
Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Communications Engineering

(36thcycle)

Generative Approaches to
Sound-Squatting: AI Tools and

Validation

By

Rodolfo Vieira Valentim

Supervisor(s):
Prof. Marco Mellia, Supervisor

Prof. Idilio Drago, Co-Supervisor

Doctoral Examination Committee:
Prof. Tanja Zseby, Referee, Technische Universität Wien
Prof. Sebastian Garcia, Referee, Czech Technical University in Prague

Politecnico di Torino

2024

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Rodolfo Vieira Valentim
2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I dedicate this thesis to my loving parents, my amazing girlfriend, my intelligent
sister, and to my dearly missed mother-in-law.

Acknowledgements

The research leading to these results has been funded by SmartData@PoliTO center
for Big Data technologies.

Abstract

Cyber-squatting, a cyber-crime involving the registration of domain names to ex-
ploit established trademarks or identities, encompasses various strategies, including
sound-squatting. Sound-squatting leverages phonetic similarities to deceive users,
a risk amplified by the proliferation of smart speakers, voice assistants, and audio
content. Sound-squatting presents challenges due to the inherent variations in pro-
nunciation across different languages and among individuals. This thesis explores
the complexities of sound-squatting across single-language, and cross-language
scenarios.

Our primary goal is to develop a robust methodology for generating sound-
squatting candidates that effectively handles various linguistic scenarios. By employ-
ing a data-driven approach using machine learning models, particularly Transformer
Neural Networks, we successfully produce sound-squatting candidates across di-
verse scenarios, surpassing traditional list-based models in capturing pronunciation
nuances.

The research follows a multi-stage process, starting with a naive baseline model
and advancing to sophisticated architectures utilizing raw audio, spectrograms,
and token-based pronunciation encoding. Evaluations are both quantitative and
qualitative, assessing homophone coverage, quasi-homophone generation quality,
and multi-language support.

Furthermore, the thesis examines whether these models can predict user transcrip-
tion errors resulting from pronunciation misunderstandings. We compare collected
user data on transcription mistakes with the model outputs to evaluate predictive
accuracy.

Practical implications are explored through case studies on domain registrations
and Python package repositories. We analyze Transport Layer Security (TLS) certifi-

vi

cates and the Python Package Index (PyPI) to identify sound-squatting candidates,
revealing real-world exploitation potential.

Key contributions of this thesis include developing a comprehensive approach to
sound-squatting generation using advanced machine learning techniques, providing a
systematic validation framework for assessing these tools, and conducting an analysis
of the tools’ predictive capabilities regarding user transcription errors. Additionally,
the thesis offers an extensive checking of the sound-squatting attack surface in
domain registrations and Python packages.

This research enhances the understanding of sound-squatting and provides prac-
tical tools and methodologies to mitigate associated risks. The findings highlight
the need for proactive cybersecurity measures and offer valuable insights for future
studies and applications.

Contents

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Linguistic Scenarios for Sound-squatting 1

1.2 Sound-squatting Tools . 3

1.3 Goal, Approach and Research Questions 4

1.4 Thesis Contributions . 6

1.5 Thesis Outline . 7

1.6 List of Publications . 8

1.7 Open-source and Datasets . 9

2 Background and Related Work 10

2.1 Cyber-squatting and Sound-squatting 10

2.1.1 Cyber-squatting in the Wild 11

2.1.2 Sound-squatting Generation 12

2.2 Transformers Neural Network . 13

2.3 Data Modality for Pronunciation 15

2.3.1 Phonetic Alphabets . 15

2.3.2 Articulatory Feature Vectors 16

viii Contents

2.3.3 Mel Spectrogram . 16

2.4 Third-party Tools for Squatting Generation 17

3 Methodology for Sound-squatting Generation 19

3.1 General Pipeline . 19

3.1.1 Data Modality for Sound-squatting 20

3.2 Taxonomy of Generative Models 22

3.3 Transcription Error Collection . 23

4 Our Proposed Models 26

4.1 Auto-Squatter: Simple IPA Translation 26

4.1.1 System Description . 27

4.1.2 Dataset and Training . 28

4.1.3 Architectural Details . 30

4.2 Sound-skwatter: Audio Inbound with IPA Translation 32

4.2.1 System Description . 33

4.2.2 Dataset and Training . 37

4.2.3 Architectural Details . 40

4.3 Sound-squatter: Multi-language Sound-squatting Generation . . 42

4.3.1 System Description . 42

4.3.2 Dataset and Training . 46

4.3.3 Architecture Details . 48

4.4 X-Squatter: Cross-language Sound-squatting Generation 48

4.4.1 System Description . 50

4.4.2 Dataset and Training . 55

4.4.3 Architectural Details . 56

5 Results and Validation 59

Contents ix

5.1 Tool’s Validation . 59

5.1.1 Single-language Homophone Coverage 60

5.1.2 Cross-language Homophone Coverage 63

5.1.3 Single-language Quasi-homophone Generation 65

5.1.4 Cross-language Quasi-homophone Generation: Impact of
Feature Vector Encoder . 68

5.1.5 Key Insights from Coverage Validation 70

5.2 Can the AI Tools Anticipate People’s Mistakes? 71

5.2.1 Validation via Transcription Errors 75

5.3 Concluding Remarks on Tool Validation 77

6 Potential Applications 81

6.1 Squatting on PyPI Repository . 81

6.2 Domain Impersonation . 86

6.2.1 Manual Qualitative Analysis 89

7 Final Considerations and Conclusions 94

7.1 Linguistic Coverage . 94

7.2 Scalability . 95

7.3 Conclusions . 96

References 98

Appendix A Mistakes in Transcriptions Collected from Questionnaire Re-
sponses 104

List of Figures

2.1 Basic Transformer Neural Network architecture. 14

2.2 Raw audio wave and its Mel Spectrogram aligned to the pronuncia-
tion and grapheme of the word “community.” 17

3.1 Methodological pipeline for sound-squatting generation. 20

3.2 Google Form screenshot of the questionnaire that access user’s mis-
takes during domain name transcription. 24

4.1 Pipeline to generate homophones using Auto-Squatter. The Post
Processor calls the model N times to generate multiple candidates. . 27

4.2 Detailed pipeline to generate homophones using Auto-Squatter.
The homophone generation pipeline incorporates a mechanism where
random noise is introduced to each encoder output. This strategic
addition of noise disrupts the model’s processing, prompting it to
generate alternative outputs. 28

4.3 The training process for Auto-Squatter involves a mirrored con-
figuration for the models. This means that the output of one model
serves as the input for the other model, and vice versa. (a) IPA to
English; (b) English to IPA. 29

4.4 Block diagram of a modified Transformers architecture showing
noise insertion into the encoder output. This architecture is the same
for both models in Auto-Squatter. 31

List of Figures xi

4.5 The process to generate candidates is composed of an Feature Vector
Encoder that maps the input to a latent space and a Grapheme
Decoder that reconstructs the input. 33

4.6 Illustration of the inference process with K = 2 children per node.
At each inference step, we collect the two next characters with the
highest probability. The left and the right children have the second-
highest and highest probability, respectively. Some nodes do not
have children because they reach the “End of Sentence” state. 36

4.7 The training architecture for learning how to generate quasi-homophones.
The dotted box highlights the components that are trained for the gen-
eration of quasi-homophones: Duration Predictor is a pre-trained
function. It receives as input the phoneme translation of a word
and the duration of each phoneme in the expected spectrogram and
outputs a reconstructed spectrogram and the probabilities that are
used to find the grapheme translation. 38

4.8 The training architecture of Sound-skwatter without acoustic feed-
back from Mel Spectrogram reconstruction. This model functions
as a baseline for assessing the impact of reconstruction on overall
performance. 41

4.9 (a) Full architecture of training; (b) Inside view of the Decoder
Block; (c) High-level representation of the Length Regulator. . . . 43

4.10 Architecture used during inference. The process to generate can-
didates comprises an IPA Encoder that maps the input to a latent
space and a Grapheme Decoder that produce several alternatives to
reconstruct the input. 44

4.11 Illustration of the inference process with p = 0.8. At each inference
step, we explore n next characters whose probabilities add up to p.
For readability, we round probabilities in the figure. 46

4.12 Complete training architecture of Sound-squatter, featuring a
Transformer Neural Network augmented with a language token
concatenation module. 49

xii List of Figures

4.13 Architecture used during inference. The process to generate candi-
dates comprises an Feature Vector Encoder that maps the input to a
latent space and a Grapheme Decoder that reconstructs the input. . . 50

4.14 Illustration of the inference process with p = 0.8. At each inference
step, we explore n next characters whose probabilities add up to p.
For readability, we round probabilities in the figure. 54

4.15 Training process of X-Squatter, with dashed lines denoting train-
able modules. Third-party modules, including IPA to Feature Vector
and Grapheme to Phoneme, are integrated into the current pipeline. . 56

4.16 (a) High-level representation of the X-Squatter Transformer archi-
tecture. (b) Inside view of the Articulatory Decoder Block. 57

5.1 Homophone coverage for single-language scenario. As the maxi-
mum number of generated candidates increases (Post Processor K
parameter), the model exhibits a higher coverage. The 95% confi-
dence internal is shown. 61

5.2 Homophone coverage for cross-language scenario. As the maximum
number of generated candidates increases (Post Processor K param-
eter), the model exhibits a higher coverage. The 95% confidence
internal is shown. 64

5.3 Weighted Feature Edit Distance measured for every pair of target
and generated homophone generated by each tool. The 1754 pairs
are considered. The median value is represented by the red line and
the outliers marked by the “x” and mean is indicated by a triangle. . 67

List of Figures xiii

5.4 Weighted feature edit distance calculated over pairs of input targets
and homophone candidates generated by a specific tool. The metric
captures the similarity in the pronunciation. The two sets of input
words are input words that are exact homophones and the phonemic
representation is seem during training in both models. The other
set of input words are for target words in the Italian language. The
targets are selected specifically because it contains IPA segments that
are not seem during training. The median value is represented by the
red line and the outliers marked by the “x” and mean is indicated by
a triangle. 69

5.5 Users answering the questionnaire reported their (a) nationality, (b)
mother-language and (c) other languages they are proficient. 72

5.6 Count of alternative spellings for each domain transcription. The
number of alternative spellings suggests that a considerable amount
of noise is involved in the task. 74

6.1 Venn Diagram representing the data. Gray areas represents the data
reported at Table 6.1. Counts are not shown to improve readability. . 83

6.2 Found candidates over total generated candidates. 84

6.3 Found candidates over the number of evaluated targets. 84

6.4 Downloads of candidates vs. downloads of target packages. 85

6.5 Registered candidates over total registered domains on issued certifi-
cates per day. 89

6.6 Ratio of registered sound-squatting candidates per TLD. 90

6.7 Relationship of TLD and squatting candidates. 90

6.8 Phishing examples for Amazon.com and Netflix.com found in se-
lected candidate domains. 92

List of Tables

2.1 Tools for squatting candidate generation. 18

3.1 The domains, the contextual tags and the rank in Top 1 Million list
used in the survey. The selection methodology favors more popular
domains. 25

4.1 Auto-Squatter Hyperparameters 32

4.2 Sound-skwatter Hyperparameters 40

4.3 Sound-squatter Dataset size for each chosen language. 47

4.4 Sound-squatter Hyperparameters 48

4.5 X-Squatter Dataset size for each chosen language. 55

4.6 X-Squatter Hyperparameters . 58

5.1 Examples of homophones obtained from their IPA representations. . 60

5.2 Performance metrics for each tool at K = 35 in the single-language
scenario, where “Average Coverage” indicates the mean proportion
of known homophones generated per group, and “Standard Devia-
tion” denotes the variability of coverage across the evaluation set. . 62

5.3 The absolute number of missing homophones for each model at
K = 35, indicating the count of homophones that are not generated
by the respective tool. 62

5.4 Examples of exact cross-language homophones with IPA Pronuncia-
tions. 63

List of Tables xv

5.5 Performance metrics for each tool at K = 35 in the cross-language
scenario, where “Average Coverage” indicates the mean proportion
of known homophones generated per group, and “Standard Devia-
tion” denotes the variability of coverage across the evaluation set. . 65

5.6 The absolute number of missing homophones for each model at
K = 35, indicating the count of homophones that were not generated
by the respective tool. 65

5.7 Performance metrics for each tool, where “Average Distance” in-
dicates the mean Weighted Feature Edit Distance, and “Standard
Deviation” denotes the variability of distances across the evaluation
set. 67

5.8 Comparison of Quasi-Homophone Weighted Feature Edit Distance
Across Tools and Phonemic Gap Conditions 70

5.9 This table lists the count of unique domain names written by users
for each domain in the questionnaire, compared with the domain’s
ranking in the Tranco list. The distinction is made between valid
and invalid domains, with invalid domains containing either no Top-
Level Domain (TLD) or invalid characters. 73

5.10 This table displays the counts of unique candidates generated by each
tool for the domains included in the questionnaire. The candidates
are categorized into “Found” and “Not Found” based on whether they
match user transcription mistakes. Additionally, the total number
of candidates and the percentage of candidates and mistakes found
are provided. The bottom rows represent the total number of unique
candidates generated by all data-driven tools and third-party tools,
respectively. 76

5.11 Performance metrics (Precision, Recall, and F-Score) of various
tools in generating squatting candidates. X-Squatter demonstrated
a higher recall due to its effectiveness in generating homograph
variants, which were common among user mistakes. In contrast,
Auto-Squatter showed higher precision but lower recall, indicat-
ing it produced fewer but more accurate candidates. 77

5.12 Model size of the different alternative tools. 78

xvi List of Tables

5.13 Summary of proposed data-driven tools and their capabilities. 78

5.14 Tools for squatting candidate generation and evaluation. 79

5.15 Intersection in the generation of third-party tools for squatting can-
didate generation and our proposal. The intersection represents the
proportion of shared candidates between the set of candidates in the
rows and the set of candidates in the columns, normalized by the
size of the set in the row. 79

6.1 Pairs of candidates and projects found online per technique, along
with the intersection comprising candidates matching both sound-
squatting and other-squatting techniques. 82

6.2 Examples of candidates generated by X-Squatter and found online
in the PyPI repository. 86

6.3 Pairs of Target Domain and Candidates generated and registered
domains per technique, along with the intersection of pairs matching
both sound-squatting and other-squatting techniques. 88

A.1 List of domains and their transcriptions - Part 1 of 2 104

A.2 List of domains and their transcriptions - Part 2 of 2 105

Chapter 1

Introduction

Cyber-squatting is a cyber-crime in which the offender purchases or registers a
domain name closely resembling an existing one, with the aim of profiting from rec-
ognizable trademarks, company names, or personal identities. It is applied in various
contexts, including fake domains [28], phishing campaigns [53, 52], the hijacking
of smart speakers [32, 74] and brand abuse. Several cyber-squatting strategies have
been demonstrated in practice, including simple/frequent typos [71, 57, 4, 29], visual
similarity between characters [28], and combination of common words [31, 37]
leading to different attacks as typo-squatting, bit-squatting, homograph-squatting,
combo-squatting [73], skill-squatting [32] and sound-squatting [43].

Sound-squatting is relatively a more recent technique that exploits pronunciations
similar to legitimate names or brands to deceive users. Its importance is growing
with the rise of smart speakers and voice assistants [32], as well as the resurgence
of audio-exclusive content consumption, such as podcasts. Websites or products
verbally advertised and misunderstood by users, or careless voice searches [11] can
lead users to malicious content.

1.1 Linguistic Scenarios for Sound-squatting

Sound-squatting presents challenges due to the inherent variations in pronunciation
across different languages and among individuals [73]. This complexity is further
increased when multiple languages are involved, expanding sound-squatting possibil-
ities. For instance, individuals may encounter difficulties when writing, pronouncing,

2 Introduction

or recognizing a word pronounced in a foreign language, a scenario referred to as
a cross-language scenario. Previous studies [32, 43] have predominantly focused
on English homophones, which are existing words with identical pronunciations.
However, these studies have limitations in terms of coverage, as they do not consider
non-existing words, words with similar pronunciation (quasi-homophones), and
cross-language scenarios.

Our primary concern involves the discrepancy between the language in which
the pronunciation occurs and the language in which the writing or understanding
takes place. Existing literature typically assesses the problem of sound-squatting
under the assumption that the reading and spelling take place in the same language.
However, when they differ, as in the case of a French individual needing to write
“ash”, pronounced correctly in English, there arise multiple possibilities. For instance,
the French word “Hache” (pronounced [a;S]) means “axe”, while the English word
“Ash” (pronounced [a;S]) refers to the residue from burning.

These two words, originating from distinct languages, are categorized as cross-
language homophones due to their identical pronunciations. Quasi-homophones, on
the other hand, are alternative words that sound similar to the original word and have
different spellings. Example of a quasi-homophone in English is the pair of words
“write” and “right”. Although these words have different meanings and spellings,
they sound very similar when spoken aloud, especially in rapid speech or in certain
accents. Expanding upon this concept, quasi-homophones also covers non-existent
words that maintain grammatical coherence.

This quasi-homophone concept also extends to other languages. For instance,
consider the Spanish word “caro” (pronounced [’kaRo])), which means “expensive”.
An English speaker might misinterpret this as “carrot” due to the similarity in
pronunciation. Similarly, the Portuguese word “pão” (pronounced [’p5̃w]), meaning
“bread”, could be misheard by an English speaker as “pound”.

Given the amount of possibilities in which homophones and quasi-homophones
occurs, encountering sound-squatting candidates that deviate from strict grammar
rules or introduce entirely new words seems prudent. Hence, for the purpose of our
analysis, the term “quasi-homophones” encompasses two or more words, whether
existing or not, that share similar pronunciations. This definition also includes
quasi-homophones across different languages or cross-language quasi-homophones.

1.2 Sound-squatting Tools 3

To categorize the “linguistic scenarios” for sound-squatting generation, we em-
ploy a taxonomy that divides the problem into two categories: single-language, and
cross-language scenarios. In short, this taxonomy helps in systematically addressing
the complexities involved in sound-squatting generation.

In the single-language scenario, the language of pronunciation aligns with the
language of understanding or spelling. For example, an English word like “night”
might be replaced with its homophone “knight”. Tools can also be multi-language
when they handle multiple single-language scenarios. This can involve having a
specific model for each language or a single model capable of dealing with multiple
languages.

In contrast, the cross-language scenario arises when the language of pronun-
ciation differs from the language of understanding. In such cases, modeling the
problem calls for learning patterns to accommodate subtle variations across different
language contexts. An example would be a French speaker hearing the English word
“beau” (beautiful) and transcribing it as “bow” due to the similar pronunciation but
different language and meaning.

1.2 Sound-squatting Tools

Based on the general cyber-squatting literature, the most common recommended
mitigation strategy for cyber-squatting involves proactively purchasing domains
susceptible to squatting [9]. We assume that the same holds true for all types
of squatting techniques. Designing a tool to facilitate this mitigation process in
the context of pronunciation similarities requires some consideration regarding
pronunciation encoding.

Two commonly used methods for generating candidates are list-based models and
data-driven models. List-based models rely on predefined lists of known homophones
and common replacements to create potential instances of sound-squatting. These
methods involve replacing either entire input names or parts of them with their
homophones, resulting in a modified written form with exact or similar pronunciation.
For example, this might include replacing “for” with “four” or “4” in “forever” (i.e.,
“4ever”). On the other hand, data-driven models utilize machine learning algorithms

4 Introduction

and rely on training data to learn patterns and generate alternative written forms for
the names, without the imposition of fixed rules.

In Section 2.1, we discuss these tools in detail and reference relevant research on
the topic. While multiple tools exist for cyber-squatting candidate generation, they
mostly neglect sound-squatting or use limited list-based approaches. Therefore, we
believe we can improve sound-squatting generation.

1.3 Goal, Approach and Research Questions

Our objective is to introduce a methodology for generating sound-squatting can-
didates that can effectively address variations across all linguistic scenarios of
Section 1.1. This is a challenging goal, given the complexity of sound-squatting and
the amount of possible variations in pronunciation encoding, linguistic scenarios
and modeling approaches. We introduce and investigate data-driven approaches to
test whether one could avoid the need for establishing fixed rules to account for all
linguistic variations.

In light of our goal and chosen approach, the following research questions are
addressed in this thesis:

1. How does data-driven machine learning facilitate generalization across
diverse sound-squatting scenarios and linguistic contexts?

We introduce multiple sound-squatting generation tools to investigate whether
and how data-driven machine learning helps generalization across diverse sound-
squatting scenarios and linguistic contexts. To understand the impact of several
design decisions, we follow a multi-step investigation. We begin with a naive model
to establish a baseline. Following this, we design a model based on state-of-the-art
Transformer Neural Networks, which is well suited for Natural Language Processing
(NLP) tasks. Subsequently, we conduct ablation studies to identify the essential
components necessary for effective sound-squatting generation.

In our model design, we consider various decisions regarding data modality and
encoding, such as whether to use raw audio, spectrograms, token-based pronunciation
encoding. Additionally, we explore strategies for generating multiple candidate
outputs.

1.3 Goal, Approach and Research Questions 5

To validate our models, we use both quantitative and qualitative evaluation meth-
ods. Quantitatively, we assess known homophone coverage and evaluate the quality
of quasi-homophone generation by examining pronunciation similarity. Qualitatively,
we evaluate the models’ ability to support multiple languages and cross-language
scenarios.

Once we have established that our tools can effectively produce homophones and
quasi-homophones across diverse linguistic scenarios, we face our second research
question:

2. Can AI-based sound-squatting generation replicate or anticipate mistakes
users make during transcription?

It is unclear whether mistakes made by users due to pronunciation misunderstand-
ings result in the creation of homophones and quasi-homophones for a word. This is
precisely the case where abuse may occur, and we aim to verify if the proposed tools
can indeed anticipate the mistakes users commonly make.

To investigate that, we have developed a questionnaire designed to collect data
on the transcription mistakes users make when transcribing domain names. Our
hypothesis is that these users’ mistakes will correspond to some extent with the
candidates produced by our tools. By comparing the collected transcription errors
with the outputs of our sound-squatting generation models, we assess the models’
ability to replicate or predict these mistakes, and thus their potential to be applied in
practical scenarios.

Last, once we confirm mistakes users perform and check the ability of our
methodology to anticipate them, we move to a practical exploration on the potential
abuse of sound-squatting in the wild, posing the following third research question:

3. Are sound-squatting candidates produced by our methodology found in practi-
cal use cases?

This question focuses on verifying the existence of sound-squatting candidates
for popular target brands and cross-referencing them with existing resources. Our ex-
amination includes registered domain names and Python software packages, aiming
to identify potential instances of misuse or suspicious cases.

6 Introduction

1.4 Thesis Contributions

The contributions of this thesis are the following:

• A methodology for sound-squatting generation. We present a methodology
for generating sound-squatting candidates that couples with linguistic scenar-
ios. We perform several ablation studies to help understanding the impact of
the pronunciation encoding and how much different post-processing affect the
generation quality.

• A validation methodology for sound-squatting tools. We propose a vali-
dation methodology for assessing the single and cross-language coverage of
the tools, as well as the quality of quasi-homophone generation by comparing
pronunciations. By following this methodology we show that the proposed
tools can produce a significant number of existing known homophones, and
the pronunciation similarity of generated quasi-homophones is comparable to
that of homophones.

• Analysis of tool’s capabilities to anticipate user mistakes: We conduct a
two-step analysis regarding the ability of our and third-party tools to replicate
or anticipate mistakes due to pronunciation misunderstanding. Our tools
exhibit higher precision and recall compared to third-party ones.

• Study of sound-squatting attack surface in domain registration using
issued TLS certificates: We conduct a study of the sound-squatting attack
surface in domain registration by checking the existence of candidates using
around 900 million certificates collected via Certificate Transparency logs.
Our findings indicate that approximately 16% of the generated candidates are
present in at least one certificate, and around 95% of the target domains have
at least one candidate with a valid TLS certificate.

• Examination of the sound-squatting attack surface in Python Packages:
We conduct a study using the Python Package Index (PyPI) by verifying the
existence of candidates over a period of more than 900 days in the package plat-
form. Our findings reveal that 0.35% of the generated candidates correspond
to registered packages, potentially squatting 951 popular packages.

1.5 Thesis Outline 7

1.5 Thesis Outline

This section outlines the structure and main content of the thesis.

Chapter 2 addresses the background and related work. It starts by defining
various aspects of cyber-squatting and sound-squatting, exploring their definitions,
mechanisms, and implications. Furthermore, it discusses the role of Transformers
Neural Networks in addressing cybersecurity challenges and introduces fundamental
concepts such as the International Phonetic Alphabet and Mel Spectrogram. The
chapter also discuss existing tools for squatting generation and investigates the
methodologies employed in sound-squatting generation.

Chapter 3 outlines the methodology adopted in the study, detailing the approach
employed for sound-squatting generative tools and presenting a generic pipeline for
the generation process. Additionally, it discusses the method used for collecting
users’ transcription mistakes.

Chapter 4 presents our proposed tools. It introduces the Auto-Squatter, a
system for simple IPA translation, providing a detailed description of its architecture,
dataset, and training methodology. Additionally, it discusses the Sound-skwatter, a
system including audio inbound with IPA translation, along with the Sound-squatter,
designed for multi-language sound-squatting generation. The chapter concludes
with an exposition on the X-Squatter, capable of cross-language sound-squatting
generation, including system architecture, dataset, and training details.

Chapter 5 validates the introduce tools by examining the user’s transcription
mistakes and comparing their coverage performance.

Chapter 6 explores two potential applications in PyPI repository and domain
impersonation, supplemented with a manual qualitative analysis.

Finally, Chapter 7 discusses on the linguistic coverage and scalability of the
proposed solutions, highlighting their strengths and limitations. It also offers conclu-
sions, summarizing the findings and suggesting future work.

8 Introduction

1.6 List of Publications

1. X-squatter: AI Multilingual Generation of Cross-Language Sound-squatting.
Valentim, R., Drago, I., Trevisan, M., and Mellia, M. 2024. ACM Transactions
on Privacy and Security (TOPS). https://doi.org/10.1145/3663569

2. URLGEN Toward Automatic URL Generation Using GANs. Valentim, R.,
Drago, I., Trevisan, M., and Mellia, M. 2022. IEEE Transactions on Network
and Service Management, 20(3), p.3734–3746. https://doi.org/10.1109/TNSM.
2022.3225311

3. LogPrécis: Unleashing Language Models for Automated Shell Log Anal-
ysis. Boffa, M., Vassio, L., Giordano, D., Valentim, R., Mellia, M., Drago,
I., Milan, G., Houidi, Z. B., Rossi, D. 2024 Computers & Security. https:
//doi.org/10.1016/j.cose.2024.103805

4. Lost in Translation: AI-based Generator of Cross-Language Sound-
squatting. Valentim, R., Drago, I., Mellia, M., and Cerutti, F. 2023. In 2023
IEEE European Symposium on Security and Privacy Workshops (EuroSPW)
(pp. 513–520). https://doi.ieeecomputersociety.org/10.1109/EuroSPW59978.
2023.00063

5. Augmenting Phishing Squatting Detection with GANs. Valentim, R., Drago,
I., Trevisan, M., Cerutti, F., and Mellia, M. 2021. In Proceedings of the
CoNEXT Student Workshop (pp. 3–4). Association for Computing Machinery.
https://doi.org/10.1145/3488658.3493787

6. AI-based Sound-Squatting Attack Made Possible. Valentim, R., Drago,
I., Cerutti, F., and Mellia, M. 2022. In 2022 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW) (pp. 448–453). https:
//doi.org/10.1109/EuroSPW55150.2022.00053

7. Tracking Knowledge Propagation Across Wikipedia Languages. Valentim,
R., Comarela, G., Park, S., and Sáez-Trumper, D. 2021. Proceedings of the
International AAAI Conference on Web and Social Media, 15(1), p.1046–1052.
https://doi.org/10.48550/arXiv.2103.16613

The thesis is based on the following publications: X-squatter: AI Multilingual
Generation of Cross-Language Sound-squatting, Lost in Translation: AI-based

https://doi.org/10.1145/3663569
https://doi.org/10.1109/TNSM.2022.3225311
https://doi.org/10.1109/TNSM.2022.3225311
https://doi.org/10.1016/j.cose.2024.103805
https://doi.org/10.1016/j.cose.2024.103805
https://doi.ieeecomputersociety.org/10.1109/EuroSPW59978.2023.00063
https://doi.ieeecomputersociety.org/10.1109/EuroSPW59978.2023.00063
https://doi.org/10.1145/3488658.3493787
https://doi.org/10.1109/EuroSPW55150.2022.00053
https://doi.org/10.1109/EuroSPW55150.2022.00053
https://doi.org/10.48550/arXiv.2103.16613

1.7 Open-source and Datasets 9

Generator of Cross-Language Sound-squatting, and AI-based Sound-Squatting
Attack Made Possible. The publications Augmenting Phishing Squatting De-
tection with GANs and URLGEN - Toward Automatic URL Generation Using
GANs represent initial efforts in applying generative artificial intelligence to cy-
bersecurity. They have shown the potential of applying GANs to cybersecurity
scenarios and have inspired the development of our novel tools and methods for
sound-squatting generation. However, the applications of GANs in the sound-
squatting scenario has proven unsatisfactory and, as such, these alternatives are left
out of the thesis. The publication LogPrécis: Unleashing Language Models for
Automated Shell Log Analysis leverages my expertise in generative AI acquired in
the development of the thesis to process honeypot logs, in a novel research direction
which I am currently pursuing in collaboration with colleagues. The scope of this
work is however orthogonal to the one of this thesis. Lastly, Tracking Knowledge
Propagation Across Wikipedia Languages is a result of an internship focused on a
dataset study, which is not directly related to the core topics of this thesis.

1.7 Open-source and Datasets

1. Auto-Squatter: https://github.com/rodolfovalentim/code-thesis/tree/main/
auto_squatter

2. Sound-skwatter: https://github.com/rodolfovalentim/code-thesis/tree/main/
sound_skwatter

3. Sound-squatter: https://github.com/rodolfovalentim/code-thesis/tree/main/
sound_squatter

4. X-Squatter: https://github.com/rodolfovalentim/code-thesis/tree/main/x_squatter

5. LogPrecis https://huggingface.co/SmartDataPolito/logprecis

6. Tracking Knowledge Propagation Across Wikipedia Languages. Valentim, R.
2021 Zenodo. doi: 10.5281/zenodo.4433137.

https://github.com/rodolfovalentim/code-thesis/tree/main/auto_squatter
https://github.com/rodolfovalentim/code-thesis/tree/main/auto_squatter
https://github.com/rodolfovalentim/code-thesis/tree/main/sound_skwatter
https://github.com/rodolfovalentim/code-thesis/tree/main/sound_skwatter
https://github.com/rodolfovalentim/code-thesis/tree/main/sound_squatter
https://github.com/rodolfovalentim/code-thesis/tree/main/sound_squatter
https://github.com/rodolfovalentim/code-thesis/tree/main/x_squatter
https://huggingface.co/SmartDataPolito/logprecis

Chapter 2

Background and Related Work

This chapter provides essential background information for the understanding of
the problem and the employed technology. Additionally, it includes a literature
review of generative tools that specifically address cybersecurity and cyber-squatting
techniques.

2.1 Cyber-squatting and Sound-squatting

Cyber-squatting is a class of attack in which a malicious actor tries to impersonate
a legitimate resource [8]. Cyber-squatting gained notoriety with the widespread
deployment of domain-squatting, a type of attack in which attackers register fake
domain names to divert traffic from popular websites. For example, an in-depth
search of over 224 million DNS records in 2018 identified 657 k domain names likely
impersonating 702 popular brands [60]. There are several cyber-squatting strategies
been demonstrated in practice, including simple/frequent typos [71, 57, 4, 29], visual
similarity between characters [28], and combination of common words [31, 37]
leading to different attacks as typo-squatting [58], bit-squatting [18, 44], homograph-
squatting, combo-squatting [73], skill-squatting [32] and sound-squatting [43].

The Mitre Att&ck’s CAPEC-631 [9] defines sound-squatting uniquely in the
context of domain-squatting, as an attack in which “an adversary registers a domain
name that sounds the same as a trusted domain, but has a different spelling”.
The CAPEC-631 also enumerates possible mitigation to sound-squatting: (i) the
deployment of additional checks when resolving names in the DNS, together with

2.1 Cyber-squatting and Sound-squatting 11

the authentication of servers, and (ii) the preventive purchase of domains that have
potential for sound-squatting. In addition to these protections, the system can
warn the user about possibly malicious use of a word. In all cases, the targets of
sound-squatting (e.g., brands and/or brand security providers) must know the names
attackers will use to impersonate their brands. The tools proposed in this work come
precisely to solve this problem, generating candidate names that can be used to
mitigate the problem proactively.

2.1.1 Cyber-squatting in the Wild

In [30], the authors investigate the involvement of Certificate Authorities (CAs)
in the HTTPS phishing ecosystem. Their study focuses on various types of squat-
ting, including combo-squatting, typo-squatting, and homograph-squatting, to assess
whether insecure practices of CAs contribute to an increase in attacks. They empha-
size the elevated risk posed by squatted domains in the TLS environment, where
end-users might mistake them for legitimate sites due to their appearance as "valid"
in browsers’ address bars.

Other studies [24, 61, 50] longitudinally assess domain squatting by employing
tools to generate candidates and verify the existence of created domains. However,
these works predominantly concentrate on techniques such as typo-squatting, combo-
squatting, and homograph-squatting, overlooking sound-squatting.

The Python Enhancement Proposal (PEP) 541 [25] explicitly opposes name
squatting within the PyPI ecosystem to prevent the distribution of malware through
potential user confusion regarding package names. A notable example of these
concerns surfaced in November 2022 when Phylum1 reported on PyPI attacks:
Malicious actors utilized Python to create a JavaScript extension that substituted
cryptocurrency addresses in clipboards with wallet addresses under the attackers’
control. While documented attacks against the PyPI ecosystem primarily involve
typosquatting, there have been instances of squatting that inadvertently impacted
non-English speakers.2

Yacong et al. [27] present a comprehensive analysis of security threats within
software registries like PyPI and NPM, addressing various vulnerabilities, including

1https://blog.phylum.io/phylum-discovers-another-attack-on-pypi/
2https://metrodore.fr/i-have-been-powned.html

https://blog.phylum.io/phylum-discovers-another-attack-on-pypi/
https://metrodore.fr/i-have-been-powned.html

12 Background and Related Work

typo-squatting. They find that approximately 81.0% and 88.1% of removed packages
on PyPI and NPM, respectively, share name similarities with at least one other
package, indicating potential examples of typo-squatting. Additionally, a significant
96.9% of the malicious packages officially identified by NPM have names resembling
benign packages.

These incidents highlight the inherent risks associated with name squatting
within platforms like PyPI. Sound-squatting may introduce additional complexities
for moderators to detect, potentially allowing packages to evade surveillance.

2.1.2 Sound-squatting Generation

In sound-squatting, list-based models are commonly employed to generate candi-
dates. These models utilize predefined lists of known homophones and common
replacements to generate potential instances of sound-squatting. They replace either
entire input names or parts of them with their homophones, resulting in a new written
form of the name with exact or similar pronunciation.

Nikiforakis et al. [43] generated potential instances of sound-squatting from
a static database of English homophones, focusing on domain sound-squatting.
Their approach involves substituting words in domain names with homophones.
The authors then present a comprehensive evaluation and categorization of these
generated candidates.

Kumar et al. [32] uncover the skill-squatting attack, where the attacker leverages
systematic errors on the understanding of homophones to route Alexa Smart Speaker
users to malicious applications. They show that around 33% of the systematic
errors in the speech-to-text system are due to homophones. Later, Zhang et al. [74]
formalize the skill squatting attack, calling it Voice Squatting Attack (VSA) and
Voice Masquerading Attack (VMA). They also evaluate the feasibility of such attacks
by deploying a malicious skill, which has been invoked by 2699 users in a month by
Alexa’s Speech Recognition engine.

2.2 Transformers Neural Network 13

2.2 Transformers Neural Network

Recent advances in AI and Natural Language Processing (NLP) have made it practical
to automate text translation via sequence-to-sequence (seq2seq) mapping. The
Transformer model [69] represents a step forward. Compared to other seq2seq
models such as Recurrent Neural Network (RNN), the Transformer has the capability
of working with large sequences while keeping more context. This is possible thanks
to the use of the attention mechanism that learns the relationship between all elements
in sequences, as shown in Figure 2.1. The attention mechanism is analogous to a
retrieval system, where there is a Query (Q), a Key (K) and a Value (V). Roughly, Q
represents the word and the K:V represents the memory. The attention works like
a database system where we query the memory, compare our query with a set of
keys and get the corresponding values. In a Transformer, the attention mechanism
is applied to the input sequence of the translation, to the target language and to the
ongoing merge of the source sequence with its translation.

Several Transformer variants exist, not all restricted to NLP problems. Examples
of algorithms include BERT [59] and GPT-2 [70]. Transformers have achieved the
highest scores for Neural Machine Translation [69, 34] and their performance has
represented an improvement for seq2seq problems.

The vanilla implementation of Transformers consists of an encoder and a decoder,
each of which is a stack of N identical blocks. Each encoder includes a MultiHead
Attention block and a feed-forward interconnected by Add and Normalization layers.
The decoder is similar to the encoder; however, it adds to the encoder’s architecture a
cross-multihead attention mechanism that computes the attention between the input
and the previous states of the target.

An important aspect to discuss regarding the Transformers is the difference
between the training and the inference. During training, the Transformers use a mask
over the target states given as input for the cross-attention head. This mask allows
the model to learn multiple states simultaneously.

The inference process happens in steps where the decoder receives the previous
states generated to compute the cross-attention. In this way, the output of the next
element depends on the sequence of the previously generated elements. This is
fundamental to correctly predict the next character in a word or the next word in a
sentence.

14 Background and Related Work

+ +

Embedding Embedding

Add & Norm

Add & Norm
Feed Forward

Positional Positional

Add & Norm

Add & Norm

Add & Norm
Feed Forward

Linear

Softmax

Multi-Head
Attention

Multi-Head
Attention

Multi-Head
Attention

Inputs

Nx

xN

Outputs 
(shifted right)

Output Probabilities

Fig. 2.1 Basic Transformer Neural Network architecture.

2.3 Data Modality for Pronunciation 15

Throughout this thesis Transformers are used to generate words at the character
level. It considers not only the most probable character but also explores possible
words that may derive from considering the top-k most probable following characters,
generating possible alternative ways to write the same input sequence.

2.3 Data Modality for Pronunciation

Continuous speech is perceived in distinct segments, classified based on how the
vocal tract produces them, with each language utilizing its own set of segments
[56]. Phonemes, the smallest linguistic units distinguishing word meanings, rep-
resent precise phonetic realizations often influenced by social factors and regional
dialects [15].

2.3.1 Phonetic Alphabets

There are multiple ways to encode pronunciation for the usage in computational
problems as Phonetic Alphabets, such as Speech Assessment Methods Phonetic Al-
phabet (SAMPA) [63], ARPAbet [16], and International Phonetic Alphabet (IPA) [6].
These phonetic alphabets are designed to represent the sounds of human speech in
written form. SAMPA and ARPAbet are primarily used in computational linguistics
and speech recognition systems, while IPA is more widely employed in linguistic
studies and language teaching. SAMPA and ARPAbet use a combination of ASCII
characters to represent phonemes, making them more computer-friendly, whereas
IPA employs a broader range of symbols, including diacritics, to provide a more
precise representation of speech sounds. Despite their differences, all three alphabets
serve as valuable tools for accurately transcribing and analyzing the phonetics of
spoken languages.

IPA serves as a standardized means of representing these phonemes with specific
symbols. Widely adopted for representing pronunciation, IPA offers a consistent
method maintained by the International Phonetic Association to transcribe sounds
into written form. Each sound is assigned a unique character, allowing IPA to convey
intonation and other linguistic properties effectively. While the IPA alphabet has
evolved to reflect advancements in linguistics, it remains stable and representative,
making it suitable for integration into Machine Learning applications. IPA utilizes

16 Background and Related Work

symbols from the Latin and Greek scripts, organizing them into categories such as
vowels and pulmonic/non-pulmonic consonants.

In this thesis, IPA serves as the encoding mechanism for words into their re-
spective pronunciations. Various solutions exist for translating words into IPA, such
as the eSpeak NG (Next Generation) Text-to-Speech engine [23] and Epitran [41],
which supports over 100 languages.

2.3.2 Articulatory Feature Vectors

Articulatory Feature Vectors, such as those found in resources like PHOIBLE [40],
have an important role in linguistics and computational phonetics. These vectors
encapsulate the acoustic properties of speech, offering a structured representation
that facilitates comparative analyses across languages. By quantifying key Artic-
ulatory Features such as pitch, duration, and spectral characteristics, Articulatory
Feature Vectors provide a standardized framework for phonetic research, enabling
researchers to explore phonetic variation systematically. Moreover, they serve as
valuable resources for computational models and tools, empowering natural language
processing tasks such as speech recognition, synthesis, and dialect identification.

Projects like [40, 39, 22] aggregate IPA segments and associated features for
different languages. Several proposals exist for creating Articulatory Feature Vectors
that encompass features shared across languages. Implementations such as [33, 55,
42] convert IPA segments into these vectors, which are then employed in various
Natural Language Processing (NLP) applications. PanPhon [42] is one of the
most recent proposals mapping over 6 thousand IPA segments to 21 subsegmental
articulatory features and it is used in X-Squatter.

2.3.3 Mel Spectrogram

The spectrogram depicts the magnitude and phase characteristics of a signal as it
varies with frequency [51]. It provides a visual representation of an audio signal
broken down into its constituent frequencies, with time represented along one axis
and frequency along the other.

The Mel Spectrogram, a log-scaled variant of the Linear Spectrogram, is par-
ticularly favored for human perception due to its enhanced ability to differentiate

2.4 Third-party Tools for Squatting Generation 17

k mju n i
com mu ni ty

Fig. 2.2 Raw audio wave and its Mel Spectrogram aligned to the pronunciation and grapheme
of the word “community.”

between low-frequency sounds compared to high-frequency ones. This representa-
tion is commonly employed in machine learning applications, especially those related
to speech, as it focuses on frequency components crucial for such tasks. Figure 2.2
illustrates the raw audio signal alongside its Mel Spectrogram, IPA pronunciation,
and grapheme representation for the word “community.”

In this thesis, the Mel Spectrogram serves multiple purposes: (i) learning the
sound representation, which is subsequently used to generate graphemes with similar
pronunciation to the original; (ii) assessing the similarity of generated squatting
candidates based on their pronunciation; and (iii) aligning the pronunciation with the
audio signal to estimate the duration of each phoneme, as demonstrated in Figure 2.2.
Such duration estimation is crucial for spectrogram reconstruction, a topic explored
further in subsequent sections.

2.4 Third-party Tools for Squatting Generation

There are several tools built to assist the process of proactively uncovering do-
mains susceptible to squatting. These tools typically employs a variety of squatting
techniques, such as typo, bit-flip, homograph, combo, and sound-squatting.

For clarity, we briefly list the key differences between sound-squatting and
the other techniques. Typo-squatting primarily leverages small typos to create
confusingly similar names (e.g., gogle). Homograph-squatting exploits characters
from different scripts that visually resemble each other (e.g., g00gle). Combo-
squatting leverages combinations of words to fool people into believing a resource

18 Background and Related Work

is legitimate (e.g., my-google). Bit-flip squatting relies on bit-flip errors that may
change messages during transmission in insecure protocols.

Table 2.1 provides a succinct overview of the main tools employed for generating
squatting candidates, along with the techniques each tool utilizes. These techniques
include Typo, Homograph, Bit, and Sound squatting methodologies. The tools listed
include DomainFuzz [21], which focuses solely on Typo squatting, while others
like URLCrazy [36] and URLInsane [5] employ a broader spectrum of techniques,
incorporating Typo, Homograph, Bit, and Sound methodologies. dnstwist [19]
employs Typo, Homograph, and Bit techniques, while AIL [5] encompasses Typo,
Homograph, Bit, and Sound squatting methodologies.

All these tools fall short in sound-squatting generation because they only consider
exact homophones within the single-language scenario in English-US. For instance,
AIL utilizes a list of homophones extracted from Wikipedia, last updated in April
20203.

Table 2.1 Tools for squatting candidate generation.

Tool Techniques

DomainFuzz [21] Typo
dnstwist [19] Typo, Homograph, Bit
URLCrazy [36] Typo, Homograph, Bit, Sound
URLInsane [5] Typo, Homograph, Bit, Sound
AIL [5] Typo, Homograph, Bit, Sound

3https://github.com/typosquatter/ail-typo-squatting/blob/main/ail_typo_
squatting/generator/homophones.py

https://github.com/typosquatter/ail-typo-squatting/blob/main/ail_typo_squatting/generator/homophones.py
https://github.com/typosquatter/ail-typo-squatting/blob/main/ail_typo_squatting/generator/homophones.py

Chapter 3

Methodology for Sound-squatting
Generation

This chapter outlines the methodology for generating sound-squatting candidates
using generative artificial intelligence. The chapter (i) introduces a taxonomy for
categorizing candidate-producing tools based on the type of data and linguistic
scenario, (ii) elaborates on the architectures of our proposed tools to produce sound-
squatting candidates, and (iii) discusses the methods used for collection users’ data
on transcription mistakes, which we utilize to validate our models.

3.1 General Pipeline

Our goal is to investigate the use of AI for sound-squatting generation. Therefore,
we design a tool to assist in the generation process. This task requires careful consid-
eration of pronunciation encoding, which can vary depending on the availability of
data, computational resources, and the chosen generation approach.

Traditional tools (see Section 2.4) typically generate modified names and assess
the availability of the name in the target resource (e.g., a domain name). Our
focus, however, is solely on the generation of modified names. One of our research
questions addresses the use of data-driven approaches to learn alternative spellings
without relying on fixed rules. To achieve that we propose a pipeline composed
of three main components: Pronunciation Encoder, Data-driven Model, and Post

20 Methodology for Sound-squatting Generation

Pronunciation

Encoder

Sound-squatting

Candidates for Target

Homophones /

Quasi-homophones

Tokens / Spectrogram /
Audio Signal / Feature

Vectors

Data-driven

Model

Post

Processor

Input

Fig. 3.1 Methodological pipeline for sound-squatting generation.

Processor. Figure 3.1 illustrates this pipeline, which aims to produce sound-squatting
candidates for multiple linguistic scenarios.

The pipeline begins with an input that defines a target, such as a domain name.
This is followed by the Pronunciation Encoder, which encodes the grapheme into
its pronunciation. This step can vary depending on the model and may involve
learning based on fixed rules (e.g., Grapheme to Phoneme tools) or even audio
data. The resulting pronunciation can be represented as tokens, audio signal or
other pronunciation representations. Subsequently, the Data-driven Model generates
written forms (graphemes) for the input pronunciation. This model has the capability
to produce alternative spellings, including homophones and quasi-homophones.
Finally, the Post Processor transforms these into sound-squatting candidates, which
may call for additional steps based on the application, such as the inclusion of
top-level domains (TLDs) in domain squatting or the elimination of duplicates.
Consequently, post-processing steps are applied as necessary.

3.1.1 Data Modality for Sound-squatting

Data-driven models leverage machine learning algorithms and require training data
to learn patterns and produce alternative written forms for the names. The data
can contain errors made by users, which the model can learn from by capturing the

3.1 General Pipeline 21

distribution of these errors and replicating them in new data. Alternatively, the model
can implicitly learn alternative spellings by grasping pronunciation or grapheme
patterns.

While a model can learn from more complex data like audio signals or repre-
sentations such as Spectrograms, this type of data is more expensive to acquire and
their complexity results in more computational requirements to train the models. For
these reasons, the selection of a data source and the modality must carefully consider
this trade-off.

Regarding the data modality, data-driven models can be audio-based, token-based,
or hybrid models. Where:

Audio-based models process the raw audio associated with words. They extract
various audio features, such as pitch, intensity, and spectral characteristics to capture
distinctive acoustic patterns. The model then learns how to alter some of these
features to generate distortions that lead to the desired alternative written forms (e.g.,
the homophones). As said previously, these models suffer from the complexity of
dealing with audio signals and controlling errors. In a way, they work similarly to
a Speech-to-Text pipeline, where the generated text contains the sound-squatting
candidates.

Token-based models operate on textual representations of names. They break
down the input name into tokens, which can be either (i) normal grapheme tokens
or (ii) pronunciation tokens. Pronunciation tokens rely on a phonetic representation
of the words, for instance, using the IPA alphabet. These models learn to map the
representation of the name back into a phonetically equivalent grapheme form, like
homophones or quasi-homophones. However, token-based models can only generate
sound-squatting candidates using pronunciation-spelling combinations that have
been seen in the training data.

This is a limitation for cross-language scenarios, where different spellings lead
to similar pronunciations that are encoded as different categorical tokens. For
example, consider again the example of the Portuguese word “pão” (pronounced
[’p 5w]), meaning “bread”. It could be misheard by an English speaker as “pound”
(pronounced [paUnd]). Note that both the pronunciation and the spelling are different.
This limitation highlights the challenge of covering all pronunciation variations and
their corresponding written forms in such models.

22 Methodology for Sound-squatting Generation

Hybrid models use a pronunciation representations that is richer then token
representation, but less expensive then audio signal or spectrograms. The advantage
of such representation lies in its capacity to encapsulate phonetic similarities among
phonemes. There are several proposals for this type of representation such as the
articulatory vector representation [42], and the typological vector representation [33].
A key advantage of this approach is that it enables cross-language support. That
is, it overcomes the problem created by the lack of particular mapping between
graphemes and phonemes in pairs of languages. Indeed such representations allow
one to obtain a list of similar phonemes in the target language, which is much harder
with token-based representations (e.g., based on the IPA alphabet).

3.2 Taxonomy of Generative Models

Following the proposed methodology, we have introduced several alternative models
to tackle the diverse scenarios and, as far as we are aware of, these have been the first
efforts to introduce a data-driven methodology for sound-squatting generation [64,
67, 66].

Notably, we will introduce in the coming Chapter alternative models comprising:

1. Simple IPA Translation is a token-based single-language model we intro-
duced in [64] trained to learn transliterations from IPA segments to graphemes
for a given language. This model includes two modules: IPA to English and
a English to IPA. One model transliterates the English input to IPA adding
some variability based on a random sampling and this input it transliterated
back to English-US, again adding a random noise. The output consists in a
single homophone candidate. This approach represents a simple baseline for
the problem.

2. Audio Inbound with IPA Translation is an audio-based single-language
model (introduced in [65]), which operates similarly to the previous model
but additionally learns features from audio, thereby incorporating similarities
between IPA segments.

3. Multi-language IPA Translation is the first token-based multiple-language
model for cyber-squatting generation, which we proposed in [67]. It features

3.3 Transcription Error Collection 23

the inclusion of special language tokens to generate homophones in multiple
languages. However, being token-based, this model lacks the ability to generate
homophones in cases where there are gaps in the representation, for instance,
in cross-language squatting.

4. Cross-language IPA Translation is the hybrid model for cyber-squatting
generation proposed in [66]. It features the use of Phonetic Feature Vectors
to encode the IPA tokens allowing the generating of homophones in multiple
languages as well as cross-language homophones.

These alternatives produce homophone and quasi-homophone that are later used
as sound-squatting candidates. The implemented pipelines, linguistic scenarios and
data-driven approach are detailed in Chapter 4.

3.3 Transcription Error Collection

Armed with the multiple alternatives to generate sound-squatting (including those
found on previous works) we move to the question on whether these tools generate
candidates that represent likely users’ mistakes.

For that we perform a survey with users, who are exposed to a questionnaire.
This questionnaire aims to gather data on mistakes made by users when transcribing
domain names from audio. The transcriptions collected are intended to serve as
validation for the tools, assessing their ability to anticipate user behavior accurately.
To provide additional insights, we also collect user information such as language
proficiency.

Participants are presented with pronunciations of existing domain names gen-
erated by the Google Text-to-Speech tool [3]. Subsequently, users are asked to
transcribe the domain names based on their comprehension of the audio. The audio
includes the pronunciation of the domain name and its Top-Level Domain. We config-
ure the Text-to-Speech tool in English-GB and manually validate the pronunciation.
While the pronunciation produced by the Google TTS tool is machine-generated, it
closely resembles human pronunciation.

In this evaluation, we choose a controlled environment, inviting suitable vol-
unteers from a few linguistic contexts. This approach helps us avoid the need for

24 Methodology for Sound-squatting Generation

additional data cleaning [38], which is often necessary when using crowd-source
platforms like Amazon Mechanical Turk [1] or Clickworker [2], helping to improve
the quality of the data. These platforms are typically considered for scaling the
questionnaire.

The questionnaire contains 20 domain name pronunciations randomly selected
from the Tranco Top 1 Million rank. All participants evaluate the same set of 20
random domains, following the methodology described in [54], which consists in
a research aiming at understanding the effectiveness of typo-squatting. To random
factor domain popularity, the selection of domains takes into account ranges of
domain popularity when sampling: Initially, a set of domains is sampled from the
interval spanning 1 to 1000. Following this, subsequent intervals extended further,
from 1000 to 11000, then from 11000 to 111,000, and finally from 111000 to
1000000. This selection process favors more popular domains over less popular
ones.

Participants are presented with a Google Form (as depicted in Figure 3.2) con-
taining contextual information at the beginning, followed by an explanation of the
task. The target audience comprises individuals from different nationalities with
varying levels of education. Participants are instructed not to check the domains, as
this may pose a risk of visiting eventual squatted domains.

(a) (b)

Fig. 3.2 Google Form screenshot of the questionnaire that access user’s mistakes during
domain name transcription.

3.3 Transcription Error Collection 25

Additionally, contextual tags (“Related topics” in the picture above) related to
the domain are presented alongside the audio pronunciation, enabling users to infer
missing words if necessary. The tags are provided by Google Topics API [35]. We
assume these hints mimics real-world communication scenarios, where context aids
understanding. Each user can provide multiple possible transcriptions if needed.
The domains, the contextual tags and the rank in Top 1 Million list are shown in
Table 3.1.

Table 3.1 The domains, the contextual tags and the rank in Top 1 Million list used in the
survey. The selection methodology favors more popular domains.

Tranco Rank Domains Contextual Tags

412 cloudns.net Cloud Storage, Computer Networks
522 coinmarketcap.com Investing, Business News
661 eastday.com News
738 crunchyroll.com TV and Video, Comics and Animation, Arts and Entertainment
741 americanexpress.com Credit and Lending, Advertising and Marketing, Shopping, Banking

2 732 fsu.edu Colleges and Universities
5 522 retailmenot.com Coupons and Discount Offers
5 685 pdst.fm Law and Government, Education
5 743 awsdns-18.com Web Services, Comics and Animation, Online Communities
7 253 pornbox.com Unknown

30 865 nanning.gov.cn Business and Industrial, Law and Government
86 722 centrinvest.ru Real Estate Services
87 700 cakecentral.com Baked Goods, Cooking and Recipes
91 185 playerup.com Arts and Entertainment

103 992 marnet.mk Arts and Entertainment
118 015 sexymasseur.com Unknown
474 837 bsta.rs Accounting and Auditing, Tax Preparation and Planning
576 429 uir.ac.id Colleges and Universities
741 359 kitchenwaresreview.com Kitchen and Dining
964 077 informatica6.com Software, Computers and Electronics

The data gathered from this questionnaire serves the purpose of elucidating
whether sound-squatting generation tools possess the capacity to anticipate tran-
scription errors resulting from user misunderstandings. This verification procedure
consists on utilizing the tools to generate potential domain name variations for the
designated domains. Subsequently, the data provided by users is compared with the
synthetic data generated by the tools for comparative analysis.

Chapter 4

Our Proposed Models

This chapter presents our proposals to generate sound-squatting candidates using
generative artificial intelligence. Building upon the methodological framework
outlined in the preceding sections, this chapter delves deeper into the approach,
describing details of the pipeline methodology and the developed tools.

At the core of our proposal is a data-driven methodology designed to generate
sound-squatting candidates that are homophones and quasi-homophones of the
input. Figure 3.1 provides a visual representation of the methodological pipeline,
illustrating the steps involved in the generation process. From grapheme encoding
to post-processing refinements, each stage of the pipeline is designed to produce
candidates adequate to diverse sound-squatting scenarios.

Throughout this chapter, we provide a comprehensive overview of the proposed
methodology, detailing the tools developed, the linguistic scenarios considered, the
dataset and the training process employed.

4.1 Auto-Squatter: Simple IPA Translation

We first introduce our simplest model, Auto-Squatter. Initially presented at the
2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW),
this tool leverages two token-based single-language models. These models are
specifically trained to generate transliterations from International Phonetic Alphabet
(IPA) segments to English-US and, conversely, from English-US to IPA segments.

4.1 Auto-Squatter: Simple IPA Translation 27

Notably, Auto-Squatter introduces variability into its outputs for identical inputs
through the inclusion of random noise in the encoder’s output. This simple idea
serves as baseline and motivates our search for more robust methods able to cover
more complex linguistic scenarios.

4.1.1 System Description

Figure 4.1 illustrates the tool pipeline, which employs a Transformer Neural Net-
work to translate English-US words into their corresponding pronunciations in the
International Phonetic Alphabet (IPA) and vice versa.

/aI/
Phoneme Input (IPA)

[eye]
Grapheme Target

[I]
Generated Candidates

Pronunciation Encoding

Data-driven Model

English to IPA

IPA to English

Post Processor

N Runs

Fig. 4.1 Pipeline to generate homophones using Auto-Squatter. The Post Processor calls
the model N times to generate multiple candidates.

In conventional translation tasks employing Transformers, output consistency is
typically preferred (e.g., for the same input, the same output is expected). However,
in the context of homophone generation, we search for models capable of generating
multiple alternative outputs for the same input. These alternatives should closely
resemble the expected output while introducing variations that do not compromise
pronunciation, thus producing homophones and quasi-homophones of the input
word.

To achieve this variability, each model is adapted to incorporate randomness by
adding random noise sampled from a normal distribution to the latent representation

28 Our Proposed Models

of the encoder’s output. This addition is shown in Figure 4.2. This augmentation of
the latent space confounds the decoder, resulting in outputs that maintain phonetic
similarity to the originals, augmenting the amount of homophones generated for a
given input word.

Generating multiple candidate outputs requires multiple model runs. For this
reason, the Post Processor calls the model N times. As the noise varies with each
iteration, slight changes in the output occur with each run. After numerous iterations,
the candidates are selected from the unique samples produced by the pipeline.

/aI/
Phoneme Input (IPA)

[eye]
Grapheme Target

Random
Noise

Random
Noise

[I]
Generated Candidates

En
g

lis
h

to
 IP

A

IP
A

 to
 E

ng
lis

hTransformer
Encoder

Transformer
Encoder

Transformer
Decoder

Transformer
Decoder

Fig. 4.2 Detailed pipeline to generate homophones using Auto-Squatter. The homophone
generation pipeline incorporates a mechanism where random noise is introduced to each
encoder output. This strategic addition of noise disrupts the model’s processing, prompting
it to generate alternative outputs.

4.1.2 Dataset and Training

To train this model we use a comprehensive collection of English-US words and
their corresponding pronunciations, as detailed in [20]. This dataset contains a total
of 125923 word-pronunciation pairs.

During the training phase, the two translators are individually trained as shown
in Figure 4.3. Specifically, for the English-US to IPA task and vice versa, one model
is dedicated to converting English-US words to their IPA representations, while
the other model focuses on the reverse task of converting IPA representations to
English-US words.

4.1 Auto-Squatter: Simple IPA Translation 29

IPA to English

Input

Output Probabilities

Transformer EncoderTransformer Encoder

Transformer DecoderTransformer Decoder

IPA Tokens

English Tokens

(a)

English to IPA

Input

Output Probabilities

Transformer Encoder

Transformer Decoder

English TokensEnglish Tokens

IPA Tokens

(b)

Fig. 4.3 The training process for Auto-Squatter involves a mirrored configuration for the
models. This means that the output of one model serves as the input for the other model, and
vice versa. (a) IPA to English; (b) English to IPA.

30 Our Proposed Models

Both models within Auto-Squatter share identical architecture and hyperpa-
rameters. They are built upon the Transformer architecture featuring 2 heads, a latent
dimension of 2048, and a sequence size of 25 tokens. Implementation is carried out
using the Keras Framework [14], with training being performed locally.

During training, each model undergoes 10 epochs with a batch size of 64. The
training dataset constitutes 80% of the samples, while 10% is allocated for validation
and 10% for testing.

The selection of hyperparameters was guided by feature engineering considera-
tions. The decision to employ a reduced number of heads, compared to other NLP
setups, is justified by the observation that the translation from English to IPA does
not need the model to learn long dependencies within the sequence.

The noise injection occurs during both the training and inference phases. Experi-
ments conducted without noise resulted in output inconsistencies, since the noise
during training affects the model convergence. The noise introduced is sampled from
a normal distribution with a mean of 0.0 and standard deviation of 1.0.

4.1.3 Architectural Details

Figure 4.4 illustrates the process of adding noise to the Encoder’s output. The
Encoder’s output is represented as a matrix of dimensions B× E × S, where B
denotes the batch size, E represents the embedding size, and S indicates the sequence
size.

Auto-Squatter hyperparameters are detailed in Table 4.1. These hyperparame-
ters were selected based on best practices in Transformer architecture and training
methodologies. As previously mentioned, the decision to reduce the number of heads
from the standard Transformer configuration has been made to align with the task’s
complexity while also helping to reduce the overall model size.

4.1 Auto-Squatter: Simple IPA Translation 31

+

+

+

Embedding Embedding

Add & Norm

Add & Norm
Feed Forward

Positional Positional

Add & Norm

Add & Norm

Add & Norm
Feed Forward

Linear

Random Noise
Softmax

Multi-Head
Attention

Multi-Head
Attention

Multi-Head
Attention

Inputs

Nx

xN

Outputs 
(shifted right)

Output Probabilities

Fig. 4.4 Block diagram of a modified Transformers architecture showing noise insertion into
the encoder output. This architecture is the same for both models in Auto-Squatter.

32 Our Proposed Models

Table 4.1 Auto-Squatter Hyperparameters

Hyperparameter Value

Number of heads 2
Latent dimension 2,048
Maximum Sequence Length 25
Epochs 10
Batch Size 64
Training dataset split 80%
Validation dataset split 10%
Testing dataset split 10%
Noise distribution Normal
Noise mean 0.0
Noise standard deviation 1.0
Optimizer RMSprop
Learning Rate 0.001
ρ 0.9
momentum 0.0
ε 10−7

Training Epochs (Each Model) 10
Training Steps (Each Model) 1970

4.2 Sound-skwatter: Audio Inbound with IPA Trans-
lation

This section introduces Sound-skwatter a tool designed to automatically generate
potential attack words using Transformer Neural Networks and acoustic models as
feedback. Sound-skwatter generates candidates for any given target name, working
at the sub-word level and allowing configurable approximations during the search
for candidates. Sound-skwatter can be trained for any language. For training, the
network receives as input (i) the International Phoneme Alphabet (IPA) representation
of the word and (ii) the spectrogram extracted from the target word pronunciation
audio signal. At inference, it recreates the written form (grapheme) while also
considering pronunciation. Sound-skwatter uses a sequence-to-sequence task to
find written alternatives with similar pronunciations.

The initial version of this tool [65] is discussed in the report titled “Sound-
skwatter (Did You Mean: Sound-squatter?) AI-powered Generator for Phishing
Prevention”, available on the Arxiv.org platform, submitted on October 10, 2023.

4.2 Sound-skwatter: Audio Inbound with IPA Translation 33

4.2.1 System Description

Post Processor

[eye]
Grapheme Target

[eye, I]
Generated Candidates

IPA Encoder

/aI/
Phoneme Input (IPA)

Output Probabilities (Shifted Right)

Grapheme to Phoneme

Decoder to Grapheme

Fe
ed

b
ac

k
P

re
vi

ou
s

S
ta

te

Pronunciation Encoding

Data-driven Model

Fig. 4.5 The process to generate candidates is composed of an Feature Vector Encoder that
maps the input to a latent space and a Grapheme Decoder that reconstructs the input.

Sound-skwatter is a tool capable of creating homophones which are later used
as sound-squatting candidates which translates from phonemes to graphemes. The
tool pipeline used for inference is describe in Figure 4.5. The generation pipeline is
built upon four essential components (detailed in the following):

1. The Grapheme to Phoneme (G2P) language specific component converts the
input word presented in grapheme format (in the example, the word “eye”)
into its corresponding representation in the International Phonetic Alphabet
(IPA) (such as /aI/ for British English).

2. The IPA Encoder component transforms the sequence IPA tokens in a latent
space using a Transformer-based sequence-to-sequence model.

3. The Grapheme Decoder (P2G) component recursively decodes the latent
representation into characters to compose a new grapheme form that presents
similar pronunciation of the input word (such as “I”). The initial state fed to
the model selects the target language.

34 Our Proposed Models

4. The Post Processor component engages in beam search across the output
logits and makes token selections according to probabilities derived from
the decoder’s output. This process is crucial for generating numerous quasi-
homophones, which are alternative words that sound similar to the original
word but have different spellings, all from a single pronunciation.

Next, each component is presented according to its role and contribution.

Grapheme to Phoneme (G2P)

The Grapheme to Phoneme component transforms written words into their respective
IPA representations for a specific language. There are different tools available
for that, including solutions that work for multiple languages. The most common
approaches are either i) rule-based or ii) data-driven. Rule-based models employ
predefined rules to convert word pronunciations based on their spelling. Data-driven
models use machine learning techniques and annotated data to build a model for this
task.

The previously presented Auto-Squatter uses a data-driven Grapheme to
Phoneme model. However, for Sound-skwatter, the default option is the eSpeak
NG (Next Generation) text-to-speech engine [23] and Epitran [41] for transliterating
text into IPA. eSpeak NG performs better for English-GB and English-US.

The shift from a data-driven to a rule-based G2P model is due to convenience,
as the available G2P tools provide sufficient quality to support the viability of our
proposal. Additionally, the rule-based tools do not require additional training for
every new language.

IPA Encoder and Grapheme Decoder

The fundamental components of Sound-skwatter consist of the IPA Encoder and
Grapheme Decoder, which rely on the self-attention mechanism to learn the transla-
tion of a sequence of feature vectors into grapheme format. Architecture details can
be found in Section 4.2.3.

When presented with a sequence of feature vectors obtained from the IPA En-
coder model and predictions for each of the preceding (N − 1) characters, the

4.2 Sound-skwatter: Audio Inbound with IPA Translation 35

Grapheme Decoder module is responsible for estimating the probabilities associated
with each potential character becoming the N-th character of the output. Afterward,
the Post Processor component analyzes these probabilities and provides the historical
context back to the Grapheme Decoder for generating the next forecast.

Post Processor: the Quasi-Homophone Generation

In the inference process, the Post Processor receives as input the probabilistic
forecasts of the next character from the Grapheme Decoder and maintains a record of
the prediction history to provide feedback to the Grapheme Decoder. Operating as an
auto-regressive model during inference, more than one candidate quasi-homophone
can be generated by adjusting the feedback history sent back by the Post Processor.
A Beam Search top-K algorithm is used to identify the best candidates.

During each step of inference, the K most probable predictions of the Grapheme
Decoder are stored by the Post Processor, and alternative histories are constructed to
be fed back to the Grapheme Decoder in the subsequent step. Illustrated in Figure 4.6,
this iterative process forms a tree (with K = 2), where each edge corresponds to an
associated probability. In the example, starting with the IPA representation of the
word by, each node represents the two most likely next characters given the preceding
character sequence. The letter b emerges as the primary candidate for the first letter
(with a probability of 99.72%), while p is the second-highest. Subsequently, b can
be followed by u or y, and so forth. After four iterations, the process generates 15
different variations of writing by. Note that the generation process is stopped by the
Post Processor when the Grapheme Decoder outputs the special character EoS (End
of Sentence), as observed in the generation of by.

To find the best quasi-homophone candidates, Post Processor computes the joint
probability of each leaf as being the product of the edge probabilities. At each step,
Post Processor ranks current leaves by joint probabilities and keeps the L most likely
ones to prune the search space and avoid pursuing branches with a low likelihood of
producing good quasi-homophones. The number of iterations M at which stop the
generation process, the number of candidate predictions (children) L to generate at
each step, as well as the number of best candidates K to keep are additional hyper-
parameters of Sound-skwatter which can be either defined manually or identified
using standard local-search procedures.

36 Our Proposed Models

/baɪ/

b

by

bu

pb

pe

bye

by

buy

bui

byee

bye

buye

buy

buie

bui

pby

pbi

pei

pey

pbye

pby

pbie

pbi

peie

pei

pey

peye

p

0.9972

0.0005

0.4832

0.1908

0.6463

0.0830

0.6869

0.9630

0.0154

0.7014

0.1278

0.9286

0.0588

0.3108

0.9990
0.0006

0.5352

0.0682

0.4621

0.9233

0.5932

0.5597

0.7682

0.7639
0.2334

0.2096

0.4367

0.4058

Fig. 4.6 Illustration of the inference process with K = 2 children per node. At each inference
step, we collect the two next characters with the highest probability. The left and the right
children have the second-highest and highest probability, respectively. Some nodes do not
have children because they reach the “End of Sentence” state.

4.2 Sound-skwatter: Audio Inbound with IPA Translation 37

For the purpose of this work, given the length of the input word N, Post Processor
iterates M = N +6 times, generating potentially KN+6 candidates. To limit the ex-
ploration, we set L = 64 and choose K = 2. These parameters have been determined
by manual inspection, and they are heavily dependent on the tasks and datasets of
interest. These values were obtain empirically by looking at the pairs of words and
pronunciations and by observing that no pronunciation is longer than the word by
more than 5 tokens.

4.2.2 Dataset and Training

The architecture used to train the IPA Encoder and Grapheme Decoder is depicted
in Figure 4.7. Both modules are trained jointly with one further function, Decoder to
Mel, exploiting multi-modal data coordinated by the Duration Predictor function.
The overall training task thus:

• is analogous to a sequence-to-sequence model, where the IPA Encoder and
Grapheme Decoder together translate from IPA to the target language grapheme.
At the same time the Mel Spectrogram supervisory signal is reconstructed
from the phoneme vector representation and the forecast duration of each
phoneme in the spectrogram domain;

• uses as input pairs ⟨x, to Mel(Text-to-Speech(x))⟩, where x is a word in phoneme
format, and to Mel and Text-to-Speech are, respectively, one of the many ex-
isting software that generates a Mel Spectogram of audio signals and Text-to-
Speech software, eventually first calling the Grapheme to Phoneme function
for having it in IPA. The dual-modality input is required for generating quasi-
homophones of good quality;

• outputs the word in grapheme format (via Grapheme Decoder) and the Mel
Spectogram (via Decoder to Mel) from the vector representation which IPA
Encoder outputs. The loss function used for training needs to carefully balance
the training process between these two modalities. The loss is computed by
summing the L1 and L2 Loss of the Mel Spectrogram reconstruction and
the Cross-entropy Loss calculated between the predicted and the expected
grapheme.

38 Our Proposed Models

Grapheme
Target

Mel
Spectrogram

Output ProbabilitiesReconstructed Mel Spec

IPA Encoder

Duration Predictor

Decoder to Mel

Phoneme Input (IPA)

Shifted Right

Grapheme to Phoneme

Decoder to Grapheme
Cross

Entropy Loss L1 and L2

Fig. 4.7 The training architecture for learning how to generate quasi-homophones. The dotted
box highlights the components that are trained for the generation of quasi-homophones:
Duration Predictor is a pre-trained function. It receives as input the phoneme translation
of a word and the duration of each phoneme in the expected spectrogram and outputs a
reconstructed spectrogram and the probabilities that are used to find the grapheme translation.

4.2 Sound-skwatter: Audio Inbound with IPA Translation 39

Duration Predictor is a pre-trained function which coordinates the flow of multi-
modal data by feeding the predicted temporal duration of each of the phonemes in
Grapheme to Phoneme(x) to Decoder to Mel. It uses Convolution and LSTM Units
to minimize the Connectionist Temporal Classification (CTC) loss [26], i.e., a loss
between a continuous time-series the Mel Spectrogram and a target sequence the
IPA word. The former is obtained by applying the Fast Fourier transform (FFT)
over windowed segments of the audio signal and a transformation to Mel Scale.
Given K the length of x, our word in phoneme format, Duration Predictor outputs
⟨d1,d2, . . . ,dK⟩, where di represents the number of windowed segments of the audio
signal predicted to be associated to the i-th phoneme of x.

English-US was chosen because it is the most widely used language for digital
services and on the Internet [47]. Additionally, English-US exhibits phonetic incon-
sistency, making it a potential target for squatting. The training dataset contains
English-US words sourced from the GNU Aspell [7] reference word list. This list,
which forms the basis of GNU Aspell, is a free and open-source spell checker and
contains a total of 125,929 words in American English.

To acquire the pronunciation, the open-source software eSpeak NG Text-to-
Speech is used. It supports more than 100 languages, and it is set for English-US to
solve the grapheme-to-phoneme translation and to produce the speech sound signal.
The generated speech sounds artificial to a human ear, but it is sufficient to provide
the model with acoustic information about the pronunciation. The final step involves
converting the sound signal to a spectrogram at the Mel Scale, a process carried out
using the Torch Audio library [72].

The model is trained with a batch size of 64 words. As in the previous case, the
training set comprises 80% of the samples, while 10% is allocated for validation and
10% for test sets. The Adam optimizer with LR = 0.0001, β1 = 0.9, β2 = 0.98, and
ε = 10−9 is employed. A step learning rate decay is scheduled with γ = 0.1 every
10 epochs. The model undergoes training for 30 epochs, equivalent to approximately
47k steps, requiring around 168 minutes on a single Nvidia Tesla V100. Duration
Predictor undergoes training with the same dataset and the same Adam optimizer,
converging at around 100k steps.

40 Our Proposed Models

Table 4.2 Sound-skwatter Hyperparameters

Hyperparameter Value

Number of heads 8
Latent dimension 512
Maximum Sequence Length 100
Epochs 30
Batch Size 64
Training dataset split 80%
Validation dataset split 10%
Testing dataset split 10%
Optimizer Adam
Learning Rate 0.0001
ε 10−9

Learning Rate Decay γ 0.1
Decay Frequency (Epochs) 10
Training Epochs (Model) 30
Training Steps (Model) ≈ 47,000
Training Steps (Duration Predictor) ≈ 100,000

Impact of acoustic feedback

In comparison with the previous proposal, Sound-skwatter includes audio features
and the joint training with the Mel-spectrogram. To assess the impact of each aspect
on results, a different training approach for Sound-skwatter, excluding the joint
training with the Mel-spectrogram, is executed. The revised architecture is illustrated
in Figure 4.8. In this alternative model, both the Duration Predictor and the Decoder
to Mel components are omitted, resulting in the absence of L1 and L2 Loss terms
for Mel Spectrogram reconstruction. The model without audio feedback essentially
operates as a token-based model, performing a straightforward IPA translation in
practice. Training for this model follows the same procedures and hyperparameters
as the complete model. The pipeline remains the same.

4.2.3 Architectural Details

Figure 4.9a details the architecture of the model used for homophone generation.
The diagram includes the IPA Encoder, Grapheme Decoder and Decoder to Mel.
Figure 4.9b details the inside of the decoder block. Figure 4.9c is a high-level
representation of the Length Regulator. The Length Regulator expands the Feature
Vector Encoder output to the same order of magnitude as the Mel Spectrogram. This

4.2 Sound-skwatter: Audio Inbound with IPA Translation 41

Grapheme
Target

IPA Encoder

Phoneme Input (IPA)

Shifted Right

Grapheme to Phoneme

Decoder to Grapheme

Output Probabilities

Cross
Entropy Loss

Grapheme Target

Fig. 4.8 The training architecture of Sound-skwatter without acoustic feedback from Mel
Spectrogram reconstruction. This model functions as a baseline for assessing the impact of
reconstruction on overall performance.

42 Our Proposed Models

feature reduces training complexity and time and it was used in other Speech to Text
proposals such as FastSpeech [49].

4.3 Sound-squatter: Multi-language Sound-squatting
Generation

This section outlines the exploration of the sound-squatting generator, focusing on
adapting the model to handle multi-language generation. Much of its content is
derived from the paper titled Lost in Translation: AI-based Generator of Cross-
Language Sound-squatting, presented at the 2023 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). The model builds upon the method-
ology applied in Section 4.2, adapting it to a multilanguage generation scenario.

4.3.1 System Description

Sound-squatter builds on top of Sound-skwatter, therefore, its architecture
(shown in Figure 4.10) contains the same components that are also present in
Sound-skwatter. However, these components have been adapted to accommo-
date multiple languages within a single model. The generation pipeline comprises
four primary components:

1. The Grapheme to Phoneme (G2P) component transforms an input word
written in grapheme form (such as the word eye) into its corresponding In-
ternational Phonetic Alphabet (IPA) representation (such as /aI/ for British
English).

2. The IPA Encoder component encodes the IPA word into a vector latent repre-
sentation.

3. The Grapheme Decoder (P2G) component interactively decodes the vector
representation into characters to compose graphemes form that are quasi-
homophones of the input word (such as “I”) in a target language.

4.3 Sound-squatter: Multi-language Sound-squatting Generation 43
D Deconvolutional

Linear

Softmax

Output
Probabilities

Nx

Nx

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Inputs Outputs
(shifted right)

Positional
Encoding

1D
Deconvolutional

1D Deconvolutional

1D Deconvolutional

Raw Wave

Activation

Output
Embedding

Nx

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Decoder Block

Decoder Block

Conv Block

Output ProbabilitiesMel Spectrogram

Nx

Feed Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Linear

Softmax

Durations

Length Regulator

Inputs

Embedding Positional

+

Outputs
(shifted right)

Embedding Positional

+

Input
Embedding

Positional
Encoding

Embedding Positional
Encoding

/bˈa͡ɪ/

+

Transformer Encoder

Linear

Softmax

Embedding Positional
Encoding

by

+

Transformer Decoder

Output
Probabilities

Mel Decoder

Mel
Spectrogram

Domain Squatting Types
bit

typo

sound

combo

homograph

qoutube.com

yotube.com

utube.com

videoyoutube.com

yovtube.com

whatsapp.com

whatup.net

Duration Predictor

IPA Encoder

Decoder to GraphemeDecoder to Mel

Output ProbabilitiesPredicted Mel Spectrogram

Mel Spectrogram

Grapheme to Phoneme

Grapheme Target

Phoneme Input (IPA)

Shifted Right Post Processor

Grapheme to
Phoneme

IPA Encoder

Decoder to
Grapheme

 by

[‘bye', 'buye', 'buy']

Output Probability/bˈaɪ/

2 3 1 2

IPA Encoder
Output

Expanded
IPA Encoder Output

Durations

Multi-Head Attention

Conv 1D

ReLU

Conv 1D

Add & Norm

Decoder Block Length Regulator

(a)

D Deconvolutional
Linear

Softmax

Output
Probabilities

Nx

Nx

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Inputs Outputs
(shifted right)

Positional
Encoding

1D
Deconvolutional

1D Deconvolutional

1D Deconvolutional

Raw Wave

Activation

Output
Embedding

Nx

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Decoder Block

Decoder Block

Conv Block

Output ProbabilitiesMel Spectrogram

Nx

Feed Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Linear

Softmax

Durations

Length Regulator

Inputs

Embedding Positional

+

Outputs
(shifted right)

Embedding Positional

+

Input
Embedding

Positional
Encoding

Embedding Positional
Encoding

/bˈa͡ɪ/

+

Transformer Encoder

Linear

Softmax

Embedding Positional
Encoding

by

+

Transformer Decoder

Output
Probabilities

Mel Decoder

Mel
Spectrogram

Domain Squatting Types
bit

typo

sound

combo

homograph

qoutube.com

yotube.com

utube.com

videoyoutube.com

yovtube.com

whatsapp.com

whatup.net

Duration Predictor

IPA Encoder

Decoder to GraphemeDecoder to Mel

Output ProbabilitiesPredicted Mel Spectrogram

Mel Spectrogram

Grapheme to Phoneme

Grapheme Target

Phoneme Input (IPA)

Shifted Right Post Processor

Grapheme to
Phoneme

IPA Encoder

Decoder to
Grapheme

 by

[‘bye', 'buye', 'buy']

Output Probability/bˈaɪ/

2 3 1 2

IPA Encoder
Output

Expanded
IPA Encoder Output

Durations

Multi-Head Attention

Conv 1D

ReLU

Conv 1D

Add & Norm

Decoder Block

Length Regulator

(b)

D Deconvolutional
Linear

Softmax

Output
Probabilities

Nx

Nx

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Inputs Outputs
(shifted right)

Positional
Encoding

1D
Deconvolutional

1D Deconvolutional

1D Deconvolutional

Raw Wave

Activation

Output
Embedding

Nx

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Decoder Block

Decoder Block

Conv Block

Output ProbabilitiesMel Spectrogram

Nx

Feed Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Linear

Softmax

Durations

Length Regulator

Inputs

Embedding Positional

+

Outputs
(shifted right)

Embedding Positional

+

Input
Embedding

Positional
Encoding

Embedding Positional
Encoding

/bˈa͡ɪ/

+

Transformer Encoder

Linear

Softmax

Embedding Positional
Encoding

by

+

Transformer Decoder

Output
Probabilities

Mel Decoder

Mel
Spectrogram

Domain Squatting Types
bit

typo

sound

combo

homograph

qoutube.com

yotube.com

utube.com

videoyoutube.com

yovtube.com

whatsapp.com

whatup.net

Duration Predictor

IPA Encoder

Decoder to GraphemeDecoder to Mel

Output ProbabilitiesPredicted Mel Spectrogram

Mel Spectrogram

Grapheme to Phoneme

Grapheme Target

Phoneme Input (IPA)

Shifted Right Post Processor

Grapheme to
Phoneme

IPA Encoder

Decoder to
Grapheme

 by

[‘bye', 'buye', 'buy']

Output Probability/bˈaɪ/

2 3 1 2

IPA Encoder
Output

Expanded
IPA Encoder OutputDurations

Multi-Head Attention

Conv 1D

ReLU

Conv 1D

Add & Norm

Decoder BlockLength Regulator

(c)

Fig. 4.9 (a) Full architecture of training; (b) Inside view of the Decoder Block; (c) High-level
representation of the Length Regulator.

44 Our Proposed Models

4. The Post Processor component performs beam search over the logits and
selects tokens based on the probability from the decoder’s output, resulting in
the generation of multiple quasi-homophones from a single pronunciation.

Post Processor

[eye, I, aye, ai]
Generated Candidates

IPA Encoder

<en-us> /aI/
LST + Phoneme Input (IPA)

Output Probabilities (Shifted Right)

Grapheme to Phoneme

Decoder to Grapheme

Fe
ed

b
ac

k
P

re
vi

ou
s

S
ta

te

en-us
Read Language

en-us
Write Language

[eye]
Grapheme Target

Pronunciation Encoding

Data-driven Model

Fig. 4.10 Architecture used during inference. The process to generate candidates comprises
an IPA Encoder that maps the input to a latent space and a Grapheme Decoder that produce
several alternatives to reconstruct the input.

Grapheme to Phoneme

The usage of eSpeak NG (Next Generation) text-to-speech engine[23] is maintained,
but now, in a multi-language setting the usage of Epitran[41] becomes necessary
for transliterating text into IPA. The option of adding another tool is explained by
the fact that eSpeak NG is a better fit English-GB and English-US, while Epitran is
more suitable for other languages because eSpeak NG often switch languages when
transliterating known words, which breaks the core idea of this proposal.

IPA Encoder and Grapheme Decoder

Sound-skwatter trainable components remain IPA Encoder and Grapheme De-
coder. The state-of-the-art Transformer Neural Networks continue to be used. The

4.3 Sound-squatter: Multi-language Sound-squatting Generation 45

tool is designed as a single multi-language model with the explicit capability of
generating cross-language homophones and quasi-homophones.

The control over the language used to read the grapheme used the language or
accent of the G2P model. For example, the word “water” has different pronunciations
in English-US (/"wAt@ô/), English-GB (/"wO:t@/).

To specify the language the transformer should use to transliterate the phoneme
back into grapheme form, language tokens are added to the input the “Language
Special Token” (LST). These tokens provide contextualized information in the
input conditioning the latent representation. In a nutshell, during training, the LST
provides the input and output language information to the transformer, which learns
to transliterate the phoneme based on the information contained between them.

The Grapheme Decoder (P2G) component is architecturally unchanged. This
module is a Transformer Decoder module that interactively decodes the vector repre-
sentation into characters to compose graphemes form that are quasi-homophones of
the input word in a target language.

Post Processor

The Post Processor is updated. It continue receiving as input the Grapheme De-
coder’s probabilistic forecasts of the next character, and it keeps track of the history
of predictions to feedback to Grapheme Decoder. However, the usage of Beam
Search changes from top-k to top-p. In the top-k approach, fixing the number of
next tokens to select results in the selection of tokens with very low probabilities, as
depicted in Figures 4.6, where the first branch occurs with one child being highly
likely (b with probability of 0.9972) and another one being very unlikely to be
the first character (p with probability of 0.0005) for the input pronunciation. This
characteristic of top-k leads to the generation of many “bad candidates”, which is
avoided in the top-p approach.

In the top-p, the Post Processor picks from among the tokens those whose
probabilities add up to p. Figure 4.11 shows the exact output for four iterations.
At each step, the Post Processor stores C most-likely predictions of Grapheme
Decoder whose probabilities add up to at least p and constructs alternative histories
for the next step. Figure 4.11 shows this process with a directed graph diagram
(with p = 0.8) starting from the IPA representation of eye. After four iterations,

46 Our Proposed Models

the process generates six ways to write eye. Each branch stops when Grapheme
Decoder outputs the special character EoS.

[en-us] /aI/

bbe

bbi

ba

e

i

EoS

i

y

y

EoS

EoS

EoS

EoS

e

e

EoS

EoS

0.35

0..32

0.32

0.4

0.5

0.4

0.5

0.4

0.5

0.99

0.99 0.99

0.99

0.5

0.45 0.99

0.99

LST + Pronunciation

Fig. 4.11 Illustration of the inference process with p= 0.8. At each inference step, we explore
n next characters whose probabilities add up to p. For readability, we round probabilities in
the figure.

The number of iterations (M), maximum number of candidates predictions (K)
and probability (p) are parameters that we can define manually. We again empirically
define the parameters as follows: Post Processor iterates M = N +6 times, where N
is the size of the source string, and we limit exploration with K = 100 and p = 0.8,
where K is the maximum number of possible candidates generated.

4.3.2 Dataset and Training

Four different languages were selected for training: English-US, English-GB, French-
FR, and Portuguese-BR. English was chosen because it is the most widely used
language on the Internet, and including two English variations is important for
illustrating factors related to homophone-based impersonation. French-FR was also
chosen because it is not a phonetic language, making it more prone to confusion

4.3 Sound-squatter: Multi-language Sound-squatting Generation 47

Table 4.3 Sound-squatter Dataset size for each chosen language.

Language Tag Language Region Data size

en-GB English United Kingdom 65118
en-US English United States 125923
fr-FR French France 245971
pt-BR Portuguese Brazil 95943

Total 532955

during transliteration. Portuguese-BR is more regular compared to all the languages
before, being a Phonetic language.

Phonetic languages exhibit a close correspondence between pronunciation and
written representation, with each letter or character representing a specific sound.
While French and English have some phonetic elements, they are less purely phonetic
compared to languages with more straightforward sound-to-spelling correspondences,
such as Portuguese, Italian and Spanish.

The training dataset comprises the list of English-US, English-GB, Portuguese-
BR and French-FR words from the GNU Aspell [7] word list. GNU Aspell is a
free and open-source spell checker containing word lists for multiple languages. To
acquire the pronunciation, rule-based G2P tools are used: eSpeak NG for English-GB
and English-US, and Epitran for French-FR and Portuguese-BR.

Table 4.3 displays the size of the dataset for each language. In total, 532955
words and their pronunciations are used.

The IPA Encoder and the Grapheme Decoder are trained with a batch size of
64 words. The training set contains 80% of the samples, while 10% are preserved
for validation and 10% for test sets. The maximum sequence length is 50 tokens.
The validation set is used for selecting the best model, and the test set is used for
verifying overfitting. The Adam optimizer is employed with LR = 0.0001, β1 = 0.9,
β2 = 0.98, and ε = 10−9. The model is trained for 10 epochs, taking around 10
minutes on a single NVIDIA Tesla v100. The Transformer Network hyperparameters
for the encoder and the decoder are symmetric and defined as follows: the size of the
hidden representation is 512, the embedding dimension is 512, the number of heads
is 8, and the vocabulary size is 123.

48 Our Proposed Models

Table 4.4 Sound-squatter Hyperparameters

Hyperparameter Value

Number of heads 8
Latent dimension 512
Maximum Sequence Length 50 tokens
Epochs 10
Batch Size 64
Training dataset split 80%
Validation dataset split 10%
Testing dataset split 10%
Optimizer Adam
Learning Rate 0.0001
ε 10−9

Training Epochs (Model) 10
Training Time (Model) ≈ 10 minutes
Hidden Representation Size 512
Embedding Dimension 512
Vocabulary Size 123

4.3.3 Architecture Details

Figure 4.12 provides a detailed overview of the model architecture used for ho-
mophone generation. The diagram illustrates the components, including the IPA
Encoder, Grapheme Decoder, and the Language Token Embedding module. The
Language Token Embedding module receives the LST and converts it to the same
dimensionality as the embedded IPA tokens before forwarding it to the IPA Encoder.

4.4 X-Squatter: Cross-language Sound-squatting Gen-
eration

This section introduces X-Squatter, which stands out from previously presented
tools as a hybrid model. This hybrid model uses Articulatory Feature Vectors to
establish the connection between IPA tokens and audio signals. Most of the section
content is derived from the paper titled X-squatter: AI Multilingual Generation of
Cross-Language Sound-squatting, published at the ACM Transactions on Privacy
and Security.

4.4 X-Squatter: Cross-language Sound-squatting Generation 49

+ +

EmbeddingLanguage Token
Embedding Embedding

Add & Norm

Add & Norm
Feed Forward

Positional Positional

Add & Norm

Add & Norm

Add & Norm
Feed Forward

Linear

Softmax

Multi-Head
Attention

Multi-Head
Attention

Multi-Head
Attention

Inputs

Nx

xN

Outputs 
(shifted right)

Output Probabilities

Concat

Fig. 4.12 Complete training architecture of Sound-squatter, featuring a Transformer
Neural Network augmented with a language token concatenation module.

50 Our Proposed Models

Post Processor

[eye, I, aye, ai]
Generated Candidates

Output Probabilities (Shifted Right)

Grapheme to Phoneme

Decoder to Grapheme

Fe
ed

b
ac

k
P

re
vi

ou
s

S
ta

te

en-us
Read Language

en-us
Write Language

[eye]
Grapheme Target

Feature Vector Encoder

IPA to Feature Vector

Feature Vectors

Pronunciation Encoding

Data-driven Model

Fig. 4.13 Architecture used during inference. The process to generate candidates comprises
an Feature Vector Encoder that maps the input to a latent space and a Grapheme Decoder
that reconstructs the input.

4.4.1 System Description

X-Squatter (pronounced cross-squatter) is a tool crafted for the automatic
generation of single- and cross-language sound-squatting candidates. It leverages
Articulatory Feature Vectors to model any phonemic representation, enabling the
substitution of phoneme tokens with counterparts that share similar auditory charac-
teristics.

Operating at the sub-word level, X-Squatter generates candidates from a tar-
get name while incorporating mechanisms to control candidate quality during the
search process, akin to its predecessors. It takes inputs of the word’s written form
(grapheme), its pronunciation represented in the International Phonetic Alphabet
(IPA), and the language of origin. By extracting features from pronunciation seg-
ments, it produces homophones seamlessly across multiple languages and clear the
way for cross-language scenarios, necessitating innovative approaches to handle
graphemes for non-existing phonemes in the target language.

X-Squatter improves the translation process of phonemes into corresponding
graphemes by leveraging Articulatory Feature Vectors. The workflow is depicted

4.4 X-Squatter: Cross-language Sound-squatting Generation 51

in Figure 4.13, which shows a generation pipeline built upon five key components,
some of them which are in common with the previous proposals:

1. The Grapheme to Phoneme (G2P) component converts the input word pre-
sented in grapheme format (in the example, the word “eye”) into its corre-
sponding representation in the International Phonetic Alphabet (IPA), given a
read language (such as /aI/ for British English).

2. The IPA to Feature Vector component processes each segment of the IPA
representation, substituting it with a feature vector that aligns with acoustic
attributes.

3. The Feature Vector Encoder component transforms the sequence of fea-
ture vectors into representation in a latent space using a Transformer-based
sequence-to-sequence model.

4. The Grapheme Decoder (P2G) component interactively decodes the latent
representation into characters to compose a new grapheme form that presents
similar pronunciation of the input word (such as “I”). The initial state fed to
the model selects the target language.

5. The Post Processor component engages in beam search across the output
logits and makes token selections according to probabilities derived from the
decoder’s output.

The model receives three inputs the (grapheme target, read language, write
language), where the “grapheme target” is the word for the creation of sound-
squatting candidates is desired. The “read language” represents the language used to
pronounce the word, as the same sequence of letters can have different pronunciations
in different languages. Similarly, the “write language” denotes the language in
which the transcription of the pronunciation is done (i.e., the language of the sound-
squatting victim). The output of the tool is a set of sound-squatting candidates that
belong to the target language and include homophones, quasi-homophones, and
words with similar pronunciation.

52 Our Proposed Models

Grapheme to Phoneme (G2P)

X-Squatter continues on using eSpeak NG engine and Epitran for transliterating
text into IPA.

IPA to Feature Vector

A novel addition to the pipeline involves the role of the IPA to Feature Vector module.
IPA segments are mapped to respective Articulatory Feature Vectors by this module.
This technique produces a rich representation of IPA segments, introducing a concept
of similarity that is absent in pure IPA representation. Since IPA is a symbolic
alphabet, it is not possible to measure how similar two IPA segments are, such as in
terms of the sound of their pronunciations. This understanding of similarity becomes
crucial for cross-language sound-squatting generation, as each language may include
only a subset of IPA segments. When dealing with two different languages, it
becomes necessary to search within the destination language set for other phonemes
that can effectively replace those from the original language. Additionally, the
definition of a metric that quantifies the similarity between phonemes allows for
the search for quasi-homophones and words with similar pronunciations, better
controlling the quality of the generated candidates. In this application, the similarity
metric is implicit and guided by the transcription results.

Projects like [40, 39, 22] aggregate IPA segments and their features for vari-
ous languages. Implementations like Uriel, Phonological Mapping [33, 55], and
PanPhon [42] convert IPA segments into articulatory feature vectors for NLP tasks.
PanPhon, for instance, maps over 6 000 IPA segments to 21 subsegmental articulatory
features and is used in X-Squatter.

Feature Vector Encoder and Grapheme Decoder

With the introduction of IPA to Feature Vector, the adaptation of the Feature Vec-
tor Encoder becomes necessary. The Embedding block in the IPA Encoder (See
Section 4.4.3) is replaced by a Feature Vector Encoder. This change is necessary
because the Embedding block converts tokens to vectors, meaning that the input is a
sequence of IPA tokens. Now, the Feature Vector Encoder receives a sequence of
feature vectors as input, which have different dimensions.

4.4 X-Squatter: Cross-language Sound-squatting Generation 53

On the decoder side, the model takes the latent representation build from the
feature vectors and generate (i) the corresponding ISO code of the language, (ii)
the word’s written pronunciation form. For example, given the feature vector of the
input “/"wAt@ô/”, the correct output sequence is “en-us water". Similarly, if provided
with “/"wO:t@/”, the anticipated output should be “en-gb water”. When faced with
such tasks, the model associates certain combinations of IPA segments to specific
languages or accents.

The design of X-Squatter as a multi-language model with the explicit capa-
bility of generating cross-language homophones and quasi-homophones requires
the control of the language used to read the grapheme by changing the language
or accent of the G2P model. In the cross-language case, for example, suppose the
pronunciation of “water” in English-US and specify that we want the grapheme
form to be transliterated into French-FR. In that case, the model can generate the
quasi-homophone “warères” (/waö@ö/), which does not exist as a word in French-FR
but has a similar pronunciation to “water” in English-US.

To specify the language the transformer shall use to transliterate the phoneme
back into grapheme form, in the start of the decoder input the target language ISO
code.

Post Processor

The same Beam Search top-p strategy is used by the Post Processor. Parameters
such as the number of iterations (M), maximum number of candidate predictions
(K), probability (p), and temperature (t) can be manually defined.

However, at the beginning of grapheme generation, a seed is now used to condi-
tion the generation. This seed corresponds to the “write language” as used in training.
This strategy is somewhat common in GPT models, where the output of the model is
a continuation of the previous tokens. However, X-Squatter is not a GPT model
because it consists of both an encoder and a decoder (GPT models are decoder only),
although the reasoning behind the strategy remains the same.

Additionally, compared to Sound-squatter, where LST are concatenated, the
architecture in this X-Squatter is cleaner and more homogeneous.

54 Our Proposed Models

[en-us]

bbe

bbi

ba

e

i

EoS

i

y

y

EoS

EoS

EoS

EoS

e

e

EoS

EoS

0.35

0..32

0.32

0.4

0.5

0.4

0.5

0.4

0.5

0.99

0.99 0.99

0.99

0.5

0.45 0.99

0.99

Initial State

Write Language

Pronunciation /aI/

Fig. 4.14 Illustration of the inference process with p= 0.8. At each inference step, we explore
n next characters whose probabilities add up to p. For readability, we round probabilities in
the figure.

4.4 X-Squatter: Cross-language Sound-squatting Generation 55

Table 4.5 X-Squatter Dataset size for each chosen language.

Language Tag Language Region Data size

en-GB English United Kingdom 65118
en-US English United States 125923
fr-FR French France 245971
pt-BR Portuguese Brazil 95943

Total 532955

4.4.2 Dataset and Training

This section outlines the training procedure for X-Squatter. The model undergoes
training using four distinct languages: English-US, English-GB, French-FR, and
Portuguese-BR. Restricting the training to proto-Indo-European languages still
accounts for approximately 66.8% of online web content [47].

The training dataset comprises English-US, English-GB, French-FR, and Portuguese-
BR words sourced again from the GNU Aspell [7] word list. Pronunciations are
obtained using rule-based G2P tools, namely eSpeak NG for English-GB and English-
US, and Epitran for French-FR and Portuguese-BR.

Table 4.5 illustrates the dataset sizes for each language, totaling 437,012 words
and their respective pronunciations. Both Feature Vector Encoder and Grapheme
Decoder are trained with a batch size of 16 words, where 80% of the samples are
used for training, 10% for validation, and another 10% for testing.

The training employs the Adam optimizer with a learning rate (LR) set at 0.0001,
along with β1 = 0.9, β2 = 0.98, and ε = 10−9. Training halts upon observing three
consecutive epochs of no decrease in Validation Loss. Hyperparameters for the
Transformer Network include a hidden representation size of 512, an embedding
dimension of 512, and 8 attention heads, symmetrically applied to both encoder
and decoder modules. The input vocabulary includes 6,487 IPA segments, while
the output vocabulary consists of 133 grapheme tokens, standardized across all
languages. Table 4.6 enumerates these hyperparameters.

During training, an IPA input is paired with the associated language’s ISO
code and the word in its written form. Figure 4.15 outlines the training process of
X-Squatter, with dashed lines demarcating the boundaries of learnable parameters.

56 Our Proposed Models

Notable distinctions in X-Squatter’s training process compared to previous models
is the direct passage of the “write language” to the Grapheme Decoder block without
encoding in latent features.

Grapheme
Target

Cross
Entropy Loss

Read
Language

Write
Language

Output Probabilities

Phoneme Input (IPA)

Shifted Right

Grapheme to Phoneme

Decoder to Grapheme

Write Language + Grapheme Target

IPA to Feature Vector

Feature Vector

Feature Vector Encoder

Fig. 4.15 Training process of X-Squatter, with dashed lines denoting trainable modules.
Third-party modules, including IPA to Feature Vector and Grapheme to Phoneme, are
integrated into the current pipeline.

4.4.3 Architectural Details

Figure 4.16a details the architecture of the model used for homophone generation.
It includes the internal of the Feature Vector Encoder and Grapheme Decoder.
Figure 4.16b shows the inside of the decoder block that is used to reduce the
complexity of the visualization.

4.4 X-Squatter: Cross-language Sound-squatting Generation 57

rticulatory Encoder

D Deconvolutional
Linear

Softmax

Output
Probabilities

Nx

Nx

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Inputs Outputs
(shifted right)

Positional
Encoding

1D
Deconvolutional

1D Deconvolutional

1D Deconvolutional

Raw Wave

Activation

Output
Embedding

Nx

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Output Probabilities

Nx

Feed Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Linear

Softmax

Inputs

Embedding Positional

+

Outputs
(shifted right)

Embedding Positional

+

Input
Embedding

Positional
Encoding

Embedding Positional
Encoding

/aɪ/

+

Transformer Encoder

Linear

Softmax

Embedding Positional
Encoding

<START> eye

+

Transformer Decoder

Probabilities of Next
Token

Duration Predictor

IPA Encoder

Decoder to GraphemeDecoder to Mel

Output ProbabilitiesPredicted Mel Spectrogram

Mel Spectrogram

Grapheme to Phoneme

Grapheme Target

Phoneme Input (IPA)

Shifted Right

2 3 1 2

IPA Encoder
Output

Expanded
IPA Encoder OutputDurations

Multi-Head Attention

Conv 1D

ReLU

Conv 1D

Add & Norm

Decoder BlockLength Regulator

Post ProcessorGrapheme to
Phoneme

IPA Encoder Decoder to
Grapheme

 by [by, bye, buye, buy]

Output Probability/bˈaɪ/

CT Logs
2nd Level Domains

38 046 788

Other-squatting
Candidates

325 750

30 586

1 822

Sound-squatting
 Candidates

76 934

2 494

4 124

e

i

a

y

i

EoS

e

y

i

e EoS

EoS

EoS

e EoS

EoS

EoS

Pronunciation

/aI/

0.35

0.32

0.32

0.5

0.4

0.5

0.4

0.5

0.4

0.99

0.5

0.45

0.99

0.99

0.990.99

0.99

Initial State
Target Written

Form

en-us

Post Processor

Grapheme
Decoder

[eye, I, aye, ai]

Output Token Probability

eye

Embedding Repr.

Fe
ed

ba
ck

 P
re

vi
ou

s
S

ta
te

Generated CandidatesInput

Grapheme to
Phoneme

<LST>en-US<LST> /aI/

IPA Encoder

Post Processor

Grapheme
Decoder

[eye, I, aye, ai]

Output Token Probability

en-US <LST> eye

Embedding Repr.

Fe
ed

ba
ck

 P
re

vi
ou

s
S

ta
te

Generated CandidatesInput

Text Encoder

Post ProcessorGrapheme to
Phoneme

Encoder Grapheme
Decoder

[en-us] eye
[en-us] I

Output Token Probability/aI/

[eye]

Embedding Repr.

Fe
ed

ba
ck

 P
re

vi
ou

s
S

ta
te

Generated Candidates
Input

[en-us]
Initial State

IPA to Feature
Vectors

Post Processor

Grapheme
Decoder

[eye, I, aye, ai]

Output Token Probability

eye

Embedding Repr.

Fe
ed

ba
ck

 P
re

vi
ou

s
S

ta
te

Generated CandidatesInput

Grapheme to
Phoneme

/aI/

IPA Encoder

Post Processor

Grapheme
Decoder

[eye, I, aye, ai]

Output Token Probability

eye

Embedding Repr.

Fe
ed

ba
ck

 P
re

vi
ou

s
S

ta
te

Generated CandidatesInput

Grapheme to
Phoneme

<LST>en-US<LST> /aI/

IPA Encoder

Duration Predictor

Decoder to GraphemeDecoder to Mel

Output ProbabilitiesPredicted Mel Spectrogram

Mel Spectrogram Grapheme Target

Phoneme Input (IPA)

Shifted Right

IPA Encoder

Grapheme to Phoneme

Decoder to Grapheme

Output Probabilities

Grapheme Target

Phoneme Input (IPA)

Shifted Right

IPA Encoder

Grapheme to Phoneme

Decoder to Grapheme

Output Probabilities

Grapheme Target

Shifted Right

IPA Encoder

Grapheme to Phoneme

Decoder to Grapheme

Output Probabilities

Grapheme Target

Shifted Right

IPA Encoder

Grapheme to Phoneme

LST + Phoneme Input (IPA)Phoneme Input (IPA)Phoneme Input (IPA) LST + Phoneme Input (IPA)

Phoneme Input (IPA)

eye

Data-driven
Grapheme to Phoneme

/aɪ/

Data-driven
Phoneme to Grapheme

aye

Noise

Noise

PhonemePAD
Phonem
Phone

Pho
Ph
P

Transformer Decoder

Transformer Encoder

Output Probabilities
Reconstructed Input

Shifted Right

Noise

 [Language] Grapheme

Baseline Specialized WTMC LST Journal

IPA to Feature Vectors

Nx

Feed Forward

Multi-Head Attention

Add & Norm

Add & Norm

Output Probabilities

Nx

Feed Forward

Add & Norm

Multi-Head Attention

Add & Norm

Multi-Head Attention

Add & Norm

Linear

Softmax

Articulatory
Features Input

Articulatory
Encoder Positional

+

Outputs
(shifted right)

Embedding Positional

+

Articulatory Features
Input

ReLU

Feed Forward
Nx

(a)

rticulatory Encoder

D Deconvolutional
Linear

Softmax

Output
Probabilities

Nx

Nx

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Inputs Outputs
(shifted right)

Positional
Encoding

1D
Deconvolutional

1D Deconvolutional

1D Deconvolutional

Raw Wave

Activation

Output
Embedding

Nx

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Output Probabilities

Nx

Feed Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Linear

Softmax

Inputs

Embedding Positional

+

Outputs
(shifted right)

Embedding Positional

+

Input
Embedding

Positional
Encoding

Embedding Positional
Encoding

/aɪ/

+

Transformer Encoder

Linear

Softmax

Embedding Positional
Encoding

<START> eye

+

Transformer Decoder

Probabilities of Next
Token

Duration Predictor

IPA Encoder

Decoder to GraphemeDecoder to Mel

Output ProbabilitiesPredicted Mel Spectrogram

Mel Spectrogram

Grapheme to Phoneme

Grapheme Target

Phoneme Input (IPA)

Shifted Right

2 3 1 2

IPA Encoder
Output

Expanded
IPA Encoder OutputDurations

Multi-Head Attention

Conv 1D

ReLU

Conv 1D

Add & Norm

Decoder BlockLength Regulator

Post ProcessorGrapheme to
Phoneme

IPA Encoder Decoder to
Grapheme

 by [by, bye, buye, buy]

Output Probability/bˈaɪ/

CT Logs
2nd Level Domains

38 046 788

Other-squatting
Candidates

325 750

30 586

1 822

Sound-squatting
 Candidates

76 934

2 494

4 124

e

i

a

y

i

EoS

e

y

i

e EoS

EoS

EoS

e EoS

EoS

EoS

Pronunciation

/aI/

0.35

0.32

0.32

0.5

0.4

0.5

0.4

0.5

0.4

0.99

0.5

0.45

0.99

0.99

0.990.99

0.99

Initial State
Target Written

Form

en-us

Post Processor

Grapheme
Decoder

[eye, I, aye, ai]

Output Token Probability

eye

Embedding Repr.

Fe
ed

ba
ck

 P
re

vi
ou

s
S

ta
te

Generated CandidatesInput

Grapheme to
Phoneme

<LST>en-US<LST> /aI/

IPA Encoder

Post Processor

Grapheme
Decoder

[eye, I, aye, ai]

Output Token Probability

en-US <LST> eye

Embedding Repr.

Fe
ed

ba
ck

 P
re

vi
ou

s
S

ta
te

Generated CandidatesInput

Text Encoder

Post ProcessorGrapheme to
Phoneme

Feature
Encoder

[eye, I]

Output Token Probability/aI/

[eye]

Latent Repr.

Fe
ed

ba
ck

 P
re

vi
ou

s
S

ta
te

Generated CandidatesInput

[en-us]
Write Language

IPA to Feature
Vectors

Post Processor

Grapheme
Decoder

[eye, I, aye, ai]

Output Token Probability

eye

Embedding Repr.

Fe
ed

ba
ck

 P
re

vi
ou

s
S

ta
te

Generated CandidatesInput

Grapheme to
Phoneme

/aI/

IPA Encoder

Post Processor

Grapheme
Decoder

[eye, I, aye, ai]

Output Token Probability

eye

Embedding Repr.

Fe
ed

ba
ck

 P
re

vi
ou

s
S

ta
te

Generated CandidatesInput

Grapheme to
Phoneme

<LST>en-US<LST> /aI/

IPA Encoder

Duration Predictor

Decoder to GraphemeDecoder to Mel

Output ProbabilitiesPredicted Mel Spectrogram

Mel Spectrogram Grapheme Target

Phoneme Input (IPA)

Shifted Right

IPA Encoder

Grapheme to Phoneme

Decoder to Grapheme

Output Probabilities

Grapheme Target

Phoneme Input (IPA)

Shifted Right

IPA Encoder

Grapheme to Phoneme

Decoder to Grapheme

Output Probabilities

Grapheme
Target

Shifted Right

IPA Encoder

Grapheme to Phoneme

Decoder to Grapheme

Output Probabilities

Shifted Right

IPA Encoder

Grapheme to Phoneme

LST + Phoneme Input (IPA)
Phoneme Input (IPA)

Phoneme Input (IPA) LST + Phoneme Input (IPA)

Phoneme Input (IPA)

eye

Data-driven
Grapheme to Phoneme

/aɪ/

Data-driven
Phoneme to Grapheme

aye

Noise

Noise

PhonemePAD
Phonem
Phone

Pho
Ph
P

Transformer Decoder

Transformer Encoder

Output Probabilities
Reconstructed Input

Shifted Right

Noise

 [Language] Grapheme

Baseline Specialized

WTMC LST

Journal

IPA to Feature Vectors

Nx

Feed Forward

Multi-Head Attention

Add & Norm

Add & Norm

Output Probabilities

Nx

Feed Forward

Add & Norm

Multi-Head Attention

Add & Norm

Multi-Head Attention

Add & Norm

Linear

Softmax

Articulatory
Features Input

Articulatory
Encoder Positional

+

Outputs
(shifted right)

Embedding Positional

+

Articulatory Features
Input

ReLU

Feed Forward
Nx

[en-us]
Read Language

Write
 Language

Read
Language

Grapheme
Target

Write
 Language

Read
Language

Grapheme
Decoder

(b)

Fig. 4.16 (a) High-level representation of the X-Squatter Transformer architecture. (b)
Inside view of the Articulatory Decoder Block.

58 Our Proposed Models

Table 4.6 X-Squatter Hyperparameters

Hyperparameter Value

Number of heads 8
Latent dimension 512
Maximum Sequence Length 50 tokens
Epochs 38
Batch Size 16 words
Training dataset split 80%
Validation dataset split 10%
Testing dataset split 10%
Optimizer Adam
Learning Rate 0.0001
ε 10−9

Training Steps (Model) 1157849
Validation Loss Stopping Criteria 3 consecutive epochs
Hidden Representation Size 512
Embedding Dimension 512
Input Vocabulary Size 6 487 IPA segments
Output Vocabulary Size 133 grapheme tokens

Chapter 5

Results and Validation

In this chapter, we present the results of the study’s validation, organized into
two main sections: quantitative evaluations related to the tools (Section 5.1) and a
qualitative evaluation concerning the anticipation of user’s transcription mistakes
(Section 5.2).

5.1 Tool’s Validation

The validation of the data-driven alternatives we propose for generating homophones
focus on their capability in producing well-accepted written forms for specific pronun-
ciations. This validation is based on assessing the coverage of known homophones
given a target word. The higher the coverage of known homophones by the tool
when generating candidates, the better its generation capacity. Coverage is evaluated
for exact homophones within the same language (Section 5.1.1) and across different
languages (Section 5.1.2). Another aspect of validation involves quasi-homophone
generation. The validation of the tools regarding the quasi-homophone generation
involves assessing the similarity in terms of Articulatory Feature Edit Distance. The
tools are validated for quasi-homophones within the same language (Section 5.1.3)
and across different languages (Section 5.1.4).

60 Results and Validation

5.1.1 Single-language Homophone Coverage

To evaluate single-language homophone coverage, we use a curated list of known
homophones provided by the AIL tool (refer to Section 2.4) in English-US. Table 5.1
presents some examples of homophones extracted from this list. The list comprises
362 pronunciations in English-US, each represented as IPA transcripts. Each IPA
transcript corresponds to at least two English words, rendering them homophones.
This curated list serves as the ground truth dataset. The evaluation process consists
in inputting the IPA transcripts into all tools and gathering the candidates generated
by each model. When predictions are made using the models, the beam search is
configured with a probability threshold of p = 0.9999 and a temperature value of
t = 1.0.

Table 5.1 Examples of homophones obtained from their IPA representations.

IPA Pronunciation Homophones

waIt white, wight
slaIt sleight, slight
3:n earn, urn
bOl ball, bawl
neI nay, neigh

We measure the ratio of known homophones generated by each model for every
pronunciation. Exact homophones can have a variety of written forms (refer to
Table 5.1). If a model produces x known forms for a specific pronunciation with y
known written forms, the ratio x/y is calculated. The performance of each tool for
every K is assessed by the average coverage for all n pronunciations: 1

n ∑
n
i=1

xi
yi

where
n = 362 pronunciations.

Results are summarized in Figure 5.1, depicting the average coverage with
lines, while the color ranges denote the 95% confidence interval. The numbers for
K = 35 are presented in Table 5.2. In terms of the coverage metric, several findings
emerge. First, Auto-Squatter performs poorly. An average below 0.5 suggests
that Auto-Squatter sometimes struggles to even identify a single correct written
form for the pronunciation, given that every group of homophones has at least two
written forms. Second, the incorporation of a base architecture along with the beam
search significantly impacts coverage. Sound-skwatter, with and without audio
feedback, and Sound-squatter exhibit identical averages and standard deviations,
thus indicating that the usage of audio feedback has no impact on generation.

5.1 Tool’s Validation 61

0 5 10 15 20 25 30 35

Maximum Number Of Candidates Predictions (K)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

R
at

io
O

f
K

no
w

n
H

om
op

ho
ne

s
P

er
G

ro
up

Tool

Sound-Skwatter

Sound-Squatter

Sound-Skwatter no Audio

X-squatter

Auto-squatter

Fig. 5.1 Homophone coverage for single-language scenario. As the maximum number of
generated candidates increases (Post Processor K parameter), the model exhibits a higher
coverage. The 95% confidence internal is shown.

62 Results and Validation

Table 5.3 displays the absolute number of missing homophones for K = 35.
X-Squatter produces all candidates, while the other models perform similarly. The
exception once again is Auto-Squatter, which misses 434 written forms out of
766 in the evaluation set.

Table 5.2 Performance metrics for each tool at K = 35 in the single-language scenario, where
“Average Coverage” indicates the mean proportion of known homophones generated per
group, and “Standard Deviation” denotes the variability of coverage across the evaluation
set.

Tool Average Coverage Standard Deviation

Auto-Squatter 0.44 0.31
Sound-skwatter 0.91 0.24
Sound-skwatter no Audio 0.92 0.24
Sound-squatter 0.92 0.24
X-Squatter 1.00 0.00

Table 5.3 The absolute number of missing homophones for each model at K = 35, indicating
the count of homophones that are not generated by the respective tool.

Tool Missing Homophones

Auto-Squatter 434
Sound-skwatter 67
Sound-skwatter no Audio 65
Sound-squatter 66
X-Squatter 0

5.1 Tool’s Validation 63

5.1.2 Cross-language Homophone Coverage

This validation verifies the coverage each tool performs in known homophones in
cross-language scenario. All pronunciations are collected from the X-Squatter and
Sound-skwatter training dataset, and words with exactly the same pronunciation
across different languages are grouped together. It is important to note that the
models are trained using phoneme/grapheme pairs of the same language and have
not encountered cross-language homophones during training.

Due to the strict requirement that the pronunciation must be identical across at
least two languages, the number of cross-language homophones is relatively small
compared to the entire dataset. A total of 95 pronunciations with multiple written
forms in various languages have been collected. In total, it is observed 374 written
forms spanning four languages. Examples of cross-language homophones are shown
in Table 5.4.

Table 5.4 Examples of exact cross-language homophones with IPA Pronunciations.

IPA Phoneme Homophones

ES [f r− f r] ais, [en−us] esse
SI [f r− f r] chie, [pt −br] xi, [en−us] shi

kædi [f r− f r] caddie, [pt −br] cádi, [en−gb] caddie, [en−gb] caddy
maS [f r− f r] mâchai, [pt −br] más, [en−gb] mache, [en−gb] mash
kaS [f r− f r] cache, [pt −br] chás, [en−gb] kasch

Following the same approach as for the single language validation, we mea-
sure the ratio of known homophones generated by each model to each group of
homophones.

A grid search is performed, varying the read language,write language for each
target grapheme. During predictions, a probability threshold p = 0.9999 and a
temperature value t = 1.0 are used again.

Figure 5.2 provides a visualization of the results. Similar to the single-language
scenario, increasing the maximum number of candidates systematically enhances
the average coverage. It is evident that, just like in the single language scenario,
Auto-Squatter performs poorly with a maximum average ratio of 0.3, meaning
that it often fails to generate more than one known written form for the pronunciation.

64 Results and Validation

It is also observed that the single language tool Sound-skwatter (both with
and without audio feedback) perform poorly, as expected, since cross-language
knowledge is required for the task. The best performance is achieved by the multi-
language models Sound-squatter and X-Squatter, with X-Squatter having a
slightly higher average of 0.95 (std 0.13), while Sound-squatter shows 0.92 (std
0.24) (See Table 5.5). This difference means that Sound-squatter misses 36
homophones while X-Squatter misses 25 out of 372, as shown in Table 5.6.

0 5 10 15 20 25 30 35

Maximum Number Of Candidates Predictions (K)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

R
at

io
O

f
K

no
w

n
H

om
op

ho
ne

s
P

er
G

ro
up

Tool

Sound-Squatter

Auto-squatter

Sound-Skwatter

X-squatter

Sound-Skwatter no Audio

Fig. 5.2 Homophone coverage for cross-language scenario. As the maximum number of
generated candidates increases (Post Processor K parameter), the model exhibits a higher
coverage. The 95% confidence internal is shown.

5.1 Tool’s Validation 65

Table 5.5 Performance metrics for each tool at K = 35 in the cross-language scenario, where
“Average Coverage” indicates the mean proportion of known homophones generated per
group, and “Standard Deviation” denotes the variability of coverage across the evaluation
set.

Tool Average Coverage Standard Deviation

Auto-Squatter 0.23 0.25
Sound-skwatter 0.56 0.27
Sound-skwatter no Audio 0.57 0.28
Sound-squatter 0.92 0.24
X-Squatter 0.95 0.13

Table 5.6 The absolute number of missing homophones for each model at K = 35, indicating
the count of homophones that were not generated by the respective tool.

Tool Missing Homophones

Auto-Squatter 293
Sound-skwatter 175
Sound-skwatter no Audio 174
Sound-squatter 36
X-Squatter 25

5.1.3 Single-language Quasi-homophone Generation

The coverage analysis initially focused on exact homophones compiled by gathering
exact matches in IPA encoding. However, to evaluate quasi-homophone generation,
this analysis requires adaptation, since there is no list of quasi-homophones to
measure coverage.

To systematically evaluate quasi-homophone generation, a set of homophones is
generated using each tool, with parameters set to K = 10, p = 0.9999, and t = 1.0.
The parameter K is selected balancing quality and coverage measured in previous
sections. In the Auto-Squatter case, we set up 10 runs using the same reasoning.
Subsequently, to assess the quality of the quasi-homophones generated, we compute
a distance metric between the target word and each candidate. We randomly select
30 words, of which we use the pronunciation, from the homophone dataset used
Section 5.1.1.

The distance metric is the “Weighted Feature Edit Distance”, which represents a
technique for measuring the dissimilarity between two feature vectors. This method
incorporates the notion that the expenses linked with modifying features vary depend-

66 Results and Validation

ing on their class and subjective variability [42]. Essentially, it acknowledges that
certain features hold different levels of importance or relevance in distinct contexts
or domains. Consequently, the cost associated with editing these features is adjusted
accordingly. This approach enables a more nuanced and contextually sensitive evalu-
ation of the similarity or dissimilarity between feature vectors, accommodating the
diverse nature of real-world data. A function for computing this specialized edit
distance for Articulatory Feature Vectors is provided by the panphon [42].

Figure 5.3 shows the distances measure for every pair of target and generated
homophone generated by each tool, which gives a total of 1754 pairs. In this
case, it is restricted only to English-US language. The results for the distances are
summarized in Figure 5.3 and detailed in Table 5.7.

Note that the only model that presents some deviation in the metric is Auto-Squatter
with mean distance 4.65±5.06. All models generate pairs which are on average very
similar in terms of pronunciation. For comparison, the words think and sink have a
Weighted Feature Edit Distance of 7.25, the pair grass and glass 1.5 and travel and
trouble 8.375.

Comparing the other models, it is notable that the average distance is very close
for all of them. However, there is a significant difference in the standard deviation.
This difference in the standard deviation can be attributed to several factors.

Sound-skwatter is a single-language tool for English US, which matches the
language used in this evaluation. Consequently, Sound-skwatter does not learn
alternative mappings for pronunciation-spellings found in other languages, leading
to homophones with fewer spelling variations.

In contrast, both Sound-squatter and X-Squatter are trained for multiple
languages. The difference in their standard deviation is not due to the dataset,
as they are both trained with the same data. The key distinction likely comes
from Sound-squatter being token-based, while X-Squatter is a hybrid model.
Hybrid models better account for the impact of spelling on pronunciation, allowing
for greater flexibility in generating candidates and achieving higher pronunciation
accuracy.

5.1 Tool’s Validation 67

0 5 10 15 20

Weighted Feature Edit Distance

Autosquatter

Sound-skwatter without Audio

Sound-skwatter with Audio

Sound-squatter

X-squatter

Fig. 5.3 Weighted Feature Edit Distance measured for every pair of target and generated
homophone generated by each tool. The 1754 pairs are considered. The median value is
represented by the red line and the outliers marked by the “x” and mean is indicated by a
triangle.

Table 5.7 Performance metrics for each tool, where “Average Distance” indicates the mean
Weighted Feature Edit Distance, and “Standard Deviation” denotes the variability of distances
across the evaluation set.

Unique Average Standard
Tool Quasi-homophones Distance Deviation

Auto-Squatter 492 4.65 5.06
Sound-skwatter with Audio 408 1.17 2.65
Sound-skwatter without Audio 381 1.35 2.89
Sound-squatter 401 1.70 3.12
X-Squatter 346 1.50 2.88

68 Results and Validation

5.1.4 Cross-language Quasi-homophone Generation: Impact of
Feature Vector Encoder

An issue on the quasi-homophone generation in the cross-language scenario happens
when the set of IPA segments present in each language are not equal. For this
reason, some similar pronunciations in two different languages might be impossible
to discover because of the missing links in representation.

Consider as an example the word “gnocchi,” pronounced as /"NOk.ki/ in Italian.
Some IPA segments in the Italian pronunciation are not present in the en-US (Ameri-
can English) phonetic inventory. Consequently, the Italian pronunciation of “gnocchi”
encompasses sounds that do not precisely align with American English phonology.

The Simple IPA Translation Auto-Squatter, Sound-skwatter no Audio, and
the Audio Inbound with IPA Translation Sound-skwatter models cannot properly
handle these cases, as they must be trained for a particular language to understand the
phonetic inventory of that language. Therefore, to maintain fairness in the analysis,
this examination is limited to Sound-squatter and X-Squatter. In essence, this
analysis verifies the impact of the Feature Vector Encoder in the model.

To perform an empirical evaluation of how the two models deal with gaps in the
representation, we perform two experiments, considering cases where there are (or
there are not) gaps in the representation across languages.

We first select 30 target words. These words are presented to both tools and the
candidate homophones are collected. we exclude the known homophones and thus
the evaluation contains only quasi-homophones. The generation is configured with
parameters K = 10, p = 0.9999, and t = 1.0. The read language is English-US and
the Write Language French-FR (results are consistent in other setups). Therefore, the
quasi-homophones are all, by definition, cross-language homophones. This group
of quasi-homophone without representation gaps contains 3144 pairs of targets and
quasi-homophone.

In the second experiment, we collect a set of 60000 Italian words from GNU
dictionary. A subset of these Italian words are selected, in which the phonemic
representation contains segments exclusive to Italian such as ñ and L, summing up
to 20 segments. Using the same parameters K = 10, p = 0.9999, and t = 1.0, but
Read Language Italian-IT and Write Language English-US, we produce 982 pairs

5.1 Tool’s Validation 69

of targets and generated homophones for 30 randomly selected target words in this
subset.

Figure 5.4 shows the Weighted Feature Edit Distance distribution metrics for
all pairs separated by quasi-homophone set and tool. Table 5.8 shows that for
Sound-squatter, the average distance is 13.80 with phonemic gaps and 7.62 with-
out, while for X-Squatter, the average distances are 9.31 and 8.07 respectively.
Standard deviations show greater variability with phonemic gaps, particularly evident
in X-Squatter with a standard deviation of 9.95.

Without Phonemic Gaps With Phonemic Gaps

Quasi-homophones Set

0

10

20

30

40

50

60

W
ei

gh
te

d
F

ea
tu

re
E

di
t

D
is

ta
nc

e

Tool

Sound-squatter

X-squatter

Fig. 5.4 Weighted feature edit distance calculated over pairs of input targets and homophone
candidates generated by a specific tool. The metric captures the similarity in the pronun-
ciation. The two sets of input words are input words that are exact homophones and the
phonemic representation is seem during training in both models. The other set of input words
are for target words in the Italian language. The targets are selected specifically because it
contains IPA segments that are not seem during training. The median value is represented by
the red line and the outliers marked by the “x” and mean is indicated by a triangle.

Since, X-Squatter uses a hybrid approach to produce candidates for a given
target, it presents a distinct advantage in its capacity to find good substitutes for IPA
tokens not present in the spelling language. This is possible by the incorporation

70 Results and Validation

Table 5.8 Comparison of Quasi-Homophone Weighted Feature Edit Distance Across Tools
and Phonemic Gap Conditions

Quasi-homophone Quasi-homophone Average Standard
Tool Set Count Distance Deviation

Sound-squatter With Phonemic Gaps 540 13.80 7.35
Without Phonemic Gaps 1455 7.62 4.81

X-Squatter With Phonemic Gaps 442 9.31 9.95
Without Phonemic Gaps 1689 8.07 5.73

of Articulatory Feature Vectors within the model, which align tokens based on
articulatory attributes – see the lower mean distance measure in its quasi-homophone
candidates.

5.1.5 Key Insights from Coverage Validation

The validation of data-driven tools for generating homophones demonstrates their
ability to produce accurate written forms based on specific pronunciations. For
single-language homophone coverage, the tools were assessed using a list of 362
English-US homophones represented in IPA. The performance of each tool was evalu-
ated based on the ratio of known homophones generated for each pronunciation. The
results indicate that Auto-Squatter performed poorly, with an average coverage
below 0.5, often failing to generate even a single correct written form. In con-
trast, Sound-squatter and X-Squatter showed significantly better performance,
with X-Squatter achieving perfect coverage and Sound-squatter consistently
generating nearly all known homophones.

In cross-language homophone coverage, the evaluation focused on the tools’
ability to generate homophones for words with identical pronunciations across
multiple languages. This scenario included 95 pronunciations with 374 written
forms spanning four languages. The findings reveal that Auto-Squatter struggled,
with a maximum average coverage ratio of only 0.3. Single-language tools like
Sound-skwatter also performed poorly, as expected, due to their lack of cross-
language training. Multi-language models, particularly X-Squatter, show the best
performance in this task, with X-Squatter achieving average coverage of 0.95.

For quasi-homophone generation, the tools’ performance was measured using the
Weighted Feature Edit Distance, a metric assessing the similarity between pronunci-

5.2 Can the AI Tools Anticipate People’s Mistakes? 71

ations. The evaluation involved generating quasi-homophones for 30 English-US
words and calculating the distance between target words and generated candidates.
The results showed that Auto-Squatter had a higher average distance and standard
deviation, indicating less accurate generation. Models like Sound-skwatter and
Sound-squatter performed better, but X-Squatter demonstrated the most con-
sistent and accurate quasi-homophone generation, with a lower average distance
and variability. This model’s hybrid approach, incorporating articulatory feature
vectors, allows it to produce more accurate quasi-homophones, even in the presence
of phonemic representation gaps across languages.

5.2 Can the AI Tools Anticipate People’s Mistakes?

We now present results for the experiment described in Section 3.3. Each participant
in the questionnaire is presented with the audio pronunciation of 20 domain names.
The participants are then instructed to write the spelling as they understand it. We
gathered responses from 32 individuals representing 4 nationalities and speaking
8 languages. The majority of participants is aged between 19 and 40 years and
most posses educational qualifications exceeding a Bachelor’s degree. Figure 5.5
summarizes the set of users who answered the survey. Most users are native in
Portuguese or Italian, with no one native in English. The set of participants has been
deliberately selected to focus on young people that are not native English speakers,
since we are particularly interested in testing cross-language scenarios. Indeed, with
this setup we aim to collect samples of mistakes people would face when consuming
audio content. Performing a comprehensive study about the frequencies each mistake
is observed in practice is left for future work.

No user was able to correctly transcribe all domains, indicating some level of
difficulty in the task. Across the 20 domains presented, there were surprisingly 219
different written forms diverging from the actual domain names. The domain with
the fewest different transcriptions was americanexpress.com, while the one with
the most was centralinvest.ru. Figure 5.9 illustrates the count of alternative
spellings for each domain transcription, highlighting the considerable noise in the
task.

Figure 5.9 also reports valid and invalid domains typed by users. A domain is con-
sidered invalid if it does not contain a TLD. The domain centralinvest.ru partic-

72 Results and Validation

0 2 4 6 8 10 12 14

Count

Brazilian

Italian

Chinese

French

N
at

io
na

lit
y

(a)

0 2 4 6 8 10 12 14

Count

Italian

Portuguese

Chinese

French

N
at

iv
e

L
an

gu
ag

e

(b)

0 5 10 15 20 25 30

Count

English

Italian

Portuguese

Spanish

French

Chinese

German

Japanese

S
p

ok
en

L
an

gu
ag

es

(c)

Fig. 5.5 Users answering the questionnaire reported their (a) nationality, (b) mother-language
and (c) other languages they are proficient.

5.2 Can the AI Tools Anticipate People’s Mistakes? 73

ularly suffered in this aspect, with no user being able to understand the pronunciation
of the .ru TLD. Some users typed centrinvesthrough and centuryinvestrue,
which approximate the pronunciation but are not valid domains.

Correlating the number of incorrect transcriptions with the popularity of the
domain (Rank in the Tranco list) reveals little correlation (0.1558) between the two
variables. When considering only valid domains, the correlation is 0.2044, and
for only invalid domains, it is -0.1084. Notably, few individuals could correctly
spell well-known domains such as cloudns.com and crunchyroll.com, while most
successfully transcribed cakecentral.com, which ranks lower in the Tranco ranking.

Table 5.9 This table lists the count of unique domain names written by users for each domain
in the questionnaire, compared with the domain’s ranking in the Tranco list. The distinction
is made between valid and invalid domains, with invalid domains containing either no Top-
Level Domain (TLD) or invalid characters.

Tranco Rank Domain Invalid Valid Total

412 cloudns.net 0 19 19
522 coinmarketcap.com 1 8 9
661 eastday.com 0 8 8
738 crunchyroll.com 0 13 13
741 americanexpress.com 0 2 2

2 732 fsu.edu 1 9 10
5 522 retailmenot.com 0 7 7
5 685 pdst.fm 4 3 7
5 743 awsdns-18.com 4 14 18
7 253 pornbox.com 0 18 18

30 865 nanning.gov.cn 2 23 25
86 722 centrinvest.ru 31 0 31
87 700 cakecentral.com 1 8 9
91 185 playerup.com 0 15 15

103 992 marnet.mk 1 16 17
118 015 sexymasseur.com 1 17 18
474 837 bsta.rs 2 9 11
576 429 uir.ac.id 3 26 29
741 359 kitchenwaresreview.com 2 12 14
964 077 informatica6.com 0 13 13

Although we acknowledge that the investigation needs more individuals and
domains for stronger claims, the results suggest that users frequently make spelling
mistakes when faced with such tasks. Therefore, caution is needed when referring to
locators using voice. It is evident that errors in transcription occur more frequently
with domain names that are intrinsically confusing, such as those involving play on
words and acronyms. The complete list of responses is provided in Appendix A.

74 Results and Validation

0 5 10 15 20 25 30

Alternative Spellings

coinmarketcap.com

sexymasseur.com

fsu.edu

marnet.mk

cakecentral.com

kitchenwaresreview.com

americanexpress.com

bsta.rs

nanning.gov.cn

pdst.fm

uir.ac.id

awsdns-18.com

retailmenot.com

eastday.com

informatica6.com

crunchyroll.com

playerup.com

pornbox.com

cloudns.net

centrinvest.ru

Is it a valid domain?

No

Yes

Fig. 5.6 Count of alternative spellings for each domain transcription. The number of alterna-
tive spellings suggests that a considerable amount of noise is involved in the task.

5.2 Can the AI Tools Anticipate People’s Mistakes? 75

5.2.1 Validation via Transcription Errors

Using the obtained list of transcription mistakes, we then check the generated sound-
squatting domains. For each of the 20 domains, a list of candidates was generated
using all the tools proposed in this thesis and those mentioned in Chapter 2.4,
including: Auto-Squatter, Sound-skwatter, Sound-squatter, X-Squatter,
DomainFuzz, URLCrazy, dnstwist, URLInsane, and AIL.

Candidates were generated employing different cybersquatting methods: Typo,
Homograph, Bit, and Sound-squatting. For sound-squatting, when available, we
utilized Read Language and Write Language pairs from every possible combination
of English US, English UK, Portuguese Brazilian, and French French.

After generating synthetic candidates, we calculated the intersection between
the user’s mistakes and the generated candidates. It is important to note that the
comparison is done solely on the Second-level domain, as the models proposed
in this thesis were not trained to handle full URLs. Therefore, candidates were
generated considering only the Second-level domain.

Table 5.10 presents a comparison of the unique candidates produced by various
tools for the domains included in the questionnaire. It reveals significant variations
in the number of candidates generated by each tool, with data-driven tools such as
Auto-Squatter, Sound-skwatter, Sound-squatter, and X-Squatter produc-
ing relatively fewer candidates compared to third-party tools like AIL, dnstwist,
DomainFuzz, URLCrazy, and URLInsane. While the total number of unique candi-
dates generated by data-driven tools is 8614, third-party tools collectively produce
a substantially larger set of 137144 unique candidates. However, it’s essential to
consider the percentage of candidates and mistakes found, where data-driven tools
generally exhibit higher percentages compared to third-party tools. This suggests
that although data-driven tools generate fewer candidates, they are more effective in
identifying potential squatting domains relevant to user transcription mistakes. These
results highlight the trade-off between quantity and quality in candidate generation
tools.

Additionally, we examined if the tools that generated potential squatting can-
didates could anticipate the mistakes made by users. Table 5.10 also shows the
number of candidates produced by each tool that match user transcription mistakes.
The candidates are categorized into “Found” and “Not Found” based on whether

76 Results and Validation

they match user transcription mistakes. Additionally, the total number of candidates
(“Total Candidates”) and the percentage of candidates (“% Candidates Found”) and
mistakes found (“% Mistakes Found”) are provided.

In total, third-party tools anticipated 53 mistakes, while data-driven tools an-
ticipated 32. These numbers correspond to 24.20% and 14.61% of the wrong
transcriptions collected, respectively. The intersection between these two lists is
18. While significant, it is worth noting that third-party tools generate squatting
candidates through brute force, whereas data-driven tools found a higher percentage
of mistakes with less candidates – that is, the generation has higher quality. This
is evident as third-party tools generate at least four times more candidates than our
tools. This statement is further supported by the percentage of candidates produced
that actually anticipate mistakes: 0.04% for third-party tools and 0.37% for our tools.

Table 5.10 This table displays the counts of unique candidates generated by each tool for
the domains included in the questionnaire. The candidates are categorized into “Found” and
“Not Found” based on whether they match user transcription mistakes. Additionally, the total
number of candidates and the percentage of candidates and mistakes found are provided. The
bottom rows represent the total number of unique candidates generated by all data-driven
tools and third-party tools, respectively.

Tool Not Found Total % Candidates % Mistakes
Found Candidates Found Found

Auto-Squatter 332 4 336 1.19 1.99
Sound-skwatter without Audio 354 4 358 1.12 1.99
Sound-skwatter 408 6 414 1.45 2.99
Sound-squatter 5 277 19 5 296 0.36 9.45
X-Squatter 3 341 21 3 362 0.62 10.45

Total Unique 8 582 32 8 614 0.37 14.61

AIL 23 097 45 23 142 0.19 22.39
dnstwist 117 812 26 117 838 0.02 12.94
DomainFuzz 5 718 29 5 747 0.50 14.43
URLCrazy 4 844 30 4 874 0.62 14.93
URLInsane 6 315 26 6 341 0.41 12.94

Total Unique 137 091 53 137 144 0.04 24.20

In addition to the raw counts of anticipated mistakes, for the sake of completeness,
we calculated precision, recall, and F-Scores for each tool. Precision measures the
accuracy of the candidates generated, recall measures the ability to capture all
potential mistakes, and the F-Score provides a balance between precision and recall.
X-Squatter showed a higher recall among our proposals because it effectively
generated homograph variants, which were common among user mistakes. On the

5.3 Concluding Remarks on Tool Validation 77

other hand, Auto-Squatter had a higher precision but lower recall, indicating it
generated fewer but more accurate candidates. The complete values are in Table 5.11.

Table 5.11 Performance metrics (Precision, Recall, and F-Score) of various tools in generating
squatting candidates. X-Squatter demonstrated a higher recall due to its effectiveness in
generating homograph variants, which were common among user mistakes. In contrast,
Auto-Squatter showed higher precision but lower recall, indicating it produced fewer but
more accurate candidates.

Tool Precision Recall F-Score

Auto-Squatter 5.95e-03 9.13e-03 7.21e-03
Sound-skwatter without Audio 5.59e-03 9.13e-03 6.93e-03
Sound-skwatter 7.25e-03 1.37e-02 9.48e-03
Sound-squatter 2.08e-03 5.02e-02 3.99e-03
X-Squatter 3.27e-03 5.02e-02 6.14e-03

AIL 9.72e-04 1.03e-01 1.93e-03
dnstwist 1.10e-04 5.94e-02 2.20e-04
DomainFuzz 2.51e-03 6.62e-02 4.84e-03
URLCrazy 3.59e-04 7.08e-02 7.14e-04
URLInsane 4.05e-04 5.94e-02 8.04e-04

This study has some limitations. First, the models were trained only on the
Second-level domain, which might not fully capture the complexity of URL-based
squatting. Second, the tools were evaluated in a controlled environment, which
might differ from real-world scenarios. Future work could involve training models
to handle full URLs and testing the tools in more diverse and dynamic environments.

5.3 Concluding Remarks on Tool Validation

Each proposed tool builds on the Transformer Networks, with variations in each
option to handle different scenarios. Table 5.12 lists the number of trainable pa-
rameters for each tool, significantly impacting resource consumption and training
time. Since all models utilize the same base architecture (Transformer), the num-
ber of parameters primarily influences GPU memory usage. The model sizes are
generally similar, except for Sound-skwatter, which includes audio signal input.
This addition requires extra modules for reconstructing the audio signal via Mel
Spectrogram, resulting in a 38 million parameter difference. Auto-Squatter is the
smallest model, with 7.4 million parameters.

78 Results and Validation

Table 5.12 Model size of the different alternative tools.

Tool # Trainable Parameters

Auto-Squatter 3.7 M + 3.7 M
Sound-skwatter without Audio 22.1 M
Sound-skwatter 60.2 M
Sound-squatter 22.2 M
X-Squatter 23.8 M

Since each proposed tool evolves based on feedback and limitations of the previ-
ous one, Table 5.13 provides a comprehensive summary of the data-driven models
in terms of their capabilities. The evaluated aspects include Quality Control, Data-
driven Homophone Generation, Multiple Homophone Generation, Multi-language
Support, and Cross-language Support, all essential considering the research questions
we stated.

Table 5.13 Summary of proposed data-driven tools and their capabilities.

Tool Quality Data-driven Multiple Multi-language Cross-language
Control homophone homophone Support Support

generation generation

Auto-Squatter No Yes Yes No No
Sound-skwatter Yes Yes Yes No No
Sound-squatter Yes Yes Yes Yes Partial
X-Squatter Yes Yes Yes Yes Yes

To analyze the redundancy and coverage of squatting techniques among the
tools listed in Table 5.14, we consider the same 20 domains evaluated previously.
Subsequently, we generated candidate domains using each alternative and compared
the sets of unique names produced by each tool. Table 5.14 compares the amount
of unique candidates generate by each tool for the 20 domains. While the quality
of the data-driven generation is discussed in the previous section, here, it focuses
solely on the set of sound-squatting candidates without quality concerns. There is
considerable variation in the number of candidates generated by each alternative.
For instance, dnstwist stands out by producing over 117836 names, most of which
are unique, with approximately 81.05% being exclusive to the dnstwist set.

Particularly interesting to cite is the significant redundancy observed among can-
didates generated by the other alternatives, as depicted in Table 5.15. It’s important
to note that third-party tools share a significant portion of the candidates among each
other, while the ratio is considerably smaller when compared to our tools.

5.3 Concluding Remarks on Tool Validation 79

Table 5.14 Tools for squatting candidate generation and evaluation.

Tool Techniques Unique

Auto-Squatter Sound 336
Sound-skwatter without Audio Sound 358
Sound-skwatter Sound 414
Sound-squatter Sound 5 289
X-Squatter Sound 3 357

AIL Typo, Homograph, Bit, 23 141
dnstwist Typo, Homograph, Bit 117 836
DomainFuzz Typo 5 738
URLCrazy Typo, Homograph, Bit, Sound 2 788
URLInsane Typo, Homograph, Bit, Sound 4 523

Table 5.15 Intersection in the generation of third-party tools for squatting candidate gen-
eration and our proposal. The intersection represents the proportion of shared candidates
between the set of candidates in the rows and the set of candidates in the columns, normalized
by the size of the set in the row.

Au
to

-S
qu

at
te
r

So
un

d-
sk

wa
tt
er

w
ith

ou
tA

ud
io

So
un

d-
sk

wa
tt

er

So
un

d-
sq

ua
tt

er

X-
Sq

ua
tt

er

AI
L

dn
st

w
is

t

D
om

ai
nF

uz
z

U
R

L
C

ra
zy

U
R

L
In

sa
ne

Auto-Squatter 1.000 0.048 0.051 0.054 0.071 0.062 0.068 0.065 0.060 0.065
Sound-skwatter without Audio 0.045 1.000 0.288 0.285 0.257 0.148 0.145 0.145 0.131 0.131
Sound-skwatter 0.041 0.249 1.000 0.297 0.263 0.133 0.133 0.133 0.126 0.130
Sound-squatter 0.003 0.019 0.023 1.000 0.116 0.044 0.039 0.041 0.023 0.025
X-Squatter 0.007 0.027 0.032 0.182 1.000 0.102 0.070 0.072 0.041 0.052

AIL 0.001 0.002 0.002 0.010 0.015 1.000 0.221 0.219 0.097 0.168
dnstwist 0.000 0.000 0.000 0.002 0.002 0.043 1.000 0.040 0.019 0.026
DomainFuzz 0.004 0.009 0.010 0.038 0.042 0.882 0.828 1.000 0.388 0.632
URLCrazy 0.007 0.017 0.019 0.044 0.049 0.807 0.804 0.800 1.000 0.755
URLInsane 0.005 0.010 0.012 0.029 0.038 0.858 0.675 0.802 0.465 1.000

80 Results and Validation

At this point, it is possible to speculate that sound-squatting is a feasible technique
for cybersquatting, as users often make mistakes while transcribing locators that can
be anticipated by third-party tools. However, the extensive coverage of third-party
tools is partly due to the large number of candidates they generate. The data-driven
tools we propose are less prolific but more specialized, capable of anticipating
mistakes at a similar level as these third-party tools with a lower percentage of
useless candidates.

Chapter 6

Potential Applications

To explore the potential application of a generative model for sound-squatting proac-
tive search, this chapter delves into two specific scenarios: domain squatting checking
within TLS certificates and PyPI packages.

Firstly, we compile a comprehensive list of popular locators and generate their
homophones and quasi-homophones across various languages. Subsequently, we
search for these identified candidates within the aforementioned contexts. We focus
on two primary resources: PyPI packages (in Section 6.1) and domain names present
in registered TLS certificates (in Section 6.2). In both cases, besides generating
sound-squatting candidates, we employ alternative squatting tools to generate ad-
ditional candidates, enabling a comparative analysis between sound-squatting and
other squatting methodologies.

As a baseline, we utilize the AIL tool, which employs a suite of 21 algorithms
including typo-squatting, homograph-squatting, and list-based sound-squatting. For
simplicity, candidates generated by AIL are referred to as “other-squatting”.

6.1 Squatting on PyPI Repository

The investigation starts by analyzing squatting opportunities on the Python Package
Index (PyPI). This involves identifying packages on the PyPI platform that could
potentially be used for squatting popular packages. Characteristics and statistics of
these packages are examined, comparing sound-squatting against the baseline. It is

82 Potential Applications

important to note that verifying the actual maliciousness of all these candidates is
beyond the scope of this study. Instead, the focus is on checking attack opportunities
and highlighting differences between sound-squatting candidates and other squatting
methods.

The investigation begins by compiling a list of the 5,000 most downloaded
packages in the PyPI repository during the 30 days preceding June 20, 2023. The
ranking data is gathered from the PyPI Stats API [68], providing package-related
statistics up to the last 120 days. Following this, candidate package names are
generated using both sound-squatting and other-squatting techniques. The repository
index is then queried to identify the occurrence of these candidate packages. The
analysis spans a duration of 967 days, from November 20, 2020, to July 14, 2023. For
this specific use case, X-Squatter parameters are configured to limit the number of
candidates to k = 35 per domain, with a threshold of p = 0.9999 and a temperature
of t = 1.0.

In total, a substantial number of candidate package names are generated. Specifi-
cally, 522042 sound-squatting candidates and 7675548 other-squatting candidates
are created for 5000 packages. This results in approximately 15 times more other-
squatting candidates per project, which is expected given the diverse range of algo-
rithms implemented for other-squatting generation.

Table 6.1 provides an overview of the number of candidates generated and
the total number of candidates that exist on the platform at some point within the
967-day span. Additionally, the intersection between the techniques shows that
sound-squatting is not fully covered by the other algorithms. The groups are shown
in Figure 6.1.

Table 6.1 Pairs of candidates and projects found online per technique, along with the intersec-
tion comprising candidates matching both sound-squatting and other-squatting techniques.

Technique Not Found Found Total

Other-squatting (1) 7632674 (4) 21691 7654365
Sound-squatting (2) 499838 (5) 1021 500859
Sound-squatting and Other-squatting (3) 20390 (6) 793 21183

Total 8152902 23505 8176407

The amount of other-squatting candidates is ≈ 14.70 times the amount of sound-
squatting candidates. Yet, the percent of candidates found to exist on the platform

6.1 Squatting on PyPI Repository 83

6

3

54

1 2

Existing

Other Sound

Fig. 6.1 Venn Diagram representing the data. Gray areas represents the data reported at
Table 6.1. Counts are not shown to improve readability.

over the total of generated for other-squatting is ≈ 0.29% while the percentage in-
creases to ≈ 0.35% for sound-squatting. It is also interesting to check the intersection
of the pairs of candidates (target, candidate) that are produced by both techniques.
Candidates found in both lists have a much higher chance of being found on the
platform: approximately 3.89% of candidates are indeed found to exist at some point
during the period.

Figure 6.2 shows the cumulative count of found candidates per day, divided by the
total number of generated candidates, this time the pairs target package and candidate
is not considered to avoid counting multiple times the same candidate that is valid
for multiple packages, in consequence, only the set of candidates is considered.
Separated lines show sound-squatting candidates (yellow) and other-squatting (blue).

In the temporal analysis, we note a particular behavior starting on Feb 2021.
To improve its analysis, we show the ratio of packages found online per day by
the number of targets (5000) in Figure 6.3. Naturally, other-squatting is above
sound-squatting in this figure as we have more other-squatting then sound-squatting
candidates.

On Feb 12, 2021, a total of 573 packages that are other-squatting generated
candidates were created in the platform. We see in Figure 6.3 a major increase in the
ratio of other-squatting candidates found online, followed by a sharp drop. Between
Feb 25, 2021, and Feb 26, 2021, approximately 73000 packages were suspended in

84 Potential Applications

Oc
t 2

02
0

Ja
n

20
21

Ap
r 2

02
1

Ju
l 2

02
1

Oc
t 2

02
1

Ja
n

20
22

Ap
r 2

02
2

Ju
l 2

02
2

Oc
t 2

02
2

Ja
n

20
23

Ap
r 2

02
3

Ju
l 2

02
3

0.0010
0.0012
0.0014
0.0016
0.0018
0.0020
0.0022
0.0024
0.0026
0.0028

Fo
un

d
Ca

nd
id

at
es

 P
er

 C
an

di
da

te
s G

en
er

at
ed other-squatting

sound-squatting

Fig. 6.2 Found candidates over total generated candidates.

Oc
t 2

02
0

Ja
n

20
21

Ap
r 2

02
1

Ju
l 2

02
1

Oc
t 2

02
1

Ja
n

20
22

Ap
r 2

02
2

Ju
l 2

02
2

Oc
t 2

02
2

Ja
n

20
23

Ap
r 2

02
3

Ju
l 2

02
3

0.1200
0.1800
0.2400
0.3000
0.3600
0.4200
0.4800
0.5400
0.6000
0.6600

Fo
un

d
Ta

rg
et

s P
er

 To
ta

l T
ar

ge
ts

other-squatting
sound-squatting

Fig. 6.3 Found candidates over the number of evaluated targets.

6.1 Squatting on PyPI Repository 85

100 101 102 103 104 105 106

Candidates Download Count

105

106

107

108

109

Ta
rg

et
 D

ow
nl

oa
d

Co
un

t
other-squatting
sound-squatting

Fig. 6.4 Downloads of candidates vs. downloads of target packages.

the PyPI platform due to violations of the platform rules. In the aftermath, on Feb 27,
a large portion of the suspended packages were reinstated (see the plateau after that
day in Figure 6.3), as not all removed packages could be linked to malicious activity.

Finally, on July 05, 2021, 1610 packages were permanently deleted from PyPI,
with a substantial number also present in list of other-squatting candidates, as shown
by the sharp drop for other-squatting in Figure 6.3. This event has been documented
in reputable sources.1

Figure 6.4 displays a scatter plot of the number of downloads of the package
targets (y-axis) versus the number of downloads of the candidates found online
(x-axis). Note the different scales. Each point marks a candidate and colors represent
sound-squatting (yellow) and other-squatting (blue). Sound-squatting candidates
are found to have download statistics comparable to other-squatting types. Note, in
particular, that many sound-squatting candidates present large download counts.

We, finally, perform a manual qualitative analysis of some sound-squatting
candidates generated by X-Squatter, presenting in Table 6.2 salient examples.
Some of these packages are periodically deleted by the platform and republished

1See: https://www.theregister.com/2021/03/02/python_pypi_purges/ and
https://github.com/pypi/support/issues/935

https://www.theregister.com/2021/03/02/python_pypi_purges/
https://github.com/pypi/support/issues/935

86 Potential Applications

right after the removal. Not all of them are malicious. In particular, requestes is
a package that warns users against installing packages without checking them first.
Most packages have a low reputation with almost no documentation, which indicates
a parking or squatting attempt. One striking example is pirec, which is very similar
in pronunciation to the legitimate package pyrect. However, pirec is a software
that can execute shell scripts, giving attackers a high degree of freedom once victims
install the package.

Table 6.2 Examples of candidates generated by X-Squatter and found online in the PyPI
repository.

Squatting Legitimate Package Context

scrapi Scrapy Empty repository
sfinx sphinx Low reputation project without documentation.

requestes requests Warning page
regex rejex Affiliated project (legitimate).
skema schema Low reputation project without documentation.
flasque flask Low reputation project without documentation.
noompy numpy Project uses similarity as a form of homage.
pidantic pydantic Low reputation project without documentation.

pirec pyrect Unrelated. Squatting project, allow shell command execution.

Our investigation in the previous chapter reveals that users commonly make
mistakes during the transcription of domain names, some of which can be anticipated
using homophone generation methodology. Taken together, these results suggest
that sound-squatting represents a feasible technique for malicious actors seeking to
propagate malware via PyPI. We believe that X-Squatter can aid PyPI’s moderators
in implementing measures to effectively mitigate the potential risks associated with
the use of sound-squatting techniques.

6.2 Domain Impersonation

This section moves into domain squatting, particularly within the context of domains
utilizing HTTPS connections. Squatting on domains that use HTTPS connections
poses a significant threat, as valid certificates can deceive users into perceiving the
squatted domain as legitimate [10]. Similar to the previous use case, our focus here
is on comparing sound-squatting candidates with other types of squatting candidates.
While we provide some examples of malicious sound-squatted domains, conducting

https://pypi.org/project/scrapi/
https://pypi.org/project/Scrapy/
https://pypi.org/project/sphinx/
https://pypi.org/project/sphinx/
https://pypi.org/project/requestes/
https://pypi.org/project/requests/
https://pypi.org/project/regex/
https://pypi.org/project/rejex/
https://pypi.org/project/skema/
https://pypi.org/project/schema/
https://pypi.org/project/flasque/
https://pypi.org/project/flask/
https://pypi.org/project/noompy/
https://pypi.org/project/numpy/
https://pypi.org/project/pidantic/
https://pypi.org/project/pydantic/
https://pypi.org/project/pirec/
https://pypi.org/project/pyrect/

6.2 Domain Impersonation 87

a comprehensive verification of maliciousness falls outside the scope of our work.
Our emphasis in this verification lies on the second-level domain, which narrows
down the search scope. Examining the second-level domain allows us to focus on
entities actively seeking to acquire misleading domains, while subdomains present a
more expansive and potentially unlimited landscape.

Attackers are known to register TLS certificates for squatted domains to increase
the success rate of phishing campaigns [10]. We search for squatting candidates
using registered domains found in certificates that we collected via the CertStream
(Certificate Transparency Logs) [12]. We select the top 10000 most accessed do-
mains from the Tranco Ranking List [46] (accessed on July 10, 2023). Since the
success of the phishing website depends on the existence of a valid TLS certificate,
the issuance of the certificate happens very early in the life-cycle of the phishing
campaign.

Using X-Squatter, we generate a total of 552143 sound-squatting candidates
for 10000 second-level domains, employing several cross-language configurations
using all trained languages (see Table 4.5). In this use case, we set X-Squatter
parameters to limit the number of candidates to 35 per domain, and use as a threshold
p = 0.9999 and a temperature of t = 1.0, which were the values that rendered
move coverage in the results from Section 5.1. Again, we generate candidates for
other-squatting candidates with AIL. We obtain 8177376 other-squatting candidates
for the same 10000 second-level domains, and, among those, 34268 candidates
generated for both techniques given the same domain target.

We collected certificates spanning 124 days, from February 11, 2023, to June
14, 2023. In total, we gathered 866125758 certificates representing 127775910
domains across 5155 Top-Level Domains (TLDs). These certificates originated from
a total of 263 certificate issuers located in 50 different countries.

Using the CertStream data, we extract all server names to build a comprehensive
list of registered second-level domains. We match the generated candidates with the
second-level domains extracted from CertStream data.

Table 6.3 details the total number of candidates and those we found in CertStream.
We notice a trend similar to the PyPI use case, however with much higher percentages.
While ≈ 10,4% of other-squatting candidates have a registered TLS certificates, this
percentage increases to ≈ 13,1% for sound-squatting. Names found in both lists

88 Potential Applications

Table 6.3 Pairs of Target Domain and Candidates generated and registered domains per
technique, along with the intersection of pairs matching both sound-squatting and other-
squatting techniques.

Technique Not Registered Registered Total

Other-squatting 7293770 849338 8143108
Sound-squatting 445382 72493 517875
Sound-squatting and Other-squatting 17946 16322 34268
Total 7757098 938153 8695251

again have a much higher chance of being found on CertStream: ≈ 47,6% of
generated candidates are present in at least one TLS certificate.

To observe how the phenomenon evolves over time, Figure 6.5 presents the
proportion of registered candidates we identified existing compared to the total
number of domains found in all certificates issued on each respective day. Note how
the ratio is constant over time, with some minor spikes in particular days. That is,
the registration of potentially abused domains is very high and continuous. Naturally,
other-squatting is above sound-squatting as we have much more other-squatting
candidates.

Figure 6.6 provides insight into the relationship between TLDs and sound-
squatting candidates. Note, the TLD .io stands out with an average of 467.46
(standard deviation 146.94) unique registered domains that match our candidates per
day, a share of 3.98%. To complement the picture, in Figure 6.7, we represent the
position of the most popular TLDs according to the number of registered domains
and their ranking position based on the number of squatting candidates per TLD.
Ideally, we would expect a linear relationship around the red line, indicating that the
number of squatting candidates is proportional to the number of domains managed
by each TLD. This is indeed the general trend. However, we also observe some
outliers in the figure.

Among the top 100 most used TLDs, which sum to almost 95% of all domain
names in the period collected and also reduce the noise in the analysis, we find that
TLDs such as .io, .app, and .dev deviate significantly from the diagonal line. Even
more concerning is the outlier TLD .us. These findings align with recent reports of
phishing campaigns hosted in the .us TLD 2.

2https://it.slashdot.org/story/23/09/02/1415234/why-are-godaddys-us-domains-being-used-for-
so-much-phishing

6.2 Domain Impersonation 89

In Figure 6.7, there are also interesting examples such as .tk and .ml, which
exhibit a smaller ratio of squatting to the total number of registered domains. This
variation among TLDs in their susceptibility to squatting activities highlights the
need for a close look into each TLD’s security and potential misuse.

08
 Fe

b
23

15
 Fe

b
23

22
 Fe

b
23

01
 M

ar
 2

3
08

 M
ar

 2
3

15
 M

ar
 2

3
22

 M
ar

 2
3

29
 M

ar
 2

3
05

 A
pr

 2
3

12
 A

pr
 2

3
19

 A
pr

 2
3

26
 A

pr
 2

3
03

 M
ay

 2
3

10
 M

ay
 2

3
17

 M
ay

 2
3

24
 M

ay
 2

3
31

 M
ay

 2
3

07
 Ju

n
23

14
 Ju

n
23

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Fo
un

d
Do

m
ai

ns
 N

or
m

al
ize

d
pe

r T
ot

al

both
other-squatting
sound-squatting

Fig. 6.5 Registered candidates over total registered domains on issued certificates per day.

6.2.1 Manual Qualitative Analysis

To assess the effectiveness of our generation, we chose 12 second level domains
extracted from domains with known histories of phishing attacks. Specifically, we
choose: amazon, bankofamerica, dropbox, facebook, icloud, instagram, linkedin,
microsoft, netflix, paypal, steamcommunity, and tripadvisor for our analysis.

Subsequently, we obtain the candidates using X-Squatter and conduct a manual
verification process to assess whether these domains exhibited phishing characteris-
tics. The manual verification covers 1038 domains. We use the tool Puppeteer to
capture screenshots, setting a timeout of two seconds.

We organize the candidates into nine distinct classes that effectively capture
legitimate/abuse characteristics. This classification scheme aids in gaining insights
into the nature and potential purposes behind these domains:

90 Potential Applications

08
 Fe

b
23

15
 Fe

b
23

22
 Fe

b
23

01
 M

ar
 2

3
08

 M
ar

 2
3

15
 M

ar
 2

3
22

 M
ar

 2
3

29
 M

ar
 2

3
05

 A
pr

 2
3

12
 A

pr
 2

3
19

 A
pr

 2
3

26
 A

pr
 2

3
03

 M
ay

 2
3

10
 M

ay
 2

3
17

 M
ay

 2
3

24
 M

ay
 2

3
31

 M
ay

 2
3

07
 Ju

n
23

14
 Ju

n
23

0.000

0.006

0.012

0.018

0.024

0.030

0.036

0.042

0.048

0.054
Fo

un
d

Ca
nd

id
at

es
' T

LD
 N

or
m

al
ize

d
pe

r T
ot

al
com
com.br
de

io
net
nl

org
xyz

Fig. 6.6 Ratio of registered sound-squatting candidates per TLD.

0 25 50 75 100 125 150 175
TLD Rank in All FQDN Evaluated

0

25

50

75

100

125

TL
D

Ra
nk

 in
 F

ou
nd

 S
qu

at
tin

g
Ca

nd
id

at
es

comxyznetorgde co ioco.uknl usfrcom.brcom.auinfoch eu meincapl appseco.zabeesru ukdkit cz devjpnoonlineatshop techclro fi com.mxcc aibiz onept mxstore auprohu skcom.tr tvco.jp eegr co.inlifevnlive com.uacloudco.nztop com.ar link nuorg.uk digitalmy.idcn worldco.ilsite com.plclub com.coir sico.kr net.audesignkz studioie com.twaersco.id agencyworkspace group gglt isasia lolby

Fig. 6.7 Relationship of TLD and squatting candidates.

6.2 Domain Impersonation 91

• Error Domains (463 domains): The "Error Domains" category consists
of domains that do not present any content and are shown as errors in the
browser. These domains likely represent typographical errors, misconfigu-
rations, or inactive websites. While they may not be malicious, they still
have relevance because phishing domains present periods of inactivity during
they life-cycle [45], therefore a registered domains with an error page might
indicate one of this stages.

• Legitimate Domains (279): These are genuine, non-squatting domains that
are not involved in any malicious or deceptive activities of notice. They serve
their intended purpose without any evidence of fraud.

• Domains for Sale (117): Domains in this category are put up for sale. While
not necessarily malicious, they might be squatting on potentially valuable
domain names with the intention of selling them at a higher price.

• Parked Domains (90): Parked domains are placeholders typically used by
domain owners or registrars. They often display advertisements or a generic
landing page, and their primary purpose is to generate revenue through ad
clicks.

• Redirector Domains (22): Redirector domains are used to redirect web traffic
from one domain to another. They can be legitimate, but they may also be
used in various online scams and malicious campaigns.

• Authoritative Owned Domains (18) Some brands chose to buy problematic
domains and redirect traffic to their services. These are called Authoritative
Owned domains. We discovered these domains by checking DNS data obtained
from Whois with the information from the target domain which the candidates
was generated.

• Hit-Stealing Domains (16): Hit-stealing domains might be involved in
schemes where they try to intercept or steal web traffic intended for other
legitimate domains, potentially for fraudulent purposes. The domains names
are usually not similar at all with the website name or brand associated.

• Look-Alike Domains (10): Look-alike domains often resemble well-known,
legitimate pages, but with slight variations that might go unnoticed. They are
typically used in phishing or deception attempts.

92 Potential Applications

• Phishing Campaign (7): Domains categorized under this label are “Look-
Alike Domains” likely part of phishing campaigns, where they are used to
trick users into revealing sensitive information or credentials.

• Other (16): This category includes domains that do not fit neatly into the
previous defined categories or require further investigation to determine their
purpose and intent.

We show in Figure 6.8 some examples of phishing domains found during the
classification.

(a) Phishing Amazon (b) Phishing Amazon

(c) Phishing Netflix

Fig. 6.8 Phishing examples for Amazon.com and Netflix.com found in selected candidate
domains.

Interestingly, some brands chose to buy problematic domains and redirect traffic
to their services. We call these Authoritative Owned domains. Focusing on the
Redirector Domains, we discovered by checking DNS data obtained from Whois
that 18 quasi-homophone domains for Amazon and Apple are Authoritative Owned.

6.2 Domain Impersonation 93

Four domains are owned by an organization responsible for brand protection. Eight
domains belong to third-party organizations and for 10 domains we could not find
any information regarding ownership.

Chapter 7

Final Considerations and Conclusions

This chapter compares the models, summarizes their strengths and weaknesses,
describes the implications of the thesis, and outlines its limitations.

7.1 Linguistic Coverage

Languages within the Indo-European family, specifically English (United States and
Great Britain), French (France), Portuguese (Brazil), Italian (Italy), and Spanish
(Spain), were mainly used in the training and in the use cases. These languages
collectively represent a substantial portion of online users and resources [47]. While
this choice helped to set an extensive evaluation of phonetic aspects due to the
availability of tools and resources, it resulted in the exclusion of important languages
from other language families such as Russian, Chinese, and Arabic.

The proposed methodology for multi-language, as presented in Sound-squatter
and X-Squatter, can be extended to other languages. The International Phonetic
Alphabet (IPA) offers a universal framework, enabling the generation of Feature
Vectors for other languages. This flexibility was demonstrated by reporting results
for quasi-homophone generation. Adapting Grapheme to Phoneme to the input
language and adjusting a specific Grapheme Decoder module to the written forms
of the output language via fine-tuning or retraining are necessary steps for applying
these models to other languages.

7.2 Scalability 95

Regarding adaptability, a potential challenge arises if the rules of Grapheme to
Phoneme are no longer applicable, which would occur if new words are added to
a language, e.g., due to the natural evolution of languages. However, languages
often adapt spellings and pronunciations slowly, making this scenario rare. More-
over, words borrowed from one language to another typically maintain a similar
pronunciation but change in written form.

A limitation in the methodology is its lack of handling of heteronyms, i.e., words
with the same written form but different pronunciations, common in non-phonetic
languages like English and French. This is primarily a problem to be addressed in
the Grapheme to Phoneme module. The eSpeak NG is designed to produce a single
pronunciation alternative and does not cover heteronyms. Properly handling them
requires using a Grapheme to Phoneme that generates all alternative pronunciations
for the same word. Measuring the practical impact of the lack of this feature is
challenging, as their classification depends on context.

7.2 Scalability

The models can be trained in a single commodity server within a few hours. Com-
pared to list-based alternatives, more computational resources are required during
training. However, this results in improved quality and coverage of the generated
candidates.

Different Transformer architectures were compared during the design of the
tools, but more recent alternatives, particularly those based on generative AI, were
not considered. These Large Language Models (LLMs) are characterized by their
large number of parameters [13]: for example, Bert [17] has 100 million parameters,
GPT-2 has 1.5 billion parameters [48], and LLama2 has 65 billion parameters [62].
Typically, specializing these models to specific problems requires fine-tuning, thus
significant effort in terms of data collection and computational resources. Instead,
a decision was made to construct a specialized model to address a domain-specific
problem, avoiding the fine-tuning of large or huge models. This approach en-
ables a reduction in model size while enhancing performance in the specific task.
X-Squatter, for instance, has 22M parameters and leverages architectural choices
finely crafted for the homophone generation problem.

96 Final Considerations and Conclusions

7.3 Conclusions

In this thesis, we addressed the problem of generating sound-squatting candidates by
proposing a comprehensive methodology that can handle variations across single-
language and cross-language scenarios. We adopted a data-driven approach to bypass
the need for fixed rules allowing our models to generalize effectively across diverse
linguistic contexts.

Our investigation centered on three research questions:

1. How does data-driven machine learning facilitate generalization across
diverse sound-squatting scenarios and linguistic contexts?

We developed multiple sound-squatting generation tools, starting with a naive
model and progressing to a sophisticated architecture based on the Transformer
Neural Network. Through ablation studies, we identified essential components
for effective sound-squatting generation. Our approach considered various data
modalities and encoding strategies, ensuring robust performance across different
scenarios. Quantitative and qualitative evaluations confirmed our models’ ability to
generate homophones and quasi-homophones with high coverage and quality.

2. Can AI-based sound-squatting generation replicate or anticipate mistakes
users make during transcription?

To verify if our models can anticipate user transcription mistakes, we designed a
questionnaire to gather data on common errors made during domain name transcrip-
tion. By comparing these errors with the outputs of our models, we assessed their
ability to predict user mistakes. Our findings indicated that the models could indeed
replicate a portion of these mistakes, quantifying their practical utility.

3. Are sound-squatting candidates produced by our methodology found in practi-
cal use cases?

We investigated the presence of sound-squatting candidates in real-world scenar-
ios by cross-referencing our generated candidates with existing domain names and
Python software packages. This analysis revealed the practical applicability of our
methodology and its potential to identify instances of misuse or suspicious cases.

Our work establishes a foundation for future research on sound-squatting and
its implications across various linguistic contexts and application domains. Future

7.3 Conclusions 97

work will include the deployment of the techniques to monitor possible abuse of
sound-squatting in other scenarios.

References

[1] (n.d.). Amazon mechanical turk. Accessed on June 7, 2024.

[2] (n.d.). Clickworker. Accessed on June 7, 2024.

[3] (n.d.). Google Text-to-Speech. Accessed on: 2024-05-05.

[4] Agten, P., Joosen, W., Piessens, F., and Nikiforakis, N. (2015). Seven months’
worth of mistakes: A longitudinal study of typosquatting abuse. In Proceedings
of the 22nd Network and Distributed System Security Symposium (NDSS 2015).
Internet Society.

[5] AIL-PyPI Squatting (2023). Ail- pypi squatting. https://github.com/typosquatter/
pypi-squatting. Accessed on: 09/08/2023.

[6] Association, T. I. P. (2022). The international phonetic association homepage.
https://www.internationalphoneticassociation.org/. Accessed on 2022-10-05.

[7] Atkinson, K. (2006). Gnu aspell 0.60. 4.

[8] ATT&CK, M. (2022a). Capec-616: Establish rogue location. https://capec.mitre.
org/data/definitions/616.html.

[9] ATT&CK, M. (2022b). Capec-631: Soundsquatting. https://capec.mitre.org/
data/definitions/631.html.

[10] Awad, M., Allam, A. E., Salameh, K., and Mazrouei, R. A. (2022). Phishing
for legitimacy: The use of ssl certificates to ensnare internet users. In 2022 Inter-
national Conference on Electrical and Computing Technologies and Applications
(ICECTA), pages 313–317.

[11] Bureau., B. B. (Accessed: 2024). Bbb scam alert: Us-
ing voice search? use caution when asking for auto dial
from a smart device. https://www.bbb.org/article/news-releases/
20523-scam-alert-using-voice-search-use-caution-when-asking-for-auto-dial-from-your-smart-device.

[12] (CaliDog), S. Certstream. https://certstream.calidog.io/. [Accessed 08-05-
2024].

https://github.com/typosquatter/pypi-squatting
https://github.com/typosquatter/pypi-squatting
https://www.internationalphoneticassociation.org/
https://capec.mitre.org/data/definitions/616.html
https://capec.mitre.org/data/definitions/616.html
https://capec.mitre.org/data/definitions/631.html
https://capec.mitre.org/data/definitions/631.html
https://www.bbb.org/article/news-releases/20523-scam-alert-using-voice-search-use-caution-when-asking-for-auto-dial-from-your-smart-device
https://www.bbb.org/article/news-releases/20523-scam-alert-using-voice-search-use-caution-when-asking-for-auto-dial-from-your-smart-device
https://certstream.calidog.io/

References 99

[13] Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H., Yi, X.,
Wang, C., Wang, Y., Ye, W., Zhang, Y., Chang, Y., Yu, P. S., Yang, Q., and Xie, X.
(2024). A survey on evaluation of large language models. ACM Trans. Intell. Syst.
Technol. Just Accepted.

[14] Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras.

[15] Crystal, D. (2008). Dictionary of linguistics and phonetics. John Wiley &
Sons.

[16] (DARPA), D. A. R. P. A. Arpabet. A dialect of the International Phonetic
Alphabet (IPA) designed for American English speech synthesis. Referenced
from https://huggingface.co/spaces/Harveenchadha/oiTrans/resolve/main/indic_
nlp_resources/script/arpabet.pdf. Accessed: May 28, 2024.

[17] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training
of deep bidirectional transformers for language understanding.

[18] Dinaburg, A. (2011). Bitsquatting: Dns hijacking without exploitation. Pro-
ceedings of BlackHat Security.

[19] dnscan (2023). dnstwister: Dns twist web service. https://dnstwister.report/.
Accessed on: 09/08/2023.

[20] Doherty, L. (2022). ipa-dict - monolingual wordlists with pronunciation infor-
mation in IPA. https://github.com/open-dict-data/ipa-dict.

[21] DomainFuzz (2023). DomainFuzz: A domain name permutation tool. https:
//github.com/monkeym4ster/DomainFuzz. Accessed on: 09/08/2023.

[22] Dryer, M. S. and Haspelmath, M., editors (2013). WALS Online (v2020.3).
Zenodo.

[23] Duddington, J., Avison, M., Dunn, R., and Vitolins, V. (Accessed: 2023).
espeak ng text-to-speech. https://github.com/espeak-ng/espeak-ng.

[24] Durumeric, Z., Kasten, J., Bailey, M., and Halderman, J. A. (2013). Analysis
of the HTTPS certificate ecosystem. In Proceedings of the 2013 conference on
Internet measurement conference. ACM.

[25] Foundation, P. S. (2018). Invalid projects.

[26] Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connection-
ist temporal classification: Labelling unsegmented sequence data with recurrent
neural networks. In Proceedings of the 23rd International Conference on Ma-
chine Learning, ICML ’06, page 369–376, New York, NY, USA. Association for
Computing Machinery.

[27] Gu, Y., Ying, L., Pu, Y., Hu, X., Chai, H., Wang, R., Gao, X., and Duan, H.
(2023). Investigating package related security threats in software registries. In
2023 IEEE Symposium on Security and Privacy (SP), pages 1578–1595.

https://github.com/fchollet/keras
https://huggingface.co/spaces/Harveenchadha/oiTrans/resolve/main/indic_nlp_resources/script/arpabet.pdf
https://huggingface.co/spaces/Harveenchadha/oiTrans/resolve/main/indic_nlp_resources/script/arpabet.pdf
https://dnstwister.report/
https://github.com/open-dict-data/ipa-dict
https://github.com/monkeym4ster/DomainFuzz
https://github.com/monkeym4ster/DomainFuzz
https://github.com/espeak-ng/espeak-ng

100 References

[28] Holgers, T., Watson, D. E., and Gribble, S. D. (2006). Cutting through the
confusion: A measurement study of homograph attacks. In USENIX Annual
Technical Conference, General Track, pages 261–266.

[29] Khan, M. T., Huo, X., Li, Z., and Kanich, C. (2015). Every second counts:
Quantifying the negative externalities of cybercrime via typosquatting. In 2015
IEEE Symposium on Security and Privacy, pages 135–150. IEEE.

[30] Kim, D., Cho, H., Kwon, Y., Doupé, A., Son, S., Ahn, G.-J., and Dumitras,
T. (2021). Security analysis on practices of certificate authorities in the HTTPS
phishing ecosystem. In Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security. ACM.

[31] Kintis, P., Miramirkhani, N., Lever, C., Chen, Y., Romero-Gómez, R.,
Pitropakis, N., Nikiforakis, N., and Antonakakis, M. (2017). Hiding in plain sight:
A longitudinal study of combosquatting abuse. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 569–586.

[32] Kumar, D., Paccagnella, R., Murley, P., Hennenfent, E., Mason, J., Bates, A.,
and Bailey, M. (2018). Skill squatting attacks on amazon alexa. In 27th USENIX
security symposium (USENIX Security 18), pages 33–47.

[33] Littell, P., Mortensen, D. R., Lin, K., Kairis, K., Turner, C., and Levin, L. (2017).
URIEL and lang2vec: Representing languages as typological, geographical, and
phylogenetic vectors. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short Papers,
pages 8–14, Valencia, Spain. Association for Computational Linguistics.

[34] Liu, X., Duh, K., Liu, L., and Gao, J. (2020). Very deep transformers for neural
machine translation. arXiv preprint arXiv:2008.07772.

[35] LLC, G. (2024). Google topics api. https://developers.google.com/search/docs/
topics/. Accessed: May 29, 2024.

[36] Lodge, D. (2023). URLCrazy: Domain name permutation and availability
checker. http://www.morningstarsecurity.com/research/urlcrazy. Accessed on
09/08/2023.

[37] Loyola, P., Gajananan, K., Kitahara, H., Watanabe, Y., and Satoh, F. (2020).
Automating domain squatting detection using representation learning. In 2020
IEEE International Conference on Big Data (Big Data), pages 1021–1030.

[38] Marshall, C. C., Goguladinne, P. S., Maheshwari, M., Sathe, A., and Shipman,
F. M. (2023). Who broke amazon mechanical turk? an analysis of crowdsourcing
data quality over time. In Proceedings of the 15th ACM Web Science Confer-
ence 2023, WebSci ’23, page 335–345, New York, NY, USA. Association for
Computing Machinery.

[39] Michaelis, S. M., Maurer, P., Haspelmath, M., and Huber, M., editors (2013).
APiCS Online. Max Planck Institute for Evolutionary Anthropology, Leipzig.

https://developers.google.com/search/docs/topics/
https://developers.google.com/search/docs/topics/
http://www.morningstarsecurity.com/research/urlcrazy

References 101

[40] Moran, S. and McCloy, D., editors (2019). PHOIBLE 2.0. Max Planck Institute
for the Science of Human History, Jena.

[41] Mortensen, D. R., Dalmia, S., and Littell, P. (2018). Epitran: Precision g2p
for many languages. In Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018).

[42] Mortensen, D. R., Littell, P., Bharadwaj, A., Goyal, K., Dyer, C., and Levin, L.
(2016). PanPhon: A resource for mapping IPA segments to articulatory feature
vectors. In Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages 3475–3484, Osaka, Japan.
The COLING 2016 Organizing Committee.

[43] Nikiforakis, N., Balduzzi, M., Desmet, L., Piessens, F., and Joosen, W. (2014).
Soundsquatting: Uncovering the use of homophones in domain squatting. In
International Conference on Information Security, pages 291–308. Springer.

[44] Nikiforakis, N., Van Acker, S., Meert, W., Desmet, L., Piessens, F., and Joosen,
W. (2013). Bitsquatting: Exploiting bit-flips for fun, or profit? In Proceedings of
the 22nd international conference on World Wide Web, pages 989–998.

[45] Oest, A., Zhang, P., Wardman, B., Nunes, E., Burgis, J., Zand, A., Thomas, K.,
Doupé, A., and Ahn, G.-J. (2020). Sunrise to sunset: Analyzing the end-to-end
life cycle and effectiveness of phishing attacks at scale. In 29th {USENIX$}$
Security Symposium (${$USENIX$}$ Security 20).

[46] Pochat, V. L., Van Goethem, T., Tajalizadehkhoob, S., Korczyński, M., and
Joosen, W. (2018). Tranco: A research-oriented top sites ranking hardened against
manipulation. arXiv preprint arXiv:1806.01156.

[47] Q-Success Web-based Services (2024). Usage statistics of content languages
for websites.

[48] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

[49] Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., and Liu, T.-Y. (2019).
Fastspeech: Fast, robust and controllable text to speech.

[50] Roberts, R., Goldschlag, Y., Walter, R., Chung, T., Mislove, A., and Levin, D.
(2019). You are who you appear to be. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. ACM.

[51] Semmlow, J. (2018). Chapter 6 - linear systems in the frequency domain:
The transfer function. In Semmlow, J., editor, Circuits, Signals and Systems for
Bioengineers (Third Edition), Biomedical Engineering, pages 245–294. Academic
Press, third edition edition.

[52] Sonowal, G. (2020). A model for detecting sounds-alike phishing email con-
tents for persons with visual impairments. In 2020 Sixth International Conference
on e-Learning (econf), pages 17–21. IEEE.

102 References

[53] Sonowal, G. and Kuppusamy, K. (2019). Mmsphid: A phoneme based phishing
verification model for persons with visual impairments. information and computer
security journal.

[54] Spaulding, J., Nyang, D., and Mohaisen, A. (2017). Understanding the ef-
fectiveness of typosquatting techniques. In Proceedings of the Fifth ACM/IEEE
Workshop on Hot Topics in Web Systems and Technologies, HotWeb ’17, New
York, NY, USA. Association for Computing Machinery.

[55] Staib, M., Teh, T. H., Torresquintero, A., Mohan, D. S. R., Foglianti, L., Lenain,
R., and Gao, J. (2020). Phonological features for 0-shot multilingual speech
synthesis. arXiv preprint arXiv:2008.04107.

[56] Stevens, K. N. (1998). Acoustic phonetics. MIT press.

[57] Szurdi, J., Kocso, B., Cseh, G., Spring, J., Felegyhazi, M., and Kanich, C.
(2014a). The long {“Taile”$}$ of typosquatting domain names. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 191–206.

[58] Szurdi, J., Kocso, B., Cseh, G., Spring, J., Felegyhazi, M., and Kanich, C.
(2014b). The long “Taile” of typosquatting domain names. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 191–206, San Diego, CA.
USENIX Association.

[59] Tenney, I., Das, D., and Pavlick, E. (2019). BERT rediscovers the classical
NLP pipeline. arXiv preprint arXiv:1905.05950.

[60] Tian, K., Jan, S. T. K., Hu, H., Yao, D., and Wang, G. (2018). Needle in a
haystack: Tracking down elite phishing domains in the wild. In Proceedings of
the Internet Measurement Conference 2018, IMC ’18, page 429–442, New York,
NY, USA. Association for Computing Machinery.

[61] Torroledo, I., Camacho, L. D., and Bahnsen, A. C. (2018). Hunting malicious
TLS certificates with deep neural networks. In Proceedings of the 11th ACM
Workshop on Artificial Intelligence and Security. ACM.

[62] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al. (2023). Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971.

[63] (UCL), U. C. L. Sampa (speech assessment methods phonetic alphabet).
https://www.phon.ucl.ac.uk/home/sampa/. Accessed: May 28, 2024.

[64] Valentim, R., Drago, I., Cerutti, F., and Mellia, M. (2022). Ai-based sound-
squatting attack made possible. In 2022 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), pages 448–453. IEEE.

[65] Valentim, R., Drago, I., Cerutti, F., and Mellia, M. (2023a). Sound-skwatter
(did you mean: Sound-squatter?) ai-powered generator for phishing prevention.
arXiv preprint.

https://www.phon.ucl.ac.uk/home/sampa/

References 103

[66] Valentim, R., Drago, I., Cerutti, F., and Mellia, M. (2024). X-squatter: Ai
multilingual generation of cross-language sound-squatting. In ACM Transactions
on Privacy and Systems (TOPS).

[67] Valentim, R., Drago, I., Mellia, M., and Cerutti, F. (2023b). Lost in translation:
Ai-based generator of cross-language sound-squatting. In 2023 IEEE European
Symposium on Security and Privacy Workshops (EuroSPW), pages 513–520.

[68] van Kemenade, H. and Erdin, E. (2019). hugovk/pypistats 0.4.0.

[69] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Gar-
nett, R., editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc.

[70] Veyseh, A. P. B., Lai, V., Dernoncourt, F., and Nguyen, T. H. (2021). Unleash
GPT-2 power for event detection. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics, pages 6271–6282.

[71] Wang, Y.-M., Beck, D., Wang, J., Verbowski, C., and Daniels, B. (2006).
Strider typo-patrol: Discovery and analysis of systematic typo-squatting. SRUTI,
6(31-36):2–2.

[72] Yang, Y.-Y., Hira, M., Ni, Z., Chourdia, A., Astafurov, A., Chen, C., Yeh,
C.-F., Puhrsch, C., Pollack, D., Genzel, D., Greenberg, D., Yang, E. Z., Lian,
J., Mahadeokar, J., Hwang, J., Chen, J., Goldsborough, P., Roy, P., Narenthi-
ran, S., Watanabe, S., Chintala, S., Quenneville-Bélair, V., and Shi, Y. (2021).
Torchaudio: Building blocks for audio and speech processing. arXiv preprint
arXiv:2110.15018.

[73] Zeng, Y., Zang, T., Zhang, Y., Chen, X., and Wang, Y. (2019). A comprehen-
sive measurement study of domain-squatting abuse. In ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), pages 1–6.

[74] Zhang, N., Mi, X., Feng, X., Wang, X., Tian, Y., and Qian, F. (2019). Dangerous
skills: Understanding and mitigating security risks of voice-controlled third-party
functions on virtual personal assistant systems. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1381–1396. IEEE.

Appendix A

Mistakes in Transcriptions Collected
from Questionnaire Responses

Table A.1 List of domains and their transcriptions - Part 1 of 2

Domain Set of User Transcriptions

americanexpress.com americainexpress.com, americanexpress.com
awsdns-18.com ewsdnf-eighteen.com, iwsdns-18.com, awsdns.18.com, awlsdns-18.com,

ewsdns-18.com, lwsdns-18.com, awusdns-18.com, awsdns_eighteen.com,
awsdns-eighteen.com, awstns-eighteen.com, awsdns18.com, aw-
stcnn.com, awsdns-18.com, ewsdnf-18.com, aws-sdns-18.com,
awstdns-18.com, awsdns_18.com, euusdns 18.com

bsta.rs bsta.ers, psta.rs, bsta.os, bst8doctors, psta.ors, vsta.rs, vsta.ors, bsta.us,
bstars, bsta.rs, bsti.rs

cakecentral.com 8central.com, katecentral.com, keycentral.com, cakecentral.com,
cakescentral.com, kcentury.com, capecentral.com, catecentral.com, cake
central.com

centrinvest.ru central invest tree, centreinvesttrought, centreinvestrue, centralinvest3,
centralinvestry, centre invest tree, centroinvestro, centralvestral, centru-
minvestry, centuryinvestrue, centerinvestdream, santruminvestrough, cen-
terinvesture, santronvastree, centrancewestrue, center investory, centerin-
vestyou, centreinvestry, centerinvestrew, central investee, centreinvestru,
centralinvestrue, saintinvestry, centryvestree, centerinvesthrough, center-
investtrough, centrinvestrue, century inventory, cent invest you, centrin-
vesthrough, sentryfasttrue

cloudns.net clounds.net, claudents.net, cloudense.net, clouden.net, cloudandsto.net,
clouddense.net, cloudins.net, cloudings.net, cloudns.net, clouds.net,
cloud.net, cloudends.net, cloud-en.net, claudance.net, cloudens.net,
cloudin.net, cloudance.net, cloudans.net, couldin.net

Continue on next page.

105

Table A.2 List of domains and their transcriptions - Part 2 of 2

Domain User Transcription

coinmarketcap.com coinmarket.com, coinmarketcat.com, coinmarketcup.com, cointmar-
ketcap.com, coinmarketcapital com, coinmarketcamp.com, coinmar-
ketcap.com, cleanmarketcap.com, toymartketcat.com

crunchyroll.com crounchyroll.com, crumchirow.com, crunchiro.com, crunchy-
word.com, crunchyroll.com, crouchyroad.com, crunchero.com,
chrunchyrole.com, crunchroll.com, crunchyrow.com, crunchy-
road.com, creamshire.com, crancyroad.com

eastday.com eastaid.com, yesterday.com, esatedate.com, eastdate.com, east-
day.com, isday.com, istday.com, eaststate.com

fsu.edu fsu.ddu, fseu.edu, afcdutu, fsu.edu, fsu.tdu, fscu.edu, fse.edu, fsu.idu,
fsu.idy, fsu.idyou

informatica6.com informaticalsix.com, infomatica6.com, informaticalsixt.com, informat-
icassist.com, informaticcursics.com, informatica6.com, informatic-
six.com, informaticus6.com, informatiquesix.com, informatic6.com,
informatics6.com, informaticasix.com, informatical6.com

kitchenwaresreview.com kitchenwearsreviews.com, kitchenwheresreview.com, com, kitchen-
westreview.com, kitchenwaresreview, kitchenswearreview.com,
kitchenwhereasreviews.com, kitchenwaresreview.com, kitchen-
wearsreview.com, kitchenresreview.com, kitchenwearsreveal.com,
kitchenwarereviews.com, kitchenwesreview.com, kitchenusre-
view.com

marnet.mk manet.mk, monets.mk, management.k, mynet.mk, manette.key, mu-
nad.mk, monet.mk, marnets.mk, manart.mk, monet.uk, manot.mk,
mermaid.mk, monet.nk, manner.mk, mannet.mk, manned.mk, mar-
net.emkey

nanning.gov.cn naming.cn, 9dogcnn, namen.gov.cn, nanen.gov.cn, noning.gov.cn,
nunnin.gov.cn, naming.gap.cn, namen.got.cm, naning.god.cn, non-
ing.gap.cn, nanning.gov.cn, nanin.gov.cn, notname.gov.cn, nam-
ing.gov.cn, nanning.catdog.cn, lamen.gov.cn, nanning.com.cn, min-
ing.gov.cn, nan.gov.cn, naning.gov.cn, nanning.biaf.cn, nine.gov.cn,
nannin.gov.cn, nanning.cn

pdst.fm pdctfm, pdstfm, ptsd.fm, pdst.fm, pdstfn, pdftfm, pds.fm
playerup.com player.com, plerap.com, flareup.com, playrop.com, play.com,

pleura.com, playrot.com, playeurope.com, playwrap.com, pla-
yarp.com, playrup.com, playerup.com, playrap.com, playup.com, pla-
yart.com

pornbox.com puwnvox.com, pullanbox.com, pumbox.com, pointbox.com,
pawnvocks.com, poombox.com, homebox.com, honbox.com,
cornebox.com, vulnbox.com, toonbox.com, punbox.com, coon-
box.com, pumdocs.com, pornbox.com, pwnbox.com, pawnbox.com,
poonbox.com

retailmenot.com retailmeno.com, retailme.com, retailmino.com, retellmeno.com, ratail-
menot.com, retailmenot.com, retellmenot.com

sexymasseur.com sexymasseur.com, sexymassed.com, sexseemassert.com,
sexymesser.com, sexymessy.com, sexymasee.com, sexymas-
ter.com, sexy.com, sexymassert.com, sexymeser.com, sexymicer.com,
sexymassage.com, sexmace.com, sexymassa.com, sexymasset.com,
sexmassage.com, sexymasser.com

uir.ac.id uir.hak.id, ura.ack.id, uyr.tac.id, ura.act.id, uar.tak.id, ula.tag.id,
uar.act.id, uael.ak.id, uir.act.id, url.ak.id, uri.hack.id, uar.hack.id,
uea.tak.id, url.act.id, uri.hack.it, uio.tac.id, uir.ac.id, ui.tak.id,
uilo.hack.id, ual.act.id, uaeat.id, uardoctadoctad, uilr.hack.id, uir.x.id,
uir.ack.id, uar.a.at, youre.id, uil.tac.id

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Linguistic Scenarios for Sound-squatting
	1.2 Sound-squatting Tools
	1.3 Goal, Approach and Research Questions
	1.4 Thesis Contributions
	1.5 Thesis Outline
	1.6 List of Publications
	1.7 Open-source and Datasets

	2 Background and Related Work
	2.1 Cyber-squatting and Sound-squatting
	2.1.1 Cyber-squatting in the Wild
	2.1.2 Sound-squatting Generation

	2.2 Transformers Neural Network
	2.3 Data Modality for Pronunciation
	2.3.1 Phonetic Alphabets
	2.3.2 Articulatory Feature Vectors
	2.3.3 Mel Spectrogram

	2.4 Third-party Tools for Squatting Generation

	3 Methodology for Sound-squatting Generation
	3.1 General Pipeline
	3.1.1 Data Modality for Sound-squatting

	3.2 Taxonomy of Generative Models
	3.3 Transcription Error Collection

	4 Our Proposed Models
	4.1 Auto-Squatter: Simple IPA Translation
	4.1.1 System Description
	4.1.2 Dataset and Training
	4.1.3 Architectural Details

	4.2 Sound-skwatter: Audio Inbound with IPA Translation
	4.2.1 System Description
	4.2.2 Dataset and Training
	4.2.3 Architectural Details

	4.3 Sound-squatter: Multi-language Sound-squatting Generation
	4.3.1 System Description
	4.3.2 Dataset and Training
	4.3.3 Architecture Details

	4.4 X-Squatter: Cross-language Sound-squatting Generation
	4.4.1 System Description
	4.4.2 Dataset and Training
	4.4.3 Architectural Details

	5 Results and Validation
	5.1 Tool's Validation
	5.1.1 Single-language Homophone Coverage
	5.1.2 Cross-language Homophone Coverage
	5.1.3 Single-language Quasi-homophone Generation
	5.1.4 Cross-language Quasi-homophone Generation: Impact of Feature Vector Encoder
	5.1.5 Key Insights from Coverage Validation

	5.2 Can the AI Tools Anticipate People's Mistakes?
	5.2.1 Validation via Transcription Errors

	5.3 Concluding Remarks on Tool Validation

	6 Potential Applications
	6.1 Squatting on PyPI Repository
	6.2 Domain Impersonation
	6.2.1 Manual Qualitative Analysis

	7 Final Considerations and Conclusions
	7.1 Linguistic Coverage
	7.2 Scalability
	7.3 Conclusions

	References
	Appendix A Mistakes in Transcriptions Collected from Questionnaire Responses

