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Impulsive feedback control for dosing applications

Alexander Medvedev1, Anton Proskurnikov2, and Zhanybai T. Zhusubaliyev3,4

Abstract— This paper addresses a design procedure of pulse-
modulated feedback control solving a dosing problem originally
defined for implementation in a manual mode. Discrete dosing,
as a control strategy, is characterized by exerting control action
on the plant in impulsive manner at certain time instants.
Dosing applications appear primarily in chemical industry and
medicine where the control signal constitutes a sequence of
(chemically or pharmacologically) active substance quantities
(doses) administered to achieve a desired result. When the
doses and the instants of their administration are adjusted as
functions of some measured variable, a feedback control loop
exhibiting nonlinear dynamics arises. The impulsive character
of the interaction between the controller and the plant makes
the resulting closed-loop system non-smooth. Limitations of the
control law with respect to control goals are discussed. An
application of the approach at hand to neuromuscular blockade
in closed-loop anesthesia is considered in a numerical example.

I. INTRODUCTION
Continuous processes controlled via impulsive actions

appear often in nature and technology. A common example
of such a control strategy is a patient taking medication to
alleviate the symptoms of a disease according to a prescribed
drug dosing regimen. This is an open-loop control law that
can be turned into a closed-loop one when the regimen is
adjusted with respect to the achieved therapeutic effect [1].
In chemical batch processes, discrete dosing is utilized to
control the composition and properties of the product by
introducing additives [2]. Another accessible example of
impulsive feedback control is hot air ballooning where the
balloon altitude is maintained by switching on and off a
burner that heats the air inside it.

Feedback drug dosing [3] predominately follows the com-
mon practice in process control, namely stabilization (or
tracking) of the plant dynamics around a set point by means
of a discrete controller with a constant sampling time. This
concept is implemented, e.g., in the artificial pancreas [4],
where the controlled variable is measured by a continuous
glucose monitor and the actuator is a continuous insulin
infusion pump. Yet, the biological pancreas controls the
blood glucose level in impulsive manner [5] which fact
motivates the development of impulsive control laws for the
artificial pancreas, e.g. [6].
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Impulsive dosing control enhances the patient safety, be-
cause the control signal can be described in the same terms
as in manual drug administration, i.e., in terms of doses and
inter-dose periods. The main hazards of the artificial pancreas
are, for instance, over- and underdosing of insulin [7]. In
impulsive control, the minimal and maximal doses can be
explicitly specified whereas flow rate-based drug adminis-
tration requires calculation of those.

Another established application of feedback drug dosing
is closed-loop anesthesia [8] that constitutes an instance of
truly multi-variable control in a medical setting. Once again,
the known solutions are derived from process control and
implemented by continuously manipulating the flow rates of
the anesthetic drugs delivered by pumps.

Mathematical description of therapeutic effect pro-
duced by a drug dose is provided by pharmacokinetic-
pharnacodynamic (PK/PD) models developed within phar-
macology (pharmacometrics). After being introduced into the
organism, the drug is spread in the blood and tissues. The
temporal evolution of the drug concentrations and the drug
transport between different sites (compartments) is described
by a PK-model whereas the effect of the drug is described
by a PD-model. The drug will eventually clear out from
the organism and its effect subside thus necessitating the
administration of new doses to sustain the pharmacotherapy.
Linear PK-models give normally good approximations of
actually measured concentrations. Since the state variables
of a PK-model correspond to compartmental concentrations,
such models are positive. The PD-models have however to
be nonlinear to reflect the finite number of receptors that the
drug molecules can bind to. This often results in Wiener-type
block-oriented models with a Hill-function nonlinearity.

This paper deals with the design of a closed-loop dosing
algorithm implemented as a pulse-modulated feedback. The
main contribution is twofold. First, feasibility analysis of a
dosing problem to keep the control output of the PK/PD
plant within a predefined interval is performed. Second,
a controller design procedure that renders a closed-loop
solution with a given impulse weight (dose) and period with
respect to a positive Wiener model is proposed.

The paper is composed as follows. First a continuous
nonlinear PK/PD mathematical model of a widely used in
surgery drug is defined. Then a pulse-modulated feedback
controller is introduced rendering the closed-loop dynamics
hybrid. Further, the problem of controller design is for-
mulated and related to the considered dosing application.
Feasibility of controller design under limitations on the dose
and interdose interval are discussed; a necessary feasibility
condition (Corollary 1), and also a simple sufficient con-



dition (Corollary 2) are proven. Further, a necessary and
sufficient condition ensuring the existence of a 1-cycle of
period T is established. It is compatible with output corridor
constraint (Lemma 2) and requires to find the maximum and
minimum of some transcendental function on an interval.
Finally, a controller design for the closed-loop system to
exhibit a predefined periodic solution is performed and the
resulting dynamics are simulated. To discern the behaviors
of the system under plant uncertainty, bifurcation analysis is
performed with respect to the individualizable PK/PD model
parameters.

II. NEUROMUSCULAR BLOCKADE

Neuromuscular blockade (NMB) is used in anesthesia to
relax skeletal muscles of the patient and prevent involuntary
movement that could impact surgery. The effect of a NMB
drug is reliably quantified by clinically validated sensors
(monitors). Train-of-four (ToF) ratio sensors based on ac-
celeromyography are currently considered as “clinical gold
standard” while novel sensor technologies are sought for [9].

In this paper, a Wiener model of the muscle relaxant
atracurium presented in [10] is utilized as a clinically rele-
vant example of a PK/PD model. The linear (PK) third-order
part of the model is given by the transfer function

W (s) =
Ȳ (s)

U(s)
=

v1v2v3α
3

(s+ v1α)(s+ v2α)(s+ v3α)
, (1)

where Ȳ (s) is the Laplace transform of the (unmeasurable)
linear dynamic part output ȳ(t) and U(s) is the Laplace
transform of the input. The parameter 0 < α ≤ 0.1 is
patient-specific and estimated from data whereas the rest of
the transfer function parameters are fixed, v1 = 1, v2 = 4,
and v3 = 10. The structure of the linear block reflects the
fact that the PK-part comprises three cascaded compartments,
each of them possessing first-order dynamics.

The output signal measured by the ToF-monitor y(t)
characterizes the muscular function (100%-NMB depth) and
is related to the output of the linear block via a Hill function
capturing the PD-part of the model

y(t) = φ(ȳ) ≜
100Cγ

50

Cγ
50 + ȳγ(t)

. (2)

The patient-specific PD-parameter 0 < γ ≤ 10 is also
estimated from data and model (1), (2) is particularized to a
patient by the pair (α, γ). The drug concentration producing
50% of the maximum effect is C50 = 3.2425 µg ml−1.

Without medication, i.e for ȳ(t) ≡ 0, the model output
is y(t) = 100%. From the clinical data in [10, Fig. 4],
the muscular function is to be kept within the range 2% ≤
y(t) ≤ 10% throughout the surgery. Other NMB sensors
might produce a different effect measure.

To promptly induce NMB, a bolus dose of atracurium
(calculated as 400–500 µg for a kg weight) is administered
to the patient in the beginning of surgery. This is expected
to provide adequate relaxation for about 15−35 min. When
the desired level of paralysis is achieved, the output y(t) is

maintained within the range by administering a maintenance
dose each 15− 25 min.

Neuromuscular blocking agents are considered high-risk
medicines because they also paralyze the muscle necessary
for breathing. Notably, the patient safety framework in NMB
is established in terms of individual doses and dose intervals.
Therefore, an impulsive control law for an NMB agent ad-
ministration complies well with the patient safety regulation.

III. PULSE-MODULATED FEEDBACK CONTROL

To facilitate the forthcoming controller design, rewrite the
linear part of the PK/PD-model expressed by (1) as a state-
space Wiener model

ẋ(t) = Ax(t), ȳ(t) = Cx(t), (3)

where

A =

−a1 0 0
g1 −a2 0
0 g2 −a3

 , B =

10
0

 , C =
[
0 0 1

]
,

ai = viα > 0 are positive distinct constants, and g1, g2 >
0 are chosen to yield g1g2 = v1v2v3α

3. The output y of
(2) is controlled by a pulse-modulated controller that inflicts
instantaneous jumps on the state vector

x(t+n ) = x(t−n ) + λnB, tn+1 = tn + Tn,

Tn = Φ(ȳ(tn)), λn = F (ȳ(tn)).
(4)

The minus and plus in a superscript denote the left-sided and
a right-sided limit, respectively. The amplitude modulation
function F (·) and frequency modulation function Φ(·) are
continuous, strictly monotonic for positive arguments; F (·)
is non-increasing and Φ(·) is non-decreasing,

0 < Φ1 ≤ Φ(·) ≤ Φ2, 0 < F1 ≤ F (·) ≤ F2, (5)

where Φ1, Φ2, F1, F2 are constant numbers. Then (4)
constitutes a combined (frequency and amplitude) pulse
modulation operator [11] implementing an output feedback
over (3). The time instant tn is called firing time and λn

represents the corresponding impulse weight. With respect
to NMB model (1), (2), λn is the drug dose administered at
the instant tn, and Tn is the interdose interval. From (5), it
follows that a drug dose is administered at earliest Φ1 and
lastest Φ2 time units after the previous one. Importantly, the
dose size is explicitly restricted to be not less than F1 and not
over F2, which, for any controller operation mode, prevents
both under- and overdosing.

The matrix A is Metzler and Hurwitz stable, whereas B,C
satisfy the relationship

CB = 0. (6)

These properties are essential in PK/PD modeling and render
positivity of the elements of x that stand for drug concen-
trations in the model compartments, imply that the effect of
the drug fading away in time, and, finally, guarantee that the
effect of a drug dose does not immediately affect the output.



IV. IMPULSIVE CONTROL PROBLEM

Closed-loop system (3), (4) coincides with the structure
of the impulsive Goodwin’s oscillator, see [12], [13]. It is
known from [12] that the impulsive Goodwin’s oscillator
does not have equilibria and exhibits only positive oscillatory
periodic or non-periodic (e.g. chaotic or quasi-periodic)
solutions. The dynamically simplest periodic solution type
is so-called 1-cycle arising when the feedback controller
generates a sequence of impulses of same amplitude that are
distributed equidistantly over time, i.e ∀n : λn = λ, Tn = T .

Two dosing problems have been solved within the impul-
sive feedback control framework. One of them is motivated
by the necessity of sustained administration a certain main-
tenance dose after the state of NMB is induced.

Control problem 1 [14], [15]: Given plant model (3),
together with the dose λ and the interdose interval T , design
the modulation functions Φ(y) and F (y) in (4) so that
closed-loop system (3), (4) exhibits an orbitally stable 1-
cycle characterized by the desired parameters.

Control problem 2 [16]: Given plant model (3) and the
constants 0 < ymin < ymax, design the modulation functions
Φ(y) and F (y) in (4) so that closed-loop system (3), (4) ex-
hibits an orbitally stable 1-cycle and the (stationary) system
output stays within the prescribed range

ymin ≤ y(t) ≤ ymax. (7)

Control Problem 1 has been solved with respect to a
linear time-invariant plant. The initial analysis of Control
Problem 2 provided in [16] addresses the more general
Wiener model.

In contrast with classical process control, the design
problems formulated above deal with achieving a desired
periodic solution rather than a desired stationary point. With
Xn ≜ x(t−n ), the discrete-time dynamics of Xn are given by

Xn+1 = e(tn+1−tn)A(Xn + λnB), n = 0, 1, . . . (8)

The knowledge of Xn allows to uniquely recover the trajec-
tory on the interval (tn, tn+1) via (3) and (4):

x(t) = e(t−tn)A(Xn + λnB), t ∈ (tn, tn+1). (9)

Now, for a 1-cycle, by applying (8), one has

X = Q(X), Q(ξ) ≜ eAΦ(Cξ) (ξ + F (Cξ)B) , (10)

that is, X is the fixed point of the map Q(·). This completely
characterizes [14], [15] the 1-cycle with the parameters
Φ(ȳ0) = T , F (ȳ0) = λ, where ȳ0 = CX . For such a cycle,
X = Xn ∀n is uniquely found from (10), rewritten as

X = eAΦ(ȳ0) (X + F (ȳ0)B) = eTA (X + λB)

and entailing the relation

X = λ(I − eTA)−1B. (11)

The remaining points of the 1-cycle orbit are recovered
from (9).

The Jacobian of the map Q(·) defined in (10) at the fixed
point X is evaluated as

Q′(X) = eAT +KC, (12)

where

K =
[
J D

] [F ′(ȳ0)
Φ′(ȳ0)

]
, J = eAT B,D = AX (13)

The 1-cycle corresponding to X is then orbitally stable if
Q′(X) is Schur stable. Such a stability can be tested via the
standard Schur stability criteria [14], however, a surprisingly
simple and elegant stability condition can be derived under
the additional assumption that 0 < a1 < a2 < a3 [17].

V. FEASIBILITY ANALYSIS
Feasibility analysis of Control problem 2 defined in Sec-

tion IV is performed here for a case when the cycle param-
eters are constrained to certain intervals Tmin ≤ T ≤ Tmax

and 0 ≤ λ ≤ λmax due to safety or implementation reasons.

A. Necessary condition
One can expect that, to reach a desired therapeutic effect,

the parameters of 1-cycle (λ, T ) should satisfy some con-
straints to be compatible with the output corridor in (7). If
the drug is administered rarely, then each dose needs to be
large enough to sustain the effect. On the other hand, more
frequent drug administration requires lesser dosing. In fact,
a more general statement can be proved for a general and,
possibly, aperiodic solution of (3),(4).

Lemma 1: Consider a solution to impulsive system (3),(4)
such that λn ≤ λ∗ and Tn ≥ T∗ > 0 for all n. Then, the
ultimate lower output bound holds

lim sup
t→∞

ȳ(t) ≤ g1g2
a2a3

λ∗

1− e−a1T∗
. (14)

Similarly, if λn ≥ λ∗ ≥ 0 and Tn ≤ T ∗ for all n, then

lim inf
t→∞

ȳ(t) ≥ g1g2
a2a3

λ∗ e
−a1T

∗

1− e−a1T∗ . (15)
Proof: The proof retraces the arguments in the proof

of [18, Proposition 1]. A closer look at the proof in [18]
reveals that (14) follows from the inequalities λn =
F (CXn) ≤ λ∗ ∀n and tn+1− tn = Tn = Φ(CXn) ≥ T∗ ∀n
(which in [18] are replaced by more conservative estimates
λn ≤ F2 and Tn ≥ Φ1). Similarly, (14) is entailed by the
inequalities λn ≥ λ∗ and Tn ≤ T ∗ (which in [18] are
replaced by estimates λn ≥ F1 and Tn ≤ Φ2).

Lemma 1 does not involve the fixed point X of the map
Q and, therefore, applies also in transient mode. Applying
the result to 1-cycle, the following corollary is obtained.

Corollary 1: Assume that there exists a 1-cycle with the
parameters λn ≡ λ and Tn ≡ T that satisfies (7). Then,

a2a3
g1g2

ȳmin(1− e−a1T ) ≤ λ ≤ a2a3
g1g2

ȳmax(e
a1T −1), (16)

where, by definition,1 ȳmin ≜ φ−1(ymax) and ȳmax ≜
φ−1(ymin). In particular, if λ ≤ λmax and T ≥ Tmin, then

λmax ≥ a2a3
g1g2

ȳmin(1− e−a1Tmin).

1Recall that function φ is decreasing, hence, ȳmin < ȳmax.



Proof: The first statement follows immediately from
Lemma 1, assuming that λ∗ = λ∗ = λ and T ∗ = T∗ = T .
Indeed, the output satisfies (7), and thus

ȳmin ≤ lim sup
t→∞

ȳ(t) ≤ g1g2
a2a3

λ

1− e−a1T
,

ȳmax ≥ lim inf
t→∞

ȳ(t) ≥ g1g2
a2a3

λ

ea1T −1
.

The second statement is now straightforward from (16).

B. Sufficient condition

In this section, two conditions are obtained, ensuring that,
for a given period T , an amplitude λ ∈ [0, λmax] exists
such that the 1-cycle with parameters (λ, T ) satisfies output
constraint (7). Notice that these conditions do not imply
stability of the 1-cycle, which needs to be tested separately.

The first condition is closely related to Corollary 1.
Corollary 2: If T and λmax satisfy the inequalities

ea1T ȳmin < ȳmax,

λmax ≥ a2a3
g1g2

ȳmin(e
a1T −1),

(17)

then there exists λ ∈ [0, λmax] such that the 1-cycle with
parameters (λ, T ) obeys (7).

Proof: Recall that the output of any 1-cycle ȳ(t) is a
continuous periodic function, hence,

lim sup
t→∞

ȳ(t) = max
t≥0

ȳ(t), lim inf
t→∞

ȳ(t) = min
t≥0

ȳ(t).

Choosing now λ as follows

λ =
a2a3
g1g2

ȳmin(e
a1T −1),

one guarantees that 0 ≤ λ ≤ λmax and, by virtue of (15)
(with λ∗ = λ∗ = λ and T ∗ = T∗ = T ), one has
mint≥0 ȳ(t) ≥ ȳmin. Applying (15), one shows that

max
t≥0

ȳ(t) ≤ ȳmine
a1T ≤ ymax.

Hence, the constructed 1-cycle obeys (7).
An apparent disadvantage of the condition in Corollary 2

is the restriction on T that is often violated in practice.
The following lemma gives a more subtle and, in fact, both
necessary and sufficient condition that requires computing
the extreme values of a non-convex transcendental function
on a line segment.

Lemma 2: The 1-cycle with parameters (λ, T ) satisfies
output constraint (7) if and only if

ȳmin ≤ λξT (τ) ≤ ȳmax ∀τ ∈ [0, T ],

ξT (τ) ≜ CeτA(I − eTA)−1B = CeτAξT (0).
(18)

In particular, a cycle with period T satisfying (7) exists if
and only if

maxτ∈[0,T ] ξT (τ)

minτ∈[0,T ] ξT (τ)
≤ ȳmax

ȳmin
, (19)

and the minimal dose λ that is needed to satisfy (7) is

λopt =
ȳmin

minτ∈[0,T ] ξT (τ)
. (20)

Proof: Recall that 1-cycle is a solution satisfying tn+1−
tn = Tn ≡ T and Xn = X(t−n ) ≡ X , where X = X(λ, T )
is found from (11). Substituting this in (9), one finds that

y(tn + τ) = Cx(tn + τ) = λCeτA(I − eTA)−1B = λξT (τ)

for all τ ∈ (0, T ). Furthermore, for 1-cycle (as well as for
any other solution), the coordinate y = Cx(t) = x3(t)
remains continuous, because CB = 0. Hence, the latter
relation holds also for τ = 0 and τ = T . Since the output
y(t) of the 1-cycle is a T -periodic function, condition (7) is
equivalent to (18). This proves the first part of the lemma.

The second statement of the lemma follows from the first
one. If the first condition in (18) is satisfied, then

λmaxτ∈[0,T ] ξT (τ)

λminτ∈[0,T ] ξT (τ)
≤ ȳmax

ȳmin
,

which is equivalent to (19); this proves the “only if” part.
Furthermore, it is obvious that (7) and (19) can hold only
when λ ≥ λopt. To prove the “if” part, choose λ = λopt.
Then, by construction, the output of the 1-cycle ȳ(t) =
λξT (t) attains the minimal value

min
t∈[0,T ]

ȳ(t) = λopt min
t∈[0,T ]]

ξT (t) = ȳmin,

whereas its maximum, in view of (19), does not exceed ȳmax.
Recalling that ȳ(t) is a continuous T -periodic function, it
satisfies (7), which finishes the proof.

VI. DESIGN

In this section, the output nonlinearity is assumed to be
incorporated in the modulation functions, i.e.

F (ȳ) = (F̄ ◦ φ)(ȳ),Φ(ȳ) = (Φ̄ ◦ φ)(ȳ), (21)

where ◦ is the composition of functions.
To illustrate the use of impulsive feedback control law (4)

in NMB, consider model (1), (2) where the individualization
parameters are set to the mean population values α = 0.0374,
γ = 2.6677, and C50 = 3.2425, [19].

Control Problem 2 formulated in Section IV is treated with
respect to this model in [16]. Being designed to keep the
Wiener model output in the interval 2% ≤ y(t) ≤ 10%, the
controller renders a 1-cycle with the drug dose λ = 415.8412
and the interdose interval T = 37.3834. With respect to the
values typical to clinical practice, the dose of atracurium is
too high for NMB maintenance and administered too seldom.
High doses of NMB agents are associated with adverse side
effects and administering the drug seldom weakens the effect
of the feedback.

To pursue a more realistic dosing regimen, select λ =
300, T = 20 and solve Control Problem 1. First, check the
necessary condition in (16) that yields

190.1695 < λ < 476.9292,

and is satisfied. Notice also that this condition is also fulfilled
for the solution obtained in [16], although results in a dose
outside of the clinically established interval.



The fixed point corresponding to the desired 1-cycle is
obtained from (10) and given by

X⊤ =
[
269.5974 84.5819 13.6249

]
, (22)

and thus implying ȳ0 = 13.6249.
With

F ′(ȳ0) = −0.15, Φ′(ȳ0) = 0.29, (23)

the eigenvalues of the Jacobian in (12) are σ(Q′(X)) =
{0.2288, 0.1863, 0.0003}, which guarantees local stability of
the fixed point. As pointed out in [14], the slopes of the
modulation functions evaluated at the fixed point play the
role of feedback gains in the problem of Schur-stabilization
of a linear time-invariant system by output feedback. Then all
the design methods developed for the latter are viable here.
For instance, in [15], an approach making use of Bilinear
Matrix Inequality is utilized. Yet, only local stability in
vicinity of the fixed point can be secured in this way.

In (21), the functions F̄ (·), Φ̄(·) represent the design
degrees of freedom and have to guarantee the desired char-
acteristics of the 1-cycle in the closed-loop system as well
as its (orbital) stability. Select these modulation functions as
piecewise affine, i.e.

Φ̄(ξ) =


Φ2 Φ2 < k2ξ + k1,

k2ξ + k1 Φ1 ≤ k2ξ + k1 ≤ Φ2,

Φ1 k2ξ + k1 < Φ1,

F̄ (ξ) =


F1 k4ξ + k3 < F1,

k4ξ + k3 F1 ≤ k4ξ + k3 ≤ F2,

F2 F2 < k4ξ + k3.

Then, impulsive feedback (4) is completely defined by the
constants ki, i = 1, . . . , 4. Assuming that F ′(·) and Φ′(·) are
in linear interval and applying the chain rule gives

F ′(ȳ0) = F̄ ′(ȳ0)φ
′(ȳ0) = k4φ

′(ȳ0), (24)
Φ′(ȳ0) = Φ̄′(ȳ0)φ

′(ȳ0) = k2φ
′(ȳ0),

where

φ′(ξ) = −γ100Cγ
50ξ

γ−1

(Cγ
50 + ξγ)

2 , φ′(ȳ0) = −0.4073.

Thus, from (23) and (24), it follows that

k2 = −0.7119, k4 = 0.3682.

Now, the rest of the coefficients of the modulation functions
are obtained from

F (ȳ0) = (F̄ ◦ φ)(ȳ0) = F̄ (φ(ȳ0)) = k4φ(ȳ0) + k3 = λ,

Φ(ȳ0) = (Φ̄ ◦ φ)(ȳ0) = Φ̄(φ(ȳ0)) = k2φ(ȳ0) + k1 = T.

that yield

k1 = 21.5133, k3 = 299.2173.

The resulting modulation functions are depicted in Fig. 1.
Notice that (24) is valid only when Fi,Φi, i = 1, 2 are
outside of the range of φ(·), which can always be satisfied.

Fig. 1. The designed modulation functions F (ȳ) (blue) and Φ(ȳ) (red).
The desired cycle parameters F (ȳ0) = λ = 300,Φ(ȳ0) = T = 20 are
marked by red dot.

Fig. 2. The nonlinear output y(t) (upper plot) and the linear block output
ȳ(t) (lower plot) in the designed 1-cycle.

Being initiated at the fixed point X , closed-loop system
(3), (4) exhibits a 1-cycle with the desired parameters λ =
300, T = 20, see Fig. 2. The maximal and minimal values
of y(t) and ȳ(t) are calculated by applying the result of [16,
Proposition 2]. Notably, selecting the mean values of the dose
and interdose interval of atracurium resulted in the highest
value of the muscular function y(t) only slightly over the
lower bound of the established clinical interval (i.e. 2%).
Therefore, the actual value of y(t) is significantly below
the lower bound of the clinical interval most of the time.
Compared to the dosing regimen solution obtained in [16]
to keep y(t) within a clinically suitable interval, the present
strategy corresponds to drug overdosing.

The designed 1-cycle is attractive. In Fig. 3, a transient
response of closed-loop system (3), (4) is depicted. After
the induction dose, an additional dose is needed to reach the
stationary periodic orbit.

VII. BIFURCATION ANALYSIS

The dynamics of closed-loop system (3), (4) are highly
nonlinear [18] whereas the impulsive controller design in the



Fig. 3. The nonlinear output y(t) in a transient to the designed 1-cycle.
The 1-cycle is attractive to all simulated initial conditions.

previous section is based on a linearization in vicinity of a
fixed point. To discern behaviors of the closed-loop dynamics
under uncertainty in the plant parameters α, γ, bifurcation
analysis is performed.

The result of a bifurcation analysis for 0.0274 < α <
0.04824 is presented in Fig. 4. The values of the rest of the
NMB model parameters are kept as specified in Section II. At
the point α = α0, α0 = 0.0374, there is a stable fixed point
specified by (22) that undergoes a classical period-doubling
bifurcation as the parameter α is increased. With further
increase in the value of α, the unstable fixed point becomes
a stable one in the border collision flip (or period-doubling)
bifurcation. As seen from the Fig. 4, one of the periodic
points of the 2-cycle collides with one of the borders. As
a result, the 2-cycle changes its type. Such a transition is
known as “persistence border collision”.

With γ in the range 1.403 < γ < 5.5619, there is only
a stable fixed point that tends to the limit value X⊤

∗ =
[242.126, 76.5507, 12.38252].

Fig. 4. Bifurcation diagram for 0.0274 < α < 0.04824, α0 = 0.0374.

VIII. CONCLUSIONS

A pulse-modulated dosing feedback system suitable for
applications in e.g. medicine and chemistry is considered.
It can be designed directly from a description of (manual)

dosing regimen, which facilitates controller validation and
certification. This is in contrast with the conventional feed-
back control systems that are used in process control and
designed to maximize closed-loop performance expressed as
a function of the control error. The nonlinear and non-smooth
dynamics arising in pulse-modulated control require com-
plementing the design procedure with bifurcation analysis
to ensure consistent system behavior under plant parameter
uncertainty.
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