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Cryptographic group actions provide a flexible framework that 
allows the instantiation of several primitives, ranging from 
key exchange protocols to PRFs and digital signatures. The 
security of such constructions is based on the intractability 
of some computational problems. For example, given the 
group action (G, X, �), the weak unpredictability assumption 
(Alamati et al. (2020) [1]) requires that, given random xi’s in 
X, no probabilistic polynomial time algorithm can compute, 
on input {(xi, g � xi)}i=1,...,Q and y, the set element g � y.
In this work, we study such assumptions, aided by the 
definition of group action representations and a new metric, 
the q-linear dimension, that estimates the “linearity” of a 
group action, or in other words, how much it is far from 
being linear. We show that under some hypotheses on the 
group action representation, and if the q-linear dimension 
is polynomial in the security parameter, then the weak 
unpredictability and other related assumptions cannot hold. 
This technique is applied to some actions from cryptography, 
like the ones arising from the equivalence of linear codes, as 
a result, we obtain the impossibility of using such actions for 
the instantiation of certain primitives.
As an additional result, some bounds on the q-linear dimension 
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are given for classical groups, such as Sn, GL(Fn) and the 
cyclic group Zn acting on itself.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Group actions in cryptography In recent years, the topic of cryptographic group actions 
has received a lot of attention. One of the main motivations of its study is the fact that 
this framework provides post-quantum assumptions. The topic was introduced by the 
seminal articles of Brassard and Yung [7] and Couveignes [10]. Moreover, the work of 
Couveignes had a focus on elliptic curves isogenies, on which more recent works rely [8,1]. 
In the last years, many other cryptographic group actions have been proposed, concerning 
the general linear group [18,26,28], multivariate polynomials [23], lattices [14] and linear 
codes [3]. This framework enables the design of a lot of primitives; the most famous ones 
are key exchanges [25,10,8] and digital signatures [10,27,12]. Notably, the 2023 NIST’s 
call for digital signatures [22] lists three candidates based on group actions in round 1 
(MEDS [9], LESS [2] and ALTEQ [28]). The design space provided by these objects 
is huge, and it depends on the features of the employed action: for general actions in 
literature, we can find PRFs [1], ring signatures [6], updatable encryption schemes [21]
and commitments [7]; with the additional requirement of having a commutative action, 
we can also build oblivious transfers [1], oblivious PRFs [17], group signatures [5] and 
verifiable random functions [19].

Our contribution Given a group action (G, X, �), it is called one-way if the map � is 
non-invertible: given y and x = g � y, it is hard to find g. This is the main assumption at 
the core of the majority of the cryptographic constructions. However, many primitives 
require stronger assumptions than the previous one to prove their security. For example, 
the weak unpredictability and the weak pseudorandomness properties are introduced in 
[1]. The former can be seen as the impossibility, for a probabilistic and polynomial time 
(PPT) adversary, to compute a set element x such that g � y is equal to x for a given y, 
whenever he sees a polynomial number of pairs (xi, g � xi), for random xi. On the other 
hand, an action is weakly pseudorandom if an adversary cannot distinguish whether its 
input contains a polynomial number of pairs (xi, g �xi) or (xi, yi), for random xi and yi.

In this work, we analyze when the above properties hold introducing a more general 
assumption called multiple one-wayness, and we give some tools to estimate their validity. 
This assumption is a relaxation of the one-way one, where a polynomial number of pairs 
of the form (x, g � x) are given to the adversary, whose goal is to find g. In this setting, 
particular attention must be given to whether the action is Abelian or not. For actions 
that are commutative and transitive, seeing a single sample of the form (x, g � x) is 
equivalent to seeing a polynomial number of them. In fact, one can produce other random 
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samples picking h1, . . . , hl from G and computing (hi �x, hi �(g �x)) = (yi, g �yi), setting 
yi = hi � x for every i. This means that breaking multiple one-wayness directly implies 
breaking one-wayness of the action. Since we want to investigate the case whether the 
latter holds, we set ourselves in the non-Abelian scenario.

To study this new assumption, the main idea is that, if we linearize the group action, 
with non-negligible probability the set {xi}i forms a basis of a certain linear space. 
Using the knowledge of elements {g � xi}i, we can retrieve the secret g. With tools from 
representation theory, we introduce the concept of group action representation, which 
is given by a classical representation ρ : G → GL(Fn

q ) endowed with an injective map 
ι : X → Fn

q such that they are compatible with the group action, i.e. it must hold that 
ρ(g)(ι(x)) = ι(g � x). The integer n is called the dimension of the representation. Then, 
we report some theoretical results on representations of group actions and we introduce 
the q-linear dimension of a group action, denoted with LinDimFq

, given by the minimal 
integer such that there exists a representation of such dimension

LinDimFq
(G,X, �) = min

{
dimFq

(ρ, ι) | (ρ, ι) is a representation of (G,X, �)
}
.

We show that, under some hypothesis on the representation and if the q-linear dimen-
sion of the group action is polynomial in the security parameter, multiple one-wayness, 
and hence the weak unpredictability and the weak pseudorandomness assumptions, do 
not hold. In the Abelian case, this implies that, if this attack is doable, an action that 
has small linear dimension is not even one-way.
One can see that the requirements of our attack are satisfied by a group action where 
X is a vector space and � acts linearly. This implies that a large class of well-known 
cryptographic group actions are not weakly unpredictable nor weakly pseudorandom. In 
particular, we present some attacks to the above assumptions for the group actions on 
linear codes related to the ones underlying the LESS and the MEDS signature schemes, 
even if this does not impact their security since they rely only on the (non-multiple) 
one-wayness of the actions. In particular, the actions used in those schemes involve a 
systematic form SF. These variants are equivalent to the ones without SF in the case of 
just one oracle call, while, for more calls, they are not. More generally, since we show that 
the action on d-tensors does not satisfy the above assumptions, all the actions linked to 
isomorphism problems in the class TI introduced in [16] are not weakly unpredictable nor 
weakly pseudorandom. As a practical result, such non-commutative group actions cannot 
be used in the design of Naor-Reingold PRFs [1], updatable key encryption schemes [21]
and primitives that expose an oracle that returns samples of the form (x, g � x), with a 
secret g.

As a strictly mathematical result, we provide some bounds on the action of classical 
groups like the permutation group, the general linear group acting on a vector space, 
and the cyclic group Zn acting on itself. The latter leads to an interesting closed formula 
that can be of independent interest.
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This work is organized as follows. Section 2 recaps preliminaries like cryptographic 
assumptions on group actions and introduces the concept of multiple one-wayness. Sec-
tion 3 defines the fundamental tools to analyze some assumptions, i.e. the representation 
and the q-linear dimension of a group action. Section 4 describes the hypotheses needed 
to attack the weak unpredictability and weak pseudorandomness assumptions and ap-
plies them to some cryptographic group actions from the literature. In Section 5 we study 
the q-linear dimension of actions derived by classic groups.

Concurrent works In [4], the authors model the lattice isomorphism problem as a group 
action and study its properties. Their approach is similar to ours, even if it is less general 
and they focus on a particular action. For instance, they define that a distribution on 
the set X induces linear independence whenever the sampled elements, under a certain 
function, are linearly independent with high probability. We generalize this property in 
the setting of group actions representations in Definition 12. Moreover, it is shown that 
the lattice isomorphism action is not weakly unpredictable nor weakly pseudorandom 
like we do with the code equivalence and other actions.

2. Preliminaries

2.1. Notation

In the course of this paper, with Pr[A] we denote the probability of the event A. A 
function μ(x) is negligible in x if for every positive integer c there exists a x0 such that 
for each x > x0 we get μ(x) < 1

xc . With SX we denote the group of permutation of the 
set X. Given a group G and an element x from the set X on which X acts, the set Gx

contains elements of G that fix x.

2.2. Cryptographic group actions

Definition 1. A group G is said to act on a set X if there is a map � : G ×X → X that 
satisfies the following properties:

• if e is the identity element of the group G, then e � x = x for every x in X.
• given g and h in G and x in X, we have that (gh) � x = g � (h � x).

In this case, we say that the triple (G, X, �) is a group action.

Observe that the action of G over X induces a group homomorphism from G to SX

g �→ (fg : X → X, x �→ g � x) .
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If the kernel of the above homomorphism is trivial, the action is said faithful. If, given 
any two elements x, y in X there exists g in G such that y = g � x, then the action is 
said transitive.

Alamati, De Feo, Montgomery, and Patranabis [1] define the concept of effective group 
action. Here we report the key points, but a formal definition can be found in their work.

Definition 2. A group action (G, X, �) is effective if the group G is finite and there exists 
a probabilistic polynomial time (PPT) algorithm for executing membership and equality 
testing, sampling, and for computing the group operation and the inverse of an element; 
the set X is finite and there exist PPT algorithms for computing membership testing and 
the unique string representation of any element in X; there exists an efficient algorithm 
to compute g � x, for each g in G and x in X.

Informally, a group action is said effective if it can be manipulated easily and it can 
be computed in practical time. In the rest of this work, even when not explicitly written, 
we will consider effective group actions where both the set X and the group G are finite, 
even if some theoretical definitions work for generic group actions.

We report two assumptions from [1].
In the following, λ will be the security parameter and (G, X, �) will be a group action 
such that log(|G|) = O(poly(λ)) and log(|X|) = O(poly(λ)). With DG and DX we denote 
two distributions over G and X respectively. Let Πg be a randomized oracle that, when 
queried, samples x from DX and returns (x, g � x).

Definition 3. The group action (G, X, �) is (DG, DX)-weakly unpredictable if, for all PPT
adversaries A having access to the oracle Πg, where g is sampled according to DG, there 
exists a negligible function μ such that

Pr
[
AΠg(1λ, y) = g � y

]
≤ μ(λ).

In other words, an action is weakly unpredictable if it is hard to compute g � y given 
y and a polynomial number of pairs of the form (xi, g � xi).

Another assumption from [1] makes use of the oracle Πg.

Definition 4. The group action (G, X, �) is (DG, DX)-weakly pseudorandom if, given the 
randomized oracle U such that, when queried samples x from DX , σ uniformly at random 
from SX and returns (x, σ(x)), for all PPT adversaries A, there exists a negligible function 
μ such that

∣∣Pr
[
AΠg(1λ) = 1

]
− Pr

[
AU (1λ) = 1

]∣∣ ≤ μ(λ),

where g is sampled according to DG.

In the above definition, the adversary should distinguish whether he has access to the 
oracle that uses the group element g or not.
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Now, we introduce a slightly more general assumption that uses the oracle Πg. It is a 
variant of the one-wayness where the adversary has access to Πg and he must retrieve g.

Definition 5. The group action (G, X, �) is (DG, DX)-multiple one-way if, for all PPT
adversaries A having access to the oracle Πg, where g is sampled according to DG, there 
exists a negligible function μ such that

Pr
[
AΠg (1λ) ∈ gN

]
≤ μ(λ),

where N = {h ∈ G | ∀x ∈ X, h � x = x} is the kernel of the induced homomorphism 
from G to SX .

The request on the coset of the kernel gN in the above definition allows the adversary 
to find a different group element g′ acting like g. This is needed in case the action is not 
faithful.

Observe that breaking the multiple one-wayness implies breaking both the weak un-
predictability and the weak pseudorandomness. We will use this fact to attack such 
assumptions.

When we omit the distributions DG and DX from Definitions 3, 4 and 5, we use the 
uniform ones.

Remark 6. A similar but stronger treatment of multiple one-way group actions is given 
in [24], under the name of transparent security. The adversary A has access to a more 
malleable oracle, called the transparent oracle: it acts as Πg, but, instead of sampling 
the set element x from DX , it is queried by A. It can be seen that an adversary with 
access to a transparent oracle can trivially simulate Πg sampling x from DX and then 
querying it. Therefore, an attack regarding the oracle Πg can be carried in the context 
of transparent security while the converse, in general, is not true.

As noted in the introduction, if we assume the one-wayness of the group action, 
studying the multiple one-wayness is meaningful only in the non-commutative and non-
transitive case. In fact, in the Abelian and transitive scenario, an attacker can simulate 
the oracle Πg from a single sample (x, g � x), and hence, the multiple one-wayness and 
the one-wayness are equivalent. For this reason, we place ourselves in the more general 
setting.

3. Representations and the linear dimension of a group action

In this section, we explore the concept of representations of finite groups when we 
endow them with an injection of the set X into a vector space. Such injection must be 
“compatible” with the map �, as we see in the following definition.
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Definition 7. The pair (ρ, ι) is a representation of the group action (G, X, �) over F if 
ρ : G → GL(Fn) is a homomorphism of groups, ι : X → Fn is injective and ρ(g)(ι(x)) =
ι(g�x) for every g in G and x in X. The integer n is said dimension of the representation 
and is denoted with dimF (ρ, ι).

Given a group action (G, X, �) and a representation of G, it is natural to ask whether 
a compatible injection ι is admitted. In the following, we look for necessary and sufficient 
conditions for the existence of an injection ι given a representation ρ of G.

Proposition 8. Let (G, X, �) be a group action, let N be the kernel of the homomorphism 
G → SX and let O = X/G be the space of orbits of the action of G on X i.e. the quotient 
of X by the action of G. Let ρ : G → GL(Fn

q ) be a linear representation. The following 
are equivalent

(i) there is an injection ι : X → Fn
q such that ρ(g)(ι(x)) = ι(g � x) for every g in G and 

x in X,
(ii) there is a ρ-invariant subspace V ⊂ Fn

q such that

{g ∈ G : ρ(g)|V = Id} = N

and maps τ : O → X, υ : O → V such that for all o ∈ O:
⎧⎪⎪⎨
⎪⎪⎩
τ(o) ∈ o,

ρ(G)υ(o) = ρ(Gτ(o)),
if o �= o′ ∈ O then ρ(G)υ(o)

⋂
ρ(G)υ(o′) = ∅.

Proof. (i) =⇒ (ii). Let V = spanFq
(ι(X)) be the linear subspace generated by the 

image of ι. If g ∈ N then ρ(g)(ι(x)) = ι(x) for all x ∈ X. So N ⊂ {g ∈ G : ρ(g)|V = Id}
hence N = {g ∈ G : ρ(g)|V = Id} because ι is injective.

For each o ∈ O choose any element τ(o) ∈ o and define υ as follows:

υ(o) = ι(τ(o)) .

By construction, we have that τ(o) is in o. The second condition is as follows:

ρ(G)υ(o) = {ρ(g) : ρ(g)(υ(o)) = υ(o)} =

= {ρ(g) : ι(g � τ(o)) = ι(τ(o))} =

= {ρ(g) : g � τ(o) = τ(o)} =

= ρ(Gτ(o))

The third condition follows from the injectivity of ι since
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ρ(G)υ(o)
⋂

ρ(G)υ(o′) = ι(G � τ(o))
⋂

ι(G � τ(o′)) .

(ii) =⇒ (i). Here we show how to define the injection ι : X → Fn
q . Let π : X →

X/G = O be the projection to the space of orbits. Let x ∈ X be any point and let 
o = π(x) its projection. Let g ∈ G such that g � τ(o) = x and define

ι(x) = ρ(g)(υ(o)) .

First of all, notice that ι(x) is well defined. Indeed, if for another g′ ∈ G we have 
g′ � τ(o) = x, then g′ = g · h with h ∈ Gτ(o). So

ρ(g′)(υ(o)) = ρ(g · h)(υ(o)) =

= ρ(g)(ρ(h)(υ(o))) =

= ρ(g)(υ(o)),

since ρ(h) ∈ ρ(G)υ(o). Notice that ι is injective by the third condition. Indeed, assume 
ι(x) = ι(y), where

x = gx � τ(o) and y = gy � τ(o′) .

Then, ι(x) = ι(y) means

ρ(gx)(υ(o)) = ρ(gy)(υ(o′)) ,

and then, by the third condition, we get o = o′. Moreover, ρ(g−1
y gx) is in ρ(G)υ(o) and 

hence ρ(g−1
y gx) is in ρ(Gτ(o)). This implies that there is h ∈ Gτ(o) such that ρ(g−1

y gx) =
ρ(h), and so ρ(h−1g−1

y gx) = Id. Thus, h−1g−1
y gx is in N , which gives gx�τ(o) = gy �τ(o); 

hence, x = y and our ι is indeed injective. Finally, we check that ρ(g)(ι(x)) = ι(g � x)
holds for every g in G and x in X. Let x = gx � τ(o) and let g be arbitrary in G, then

ρ(g)(ι(x)) = ρ(g)(ρ(gx)(υ(o)))

= ρ(ggx)(υ(o))

= ι(ggx � τ(o))

= ι(g � (gx � τ(o)))

= ι(g � x).

This completes the proof of the proposition. �
For our analysis, the following metric gives a useful tool in the study of cryptographic 

assumptions based on group actions.
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Definition 9. Let (G, X, �) be a group action. For every finite field Fq, the q-linear di-
mension of (G, X, �) is the integer

LinDimFq
(G,X, �) = min

{
dimFq

(ρ, ι) | (ρ, ι) is a representation of (G,X, �)
}
.

Remark 10. Observe that the q-linear dimension is well-defined since the set

SFq,(G,X,�) =
{
dimFq

(ρ, ι) | (ρ, ι) is a representation of (G,X, �)
}

is non-empty for every finite field Fq and every group action (G, X, �).
Indeed, let X = {x1, . . . , x|X|} and define Fq[X] as the vector space of linear combinations 
of the elements of X

Fq[X] =

⎧⎨
⎩
∑
j

cjxj : cj ∈ Fq

⎫⎬
⎭ .

It can be shown that the dimension of Fq[X] over Fq is |X|. Let ι be the map that sends 
xj ∈ X to xj ∈ Fq[X]. Moreover, let ρ be the map from G to GL(Fq[X]) such that ρ(g)
is the permutation matrix associated to the invertible map

x �→ g � x.

Hence, ρ(g)(ι(x)) = ρ(g � x) and since Fq[X] ∼= F |X|
q , we have that |X| is in SFq,(G,X,�).

The above remark tells us that the cardinality of |X| is an upper bound for the q-linear 
dimension of a group action. Moreover, we can prove the following lower bound.

Proposition 11. Let (G, X, �) be a group action and N be the kernel of the homomorphism 
G → SX . For every finite field Fq it holds that

LinDimFq
(G,X, �) ≥

√
logq

(
|G|
|N |

)
.

In particular, when the action is faithful, LinDimFq
(G, X, �) ≥

√
logq (|G|).

Proof. Consider the action of the quotient G/N on X

�/N : (gN, x) �→ g � x.

It can be shown that it is indeed a group action and it is faithful. Moreover, if ρ is a 
representation of G to Fn

q and ι an injection of X to Fn
q , then ρ can be extended to

ρ̃ : G/N → GL(Fn
q ), gN �→ ρ̃(gN) = ρ(g).
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Observe that ρ̃(gN)(ι(x)) = ι(gN �/N x) holds for every gN in G/N and x in X. Since 
the action of G/N is faithful, ρ̃ is injective. Now, we have that |G/N | = |ρ̃(G/N)| ≤∣∣GL(Fn

q )
∣∣. The cardinality of GL(Fn

q ) is given by 
∏n−1

j=0 qn−qj and it is upper bounded by 

qn
2 . This implies |G/N | ≤ qn

2 and hence n ≥
√

logq(|G/N |), leading to the thesis. �
Moreover, whenever the set X is a vector space of dimension n on the field Fq and 

the action of G is linear, i.e. g � (λ1x1 + λ2x2) = λ1(g � x1) + λ2(g � x2), we have that

LinDimFq
(G,X, �) ≤ n.

As we will see in the next sections, many group actions used in cryptography follow the 
above structure, and hence, a practical upper bound of the linear dimension is known.

4. On multiple one-way group actions

Here we propose an attack on the assumptions presented in Subsection 2.2, and a 
relation to the linear dimension. In particular, we will attack the multiple one-wayness, 
and, as a direct consequence, this leads to an attack to both the weak unpredictability 
and the weak pseudorandomness.

We need the following known combinatorial fact. Given v1, . . . , vk uniformly sampled 
from Fk

q , it is known that they form a basis with probability

k∏
i=1

(1 − q−i) = O(1 − q−1).

This means that, for the uniform distribution on Fk
q , we have that the sampled elements 

are linearly independent with non-negligible probability (with respect to k). We need to 
generalize this fact for a group action (G, X, �) and a representation (ρ, ι).

Definition 12. Given a group action (G, X, �), a distribution DX on X and a represen-
tation (ρ, ι) of dimension n over Fq, we say that (ρ, ι) induces linear independence with 
respect to DX if, given {x1, . . . , xQ} sampled according to DX , with Q = poly(n), then 
there exists a negligible function μ(n) such that

Pr
[
〈ι(x1), . . . , ι(xQ)〉 �= Fn

q

]
≤ μ(n).

In particular, if X is a vector space, the uniform distribution over X induces a linear 
independence. Due to the above definition, we can analyze whenever an attacker can 
retrieve the secret g from a tuple of the form {(xi, g � xi)}i.

Definition 13. Given the group action (G, X, �), the representation (ρ, ι) is admissible if 
the following hold
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1. ι is polynomial time computable;
2. a preimage of ρ(g) can be found in polynomial time for every g in G.

Now we can state our attack.

Proposition 14. Let λ be the security parameter. Given the group action (G, X, �) and 
two distributions DG and DX over G and X respectively, if there exists a field Fq and 
an admissible representation (ρ, ι) which induces linear independence with respect to DX

with dimFq
(ρ, ι) = poly(λ), then the group action is not (DG, DX)-multiple one-way.

Proof. Let A be the adversary having access to the oracle Πg. If n = LinDimF (G, X, �), 
then there exist ρ : G → GL(Fn) and ι : X → Fn such that (ρ, ι) is admissible by 
hypothesis. The strategy of the adversary is the following.

1. A performs a number of queries Q to the oracle Πg until he obtains the set Y =
{(xi, g � xi)}i=1,...,n such that {ι(x1), . . . , ι(xn)} is a basis of Fn.

2. A evaluates ι on the set Y

{(ι(xi), ι(g � xi))}i = {(ι(xi), ρ(g)(ι(xi)))}i.

3. Since {ι(x1), . . . , ι(xn)} is a basis of Fn, A can find the invertible matrix ρ(g) and 
then inverting ρ, obtaining an element h in G such that ρ(h) = ρ(g).

Let us analyze this strategy. Since n = poly(λ) and the representation induces linear 
independence, A requires a polynomial number of queries to retrieve a set Y with non-
negligible probability in step 1. Step 2 is polynomial time since the representation is 
admissible and ι is evaluated at most 2Q times. Moreover, since finding a preimage 
of ρ(g) is a polynomial time task, the adversary A finds an element h of G such that 
ρ(g) = ρ(h). This implies that the action of h on all the elements of X coincides with the 
one of g and h is in the coset gN . Therefore, the action cannot be multiple one-way. �

As a corollary, we easily get the following result.

Corollary 15. Let λ be the security parameter. Given the group action (G, X, �) and two 
distributions DG and DX over G and X respectively, if there exists a field Fq and an 
admissible representation (ρ, ι) which induces linear independence with respect to DX

with dimFq
(ρ, ι) = poly(λ), then the group action is not (DG, DX)-weakly unpredictable 

nor (DG, DX)-weakly pseudorandom.

Even if the requirements of the previous propositions are non-trivial, in the next 
section we show how a large class of group action used in cryptography satisfies them.
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4.1. Analysis of some group actions from cryptography

Here, we propose some representations of known cryptographic group actions, starting 
from the one concerning linear codes.

The hardness of the code equivalence problem has been used to build different primi-
tives [2,9]. However, in practice, a slightly different action from the one we define in the 
following is used, involving the systematic form of matrices. In the rest of the section, we 
will always refer to the non-systematic form variant. We refer to (Linear) Code Equiva-
lence Problem as the following one: given two linearly equivalent linear codes C and C′, 
find an isometry between them. This problem can be rephrased in the setting of group 
actions.

Definition 16. Let G = GL(Fk
q ) ×Mon(Fn

q ), where Mon is the group of monomial matri-
ces, and let X = Fk×m

q be the set of k×m matrices with coefficients in Fq. The (Linear) 
Code Equivalence Problem asks, on inputs M, M ′ in X, to find (S, R) in G such that 
M ′ = SMR.
The action underlying this problem is given by (G, X, �), where

� : G×X → X, ((S,R),M) �→ SMR.

The map � for the above definition is given by the left-right multiplication of the two 
matrices S and R.

Remark 17. Observe that, even if for one sample (M, SMR) the code equivalence prob-
lems with and without the systematic form are equivalent, the scenario changes when 
more samples are involved and it is not known if this equivalence still holds.
In practice, the version with the systematic form is adopted for efficiency reasons: the 
group that acts on the set is Mon(Fn

q ), and hence, it has a shorter bit representation 
than the whole GL(Fk

q ) × Mon(Fn
q ).

Corollary 18. The group action of the Code Equivalence Problem is not weak unpre-
dictable nor weak pseudorandom.

Proof. We will show that this action is not multiple one-way and consequently, we get 
the thesis.
Since the space of k × n generator matrices is a vector space of dimension kn, we can 
see it as Fkn and ι is the natural bijection. Since G is the product GL(Fk) × Mon(Fn), 
we define the representation ρ as follows

ρ : G → GL(Fkn), (S,R) �→ S ⊗RT ,

where ⊗ denotes the Kronecker product. It can be seen that ρ(g)(ι(x)) = ι(g � x) for 
every g in G and x in X. Moreover, the computation of ι is polynomial time and such 
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is finding a preimage of ρ(S, R). Indeed, let A = S ⊗ RT and divide A in n × n blocks. 
Let (i, j) be such that the block A(i,j) is non-zero and set R′ = AT

(i,j). Now compute the 
matrix S′ as follows. Let u and v be two indexes such that R′

uv is non-zero. Then, for 
every i, j = 1, . . . , k, set

S′
ij =

A(i,j)uv
R′

uv
.

In this way, we found a pair (S′, R′) such that the image through ρ is the same as 
ρ ((S,R)) and, observing that computing S′ and R′ is a polynomial time task, we can 
apply Proposition 14 and Corollary 15 to get the thesis. �

Another problem having a linked group action that raised interest is the Tensor Iso-
morphism Problem. It received a lot of attention both from a theoretical point of view 
[16] and from a cryptographic point of view [18,11].

Definition 19. Let d be a positive integer. Let G = Πd
i=1 GL(Fni

q ) and let X =
⊗d

i=1 F
ni
q

be the set of d-tensors with coefficients in Fq. The map � : G ×X → X is defined as

� :

⎛
⎝(A1, . . . , Ad),

∑
i1,...,id

Ti1,...,ide1 ⊗ · · · ⊗ ed

⎞
⎠ �→

∑
i1,...,id

Ti1,...,idA1e1 ⊗ · · · ⊗Aded.

The d-Tensor Isomorphism Problem asks, on inputs T, T ′ in X, to find (A1, . . . , Ad) in 
G such that T ′ = (A1, . . . , Ad) � T .

Corollary 20. The action of the d-Tensor Isomorphism is not weak unpredictable nor 
weak pseudorandom.

Proof. The set of d-tensors in Fn1⊗· · ·⊗Fnd is a vector space of dimension N = n1 · · ·nd. 
Therefore, ι is the natural bijection. The representation ρ is the Kronecker product of 
matrices

ρ : G → GL(FN ), (A1, . . . , Ad) �→ A1 ⊗ · · · ⊗Ad

and it can be inverted iteratively with the computation from the proof of Corollary 18; 
consider A1 ⊗ (A2 ⊗ · · · ⊗Ad) and find matrices A′

1 in GL(Fn1) and B1 GL(FN/n1) such 
that

A′
1 ⊗B1 = A1 ⊗ · · · ⊗Ad.

Then, we find A′
2 in GL (Fn2) and B2 GL

(
F

N
n1n2

)
for which the following holds

A′
2 ⊗B2 = B1.



14 G. D’Alconzo, A.J. Di Scala / Finite Fields and Their Applications 99 (2024) 102476
Proceeding in this way, we find A′
1, . . . , A

′
d such that

A′
1 ⊗ · · · ⊗A′

d = A1 ⊗ · · · ⊗Ad.

Hence, we have the thesis using Proposition 14 and Corollary 15. �
Due to the TI-completeness of d-Tensors Isomorphism [16], most group actions derived 

from problems in TI cannot be multiple one-way. In particular, the action on matrix codes 
from [9] and the one on trilinear forms from [28]. This is intuitive to see, and we analyze 
the reductions between equivalence problems arising from group actions.

Suppose we have two group actions (G, X, �) and (G′, X ′, �′) and a polynomial time 
reduction Φ : X → X ′ such that, for every x, y in X

∃g ∈ G such that g � x = y ⇐⇒ ∃g′ ∈ G′ such that g′ �′ Φ(x) = Φ(y). (1)

Even if these kinds of reductions concern decision problems, most of the time they can 
be viewed as reductions between search problems, for instance like the ones in [16,15]. If 
so, we define

RΦ = {(g, g′) ∈ G×G′ | g � x = y ⇐⇒ g′ �′ Φ(x) = Φ(y) , ∀x, y ∈ X}

and we denote with G′
Φ the projection of RΦ to the second coordinate. Then, there is a 

pair of maps

fΦ : G → G′
Φ, g �→ fΦ(g)

and

f ′
Φ : G′

Φ → G, g′ �→ f ′
Φ(g′)

such that both (g, fΦ(g)) and (fΦ(g′), g′) are in RΦ. With this notation, we can conclude 
that the reduction Φ induces the following equation

Φ(g � x) = fΦ(g) �′ Φ(x).

Let us go back to group actions representations. Given a polynomial reduction Φ
between (G, X, �) and (G′, X ′, �′) as in Eq. (1) and given a representation (ρ′, ι′) for 
(G′, X ′, �′), we have that the tuple {xi, g � xi} is sent to {Φ(xi), fΦ(g) �′ Φ(x)}. Using 
Proposition 14, we retrieve fΦ(g) in G′, and this implies the following result.

Theorem 21. Let (G, X, �) and (G′, X ′, �′) be two group actions. Suppose that there exist 
two polynomial time computable maps Φ : X → X ′ and f ′

Φ : G′
Φ → G, with G′

Φ ⊆ G′, 
such that g′�Φ(x) = Φ(y) if and only if f ′

Φ(g′) �x = y. Then, if (G′, X ′, �′) is not multiple 
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one-way, then neither (G, X, �) is multiple one-way. As an application, group actions 
derived from equivalence problems in the class TI, for which there exists a polynomial 
reduction Φ to the d-Tensors Isomorphism Problem having a polynomial time f ′

Φ, cannot 
be weakly unpredictable nor weakly pseudorandom.

Proof. Assuming that (G′, X ′, �′) is not multiple one-way, we show that the action 
(G, X, �) is not multiple one-way. Calling the oracle Πg for (G, X, �) multiple times, 
we can apply the map Φ to the samples {xi, g � xi} to obtain {Φ(xi), g′ �′ Φ(x)}, for a 
certain g′ in G′. In this way, we can retrieve g′ and, after applying f ′

Φ, we can recover 
h = f ′

Φ(g′) the coset gN of the kernel N . This breaks the multiple one-way assumption 
for (G, X, �).

Since the d-Tensor Isomorphism problem is TI-complete, Corollary 20 implies that any 
group actions derived from equivalence problems in the class TI for which there exists a 
reduction Φ to the d-Tensors Isomorphism Problem having a polynomial time f ′

Φ cannot 
be weakly unpredictable nor weakly pseudorandom. �

Observe that many reductions from [16,15] satisfy the hypotheses of Theorem 21, 
hence, it is safe to avoid any of these group actions in the design of primitives requiring 
weak unpredictability or weak pseudorandomness.

5. On the linear dimension of some classic groups

5.1. The symmetric group Sn

Let Sn be the symmetric group in n letters x1, · · · , xn, i.e. it is the group of all 
bijections of the set Xn = {x1, · · · , xn}. The action is the trivial one, let τ be in Sn and 
xj be in Xn. We define τ � xj = xτ(j).

Surprisingly, the n − 2 dimensional representation ρ : Sn → GL(Fn−2
p ) of the sym-

metric group Sn, when p divides n, stated by L.E. Dickson in [13, Theorem, page 123]
does not admit a compatible injection ι. We show that, in general, the linear dimension 
of the symmetric group is n − 1.

Proposition 22. For n > 2 we have

LinDimFq
(Sn,Xn) = n− 1 .

For n = 2:

LinDimFq
(S2,X2) =

{
2 if 2 | q,
1 otherwise.
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Proof. First we show that LinDimFq
(Sn, Xn) ≥ n − 1. Indeed, assume that d =

LinDimFq
(Sn, Xn) ≤ n − 2. Let ρ be a representation ρ : Sn → GL(Fd

q ) and let 
ι : Xn → Fd

q be an injective map such that

ρ(τ)(ι(xj)) = ι(τ � xj)

for all τ ∈ Sn, xj ∈ Xn.
We have that the vectors of the set B = {ι(x1), · · · , ι(xd)} are either linearly indepen-

dent or one of them is a linear combination of the others. Assume that ι(xj) is a linear 
combination of the other vectors of B. Namely,

ι(xj) =
∑

s �=j,1≤s≤d

csι(xs),

where the coefficients cs are in Fq.
Let τ from Sn be the transposition between xj and xn. Then

ρ(τ)(ι(xj)) = ρ(τ)

⎛
⎝ ∑

s �=j,1≤s≤d

csι(xs)

⎞
⎠

=
∑

s �=j,1≤s≤d

csρ(τ)ι(xs)

=
∑

s �=j,1≤s≤d

csι(τ � xs)

=
∑

s �=j,1≤s≤d

csι(xs)

= ι(xj).

So ρ(τ)(ι(xj)) = ι(τ � xj) = ι(xn) = ι(xj) which is a contradiction. Then, the vectors 
of B are linearly independent and they form a basis of Fd

q . But then ι(xn−1) is a linear 
combination of vectors of B and we can use a transposition between xn−1 and xn to get 
a contradiction as above. So LinDimFq

(Sn, Xn) ≥ n − 1.
Now let ρn : Sn → GL(Fn

q ) be the standard representation. Namely,

ρn(σ)(ei) = eσ(i)

where {e1, . . . , en} is the canonical basis of Fn
q . Observe that the vector u =

∑n
j=1 ej is 

invariant by ρn, so we get a representation

ρ̃n : Sn → GL(Fn
q /Fqu)

on the quotient linear space Fn
q /Fqu ∼= Fn−1

q :
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ρ̃n(σ)(π(v)) := π(ρn(σ)(v)),

where π : Fn
q → Fn

q /Fqu is the projection to the quotient. Let us define ι : Xn → Fn
q /Fqu

as

ι(xj) := π(ej) .

Then ι(xj) = ι(xs) if and only if ej = es + λu, with λ in Fq. Thus, for n ≥ 3 the map ι
is injective. Let us check that

ρ̃n(τ)(ι(xj)) = ι(τ � xj)

for all τ in Sn and xj in Xn. We have

ρ̃n(τ)(ι(xj)) = π(ρn(τ)(ι(xj)))

= π(ρn(τ)(ej))

= π(eτ(j))

= ι(xτ(j))

= ι(τ � xj).

Finally, for n = 2 the map ι is still injective for p �= 2. For p = 2 our map ι fails to 
be injective. Actually, any 1-dimensional representation of S2 is trivial in characteristic 
p = 2. So LinDimF2k

(S2, X2) = 2 since the standard representation and the inclusion 
ι(x1) = e1, ι(x2) = e2 satisfies

ρ2(τ)(ι(xj)) = ι(τ � xj)

for all τ in S2 and xj in X2. �
An application to n-bit permutations It is well-known that any 2-bit permutation is 
given by an affine map. Namely, that the boolean functions components of any bijection 
f : F2

2 → F2
2 are affine:

f(x, y) = (ax + by + c, a′x + b′y + c′)

where a, b, c, a′, b′, c′ ∈ F2.
Here we give a proof of this fact together with a generalization to permutations of 

n-bit.
Let P(Fn

2 ) be the group of bijections of Fn
2 and let aff(Fn

2 ) be the subgroup of affine 
maps i.e. g ∈ aff(Fn

2 ) if and only if g(x) = ax + b where b ∈ Fn
2 , a ∈ GL(Fn

2 ).
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Proposition 23. There is a group monomorphism α : P(Fn
2 ) → aff(F2n−2

2 ) and an injec-
tion ι : Fn

2 → F2n−2
2 such that

ρ(g)(ι(x)) = ι(g(x))

for all g ∈ P(Fn
2 ), x ∈ Fn

2 .

Proof. This is a consequence of Proposition 22. To see why, notice that we can identify 
the symmetric group S2n with the group of permutations P(Fn

2 ) of Fn
2 . That is to say,

S2n ∼= P(Fn
2 ) .

Such identification can be done by using the binary representation of the subindex j of 
the letter xj ∈ X2n . Namely,

xj ←→ (dn−1, dn−2, . . . , d1, d0) ∈ Fn
2

where j =
∑n−1

i=0 dj2j .
Now by Proposition 22 there is a representation ρ : S2n → GL(F2n−1

2 ) and map 
ι : X2n → F2n−1

2 such that

ρ(g)(ι(x)) = ι(g(x))

for all x ∈ X2n , g ∈ S2n .
Now let H ⊂ F2n−1

2 be the affine hyperplane generated as follows

H = {c0 · ι(x0) + · · · + c2n−1 · ι(x2n−2) :
2n−2∑
i=0

ci = 1} .

It is clear that ι(xj) is in H for j = 0, · · · , 2n− 2. Notice that, for j = 2n− 1, ι(x2n−1) =
ι(x0) + · · ·+ι(x2n−2) and 

∑2n−2
i=0 1 = 1; hence, also ι(x2n−1) is in H. So ι(X2n) ⊂ H. Now, 

since the linear maps of ρ(S2n) permute ι(X2n), they preserve the affine hyperplane H
and hence, they act on H as affine maps. Keeping in mind the above identification of 
S2n ∼= P(Fn

2 ), we get a monomorphism α : P(Fn
2 ) → aff(H) such that

α(g)(ι(x)) = ι(g(x))

for all g in P(Fn
2 ) and x in Fn

2 . Finally, being H an affine hyperplane of F2n−1
2 , it has 

dimension 2n − 2, hence H ∼= F2n−2
2 and we are done. �

This shows that 2-bit permutations are affine 2-bit maps. The 3-bit permutations can 
be regarded as 6-bit affine maps and so on.
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5.2. The general linear group GL(Fn
q )

For g in GL(Fn
q ) and v in Fn

q , let us define � as g � v = g(v). Set Yn := Fn
q .

Proposition 24. We have that LinDimF
pk

(GL(Fn
q ), Yn) ≥ n.

Proof. Since the action of the symmetric group Sn on Xn is equal to the action of 
ρn(Sn) ⊂ GL(Fn

q ) on ι(Xn) ⊂ Fn
q we have

LinDimF
pk

(GL(Fn
q ),Yn) ≥ n− 1 .

Assume that there is a representation ρ : GL(Fn
q ) → GL(Fn−1

pk ) and an injective map 

ι : Fn
q → Fn−1

pk such that

ρ(g)(ι(v)) = ι(g � v)

for all g in GL(Fn
q ) and v in Yn. Then, one of the vectors ι(ej), for j = 1, . . . , n, must 

be a linear combination of the others. Namely, there is a j such that

ι(ej) =
∑

s �=j,1≤s≤n

csι(es),

where the coefficients cs are in Fpk . From the action of the permutations, it follows that 
all coefficients cs are equal. Then, swapping ej with any of the other vectors implies 
cs = −1. Hence, we get

n∑
j=1

ι(ej) = 0.

Now, let g be an element of GL(Fn
q ) such that g(e1) = λe1, λ �= 1, and g(ej) = ej for 

1 < j ≤ n. Then

0 = ρ(g)

⎛
⎝ n∑

j=1
ι(ej)

⎞
⎠

=
n∑

j=1
ρ(g)ι(ej)

=
n∑

j=1
ι(g � ej) = ι(λe1) +

n∑
j=2

ι(ej).

So ι(λe1) = ι(e1), which contradicts the fact that ι is injective. �
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5.3. The cyclic group (Zn, +) acting on itself

In this subsection, we compute the linear dimension for the action of the additive 
group Zn acting on itself. For instance, let G = Zn, X = Zn and � = +.

To state our main theorem we need the following definitions.
Let q be a prime power and n a positive integer such that gcd(q, n) = 1, the order of q
modulo n is denoted by ordn(q). For n = 1 we set ord1(q) = 0.
Let LD(n, q) be defined as

LD(n, q) = min

⎧⎨
⎩
⎛
⎝ �∑

j=1
ordnj

(q)

⎞
⎠ : n =

�∏
j=1

nj , gcd(ni, nj) = 1 , i �= j

⎫⎬
⎭

For example LD(15, 2) = 4 = ord15(2) and LD(21, 2) = 5 < ord21(2) = 6. Notice that 
LD(1, q) = 0 for every q.

Theorem 25. Fix a prime power pk and let n = pmr, with gcd(p, r) = 1. Then

LinDimF
pk

(Zn,Zn) =
{

LD(r, pk) if m = 0,
LD(r, pk) + (pm−1 + 1) if m > 0 .

For the proof of the theorem, we need the following facts from linear algebra.
Let w = LinDimF

pk
(Zn, Zn) and let A be a matrix in GL(Fw

pk). Denote with n the 
order of A, i.e. the order of the cyclic subgroup of GL(Fw

pk) generated by A, and write 
n = pmr with gcd(p, r) = 1.

Set q = pk and let f(X) ∈ Fq[X] be the minimal polynomial of Apm and let f(X) =∏l
i=1 fi(X) be its factorization in irreducibles fi(X)’s. Since P (X) = Xr − 1 has simple 

roots and P (Apm) = 0, we get that fi(X) �= fj(X) for i �= j. Then Apm decomposes in 
s blocks A1, . . . , As as follows

Apm

=

⎡
⎢⎢⎣
A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 As

⎤
⎥⎥⎦ , (2)

where the minimal polynomial of the block Aj is fj(X). Let ri be the order of the block 
Ai. Then, r = LCM(r1, r2, . . . , rs), i.e. r is the least common multiple of the ri’s.

The characteristic polynomial χi of each block Ai is the di-th power of fi, i.e. χi(X) =
fdi
i (X). Moreover, each block Ai is itself a matrix block of size di associated to the 

multiplication for α in the vector space Fq(α)di . In particular, α has order ri in the 
multiplicative group Fq(α)∗.

Now, let N = Ar − Id. Since

(N + Id)p
m

= Npm

+ Id = (Ar)p
m

= Id,
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we have that Npm = 0 and hence, N is nilpotent. Observe that N commutes with Apm , 
so also N decomposes in nilpotent blocks as

N =

⎡
⎢⎢⎣
N1 0 0 0
0 N2 0 0

0 0
. . . 0

0 0 0 Ns

⎤
⎥⎥⎦ .

The following lemma is a direct consequence of the above decompositions.

Lemma 26. Let w = LinDimFq
(Zn, Zn) and let n = pmr. Let ρ : (Zn, +) → GL(Fw

q ) and 
ι : (Zn, +) → Fw

q such that

ρ(g)(ι(x)) = ι(g � x)

for all g, x in Zn. Then the matrix A = ρ(1) has order n and w.r.t. the above decompo-
sition (2):

• fi �= X − 1 =⇒ di = 1,
• fi �= X − 1 =⇒ Ni = 0,
• for fj = X − 1, the block Aj = Id.

Proof. (of Theorem 25) By the above Lemma 26, we see that just one block of Nj is 
different from zero. Assume that it is N1, and so A1 = Id. Then, the minimum size for 
N1 to be nilpotent of order pm but not of order pm−1 is pm−1 + 1.

For i > 1, let ni be the order of each block Ai. To obtain the minimum size for Ai, 
we have to minimize over deg(fi), where fi ∈ Fq[X] is irreducible such that

ni = ord(α)|qdeg(fi) − 1

and ord(α) is the order of α in the multiplicative group Fq(α)∗. Thus

deg(fi) = ordni
(q) ,

since there is an irreducible fi ∈ Fq[X] with deg(fi) = ordni
(q). By the Chinese Remain-

der Theorem, we can assume gcd(ni, nj) = 1 and so

r = lcm(n2, · · · , ns) =
s∏

j=2
nj .

We have shown the inequality

LinDegFq
(Zn, (Zn,+)) ≥

{
LD(r, q) if m = 0,
LD(r, q) + (pm−1 + 1) if m > 0 .

.
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To show the equality, we need to construct the injective function

ι : (Zn,+) → Fw
q

and the representation

ρ : (Zn,+) → GL(Fw
q ),

where

w =
{

LD(r, q) if m = 0,
LD(r, q) + (pm−1 + 1) if m > 0 .

.

We will assume m > 0 since for the case m = 0 it is enough to avoid the nilpotent block.
The previous proof shows us how to construct a matrix A in GL(Fw

q ) of order n by 
using blocks. Let A be in GL(Fw

q ) defined as

A =

⎡
⎢⎢⎣
N + Id 0 0 0

0 A2 0 0

0 0
. . . 0

0 0 0 As

⎤
⎥⎥⎦ ,

where Id is the (pm−1 + 1) × (pm−1 + 1) identity and N is the well-known (pm−1 + 1) ×
(pm−1 + 1) lower diagonal nilpotent matrix. Then

(N + Id)p
m

= Id,

but (N + Id)pm−1 �= Id.
For each j > 1, let Fq(αj) be the extension of degree ordnj

(q) such that αj has 
order nj . The existence of such αj is well-known, see e.g. [20, Theorem 2.46, page 

65]. The extension Fq(αj) is a vector space over Fq isomorphic to F
ordnj

(q)
q . So let 

Aj be the ordnj
(q) × ordnj

(q) matrix corresponding to the multiplication by αj in 

Fq(αj). Moreover, let vj ∈ F
ordnj

(q)
q be a vector corresponding to 1 ∈ Fq(αj) w.r.t. 

the isomorphism Fq(αj) ∼=Fq
F

ordnj
q . Finally, let v1 = [1, 0, · · · , 0] ∈ F (pm−1+1)

q and let 
v = v1 + v2 + · · · + vs ∈ Fw

q .
Define ρ : (Zn, +) → GL(Fw

q ) as

ρ(j) := Aj

and ι : Zn → Fw
q as

ι(j) = Aj · v .
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We have that ρ(g)(ι(j)) = ι(g � j) holds for all g, j in Zn and so, to complete the proof, 
we need to check that ι is injective.
Assume that, for 0 ≤ a < b ≤ n − 1, we have i(a) = i(b). Then, Ah · v = v for 
0 < h = b − a < n. Then

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(N + Id)h · v1 = v1

Ah
2 · v2 = v2

...
Ah

s · vs = vs

,

and the equalities Ah
j ·vj = vj for j = 2, · · · , s imply that r|h. Moreover, the first equality 

implies that (N + Id)h = Id since the vectors {N0 · v1, N1 · v1, . . . , Npm−1 · v1} form a
basis of F (pm−1+1)

q , and

(N + Id)h ·N j · v1 = N j · v1

for all j = 0, . . . , pm−1. So pm | h and n = pmr | h. This is a contradiction with 0 < h =
b − a < n. This completes the proof. �
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