only: the importance of each SMONs was computed on the
whole labeled set.

[5] S.-P. Mu et al., “Statistical framework and built-in self-speed-binning
system for speed binning using on-chip ring oscillators,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 2016.

[6] K. von Arnim et al., “An effective switching current methodology
to predict the performance of complex digital circuits,” in IEEE
International Electron Devices Meeting (IEDM), 2007.

[7] T. B. Chan et al., “DDRO: A novel performance monitoring method-
ology based on design-dependent ring oscillators,” in Thirteenth In-
ternational Symposium on Quality Electronic Design (ISQED), May
2012.

[8] N. Bellarmino et al., “Enabling Inter-Product Transfer Learning on
MCU Performance Screening,” in IEEE Asian Test Symposium (ATS),
2023.

[9] N. Bellarmino et al., “Semi-Supervised Deep Learning for Microcon-
troller Performance Screening,” in IEEE European Test Symposium
(ETS), 2023.

[10] L.-C. Wang, “Experience of data analytics in eda and test—principles,
promises, and challenges,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2017.

[11] L.-C. Wang, “An autonomous system view to apply machine learning,”
in IEEE International Test Conference (ITC), 2018.

[12] G. Sannena et al., “Low overhead warning flip-flop based on charge
sharing for timing slack monitoring,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2018.

[13] M. Sadi et al., “SoC Speed Binning Using Machine Learning and On-
Chip Slack Sensors,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2017.

[14] N. Bellarmino et al., “A Multi-Label Active Learning Framework
for Microcontroller Performance Screening,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2023.

[15] N. Bellarmino et al., “Exploiting active learning for microcontroller
performance prediction,” in IEEE European Test Symposium (ETS),
2021.

[16] N. Bellarmino et al., “Microcontroller Performance Screening: Opti-
mizing the Characterization in the Presence of Anomalous and Noisy
Data,” in IEEE International Symposium on On-Line Testing and
Robust System (IOLTS), 2022.

[17] N. Bellarmino et al., “Feature Selection for Cost Reduction In MCU
Performance Screening,” in IEEE 24th Latin American Test Symposium
(LATS), 2023.

[18] S. J. Pan et al., “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, 2010.

[19] C. Tan et al., “A Survey on Deep Transfer Learning,” 27th Interna-
tional Conference on Artificial Neural Networks (ICANN), 2018.

[20] F. Zhuang et al., “A Comprehensive Survey on Transfer Learning,”
Computing Research Repository (CoRR), 2019.

[21] X. Yang et al., “A survey on deep semi-supervised learning,” IEEE
Transactions on Knowledge and Data Engineering, 2023.

[22] J. Donahue et al., “Decaf: A deep convolutional activation feature for
generic visual recognition,” in Proceedings of the 31st International
Conference on Machine Learning (ICML), 2014.

[23] T. Hospedales et al., “Meta-Learning in Neural Networks: A Survey,”
arXiv, 2020.

[24] H. Peng, “A comprehensive overview and survey of recent advances
in meta-learning,” arXiv, 2020.

[25] T. Ruokonen et al., Fault Detection, Supervision, and Safety for
Technical Processes (SAFEPROCESS’94 : IFAC Symposium, Helsinki
University of Technology). International Federation of Automatic
Control, 1994.

[26] M. Psarakis et al., “Microprocessor software-based self-testing,” IEEE
Design Test of Computers, 2010.

[27] R. McLaughlin et al., “Automated Debug of Speed Path Failures Using
Functional Tests,” in 27th IEEE VLSI Test Symposium, 2009.

[28] K. Maragos et al., “In-the-Field Mitigation of Process Variability
for Improved FPGA Performance,” IEEE Transactions on Computers,
2019.

[29] G. D. Natale et al., Cross-Layer Reliability of Computing Systems. Jan.
2020.

[30] T. Hastie et al., “The elements of statistical learning: Data mining,
inference, and prediction,” Springer Science and Business Media, 2009.

[31] S. Fralick, “Learning to recognize patterns without a teacher,” IEEE
Transactions on Information Theory, 1967.

[32] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, 1959.

[33] J. G. Carbonell et al., “An Overview of Machine Learning,” Machine
Learning, 1983.

[34] A. Khan et al., “A survey of the recent architectures of deep convo-
lutional neural networks,” Artificial Intelligence Review, 2020.

[35] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architec-
tures, challenges, applications, future directions,” Journal of Big Data,
Mar. 2021.

[36] J. T. Barron, “Continuously Differentiable Exponential Linear Units,”
arXiv, 2017.

[37] V. Borisov et al., “Deep Neural Networks and Tabular Data: A Survey,”
IEEE Transactions on Neural Networks and Learning Systems, Dec.
2022.

[38] M. Long et al., “Learning transferable features with deep adaptation
networks,” in Proceedings of the 32nd International Conference on
Machine Learning (ICML), 2015.

[39] I. Goodfellow et al., Deep Learning. MIT Press, 2016.
[40] O. Chapelle et al., “Semi-supervised learning,” IEEE Transactions on

Neural Networks, 2009.
[41] H. Almousli et al., “Semi Supervised Autoencoders: Better Focusing

Model Capacity during Feature Extraction,” in Neural Information
Processing, M. Lee et al., Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013.

[42] X. Zhu, “Semi-Supervised Learning Literature Survey,” Computer
Sciences, University of Wisconsin-Madison, Tech. Rep., 2005.

[43] G. Kostopoulos et al., “Semi-Supervised Regression: A Recent Re-
view,” Journal of Intelligent & Fuzzy Systems, 2018, 2.

[44] I. Guyon et al., “An Introduction to Variable and Feature Selection,”
The Journal of Machine Learning Research, Mar. 2003.

[45] I. T. Jolliffe et al., “Principal component analysis: A review and recent
developments,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, Apr. 2016.

[46] I. Guyon et al., “Gene Selection for Cancer Classification Using
Support Vector Machines,” Machine Learning, Jan. 2002.

[47] L.Sunitha et al., “Automatic Outlier Identification in Data Mining
Using IQR in Real-Time Data,” International Journal of Advanced
Research in Computer and Communication Engineering, 2014.

[48] T. Chai et al., “Root Mean Square Rrror (RMSE) or Mean Absolute
Error (MAE)?– Arguments Against Avoiding RMSE in the Literature,”
Geoscientific Model Development, Jun. 2014.

[49] R. Williams et al., “The Effect of Guardbands on Errors in Production
Testing,” in Third European Test Conference (ETC), 1993.

[50] T. Kilian et al., “An efficient high-volume production performance
screening using on-chip ring oscillators,” in 2023 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2023.

[51] Q. Lv et al., “Enhanced-Random-Feature-Subspace-Based Ensemble
CNN for the Imbalanced Hyperspectral Image Classification,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 2021.

[52] Baosenguo, “1D-CNN: Kaggle-MoA 2nd Place Solution,” Kaggle,
Dec. 2020.

[53] L. Bottou et al., “Optimization Methods for Large-Scale Machine
Learning,” Society for Industrial and Applied Mathematics (SIAM)
Review, 2018.

[54] S. Geman et al., “Neural Networks and the Bias/Variance Dilemma,”
Neural Computation, 1992.

Nicolò Bellarmino is a PhD Student in Computer
and Control Engineering at Politecnico di Torino. He
received his MS degree in Computer Engineering
from Politecnico di Torino in 2021. His main re-
search interest are Machine Learning, Data Analysis,
and AI systems and their application to real-world
cases. He worked in Machine Learning applied to
device testing and reliability since 2020. He is part
of IEEE-HKN.

Riccardo Cantoro received the MS degree and the
PhD in computer engineering from Politecnico di
Torino, Italy, in 2013 and 2017, respectively. He
is currently a researcher with the Department of
Computer Engineering of the same university. His
research interests include software-based functional
testing of SoCs and memories, and machine learning
applied to test and diagnosis. He is a member of the
IEEE.

Martin Huch received the Dipl.Ing. and Dr.Ing.
degrees in electrical engineering from the Technical
University of Darmstadt (TUD), Germany, in 1986
and 1991. After 5 years of digital circuit design with
Bosch, Reutlingen he joined the TriCore design team
of Siemens Corporation, Munich in 1997, which was
later carved out to become part of Infineon. After
some years of SOC design he transitioned to product
engineering, where he “baby-sitted” all of Infineon’s
TriCore products from the very first samples until
volume production. Focus topics are general analysis

methodology, power integrity, performance validation.

Tobias Kilian received the B.Sc. and M.Sc. degree
in electrical engineering and information technology
from the Technical University of Munich (TUM),
Munich, Germany, in 2017 and 2019, respectively.
He is currently pursuing the Ph.D. degree as part of a
collaborative project between Infineon Technologies
A.G. and the Technical University of Munich. His
research focus lies on performance monitors for
automotive microcontrollers.

Ulf Schlichtmann (Senior Member, IEEE) received
the Dipl-Ing and Dr-Ing degrees in electrical engi-
neering and information technology from the Techni-
cal University of Munich (TUM), Munich, Germany,
in 1990 and 1995, respectively. He is a professor
and the head of the Chair of Electronic Design
Automation, TUM. He joined TUM in 2003, fol-
lowing 10 years in industry. His current research
interests include computer-aided design of electronic
circuits and systems, with an emphasis on designing
reliable and robust systems. Increasingly, he focuses

on emerging technologies, such as lab-on-chip, and photonics.

Giovanni Squillero (Senior Member, IEEE) re-
ceived a Ph.D. in Computer Engineering from Po-
litecnico di Torino in 2002; his research mixed
computational intelligence and machine learning,
with industrial applications that range from elec-
tronic CAD to bio-informatics. Currently, Squillero
is an associate professor of Computer Science at
Politecnico di Torino, Department of Control and
Computer Engineering; he is serving in the technical
committee of the IEEE Computational Intelligence
Society Games, and in the editorial board of Genetic

Programming and Evolvable Machines.

	Introduction
	Related Work
	Background
	MCU Performance Screening
	Data Collection: Features
	Data Collection: Label
	Machine Learning
	Deep Convolutional Neural Networks
	Transfer and Semi-Supervised Learning
	Dimensionality Reduction

	Reasoning behind Deep, Semi Supervised and Transfer Learning
	Proposed Approach
	Pseudo-labeling
	Auto-Encoder
	Denoising Auto-Encoder

	Experimental Evaluation
	Experimental Setup
	Inter-Family Transfer Learning setup
	Deep-Learning Models

	Experimental Results
	Semi-Supervised Learning on A1 product
	Transfer Learning on A2 dataset
	Transfer Learning on B1 dataset

	Conclusions
	Biographies
	Nicolò Bellarmino
	Riccardo Cantoro
	Martin Huch
	Tobias Kilian
	Ulf Schlichtmann
	Giovanni Squillero

