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Abstract

This research work deals with the identification of flood event drivers in North-
Western Italy, both through a statistical analysis of streamflow annual maxima and
the application of a conceptual semi-distributed hydrological model. The work
provides different perspectives on how to study extreme events at the regional scale,
focusing on a set of non-regulated catchments located in North-Western Italy, within
the Alpine region.

After a preliminary analysis of the study area and the main data used, in Chapter
2 a correlation analysis between climate and flood indices at different temporal
scales is widely discussed. In particular, annual maximum flows, extracted from the
daily streamflow series, are correlated with the standard Climate Change Indices
(ETCCDI) of precipitation and temperature, which are commonly used in climate
research. A temporal correlation analysis, performed in order to identify which
climate drivers better explain the interannual variability of floods, is followed by
a spatial correlation analysis of temporal trends of the variables, with the aim of
capturing the influence of climate (decadal) variability on the tendency of annual
maximum discharges. The results show that, while at the annual timescale floods are
highly correlated with indices of precipitation extremes, the tendencies of discharge
maxima seem to be better explained by the mean precipitation over the catchment. A
following step of the work involves the characterization and classification of different
runoff event types over the region, which potentially allows to study how different
flood event types regionally change over time.

To this aim, in the second part (Chapter 3-4) a conceptual semi-distributed hydro-
logic model is calibrated over the study area, first with locally observed discharge
data and then regionally, by using the PArameter Set Shuffling (PASS) procedure
(Merz et al., 2020), a robust and well documented regionalization procedure that
allows to transfer the information contained into locally calibrated parameters and
catchment descriptors to the entire domain. In this work, PASS is implemented with a
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decision tree machine learning algorithm for the regionalization of model parameters.
In particular, the advantage of using snow information in the calibration procedure
is further investigated. In addition, a newly developed R package, useful to make
the application of the procedure more flexible, is presented, together with examples
of application based on a well known comprehensive U.S. hydrologic database that
is publicly accessible. It appears from the results that PASS can be efficiently used
for the regionalization of model parameters in the study area, by providing consis-
tent relationships among climatic or geomorphological characteristics and model
parameters while confirming the effect of reduction of parameter equifinality. The
inclusion of snow in the model efficiency function doesn’t significantly improve
model simulations but provides more consistent results for snow parameters and,
overall, less uncertain model simulations.

In Chapter 5, the regionally calibrated model is used for identifying, characteriz-
ing and classifying runoff events in the same study region. The aim is to extend the
observed dataset in space and time in order to get a timeseries of spatially distributed
simulated events spanning 60 years from 1961 to 2020. First, the ability of the model
in reproducing observed runoff event characteristics (i.e. runoff coefficient, event
duration, event peak time, event peak, event volume) is evaluated by comparing
model simulations with observations in gauged sites. Then, regionally distributed
runoff event characteristics for the period 1961-2020 are obtained by considering
a wider catchment dataset, i.e. the European Catchments and Rivers Network Sys-
tem (ECRINS, 2012), over which the model with regionally calibrated parameters
is applied. The results for the gauged catchments show that the model is able to
properly capture the spatial pattern of observed runoff characteristics, in particular
runoff event peak and volume, with a median Nash-Sutcliffe Efficiency (NSE) greater
than 0.5, while the performance for runoff coefficient, duration and peak time is
lower. It is worth noting that the value of the runoff coefficient, event peak and
event volume is maximum in the southern and northeastern part of the region, in
catchments located at medium elevation in the proximity of Alps and Apennines.
Consistent results are also obtained by running the model in a distributed mode
in ungauged sites. By using several climatic indicators describing different event
features of the observed data that are not limited to discharge (i.e., type of inducing
event, space-time organization, wetness state of the catchment and spatial interaction
of precipitation and soil moisture), the first-order controls of event runoff response
are identified in the gauged catchments using the framework presented in Tarasova
et al. (2020), and this reveals four distinct clusters (sub-regions) with homogeneous
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event type frequency. In particular, cluster 1 mainly consists of lowland catchments
where intensity-dominated and local volume-dominated events under dry conditions
constitute a relevant quota of total events, suggesting that the main runoff generation
mechanism is a local one with possible infiltration excess or event-fed saturation.
These mechanisms indicate that convective activity is a very likely phenomenon
leading to floods in these catchments. Cluster 2 includes catchments that are located
both in lowland and at medium elevation. The fraction of events characterized by
the presence of snow is higher compared to the previous cluster and extensive and
steady rainfall events, both intensity and volume-dominated, are dominant types
for this cluster. This indicates the potential occurrence of orographic slow-moving
storms. The third cluster covers a large portion of the Alpine range, from South-West
to North, and includes all high elevation catchments strongly impacted by snow
processes and large valley catchments characterized by high-elevation zones. In-
deed, the majority of events in this cluster is represented by mixture of rainfall and
snowmelt and a moderate fraction is given by pure snowmelt events. Finally, cluster
4 includes catchments located all over the region at quite high elevation, both along
the Alps and the Apennines. This cluster has some similarities with cluster 2 but
the fraction of events impacted by snow processes is much higher and extensive
volume-dominated events during dry conditions prevail, suggesting extensive event
fed-saturation as a major runoff generation mechanism, with possible event-induced
connectivity. By applying the same framework regionally in ungaged sites using
simulated events that span the period 1961-2020, we find that the spatial pattern of
event type occurrence as obtained by the model is coherent with the event typology
from observed discharges and reflects the hydroclimatic conditions of the area. The
main differences concern cluster 1, which shows a higher quota of unsteady events
(mainly volume-dominated), and cluster 3, in which the fraction of snowmelt events
overcomes that of rain-on-snow events. The event types classification allows to
better explain the spatial distribution of event characteristics. The highest values of
runoff coefficient, event peak and volume are found for catchments of cluster 2 or 4,
where rain-on-snow events and orographic slow-moving storms, with an extensive
and steady structure, play a role in the runoff generation. Instead, catchments per-
taining to cluster 1 and 3, showing lower values of these characteristics, are strongly
impacted by either local runoff events that massively depend on the intensity of inter-
event evapotranspiration and on soil moisture state, unsteady volume-dominated
events and mixture of rainfall and snowmelt events.
Finally, Chapter 6 is dedicated to final Discussion and Conclusions.
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This Thesis represents a contribution to the hydrological community by providing
insights on the added value of using regionally calibrated distributed hydrological
models to describe flood events in a snow-dominated area, compared to a standard
statistical analysis of extremes. It is also provided a coded version of an established
regionalization procedure, to allow a flexible use of such models for a variety of
hydrological regimes. Future research can build upon the time-series of simulated
events and the results of event classification to study the possible spatial and temporal
correlations among climate variables and specific flood event types.
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Introduction

The hydrological cycle is strongly impacted by the pattern variation of climate
variables such as temperature and precipitation. Higher temperatures induce an
increase of potential evaporation and, at high elevation, changes in snow dynamics,
which affect runoff production.

In the last decades, high elevation areas are given particular attention as their
hydrological regimes, being strongly influenced by snow dynamics and changes in
glaciated areas, are especially vulnerable to climate change (IPCC, 2019). Over the
last century, the Alps have experienced an increase in temperature by a factor of 1.6
higher than the average worldwide temperature increase (Brunetti et al., 2009). In the
Alpine region, monthly and extreme runoff is characterized by a strong seasonality,
with maximum runoff typically occurring in spring and summer, driven by the
snowmelt, and minimum runoff in winter. The interest of the hydrologic community
is to understand how this pattern has changed in the past and is going to change
in the future. For this reason, the impact of precipitation and temperature patterns
on river flows is a well discussed topic and the attention is particularly devoted to
floods.

River floods are, indeed, one of the most impacting natural hazards, leading to
huge annual average damages in different sectors of the society, which are expected
to rapidly increase (IPCC, 2022). Large floods have occurred in Europe in the last
decades; among these we distinguish events in Central Europe in 2002, 2013, and
2021 (e.g., Blöschl et al., 2013; Kreienkamp et al., 2021; Ulbrich et al., 2003), winter
floods in North-West England in 2009 and 2015/2016 (e.g., Barker et al., 2016;
Miller et al., 2012), autumn floods in North-Western Italy such as 1994, 2000, 2016
and 2020 in Piemonte (e.g., Cassardo et al., 2001; Grazzini et al., 2020), 2011 in
Liguria (Silvestro et al., 2012; Silvestro et al., 2016) and finally the spring flood of
2023 in Emilia-Romagna, Italy (Arrighi and Domeneghetti, 2024). Based on this
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evidence, many studies focus on the detection of past changes in flood hazard. In
these studies, Mann-Kendall test is generally adopted to detect changes in the mean
annual flood magnitude and frequency (Mediero et al., 2014; Petrow and Merz, 2009;
Prosdocimi et al., 2014; Villarini et al., 2011). Among them, Blöschl et al. (2019)
analyse the most comprehensive dataset of observations in Europe (Hall et al., 2015)
and extract spatial patterns of trends in the annual maximum streamflow for the
period 1960-2010. An attribution to possible drivers of floods is also performed by
considering as candidates the annual maximum seven-day precipitation, the highest
monthly soil moisture and the spring temperature as a proxy for snowmelt and snow-
to-rain transition. Many studies consider non-stationary flood frequency analysis
for flood change attribution, by modelling distribution parameters with time-varying
climatic covariates (e.g., Prosdocimi et al., 2014; Prosdocimi et al., 2015; Šraj et al.,
2016; Viglione et al., 2016). Bertola et al. (2020) analyse the differences between
small and large flood changes in Europe and Bertola et al. (2021) attribute them to
corresponding drivers. Other studies focus on future flood projections, by considering
changes in the magnitude of annual extreme flows (Hanus et al., 2021) or flood
quantiles (e.g., Alfieri et al., 2015; Rojas et al., 2012). Alfieri et al. (2015) compare
an ensemble of European flood projections for different future time periods with
flood simulations for an historical period. They analyse the possible interconnections
among two possible drivers of change, such as the annual precipitation and the annual
maximum daily precipitation, and flood change at the regional scale. Both the annual
precipitation amount and the annual maximum daily precipitation are examples
of standard climate indices, as defined by the Commission for Climatology/World
Climate Research Programme/Technical Commission for Oceanography and Marine
Meteorology (CCI/WCRP/JCOMM) Expert Team on Climate Change Detection
and Indices (ETCCDI, see e.g., Zhang et al., 2005). ETCCDI indices are widely
used in the climate literature to represent temperature and precipitation extremes
and they can be applied to study a variety of extreme events such as heavy rain,
floods, droughts, heat waves, etc. It is of interest to evaluate whether and which
ETCCDI indices are relevant for characterizing and, therefore, predicting flood
changes, particularly in a snow-dominated region.

So, the first part of this Thesis is devoted to explore the possible correlations
between the annual maximum daily discharges and ETCCDI indices time series at
the catchment scale in North-Western Italy (Pesce et al., 2022). This provides an
indication of which extreme precipitation and temperature indices could be used as
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covariates for estimating annual flood probabilities and their temporal change over
this region.

It is well established in literature that the use of hydrological models can be of
particular importance for a more comprehensive quantification and characterization
of the changes occurring in the hydrological regime, whose drivers are phenomena
tipically occurring at large scales, up to the global scale (e.g. climate change). This
can be performed taking advantage of distributed hydrological models through the
estimation of spatially consistent model parameters that represent different phys-
ical processes. The consistency of the parameter values is obtained by finding a
functional relationship between the parameters and climatic and geomorphological
characteristics of the area over which the model is calibrated, also defined as catch-
ment descriptors. The idea is to obtain parameter sets for each gridded element (more
generally hydrologic unit) having the same functional relationship with catchment
descriptors, following a process-based approach (Archfield et al., 2015; Clark et al.,
2016; Gupta et al., 2014; Mizukami et al., 2017; Paniconi and Putti, 2015). Param-
eters regionalization techniques also find wide application in the context of runoff
prediction in ungauged basins (Blöschl et al., 2013; Merz and Blöschl, 2004; Parajka
et al., 2013; Seibert, 1999; Troch et al., 2003). Among the different techniques,
an innovative one is the PArameter Set Shuffling (PASS) procedure, proposed by
Merz et al. (2020), based on the concept of using machine learning algorithms to
derive relationships linking locally calibrated parameters and catchment descriptors,
which can be used to predict spatially distributed parameters. When dealing with
the calibration of hydrological models, one main topic is the choice of the objective
function and many studies demonstrate the adding value, in terms of improving
the prediction and reducing the uncertainty, of multiple objective calibration i.e.
constraining the model to some additional hydrological variables other than runoff,
such as snow cover or soil moisture (Parajka and Blöschl, 2008; Tong et al., 2021).

On this premise, in the second part, a conceptual semi-distributed hydrologic
model is regionally calibrated on the same study area, by taking advantage of the
PASS method. The method is implemented with a decision-tree algorithm that
transfers parameter values to the entire domain, by using the information contained
in local parameters and catchment descriptors. A multi-objective calibration of the
model is used by considering MODIS satellites products as snow cover information.
The main assumption is that including snow information in the calibration procedure
could improve the representation of the hydrological processes in an Alpine setting,
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leading to improved streamflow simulations. A newly developed R package fostering
the flexibility of the procedure is also presented and examples are provided with
openly accessible, well known U.S. hydrologic database.

In the final part of this Dissertation, the regionally calibrated model is used for
identifying, characterizing and classifying runoff events in North-Western Italy. The
identification of runoff events is performed by using the algorithm proposed by Giani
et al. (2022) that allows to identify and extract the main runoff characteristics (i.e.
runoff coefficient, event duration, peak time, event peak and volume). Given the
reasonably acceptable performance of the model in reproducing the above mentioned
observed characteristics, the model is run all over the region in order to get distributed
regional statistics and it is then used for the characterization and classification of
the identified runoff events. Many studies recently cover the topic of process-based
classification of large runoff events, at different spatial scales (Merz and Blöschl,
2003; Berghuijs et al., 2016; Berghuijs et al., 2019; Stein et al., 2019). However, they
lack in taking into account pre-event wetness and its connection with precipitation
events, whose importance is highlighted in Viglione et al. (2010). This explains the
work of Tarasova et al. (2019), discussing the main drivers of runoff generation by
also including catchment wetness, leading up to the definition of a process-based
framework for event characterization and classification (Tarasova et al., 2020), which
is used in this Thesis. In particular, using several climatic indicators, the main
mechanisms responsible for event runoff response are identified, revealing four
zones of North-Western Italy with homogeneous event type frequency. During my
PhD, I had the opportunity to spend three months at the Department of Catchment
Hydrology of the Helmholtz Centre for Environmental Research (UFZ), led by Prof.
Ralf Merz, where I worked on event identification, classification and characterization,
taking advantage of the expertise of the research team, in particular of Dr. Phd Larisa
Tarasova.

The Thesis is structured as follows. Chapter 1 gives an overview of the study
region and the main data used. Chapter 2 presents the correlation analysis between
annual maximum discharges and ETCCDI indices. Chapter 3 describes the regional
calibration of the semi-distributed model over North-Western Italy, using the PASS
procedure. Chapter 4 presents the R package ’hydroPASS’, used to implement the
PASS procedure, with examples from U.S. database. Chapter 5 is dedicated to runoff
event identification, characterization and classification. Finally, Chapter 6 provides
final Discussion and Conclusions.



Chapter 1

Study Region and Data

1.1 Climate and flow data

The study region is broadly coincident with the upper part of the drainage basin
of the Po River and drains the semicircle of Alps and Apennines surrounding the
region on three sides. The climate is temperate, and of type continental, becoming
progressively temperate-cold and cold as altitude rises. Rainfall falls mainly in spring
and autumn on most of the territory, and in summer in the higher inland Alpine areas.
The heterogeneity of this area in terms of elevation and dominance of snow related
processes leads to peculiar effects of precipitation and temperature change on floods.
Figure 1.1 shows the study area in terms of elevation and river network. For the
elevation, the digital elevation model provided by EarthEnv at 90m resolution is used
(https://www.earthenv.org/DEM.html), while the river network is extracted from the EEA
Catchments and Rivers Network System ECRINS v1.1 (ECRINS, 2012).

https://www.earthenv.org/DEM.html
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Fig. 1.1 Map of North-Western Italy region, with elevation and river network.

In this Thesis, daily precipitation [mm d-1] and minimum and maximum daily
temperature [°C] data are provided by a gridded dataset, covering the period from
01-12-1957 up to 31-12-2019, with cell resolution of 0.125° x 0.125°. This is de-
rived by spatial regridding through Optimal Interpolation (OI) of daily observations
from meteorological stations, collected by the Hydrographic Office network and
the network of the Regional Environmental Protection Agengy (ARPA) telemetry
stations (NWOI dataset, https://www.arpa.piemonte.it/scheda-informativa/dataset-griglia-nwioi).
The technique allows to obtain a regular grid by homogeneization of observational
data from different networks and sources. The potential evapotranspiration is cal-
culated with the modified Blaney-Criddle equation (Doorenbos and Pruitt, 1977),
by considering the mean daily temperature and the mean daily percentage of annual
daytime hours for a latitude of 45° N.

Figure 1.2 reports some mean climatic characteristics of the study area, referred
to the period 2000-2019, calculated using the OI dataset. The aridity index, defined

https://www.arpa.piemonte.it/scheda-informativa/dataset-griglia-nwioi
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as the ratio between mean annual potential evapotranspiration and mean annual
precipitation, is provided as it is a widely used climate indicator in hydrology
(Blöschl et al., 2013). It is worth noting that in the Alps, particularly in the northern
area, there is a tendency towards more humid conditions, characterized by high
precipitation amounts, while the central lowland area is experiencing more arid
conditions, as shown by potential evapotranspiration and aridity index maps. Both
the mean annual precipitation and the precipitation extremes show the highest rainfall
values in the northern part of the region and in the south-east, along the Apennines.
Appendix A provides some geographical and topographical characteristics of 197
sites located over the study area, extracted from the Atlante dei Bacini Imbriferi
Piemontesi (AtlanteBaciniImbriferi.pdf), together with information about mean climatic
characteristics at the catchment scale, calculated over the period 2000-2019 (mean
annual precipitation, mean annual potential evapotranspiration and aridity index).

In this Thesis, data from the regional stream gauge network managed by the
regional environmental protection agency (Arpa Piemonte) are used. Data can be
downloaded from Arpa Piemonte website (https://www.arpa.piemonte.it/temi/acqua). In
particular, mean daily discharges in m3/s are considered, which are obtained by
averaging the 48 half-hourly values recorded each day.

1.2 Catchment Water Balance

In this section the water balance of the catchments located over the region is analysed.
The water balance is governed by the following mass balance equation:

dS
dt

= P−Q−G−E (1.1)

where dS
dt represents the variation of storage in time, P represents precipitation, Q is

the outlet discharge, G the recharge of acquifers and E the actual evapotranspiration.
At long time scale (e.g., 20 years) it is assumed that the storage variation is neglibile,
as all the water entering the control volume, here assumed as delimited by the
catchment boundaries, is equal to the water exiting it. For evaluating the water
balance of the catchments it is also assumed that the groundwater flux is negligible,
so that the water balance equation reduces to:

P = Q+E (1.2)

http://www.idrologia.polito.it/didattica/PIT/2013/2_AnalisiRegionale/AltroMateriale/DATI_AtlanteBaciniImbriferi.pdf
https://www.arpa.piemonte.it/temi/acqua
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Fig. 1.2 Maps of the mean annual precipitation in mm/yr (MAP), temperature in °C (MAT),
potential evapotranspiration in mm/yr (PET), aridity index (AI), median of the annual
maximum daily precipitation in mm/d (R50) and 95th quantile of the annual maximum daily
precipitation in mm/d (R95) for the study area, derived from the Optimal Interpolation (OI)
database. Reference period: 2000-2019 (hydrologic year: 1st October 1999-30th September
2019)

.

where the terms are long-term rate of precipitation (P), long-term rate of evapotran-
spiration (E) and long-term rate of runoff (Q). According to the prevailing climate
conditions, a catchment can be energy limited or water limited. It is energy limited
when the ratio between the long-term potential evapotranspiration and rainfall (i.e.
the Aridity Index) is lower than 1, so the long-term evapotranspiration corresponds
to potential evapotranspiration (E = EP). On the contrary, it is water limited when
the Aridity Index is greater than 1 and the actual long-term evapotranspiration corre-
sponds to precipitation (E = P). These two cases are well represented in the Budyko
diagram (Figure 1.3b).
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(a) (b)

Fig. 1.3 a) Map of North-Western Italy region, with elevation, river network, catchment
boundaries and outlets colored by main rivers. b) Budyko curve of the catchments located
over the study area (black solid line). The blue line represents the energy and water limits to
the evaporative index. The statistics are calculated over the period 2000-2019 (hydrologic
year: 1st October 1999 - 30th September 2019).

Budyko was a Russian climatologist, one of the founders of physical climatology.
The Budyko diagram (Budyko, 1974) defines the space where points should be lo-
cated if the water balance is met. Catchments that are energy limited, so experiencing
humid conditions, should be located along the bisecting line or just below. Instead,
catchments that are water limited, so placed in arid conditions, should be located
along the straight line corresponding to E/P = 1, or just below. Budyko determined
the analytical expression of the curve representing points in the diagram, which is
given below (black solid line in Figure 1.3b):

E
P
=

{
EP
P

[
1− exp

(
−EP

P

)]
tanh

[(
EP
P

)−1
]}1/2

(1.3)

The water balance is evaluated for a selection of 95 stations over the study region
(Figure 1.3a), having at least 9 years of data in the period 1990-2019. The records
start not earlier than 1996. Table 1.1 provides some topographical and climatic
characteristics of the 95 sites. For uniformity reasons, the long-term fluxes are
calculated over the period 2000-2019, by considering the hydrologic year. The results
are shown in Figure 1.3b. Most catchments are confined in the energy limited region
of the Budyko diagram, so they experience humid conditions. It can be observed
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that the majority of catchments are placed close to the Budyko curve, but a bunch of
catchments shows very low values of the ratio among long-term evapotranspiration
and precipitation. This is probably due to issues of precipitation undercatch, which
appears particularly in the mountains when precipitation is snowfall, leading to an
underestimation of the precipitation flux which in turn decreases the numerator of
the ratio and so the ratio. For six catchments, the long term discharge appears to
be higher than precipitation, leading to negative values of E/P. The most negative
values refer to two stations along Corsaglia river and Pesio river catchment at San
Bartolomeo. The average mean elevation of catchments for which the balance
is not met is 1590 m.a.s.l. with two stations located over 2000 m.a.s.l. Overall,
catchments showing low values of long-term actual evapotranspiration (E/P ≤ 0.2)
are located at medium to high elevation with an average of 1625 m a.s.l. Finally, few
catchments are outside the allowed region with anomalies in the E/P value, meaning
that the actual evapotranspiration is higher than the potential evapotranspiration.
This can be the result of a water withdrawal, for example for irrigation needs in these
catchments or the presence of other fluxes (e.g., acquifer recharge), which decreases
the contribution to runoff discharge.

Table 1.1 Statistics of topographical and climatic characteristics for the 95 catchments con-
sidered in the study. Reference period: 2000–2019 (hydrologic year: 1st October 1999–30th

September 2019).

mean CV min 25% median 75% max
Area (km2) 1596 2.32 38 146 336 951 25640

Mean elevation (m a.s.l.) 1186 0.488 244 678.5 1125 1666 2339
Mean Annual precipitation (mm yr−1) 1095 0.210 722 932 1051 1212 1827

Mean annual runoff (mm yr−1) 698 0.495 148 460 644 897 1583
Aridity index (-) 0.722 0.254 0.350 0.606 0.718 0.816 1.266

1.3 Land use and Curve Number data

In this section, the land cover characteristics of the study area are discussed. Data
are provided by the Corine Land Cover dataset 2018 (https://land.copernicus.eu/pan-

european/corine-land-cover), which gives land cover information at 100 m spatial resolu-
tion over Europe. Starting from the entire dataset, the North-Western Italy region
is selected and land use classes are reclassified into five classes (Urban, Small
vegetation, Agriculture, Forest, Wetland), according to Table 1.2.

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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Table 1.2 Corine Land Use 2018 Classes vs Reclassified Classes.

Corine Land Use Class Reclassified Class
Continuos urban fabric
Discontinuos urban fabric
Industrial or commercial units Urban
Road and rail networks and associated land
Port Areas
Airports
Mineral extraction sites
Dump sites
Construction sites Small veg
Green urban areas
Sport and leisure facilities
Non-irrigated arable land
Permanently irrigated land
Rice fields
Vineyards
Fruit trees and berry Plantation
Olive groves Agriculture
Pastures
Annual crops associated with permanent crops
Complex cultivation patterns
Land principally occupied by agriculture
with significant areas of natural vegetation
Agro-forestry areas
Broad-leaved forest
Coniferous forest
Mixed forest
Natural grasslands Forest
Moors and heathland
Sclerophyllous vegetation
Transitional woodland-shrub
Beaches, dunes, sands
Bare rocks
Sparsely vegetated areas Small veg
Burnt areas
Glaciers and perpetual snow
Inland marshes
Peat bogs
Salt marshes
Salines
Intertidal flats Wetland
Water courses
Water bodies
Coastal lagoons
Estuaries
Sea and ocean
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Fig. 1.4 Reclassified Corine Land Cover Dataset over North-Western Italy.

Figure 1.4 shows the spatial distribution of land cover type over North-Western
Italy. The urban settlements, in particular Turin in Piemonte and Milan in Lombardia,
can be spotted. The Po Valley is characterized by agricultural fields, while the
mountain ranges, (i.e. Alps and Appennines) are characterized by forests and, at
very high elevation, sparse vegetation and perennial snow and glaciers. Also water
bodies, such as lakes, are quite visible in the map. The Optimal Interpolation grid is
considered to calculate the percentage of pixels pertaining to a specific class inside
each cell and the result is provided in Figure 1.5. The new rasters are used for the
application of the parameter regionalization method which is discussed in Chapter 3.
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Fig. 1.5 Maps of the fraction (%) of land use classes (urban, small vegetation, agriculture,
forest, wetland) for the study area.

Land use or land cover information is essential to determine the Curve Number
(CN). CN is a parameter whose value ranges from 0 to 100, summarizing three
characteristics related to soil: the soil typology, land use and soil moisture level
before the rainfall event. The theoretical limits of CN = 0 and CN = 100 represent the
case when all the precipitation infiltrates in the soil and when all the precipitation is
transformed into surface runoff, respectively. The Soil Conservation Service-Curve
Number (SCS-CN) method classifies the soil in four hydrologic groups (USDA-
NRCS, 1986):

• A - Soils with low potential for surface runoff. This group includes deep sands
with very low silt and clay and also deep permeable gravel.

• B - Soils with quite low potential for surface runoff. This group includes
the majority of sandy soils, less deep compared to group A. High infiltration
capacity even at saturation conditions.

• C - Soils with quite high potential for surface runoff. It includes thin soils
with substantial amount of clay and colloids (but less than in group D). Low
infiltration capacity at saturation.
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• D - Soils with high potential for surface runoff. This group includes clay soils
with high swelling capacity but also thin soils with an impermeable layer close
to the surface.

At first, a CN reflecting averaged soil moisture conditions (CNII) is considered.
Tables provided by the United States Department of Agriculture (USDA-NRCS,
1986; USDA-NRCS, 2004) reporting CNII values for rural and urbanized areas are
used to determine values of CNII associated to the different hydrologic soil types
and the land use classes of the Corine Land Cover 2018 (Table 1.3). The CNII values
are attributed to the new classes by direct comparison with the classes provided by
USDA or by physical consistency among the two sources. Starting from the rasters of
soil characteristics identified by using the Harmonized World Soil Database (HWSD;
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/), it is defined a raster
of soil typology for our study area, by adopting the following simplified criteria,
based on the mass fraction [% wt.] of sand, clay and silt in the topsoil (0-30 cm) and
subsoil (30-100 cm):

• A - Soils with S_SAND ≥ 70 & (S_CLAY + S_SILT) ≤ 30, T_SAND ≥ 70
& (T_CLAY + T_SILT) ≤ 30

• B - Soils with 50 ≤ S_SAND < 70 & 30 < (S_CLAY + S_SILT) ≤ 50, 50 ≤
T_SAND < 70 & 30 < (T_CLAY + T_SILT) ≤ 50

• C - Soils with 20 ≤ S_SAND < 50 & 50 < (S_CLAY + S_SILT) ≤ 80 &
S_CLAY ≥ 10, 20 ≤ T_SAND < 50 & 50 < (T_CLAY + T_SILT) ≤ 80 &
T_CLAY ≥ 10

• D - Soils with 10 ≤ S_SAND < 20 & 80 < (S_CLAY + S_SILT) ≤ 90 &
S_CLAY ≥ 20, 10 ≤ T_SAND < 20 & 80 < (T_CLAY + T_SILT) ≤ 90 &
T_CLAY ≥ 20

The CNII is used to determine the corrisponding CNI for drier soil moisture
conditions and CNIII for wetter conditions. The formula used are the following
(Mishra et al., 2008):

CNI =
CNII

2.3−0.013CNII
(1.4)

CNIII =
CNII

0.43+0.0057CNII
(1.5)

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/
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Fig. 1.6 Maps of the Curve Number (CNI, CNII, CNIII) for the study area.

Figure 1.6 represents the spatial distribution of the mean CN values over North-
Western Italy, by considering the Optimal Interpolation grid. It is worth noting that
the highest values are found around Vercelli province, in the East, where rice fields
represent a dominant cultivation, and in the Alps (northwest area), characterized by
glaciers and perpetual snow. The lowest CNs are instead found in forestry areas in
the West and in the South, in Liguria region, where vineyards and olive groves are
typically present. As for the land cover, the gridded CNs are used as descriptors in
the PASS regionalization method described in Chapter 3.
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Table 1.3 CNII values associated to the Corine Land Use classes and the four hydrologic soil
types A-B-C-D, derived by USDA-NRCS (1986) and USDA-NRCS (2004).

Corine Land Use Class A B C D
Continuos urban fabric 77 85 90 92
Discontinuos urban fabric 61 75 83 87
Industrial or commercial units 89 92 94 95
Road and rail networks and associated land 98 98 98 98
Port Areas 98 98 98 98
Airports 98 98 98 98
Mineral extraction sites 76 85 89 91
Dump sites 76 85 89 91
Construction sites 76 85 89 91
Green urban areas 39 61 74 80
Sport and leisure facilities 49 69 79 84
Non-irrigated arable land 61 73 81 84
Permanently irrigated land 63 73 80 83
Rice fields 96 96 96 96
Vineyards 66 74 80 82
Fruit trees and berry plantation 62 71 78 81
Olive groves 62 71 78 81
Pastures 30 58 71 78
Annual crops associated with permanent crops 64 73 79 82
Complex cultivation patterns 64 73 79 82
Land principally occupied by agriculture 64 73 79 82
with significant areas of natural vegetation
Agro-forestry areas 64 73 79 82
Broad-leaved forest 36 60 73 79
Coniferous forest 45 66 77 83
Mixed forest 36 60 73 79
Natural grasslands 49 69 79 84
Moors and heathland 35 56 70 77
Sclerophyllous vegetation 35 56 70 77
Transitional woodland-shrub 43 65 76 82
Beaches, dunes, sands 49 68 79 84
Bare rocks 76 85 89 91
Sparsely vegetated areas 63 77 85 88
Burnt areas 63 77 85 88
Glaciers and perpetual snow 98 98 98 98
Inland marshes 98 98 98 98
Peat bogs 98 98 98 98
Salt marshes 98 98 98 98
Salines 98 98 98 98
Intertidal flats 98 98 98 98
Water courses 98 98 98 98
Water bodies 98 98 98 98
Coastal lagoons 98 98 98 98
Estuaries 98 98 98 98
Sea and ocean 98 98 98 98



Chapter 2

Correlation of Climate and Flood
Indices

In this chapter, a correlation analysis is performed between annual maximum mean
daily discharges and standard climate indices of precipitation and temperature ex-
tremes, as defined by the Commission for Climatology/World Climate Research
Programme/Technical Commission for Oceanography and Marine Meteorology
(CCI/WCRP/JCOMM) Expert Team on Climate Change Detection and Indices
(ETCCDI, see e.g., Peterson, 2005; Zhang et al., 2005). ETCCDI indices are tipi-
cally used in the climate literature to study a variety of extreme events such as heavy
rain, floods, droughts, heat waves, etc. In particular, they find wide application in
climate change studies, not limited to past climate change, but also future changes
by using projections of climate models (e.g., Sardella et al., 2020). Nonetheless,
few studies have focused on the relationship between ETCCDI indices and peak
discharges and it is of interest in hydrology to evaluate which ETCCDI indices are
relevant for characterizing and predicting flood changes in the Alpine region.

2.1 Data and Methods

A description of the 27 ETCCDI indices considered in this study is provided in Table
2.1. ETCCDI indices are calculated at the annual timescale using the NWOI dataset.
For this purpose the climdex.pcic.ncdf R library is used (https://github.com/pacificclimate

/climdex.pcic.ncdf), which performs an automatic calculation that saves the gridded

https://github.com/pacificclimate/climdex.pcic.ncdf
https://github.com/pacificclimate/climdex.pcic.ncdf
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outputs as netCDF files. Indices are referred to thresholds calculated over the base
period 1961-1990. The annual maximum mean daily discharge is selected as typical
flood index, as reported in literature on flood change (e.g., Blöschl et al., 2017;
Blöschl et al., 2019). The choice of mean daily flow rather than peak flow is ex-
plained by the better consistency among the former and the space-time scale of
climate indices. Years with missing daily data covering a period greater or equal to 3
months are discarded from the analysis. Both the annual maximum discharge and the
ETCCDI indices are calculated considering the hydrologic year (1st October - 30th

September). Average annual indices at the catchment scale are obtained by clipping
the gridded dataset based on catchment boundaries, by making use of a weighted
average, considering the proportion of each cell inside the catchment. The indices
are coupled with the flow annual maxima, so only years with available discharge
data are considered. The choice of a quite coarse data resolution is made based
on two reasons: first, this is consistent with the outputs of regional climate models
(EURO-CORDEX); secondly, the aim of this research work is to describe regional
floods, not local flash floods.

Figure 2.1 shows several information about flood data used. In particular, Figure
2.1a and Figure 2.1b show the dependence of the mean annual specific flood (MAF)
and the coefficient of variation (CV) of annual specific floods on catchment area.
MAF and CV decrease with catchment area, as expected. Fitting a linear model
to data, which is equivalent to assuming a power law relationship between the
variables and catchment area, unveils a pattern which is already found in other
studies (e.g., Lun et al., 2021; Merz and Blöschl, 2003; Merz and Blöschl, 2005).
The coefficients (β ) of MAF and CV found for North-Western Italy area (-0.136
and -0.049, respectively) are consistent with the ones found in Lun et al. (2021) for
the Alpine area (-0.208 and -0.020, respectively), but closer to values pertaining to
the Atlantic region (-0.184 and -0.042, respectively). However, the number of sites
considered here and their record length, which are smaller than in Lun et al. (2021),
determine a remarkable scatter.

Two types of correlation analysis are considered: on the one hand a temporal
correlation is performed at the annual time scale among maximum discharges and
ETCCDI indices for each catchment, in order to capture the best covariates explaining
the annual variability of floods (Section 2.1.1). On the other hand, in the spirit of
comparative hydrology (Falkenmark and Chapman, 1989), trends of maximum
discharges and trends of ETCCDI indices are spatially correlated, in order to find
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Table 2.1 ETCCDI climate indices

Index Description

FD - Number of frost days Annual count of days when TN (daily minimum temperature) < 0°C [days]

SU - Number of summer days Annual count of days when TX (daily maximum temperature) > 25°C [days]

ID - Number of icing days Annual count of days when TX (daily maximum temperature) < 0°C [days]

TR - Number of tropical nights Annual count of days when TN (daily minimum temperature) > 20°C [days]

GSL - Growing season length Annual (1st Jan to 31st Dec in Northern Hemisphere (NH), 1st July
to 30th June in Southern Hemisphere (SH)) count between
first span of at least 6 days with daily mean temperature TG > 5°C
and first span after July 1st (Jan 1st in SH) of 6 days with TG < 5°C.

TXx Annual maximum value of daily maximum temperature [°C]

TNx Annual maximum value of daily minimum temperature [°C]

TXn Annual minimum value of daily maximum temperature [°C]

TNn Annual minimum value of daily minimum temperature [°C]

TN10p Percentage of days when daily minimum temperature < 10th percentile

TX10p Percentage of days when daily maximum temperature < 10th percentile

TN90p Percentage of days when daily minimum temperature > 90th percentile

TX90p Percentage of days when daily maximum temperature > 90th percentile

WSDI - Warm speel duration index Annual count of days with at least 6 consecutive days when daily
maximum temperature > 90th percentile [days]

CSDI - Cold speel duration index Annual count of days with at least 6 consecutive days when
daily minimum temperature < 10th percentile [days]

DTR - Daily temperature range Annual mean difference between daily maximum temperature and daily
minimum temperature [°C]

Rx1day Annual maximum 1-day precipitation [mm]

Rx5day Annual maximum consecutive 5-day precipitation [mm]

SDII - Simple precipitation intensity index Average precipitation rate on wet days (R ≥ 1mm) [mm/day]

R10mm Annual count of days when precipitation ≥ 10mm [days]

R20mm Annual count of days when precipitation ≥ 20mm [days]

R1mm Annual number of wet days [days]

CDD Maximum length of dry spell i.e. number of consecutive days with precipitation < 1mm [days]

CWD Maximum length of wet spell i.e. number of consecutive days with precipitation ≥ 1mm [days]

R95pTOT Annual total precipitation when daily precipitation is greater than the 95th percentile [mm]

R99pTOT Annual total precipitation when daily precipitation is greater than the 99th percentile [mm]

PRCPTOT Annual total precipitation in wet days [mm]

which covariates best explain the regional variability of the decadal tendency of
floods (Section 2.1.2). By focusing on multi-year tendency rather than on annual
variability, the latest analysis can be useful to select specific ETCCDI indices as
possible climate covariates of flood discharges, for regional non-stationary flood
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Fig. 2.1 a) Mean annual specific flood (MAF) vs. catchment area. b) Coefficient of variation
(CV) of annual specific floods vs. catchment area, colored as in Figure 1.3a. Lines are
ordinary least squares regression lines. The values of the slope (β ) for a double logarithmic
relationship are also reported. *Indicates statistical significance for a one-sided t-test at
the 5% significance level. c) Area vs. mean catchment elevation. d) Data consistency vs.
catchment area.

frequency analysis. Finally, circular statistics is used to describe the average timing
and concentration of observed maximum discharges (Section 2.1.3).

2.1.1 Correlation measures

In the first analysis, Spearman’s rank correlation is applied to annual data in order to
determine which indices show the highest temporal correlation with annual maximum
daily discharges. The choice of the Spearman correlation instead of other measures of
variable association (e.g., Pearson) is justified by the non-linear relationship between
precipitation, temperature and discharge. The Pearson correlation coefficient between
two variables x and y can be expressed as follows (Helsel et al., 2020, Chapter 8.2):

rx,y =
1

n−1

n

∑
i=1

(
xi − x̄

σx

)(
yi − ȳ

σy

)
=

cov(x,y)
σxσy

(2.1)
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where n is the length of the sample, x̄ and ȳ are the mean values of x and y, σx and
σy are the standard deviations of x and y. The Spearman correlation coefficient is
defined as the Pearson correlation coefficient among the ranks (Rx and Ry) of the
variables:

ρRx,Ry =
cov(Rx,Ry)

σRxσRy
(2.2)

where cov(Rx,Ry) is the covariance of rank variables, σRx and σRy are the standard
deviations of the rank variables. By substituting the ranks into Equation (2.1), the
coefficient can be computed with the following formulation, which holds in case of
no ties (Helsel et al., 2020, Chapter 8.3):

ρ =

n
∑

i=1
(RxiRyi)−n

(n+1
2

)2

n(n2 −1)/12
(2.3)

The significance of ρ under the null hypothesis of no-correlation between the vari-
ables is tested with the test statistic S (Helsel et al., 2020, Chapter 8.3):

S =
n

∑
i=1

(Rxi −Ryi)
2 = (1−ρ)(n3 −n)/6 (2.4)

with the right hand formulation that holds in case of no ties. For small sample sizes
(n < 20), the algorithm AS 89 (Best and Roberts, 1975) allows to compute exact
p-values, by calculating the discrete probability distribution of S. For large sample
sizes (n > 20), the test is computed on the transformed variable:

t =
ρ
√

n−2
1−ρ2 (2.5)

where n is the length of the two tested samples and t follows a Student’s t-distribution
with n-2 degrees of freedom, under the null hypothesis of no-correlation between
the variables (Helsel et al., 2020, Chapter 8.2). Accordingly, p-values are calculated
with the following formulation:

p = 1−F t(abs(t),n−2) (2.6)

where F t(abs(t),n−2) is the non-exceedance probability associated with abs(t) for
a Student’s t-distribution with n−2 degrees of freedom. If ties are present, this is
the approach used for the calculation of p-values. One-sided tests at 5% significance
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level are considered, both for positive and negative correlation. Confidence intervals
of the correlation are given by the Fisher z transform of the correlation (Fisher,
1915):

z =
1
2

ln
(

1+ρ

1−ρ

)
= arctanh(ρ) (2.7)

assuming z as normally distributed with standard deviation:

σ z =

√
1

n−3
(2.8)

Finally, a transformation allows to obtain confidence intervals in correlation units.

The same procedure is also applied to detrended data, to check for the potential
impact of trends in the data on the results of annual correlation among maximum
discharges and ETCCDI indices. To this aim, the Theil-Sen linear regression model
with time is adopted (Section 2.1.2). The detrending is performed for each catchment,
by subtracting the predicted values to the observed values of the variable and then the
correlation is calculated on the residuals. For each index, a regional mean Spearman
correlation coefficient is calculated, weighted for the uncertainty associated with the
single correlation values. In particular, the weights are function of the confidence
intervals of the correlation coefficients:

wi = (upi − lowi)
−1 (2.9)

where wi is the weight associated to catchment i, upi and lowi are, respectively, the
upper and lower bounds of the confidence interval. In this Thesis, the Spearman’s
rank correlation is also applied to evaluate the correlation among dedacal tendencies
of annual maximum discharges and tendencies of climate indices. The choice of this
measure is justified by its application in other studies that analyse the interconnection
among discharge maxima and climate variables (e.g., Blöschl et al., 2019).

2.1.2 Tendency measures

The potential presence of decadal tendencies in the data is checked for both the
annual maximum discharge and climate indices. To this aim, the Theil-Sen model is
adopted, as defined by Theil (1950), with further investigations by Sen (1968). This
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is a robust nonparametric linear regression model:

ŷ = α +β · x (2.10)

where the slope estimator (β ) represents the median of the slopes calculated for all
possible pair of values assumed by the variable over the years:

β = median
(

yj − yi

j− i

)
, i < j (2.11)

where y refers to the annual values of the variable and i, j refer to distinct years. The
decadal tendencies will be plotted as the percentage of the mean value of the variable
per year (i.e., 100·β/mean(y)). The intercept (α) of the regression line is obtained
following the approach used by Conover (1999):

α = ymed −β · xmed (2.12)

where xmed and ymed are the medians of x and y, which represent time and the selected
variable, respectively.

The trend significance is evaluated with one-sided Mann-Kendall tests (Mann,
1945) at the 5% significance level. The test statistic is calculated by computing the
sum of the sign of differences for all n(n−1)

2 pairs extracted from the n observations:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (2.13)

sgn(xj − xi) =


+1, i f (xj − xi)> 0
0, i f (xj − xi) = 0
−1, i f (xj − xi)< 0

(2.14)

For n ≥ 10 (Kendall, 1948), the normal approximation test can be used. The test
statistic Z is defined as:

Z =


S−1√
var(S)

, i f S > 0

0, i f S = 0
S+1√
var(S)

, i f S < 0
(2.15)
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with var(S) being the variance of S:

var(S) =

n(n−1)(2n+5)−
g
∑
j=1

t j(t j −1)(2t j +5)

18
(2.16)

where g represents the number of groups of tied values and t j the number of ties in
group j. In case of no ties the formulation becomes:

var(S) =
n(n−1)(2n+5)

18
(2.17)

Z is distributed as a standard normal distribution under the null hypothesis of no
trend of the variable (Mann, 1945). If the test provides Z > 0, this is an indication
of increasing trend (and viceversa) and p-values are computed as the exceedance
probability associated with Z (one-sided tests). Besides the test, confidence intervals
are computed for β , as a measure of uncertainty in the trends estimation, by selecting
the upper and lower limits within the sample of slopes. Following Hollander et al.
(1999), the critical value is given by the quantile of the standard normal distribution
Z α

2
, where α is the confidence level, and the upper and lower ranks of the slopes are

found by:

Ru =
N +Z α

2

√
var(S)

2
+1 (2.18)

Rl =
N −Z α

2

√
var(S)

2
(2.19)

where N = n(n−1)
2 is the number of computed slopes. The confidence level used

in this analysis is 0.10, which is coherent with the Mann-Kendall test at the 5%
significance level, applied for positive and negative trends separately. Also for
the analysis of tendency, a regional mean tendency is provided, weighting for the
uncertainty associated with the single tendencies. The weights are given by:

wi = e(−k(upi−lowi)) (2.20)

with k = 0.25, to constrain the weights range in case of confidence range equal to 0.
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2.1.3 Circular statistics

Circular statistics (Bayliss and Jones, 1993; Mardia, 1972) is adopted to provide
information on the seasonality of flood indices. The choice of this approach is
justified by its application in previous large-scale studies on river flood timing in
Europe (Blöschl et al., 2017). For each site, the average day of the year on which
floods have occurred is calculated. The date of occurrence Di of a flood in year i is
converted to an angle θi:

θi = Di ·
2π

mi
0 ≤ θi ≤ 2π (2.21)

where Di = 1 corresponds to January 1 and Di = mi to December 31 , and mi

represents the number of days in that year. The average date of occurrence D̄ of a
flood is calculated as follows:

D̄ =


tan−1 ( ȳ

x̄

)
· m̄

2π
x̄ > 0, ȳ ≥ 0

tan−1 ( ȳ
x̄

)
· m̄

2π
+π x̄ ≤ 0

tan−1 ( ȳ
x̄

)
· m̄

2π
+2π x̄ > 0, ȳ < 0,

(2.22)

with

x̄ =
1
n

n

∑
i=1

cos(θi) (2.23)

ȳ =
1
n

n

∑
i=1

sin(θi) (2.24)

m̄ =
1
n

n

∑
i=1

mi (2.25)

where x̄ and ȳ are the cosine and sine components of the average date, respectively,
m̄ is the average number of days per year (365.25), and n is the total number of flood
peaks observed at the site. The concentration R of the date of occurrence around the
average date is:

R =
√

x̄2 + ȳ2 0 ≤ R ≤ 1 (2.26)

R spans from R = 0 (no concentration, i.e. floods are widely dispersed over the year)
to R = 1 (all floods at a site occur on the same day of the year).
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2.2 Results

2.2.1 Temporal correlation of annual climate and flood indices

In this section, the results of the correlation among the annual time series of ETCCDI
indices and the annual maximum discharges are shown. The analysis gives similar
outcomes when using original and detrended data, indicating that the analysis is
robust and is not affected by the presence of tendencies in the data. The Spearman’s
rank correlation coefficients for the ETCCDI indices showing the highest mean
regional correlation are reported in Figure 2.2. As one could expect, annual maximum
flows show the highest correlation with indices of precipitation extremes: the annual
maximum 1-day precipitation (Rx1day), the annual maximum consecutive 5-day
precipitation (Rx5day), the annual total precipitation when daily precipitation is
above the 95th daily percentile (R95pTOT) and the annual total precipitation when
daily precipitation is above the 99th daily percentile (R99pTOT). Indices reflecting
average rainfall conditions, such as the simple precipitation intensity index (SDII)
and the annual total precipitation (PRCPTOT) show a lower mean correlation. Figure
2.2 reveals that the strength of the correlation depends on catchment area. This is
particularly clear for Rx5day, which shows higher correlation values compared to
Rx1day for large catchments (A > 2000 km2), while the opposite happen for the
small ones (A < 100 km2). Moreover, R99pTOT shows more significant correlation
with maximum discharges than R95pTOT, especially for medium-to-large sized
catchments (A > 500 km2). Results for PRCPTOT generally indicate a weaker
correlation compared to other indices and no significant results are found for very
large catchments located over the Po River valley. Temperature indices don’t reveal
high and significant correlation with discharge extremes.
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Fig. 2.2 Spearman’s rank correlation coefficients among annual maximum mean daily
discharges and a) maximum 5-day precipitation (Rx5day), b) annual total precipitation above
the 99th percentile (R99pTOT), c) maximum 1-day precipitation (Rx1day), d) annual total
precipitation above the 95th percentile (R95pTOT), e) simple precipitation intensity index
(SDII), f) annual total precipitation (PRCPTOT) for all catchments vs. catchment area,
colored as in Figure 1.3a. For each index, the regional mean correlation coefficient (ρ̄) and
the percentage of significant cases (n) (one-sided tests at 5% level), are reported. Full dots
represent catchments with significant positive correlation, while empty dots represent not
significant positive correlation.

2.2.2 Decadal tendency of climate and flood indices

It is of interest to investigate whether the decadal tendency of flood magnitudes is
function of the same climate indices which are relevant to explain the annual floods.
In this section the tendencies of both annual maximum discharges and ETCCDI
indices over the period 2000-2019 are evaluated. Figure 2.3 shows the estimated
trends in the annual maximum flows. The results show there is not a dominant
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tendency at the regional scale and some noise appears in the data, mainly due to the
limited length of the time series (7% of the sites have a significant trend according to
one-sided Mann-Kendall tests at the 5% significance level). Many stations are placed
on the same river from upstream to downstream and some spatial coherence in terms
of tendency can be observed. Bormida and Tanaro catchments (pink and red points in
Figure 2.3, respectively), which are located in the southern part of the region, show a
positive tendency, while the sign is less homogeneous in other macro-catchments.
Looking at the Po River (blue points), for example, the tendency is negative for
small catchments, which are tipically the Alpine ones, while for medium-sized hilly
catchments it is positive and for the largest valley catchments no distint sign can be
recognized. Also in the smallest Sesia catchments (light green points) the tendency
is negative.

Fig. 2.3 Trends of annual maximum mean daily discharge for each catchment vs. catchment
area, colored as in Figure 1.3a. The regional mean trend (ν̄) is also reported.
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Fig. 2.4 Trends of a) annual total precipitation above the 99th percentile (R99pTOT), b)
annual total precipitation above the 95th percentile (R95pTOT), c) annual number of days
when precipitation is above 20mm (R20mm), d) annual total precipitation (PRCPTOT), e)
maximum 5-day precipitation (Rx5day), f) maximum 1-day precipitation (Rx1day), for each
catchment vs. catchment area, colored as in Figure 1.3a. For each index, the regional mean
trend (ν̄) is reported.

Contrary to river flows, ETCCDI indices reveal significant tendencies both for
precipitation and temperature. Figure 2.4 shows the main outcomes for precipitation
indices. The trends are mainly positive and extreme indices (R99pTOT, R95pTOT)
reveal a decreasing tendency for increasing catchment area, especially for the Po
River catchments (blue points). Total precipitation (PRCPTOT) shows a clear pattern
as it experiences a positive significant tendency in around 50% of the catchments,
but the spatial variability does not seem to be a function of catchment area. R20mm,
Rx5day and Rx1day show lack of a strong spatial heterogeneity, indicating that they
may not be ideal in explaining the spatial variability of flood decadal tendencies.
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Fig. 2.5 Trends of a) warm spell duration index (WSDI), b) % of days when the maximum
temperature is lower than the 10th percentile (TX10p), c) % of days when the minimum
temperature is lower than the 10th percentile (TN10p), d) maximum value of daily minimum
temperature (TNx), e) maximum value of daily maximum temperature (TXx), f) growing
season length (GSL) for each catchment vs. catchment area, colored as in Figure 1.3a. For
each index, the regional mean trend (ν̄) is reported.

The most important results for temperature indices are presented in Figure 2.5.
Almost all catchments experience a marked negative tendency of % of cold days
(TX10p) and % of cold nights (TN10p). Moreover, for these indices, the tendency
increases for increasing catchment area. This means that the intensity of warming is
actually decreasing for increasing area. Trends of the annual maximum of minimum
temperature (TNx), annual maximum of maximum temperature (TXx) and the
growing season length (GSL) are also reported. The relative trend magnitude for
these indices is lower and the spatial variability seems also limited, but they show a
significant relationship with flood trends (see Section 2.2.3).
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2.2.3 Correlation of decadal tendencies of climate and flood in-
dices

The most relevant results of the spatial correlation analysis among decadal tendencies
of ETCCDI indices and decadal tendencies of annual maximum discharge are shown
in Figure 2.6, where results are discretized according to mean catchment elevation
(circle sizes).

Fig. 2.6 Trends of a) annual total precipitation (PRCPTOT), b) maximum 1-day precipitation
(Rx1day), c) annual total precipitation above the 99th percentile (R99pTOT), d) growing
season length (GSL), e) maximum value of daily maximum temperature (TXx), f) maximum
value of daily minimum temperature (TNx) vs. trends of annual maximum mean daily
discharges, discretized by mean catchment elevation, colored as in Figure 1.3a. Spearman’s
rank correlation coefficients (ρ) are reported.

Looking at precipitation indices, the total annual precipitation (PRCPTOT) ten-
dency has the highest significant correlation with annual flood tendency, as unveiled
by a one-sided test at 5% significance level (ρ = 0.5), with lower values for the
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annual maximum consecutive 1-day precipitation (Rx1day) and the annual total
precipitation exceeding the 99th daily percentile (R99pTOT). This points out that the
long-term variability of floods seems to have a stronger relation with the tendency of
mean precipitation, rather than the one of extreme precipitation.

Temperature indices show weaker correlation with the tendency of floods. In
particular, there is a significant positive correlation (ρ = 0.277) with the tendency of
the growing season length (GSL) and a negative correlation with the tendency of the
maximum value of the daily maximum temperature (TXx) and maximum value of
the daily minimum temperature (TNx) (ρ = -0.310 and -0.215, respectively).

2.2.4 Seasonality of flood indices

The timing of observed annual discharge maxima reveals some seasonality over the
study area. Figure 2.7 shows that floods are not evenly distributed over the year,
in particular in the western and southeastern part of the region, characterized by
the presence of Alps and Apennines, where floods typically occur in late spring
and in the autumn season, respectively. On the contrary, in the central area and
in the northern part of the region, floods are quite evenly distributed and a strong
seasonality is lacking.
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Fig. 2.7 Observed average timing of river floods in North-Western Italy, 2000-2019. Each
arrow represents one site. Color and arrow direction indicate the average timing of floods,
the length of the arrow indicate the concentration of the date of occurrence, where 1 indicates
the flood occurs on the same date.

2.3 Conclusions

The work discussed in this chapter aims at understanding the possible interrelations
among the annual maximum daily discharges and standard climate indices (ETCCDI)
at the catchment scale in North-Western Italy, over the period 2000-2019. The first
analysis is a temporal correlation performed at the annual scale, to assess which
indices better explain the interannual variability of discharge maxima. The second
analysis is a spatial correlation of the tendencies of annual discharge maxima and
climate indices time series aimed at explaining the multi-annual tendency of floods
with different potential climate drivers.

It is shown that indices of extreme precipitation such as R99pTOT, R95pTOT,
Rx5day, Rx1day are highly positively correlated to annual discharge maxima at the
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annual timescale, more than indices reflecting mean precipitation conditions, and for
Rx5day and Rx1day the correlation value depends on catchment area. In contrast
with this result, the decadal changes of extreme flows may be better explained by the
decadal changes of the average precipitation. Temperature indices, instead, are not
major controls of annual discharge maxima.

The observed maxima are timely concentrated during late spring over the western
part of the region and during fall in the southeastern part, suggesting the diversity of
the main runoff generation mechanisms that spatially drive floods in the study area.



Chapter 3

Implementation of TUWmodel and
regionalization with PASS

In this chapter, an application of PASS in North-Western Italy, in the context of
the Alpine region, is presented, based on the work of Merz et al. (2020). They
test the PASS approach in 263 German catchments, to infer parameters of the
distributed conceptual hydrological model SALTO. The median model efficiency
obtained for training and test catchments is similar to the one obtained by other
studies using similar approaches, but Merz et al. (2020) highlight that a unique
combination of catchment descriptors controlling model parameters is not found
and many regional functional relationships between descriptors and parameters give
similar model performances. The aim of this analysis is to evaluate the applicability
of the procedure in a diverse region compared to Germany, and the impact of using
snow cover information on the simulation results.

3.1 Data

The different types of data used in the analysis are listed as follows:

• Discharge data [m3/s] from the regional stream gauge network managed by
the regional environmental protection agency (Arpa Piemonte);

• Daily precipitation and minimum and maximum daily temperature: from
1961 to 2020, provided by a gridded dataset with cell resolution 0.125° x
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0.125°, derived by spatial interpolation of daily observations taken from a
dense network of meteorological stations (Optimal Interpolation (OI) Dataset,
Arpa Piemonte);

• A digital elevation model (DEM) at around 90 m resolution derived from
https://www.earthenv.org;

• Catchment boundaries for 197 catchments in Piemonte and Valle d’Aosta;

• Catchment descriptors associated to the pixels, which are consistent with the
Supporting Information S2 in Merz et al. (2020). In particular, 79 descritors
are used, divided in 5 categories: Climate (OI dataset); ETCCDI indices (OI);
Morphology (DEM); Land Use (Corine Land Cover 2018); Soil (Harmonized
World Soil Database).

• Snow cover data provided by daily maps of the Normalized Difference Snow
Index (NDSI), at 500 m spatial resolution, obtained combining the MODIS
products from Terra (MOD10A1) and Aqua (MYD10A1) satellites (Parajka
and Blöschl, 2008; Tong et al., 2021). The NDSI values range between 0 and
100 and snow cover is typically considered to be present if NDSI is larger
than a threshold, which in this study is assumed to be 40. Values of NDSI
larger than 100 represent other cases, like the presence of clouds (NDSI =
250, nsidc.org). The two datasets are combined to reduce the effect of clouds,
which prevents getting information about the presence of snow. This means
that pixels classified as clouds or missing in Terra are replaced by pixels from
Aqua, if these are classified as snow covered or snow free. For each day of
observation, the number of snow pixels, no-snow pixels and cloud pixels is
counted for each cell of the domain (Figure 3.1) and the percentage of snow
pixels is calculated, retaining the value if the percentage of clouds is lower
than 60%.

https://www.earthenv.org
https://nsidc.org/data/MOD10A1/versions/6
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Fig. 3.1 Stream gauges, catchment boundaries and pixels with climate inputs of Piemonte
and Valle d’Aosta. The background layer indicates elevation (m a.s.l.).

The catchment descriptors are described in details in Table 3.1

3.2 The TUWmodel

The rainfall-runoff model used for the analysis is the TUWmodel. TUWmodel is
a semi-distributed version of the HBV (Hydrologiska Byråns Vattenbalansavdel-
ning) model (e.g., Bergström, 1995; Parajka et al., 2007b), developed by Viglione
and Parajka (2018) and available through the R-package TUWmodel (https://cran.r-

project.org/web/packages/TUWmodel/). Recently, the model has found wide application in
Austria (see Tong et al., 2021). The model consists of three routines: snow accumu-
lation and melt, soil moisture routine and flow routing (hillslope and stream), which
are described in detail in the following section. It is designed to be run in a semi-
distributed way; this structure potentially allows the user to divide the catchment in

https://cran.r-project.org/web/packages/TUWmodel/
https://cran.r-project.org/web/packages/TUWmodel/
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Table 3.1 Catchment descriptors used for the training of PASS in North-Western Italy

Category Variable Description

Climate Descriptors MAP Long-term mean annual precipitation [mm]

MAT Long-term mean annual temperature [°C]

PET Long-term mean potential evapotranspiration [mm]

PET
MAP Aridity index (ratio of mean annual potential evapotranspiration and mean annual precipitation) [-]

Psum2win Ratio of long-term summer precipitation (May-Oct) and winter precipitation (Nov-Apr) [-]

R50 Long-term median maximum daily precipitation [mm/d]

R95 Long-term 95th percentile of maximum daily precipitation [mm/d]

dRD2D Long-term mean absolute difference of rainfall amount between two consecutives days [mm]

Standard Climate Indices FD Frost days: Annual count of days when TN (daily minimum temperature) < 0°C [days]

(ETCCDI) SU Summer days: Annual count of days when TX (daily maximum temperature) > 25°C [days]

ID Icing days: Annual count of days when TX (daily maximum temperature) < 0°C [days]

TR Tropical nights: Annual count of days when TN (daily minimum temperature) > 20°C [days]

GSL Growing season length:Annual (1st Jan to 31st Dec in Northern Hemisphere (NH), 1st July to 30th June
in Southern Hemisphere (SH)) count between first span of at least 6 days with daily mean temperature
TG > 5°C and first span after July 1st (Jan 1st in SH) of 6 days with TG < 5°C.

TXx Annual maximum value of daily maximum temperature [°C]

TNx Annual maximum value of daily minimum temperature [°C]

TXn Annual minimum value of daily maximum temperature [°C]

TNn Annual minimum value of daily minimum temperature [°C]

TN10p Percentage of days when daily minimum temperature < 10th percentile

TX10p Percentage of days when daily maximum temperature < 10th percentile

TN90p Percentage of days when daily minimum temperature > 90th percentile

TX90p Percentage of days when daily maximum temperature > 90th percentile

WSDI Warm speel duration index: Annual count of days with at least 6 consecutive days when daily
maximum temperature > 90th percentile [days]

CSDI Cold speel duration index: Annual count of days with at least 6 consecutive days when
daily minimum temperature < 10th percentile [days]

DTR Daily temperature range: Annual mean difference between daily maximum temperature and daily
minimum temperature [°C]

Rx1day Annual maximum 1-day precipitation [mm]

Rx5day Annual maximum consecutive 5-day precipitation [mm]

SDII Simple precipitation intensity index [mm/day]

R10mm Annual count of days when precipitation ≥ 10mm [days]

R20mm Annual count of days when precipitation ≥ 20mm [days]

R1mm Annual number of wet days [days]

CDD Maximum length of dry spell i.e. number of consecutive days with precipitation < 1mm [days]

CWD Maximum length of wet spell i.e. number of consecutive days with precipitation ≥ 1mm [days]

R95pTOT Annual total precipitation when daily precipitation is greater than the 95th percentile [mm]

R99pTOT Annual total precipitation when daily precipitation is greater than the 99th percentile [mm]

PRCPTOT Annual total precipitation in wet days [mm]

Morphology mean_dem Mean elevation [m a.s.l.]

cv_dem Coefficient of variation of elevation [-]

mean_slope Mean slope [%]

mean_aspect Mean aspect [°]
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Category Variable Description

Land use urban Percent of grid cell area covered with artificial surfaces [%]

smallveg Percent of grid cell area covered with herbaceous, little or no vegetation and open spaces [%]

agri Percent of grid cell area covered with agricultural areas [%]

forest Percent of grid cell area covered with various types of forests [%]

wetland Percent of grid cell area covered with wetlands and lakes [%]

Soil S_GRAVEL Mean Content of Gravel in Subsoil (30-100 cm) [%vol]

S_SAND Mean Fraction of Sand in Subsoil (30-100 cm) [%wt]

S_SILT Mean Fraction of Silt in Subsoil (30-100 cm) [%wt]

S_CLAY Mean Fraction of Clay in Subsoil (30-100 cm) [%wt]

S_REF_BULK_DENSITY Reference Bulk Density of Subsoil (30-100 cm) [kg/dm3]

T _GRAVEL Mean Content of Gravel in Topsoil (0-30 cm) [%vol]

T_SAND Mean Fraction of Sand in Topsoil (0-30 cm) [%wt]

T_SILT Mean Fraction of Silt in Topsoil (0-30 cm) [%wt]

T_CLAY Mean Fraction of Clay in Topsoil (0-30 cm) [%wt]

T_REF_BULK_DENSITY Reference Bulk Density of Topsoil (0-30 cm) [kg/dm3]

AWC_LARGE Percent of grid cell area with large (125-150 mm/m) available water content [%]

AWC_MED Percent of grid cell area with medium (75-125 mm/m) available water content [%]

AWC_SMALL Percent of grid cell area with small (15-75 mm/m) available water content [%]

IL_TOP Percent of grid cell area with impermeable layer located within 80 cm of soil profile [%]

IL_MED Percent of grid cell area with impermeable layer located within 80-150 cm of soil profile [%]

IL_DEEP Percent of grid cell area with no impermeable layer located within 150 cm of soil profile [%]

SWR_NOTWET Percent of grid cell area with dominant annual average soil water regime class:
not wet within 80 cm for over 3 months and not wet within 40 cm for over 1 month [%]

SWR_MEDIUMWET Percent of grid cell area with dominant annual average soil water regime class:
wet within 80 cm for 3 -6 months, but not wet within 40 cm for over 1 month [%]

SWR_WET Percent of grid cell area with dominant annual average soil water regime class:
wet within 80 cm for over 6 months, but not wet within 40 cm for over 11 months [%]

SWR_TOTALWET Percent of grid cell area with dominant annual average soil water regime class:
wet within 40 cm for over 11 months [%]

T_TEXTURE_COARSE Percent of grid cell area with coarse topsoil texture [%]

T_TEXTURE_MEDIUM Percent of grid cell area with medium topsoil texture [%]

T_TEXTURE_FINE Percent of grid cell area with fine topsoil texture [%]

S_USDA_CLAY Percent of grid cell area with clay subsoil according to USDA classification [%]

S_USDA_SILTLOAM Percent of grid cell area with silt and loam subsoil according to USDA classification [%]

S_USDA_SAND Percent of grid cell area with sand subsoil according to USDA classification [%]

T_USDA_CLAY Percent of grid cell area with clay topsoil according to USDA classification [%]

T_USDA_SILTLOAM Percent of grid cell area with silt and loam topsoil according to USDA classification [%]

T_USDA_SAND Percent of grid cell area with sand topsoil according to USDA classification [%]

DRAINAGE_LARGE Percent of grid cell area belonging to “excessive” and “well” drainage class, based on FAO (2006) [%]

DRAINAGE_MED Percent of grid cell area belonging to “moderate” and “imperfect” drainage class, based on FAO (2006) [%]

DRAINAGE_SMALL Percent of grid cell area belonging to “poor” and “very poor” drainage class, based on FAO (2006) [%]

CN1 Mean Curve Number of Type 1

CN2 Mean Curve Number of Type 2

CN3 Mean Curve Number of Type 3
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sub-basins (e.g., based on elevation zones or other classifications), which separately
contribute to the outlet streamflow. The model runs at the daily or shorter time scale.
The inputs are:

• P: vector/matrix of precipitation [mm/d]

• T: vector/matrix of daily temperature [°C]

• PET: vector/matrix of potential evapotranspiration [mm/d]

• area: vector of percentage of catchment area for each zone [-]

• param: vector/matrix of parameters

Each climate variable is a matrix n x m where n is the length of the time series
and m the number of zones in which the catchment is divided. The catchment outflow
is obtained by averaging the contributions from each zone taking into account the
area. While model inputs and states are defined over each zone, model parameters
can be either constant for the entire catchment or differentiated across the zones. In
this analysis, zones correspond to grid cells over the domain, so that model inputs
and outputs are estimated for each grid cell and model parameters can be either
lumped or differentiated across the cells for each catchment.

3.2.1 Description of model routines

The snow routine is based on the simple degree-day approach and is governed by
five parameters. The partition between rain and snow is given by two threshold
temperature values, TR and TS, which are used to separate the total precipitation
input at time t (Pt) into rainfall (PR,t) and snowfall (PS,t):

PR,t =


Pt i f Tt ≥ TR

Pt
T t−TS
T R−TS

i f TS < Tt < TR

0 i f Tt ≤ TS

(3.1)

PS,t = Pt −PR,t (3.2)

Melt starts when air temperature is higher than a threshold TM:

Mt = (Tt −TM)DDF i f Tt > TM & SWE > 0 (3.3)
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where M is the amount of snowmelt per time step, DDF is the degree-day factor
and SWE is the snow water equivalent. To overcome the problem of catch deficit of
precipitation gauges during snowfall, the snowfall is corrected by a snow correction
factor SCF, so that the snow accumulation process is described by the following
equation:

SWEt = SWEt-1 +(SCF∗PS,t −Mt)∆t (3.4)

where ∆t = 1 day.

The soil moisture routine describes runoff generation and soil moisture state
changes in the catchment. It involves three parameters: the maximum soil moisture
storage FC, which represents a saturation condition; LP, a parameter representing
the soil moisture state above which evapotranspiration is at its potential rate, and a
parameter β ruling the non-linear runoff generation process. The portion of rainfall
and snowmelt generating runoff (∆SUZ) is a non linear function of the soil moisture
level SM, the parameters FC and β :

∆SUZ,t =

(
SMt-1

FC

)β

(PR,t +Mt) (3.5)

The level of soil moisture storage at each time step is computed with the water
balance equation:

SMt = SMt-1 +PR,t +Mt −∆SUZ,t (3.6)

If SM exceeds FC, surplus water is summed to ∆SUZ,t. The actual evapotranspiration
is another flux exiting the system and is function of the potential evapotranspiration
(PET) input, FC and LP:

EAt = min(PETt
SMt

LP*FC
, PETt) (3.7)

Adding this flux to the water balance one gets:

SMt = SMt −EAt (3.8)

The runoff routine includes the response function, representing runoff routing on
hillslopes, and the routing routine, which represents the runoff routing in streams.
Seven additional parameters are involved: LUZ, k0, k1, k2, CPERC, BMAX and
CROUTE. The response function is given by an upper and lower reservoir. Excess
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rainfall and snowmelt reach the upper zone reservoir of level SUZ, as highlighted by
Eq. (3.9).

SUZ,t = SUZ,t-1 +∆SUZ,t −q0,t −q1,t −CPERC (3.9)

The outflow is splitted in three contributions: an outlet from the reservoir ruled by a
fast storage coefficient k1 (Eq. 3.11); a constant percolation flux entering the lower
zone reservoir of level SLZ (Eq. 3.13) and, if SUZ > LUZ, an outlet ruled by a very
fast storage coefficient k0 (Eq. 3.10). The three contributions subtract water from
the upper reservoir state (Eq. 3.12). The water outflow from the lower reservoir is
ruled by a slow storage coefficient k2. (Eq. 3.14 and Eq. 3.15).

q0,t =
SUZ,t −LUZ

k0
e−

1
k0 (3.10)

q1,t =
SUZ,t

k1
e−

1
k1 (3.11)

SUZ,t = SUZ,t −q0,t −q1,t −CPERC (3.12)

SLZ,t = SLZ,t-1 +CPERC (3.13)

q2,t =
SLZ,t

k2
e−

1
k2 (3.14)

SLZ,t = SLZ,t −q2,t (3.15)

The outflow from both reservoirs is then routed by a triangular transfer function
representing the stream runoff routing:

BQ,t = max(BMAX −CROUTE(q0,t +q1,t +q2,t),1) (3.16)

where BQ is the base of the triangular function, BMAX is the maximum base at low
flows and CROUTE is a free scaling parameter. All the parameters involved in the
model are summarized in Table 3.2, while the model scheme is reported in Figure
3.2.
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Table 3.2 TUWmodel parameters.

Parameter Description Units Typical range

SCF Snow Correction Factor - 0.9-1.5
DDF Degree Day Factor mm/°C/day 0.0-5.0
TR Temperature threshold for rainfall °C 1.01-3.0
TS Temperature threshold for snowfall °C -3.0-1.0
TM Temperature threshold for snow melt °C -2.0-2.0
LP Parameter related to the evaporation threshold - 0.0-1.0
FC Field capacity (i.e. maximum soil moisture storage) mm 0.0-600.0
β Non linear parameter for runoff production - 0.0-20.0
k0 Storage coefficient for very fast response days 0.0-2.0
k1 Storage coefficient for fast response days 2.0-30.0
k2 Storage coefficient for slow response days 30.0-250.0
LUZ Threshold of storage state triggering very fast response mm 1.0-100.0
CPERC Constant percolation rate mm 0.0-8.0
BMAX Maximum base at low flows days 0.0-30.0
CROUTE Scaling parameter days2/mm 0.0-50.0

Fig. 3.2 Scheme of TUWmodel.

3.3 Local calibration of TUWmodel

Rainfall-runoff models can be calibrated at gauged sites by minimizing the difference
between simulated and observed discharges. Although ideally the procedure can
be performed manually by tuning the single parameter values, it is more efficiently
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done by machines with high computational performance by adopting automatic
optimization algorithms that make use of an objective function.

3.3.1 The objective function

The objective function is the real-valued mathematical function whose value is to
be maximized or minimized during the calibration procedure. The choice of the
objective function for the calibration of rainfall-runoff models must fit the purpose
of the application. The most used objective function in hydrological modelling is
the Nash-Sutcliffe Efficiency (NSE), which is a standardized version of the Root
Mean Square Error (RMSE). MSE-based metrics are considered a useful tool to
reduce simulation errors associated with high flows, as these kind of metrics typically
magnify errors in the high flows rather than in low flows (Mizukami et al., 2019).
As described in Mizukami et al. (2019), the optimization of many different aspects
of the hydrograph is a difficult task; as an example, improving the flow variability
representation affects the mean and correlation properties of the simulation. Nev-
ertheless, Gupta et al. (2009) point out that using NSE in calibration leads to an
underestimation of the runoff variability, which ultimately means an underestimation
and overestimation of high flows and low flows, respectively. For this reason, they
propose the Kling-Gupta Efficiency metric, an improvement of NSE which considers
three aspects: the daily correlation, the mean flow and the flow variability:

KGE = 1−
√

(r−1)2 +(α −1)2 +(β −1)2 (3.17)

where r is the Pearson product-moment correlation coefficient, α is the ratio between
the standard deviations of the simulated and observed runoff values and β is the ratio
between the means of the simulated and observed runoff. Given the possibility of
capturing different aspects of the runoff hydrograph, KGE is widely used in literature
of rainfall-runoff modelling (e.g., Kling et al., 2012; Hirpa et al., 2018; Pool et al.,
2018; Becker et al., 2019; Liu, 2020; Quintero et al., 2020; Merz et al., 2020) and is
selected for the calibration of the rainfall-runoff model used in this Dissertation (i.e.
TUWmodel). For the application of PASS in North-Western Italy, two alternative
objective functions are considered. On the one hand, the objective function is given
by the KGE of discharge values, in which the variability term is given by the ratio
of the coefficients of variation (CV) of simulated and observed runoff values, as
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specified in Kling et al. (2012):

KGE = 1−
√

(r−1)2 +(CVsim/CVobs −1)2 +(µsim/µobs −1)2 (3.18)

where r represents the linear correlation between observations and simulations,
CVsim/CVobs is the ratio of the coefficients of variation of simulated and observed
runoff, µsim/µobs is the ratio of the means of simulated and observed runoff. On the
other hand, in order to test the impact of using snow information on the simulation
results, the objective function is defined as the arithmetic average of two quantities:

1. the Kling-Gupta Efficiency:

KGE = 1−
√

(r−1)2 +(CVsim/CVobs −1)2 +(µsim/µobs −1)2 (3.19)

2. a Snow Cover Efficiency defined as:

SC = 1− 1
n ·N

n

∑
1

(
N

∑
1
(|SCsim −SCobs|

)
(3.20)

where N is the number of days, n the number of cells, SCsim is 1 if the
simulated snow water equivalent (SWE) exceeds 1 mm and 0 otherwise, and
SCobs is 1 if the percentage of snow pixels within the cell is greater than 10%
and 0 otherwise.

The model efficiency is so defined:

ME = 0.5 ·KGE+0.5 ·SC (3.21)

3.3.2 Optimization Algorithm: Differential Evolution

An optimization algorithm is a mathematical implementation used for solving an
optimization problem. It can be considered as a decision problem where the final goal
is to maximize (or minimize) an objective function, which depends on one or more
variables (parameters). Almost all optimization algorithms work using an iterative
process in order to look for the solution, but they are based on different approaches.
A first distinction is to be made among local and global methods. The former look
for the optimum in a limited portion of the parameter space and the solution is
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affected by the starting point, while the latter are able to extend the research to the
entire parameter space. For this reason, global optimization methods are preferred
for most optimization problems. Global optimization techniques can be divided in
deterministic and stochastic and the latter have found wider applicability for the
calibration of hydrological models. A big distinction among optimization methods
must be made among direct or exact methods, which consider the gradient vector as
a result of the derivation of the objective function, and heuristic methods. The most
famous examples of heuristic methods are evolutionary algorithms. These techniques
are optimization methods inspired by the process of natural selection and have been
used since the 1950s (Mitchell, 1998). Evolutionary algorithms are particularly
useful when the optimization function is non-derivable and/or non-continuos. In
fact, the research process towards parameter spaces that likey contain the solution is
guided by probabilistic rules, but being a non-deterministic and non-exact method,
there is no criteria to evaluate the quality of the obtained solutions and the degree
of exploration of the parameter space. Heuristic methods are able to provide good
quality near-optimal solutions for solving optimization problems but they don’t
guarantee the convergence to local or global optimal solutions (Rardin and Uzsoy,
2001). A type of evolutionary algorithm is the genetic algorithm, which was invented
by John Holland in the 1960s (Holland, 1975). Genetic algorithms have proven to
be useful in particular for combinational optimization problems: they apply logical
operations on bit strings in order to perform crossover, mutation and selection on
a population so that, over successive generations, the members of the population
have a higher probability of representing the minimum of an objective function.
Another type of evolutionary algorithm is represented by evolution strategies, in
which members of a population are identified by floating point numbers and the
population is subjected to transformations over successive generations, by using
arithmetic operations. Evolution strategies have gained importance over time and
in the 1990s an innovative evolution strategy called differential evolution (DE) was
developed (Storn and Price, 1997). DE is suited for problems requiring the global
optimum of a real-valued function of real-valued parameters and does not require a
continuos or differentiable function. Since its invention, DE has been succesfully
applied in a variety of fields, such as physics and operations research, as detailed in
Price et al. (2006). In the context of this Dissertation, DE is the chosen methodology
for the local calibration of TUWmodel in North-Western Italy. In particular the R
package DEoptim (https://cran.r-project.org/web/packages/DEoptim/, Mullen et al., 2011) is
adopted, for consistency with the R function used for the regional calibration of the

https://cran.r-project.org/web/packages/DEoptim/


3.4 Regionalization of rainfall-runoff models 47

rainfall-runoff model (i.e. the PASS function). The structure of PASS itself mimics
the iterative nature of DEoptim for the maximization of the objective function.

3.4 Regionalization of rainfall-runoff models

In the recent years, large scale hydrological modelling studies have followed a
process-based approach, whereby the spatially distributed parameters are estimated
so that they are consistent with the climatic and geomorphological characteristics
of the examined study area (Archfield et al., 2015; Clark et al., 2016; Gupta et al.,
2014; Mizukami et al., 2017; Paniconi and Putti, 2015). Regionalization of model
parameters has become of great importance in hydrology, with the ambition of
efficiently predicting runoff in ungauged catchments. In a broad sense, ungauged
catchments are defined as the ones without past flow observations or those expecting
to experience significant changes in the future (He et al., 2011). Regionalization
techniques can be used to estimate either parameters of streamflow statistics (e.g.,
flood quantiles) or parameters of a continuos rainfall-runoff model for streamflow
simulation. All regionalization methods can be divided in two main categories:
(1) distance-based and (2) regression-based. While in the first category the entire
parameter set of a gauged basin is assumed valid in the ungauged basins, regression
methods find a relation linking individual model parameters and catchment charac-
teristics (Parajka et al., 2013). A more detailed look at each group of methods is
provided in the following sections.

3.4.1 Distance-based methods

Distance-based regionalization techniques are based on the concept of catchment
similarity. The idea behind this type of methods is to identify similar or proxy
catchments, i.e. catchments that share common features from a geographical and
hydrological point of view.

Geographical similarity is based on the assumption that the hydrological response
is likely to vary smoothly in space, indicating geographical proximity as a good
measure of catchment similarity (Blöschl, 2005). Geographical distance between a
pair of catchments is tipically the distance between the catchment outlets or centroids
with the two catchments being defined as the target and the donor catchments (Li
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et al., 2009; Randrianasolo et al., 2011; Zvolenskỳ et al., 2008). Target catchments
are ungauged catchments that need information to be transferred from donor catch-
ments. Donor catchments are gauged catchments that are considered similar to the
target ones. Randrianasolo et al. (2011) use model parameters from neighbouring
catchments for ensemble forecast and show good forecasts at the target catchments,
with better performances for increasing number of neighbours. Other studies use
different procedures that make use of parameters from gauged catchments and apply
geo-statistical methodologies (e.g., kriging and inverse distance weighting) for the
spatial interpolation, with mixed performance (e.g., Merz and Blöschl, 2004; Parajka
et al., 2005; Vandewiele and Elias, 1995; Viviroli et al., 2009). For example, Merz
and Blöschl (2004) find a very small decrease of performance using kriging com-
pared to neighbouring Austrian catchments, while Parajka et al. (2005) find a slightly
better performance with kriging in the same settings. However, spatial neighbouring
catchments do not necessarily have similar hydrological functioning and responses.

A reasonable alternative is to choose the donor catchments based on the cli-
mate and catchment characteristics, so that similarity is conceived in the space of
catchment descriptors having links with hydrological functioning, the so called hy-
drological similarity. A typical measure of this similarity, also defined physiographic-
climatic similarity, is the root mean square difference of all the catchment descriptors
in a pair of catchments, standardised by their standard deviation. Wagener et al.
(2007) present metrics that combine similarities based on the catchment structure and
hydroclimatic features to represent catchment response behavior. Studies adopting
this approach use a wide range of climate and catchment characteristics. McIntyre
et al. (2004) use catchment area, stardardised annual average precipitation and base-
flow index to define similarity. Other studies use a larger number of characteristics,
including geomorphological characteristics (e.g., Parajka et al., 2005; Zhang and
Chiew, 2009). Another possibility is to use a model averaging technique, i.e. a
weighted combination of the parameter sets from more than one donor catchments
(e.g., Goswami et al., 2007; Kim and Kaluarachchi, 2008; Seibert and Beven, 2009).

The distance-based approach for regionalization allows to transfer the entire set
of model parameters from the donor to the target catchments, with the advantage of
not interfering with the integrity of model parameters as a set (Oudin et al., 2010).
The drawback of this approach is related to the fact that also possible correlations
and actual interactions between the parameters are entirely transfered to the target
catchment.
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3.4.2 Regression-based methods

The other macro category of regionalization methods includes regression-based
methods. The idea is to relate individual model parameters for continuos stream-
flow simulation to catchment characteristics. The first attempts of regionalization
using regression are described in Nash (1960), who correlate unit hydrographs with
catchment characteristics. Three different versions of regression-based methods
are discussed in literature: two-step regression, sequential regression and one-step
regression, also defined as regional calibration (Parajka et al., 2013).

The two-step regression is the most commonly used method. Regionalization
is performed in two steps: (1) calibrate model parameters in each catchment; (2)
determine a relationship between model parameters and catchment descriptors. Many
studies follow this approach for runoff prediction in ungauged catchments (e.g.,
Kokkonen et al., 2003; Merz and Blöschl, 2004; Seibert, 1999). The calibration of
rainfall-runoff hydrologic models suffers from the problem of existence of multiple
parameter combinations resulting in high performance, the so called equifinality
issue (e.g., Beven, 1996, 2001).

A slightly different approach is represented by sequential regression. Instead of
performing a simultaneous calibration of all model parameters, using this variant
allows to calibrate the parameters in a sequential order, from the most identifiable
to the least one. In each calibration round, the most identifiable model parameter
is put in relation with selected catchment descriptors using a regression function.
The parameter value obtained from the regression function is fixed in the next
calibration round. This procedure continues until the last parameter is considered
(Lamb et al., 2000; Lamb and Kay, 2004; Wagener and Wheater, 2006). Wagener
and Wheater (2006) demonstrate the improvement in the parameter identifiability
using sequential regression. However, this doesn’t guarantee a stronger relationship
between parameters and descriptors and the performance can be sometimes worse
than two-step regression (Wagener and Wheater, 2006).

A final possibility is the one-step regression or regional calibration. The calibra-
tion of model parameters is not performed independently from catchment descriptors
and the two steps are implemented concurrently using all objective functions at the
same time. The aim is to find more reliable parameters taking advantage of the
spatial variability of catchment characteristics. Fernandez et al. (2000) present the
method and test it with a water balance model at the monthly scale in the Southern
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United States. The results show no improvement compared to the traditional two-step
method and the decrease of model performance when moving from calibration to
validation is very similar to the one obtained with the two-step approach. Hundecha
and Bárdossy (2004) use the same method of Fernandez et al. (2000) but selecting
a different study region, model, resolution and descriptors. Other studies appply
regional calibration considering homogenous groups (Szolgay et al., 2003) and
geostatistical methods (Hundecha et al., 2008; Parajka et al., 2007a).

3.5 The PASS procedure

In the traditional prediction in ungauged basins (PUB) studies reported in the previos
section and described in Parajka et al. (2013), usually only the best locally calibrated
parameter set in each catchment is used to derive a functional relationship among
model parameters and catchment descriptors, neglecting the existence of multiple
optimal parameter sets with similar performance, the so called parameter equifinality
issue (e.g., Beven and Freer, 2001). Parameter sets with slightly lower local model
efficiency can show a better relationship with the descriptors. Based on this evidence,
an innovative approach has been recently introduced under the name of PArameter
Set Shuffling (PASS) approach (Merz et al., 2020). The objective is to find parameter
sets having a good model performance in simulating runoff while preserving a
consistent relationship with catchment descriptors at the model unit scale (e.g., grid
scale). The underlying assumption is that the regional functional relationship among
model parameters and descriptors can be inferred from spatial patterns of lumped
parameters calibrated in small catchments (catchment area < 1000 km2). Indeed, it is
expected for spatial patterns of lumped parameters in small catchments to be similar
to the spatial pattern of parameters at the model unit scale. The main advantage of
using this methodology lies on the fact that it is a data driven approach that does not
require any a-priori assumption on the type of relationship among model parameters
and descriptors. The search for good functional relationships is performed over
the entire parameter space by shuffling the combinations of parameters through an
iterative process. Finally, PASS can be theoretically implemented with a variety of
machine learning algorithms (e.g., Random Forest, Decision Trees, Artificial Neural
Networks (ANNs)).

In this section, the steps of the methodology as formalized in this Thesis are
presented. First, the tool used for determining a functional relationship among



3.5 The PASS procedure 51

local parameters and catchment descriptors is the Decision Tree, through the use
of the R function Recursive Partitioning and Regression Trees (rpart), described
in Breiman et al. (1984). The main idea of Decision Tree is to split the data space
(catchments and catchment descriptors) in subgroups, based on the behavior of the
response variable (parameters). The algorithm is based on several nodes; at each
node catchments are divided according to some thresholds, applied to the descriptors,
which minimize the variability of parameters in each subgroup (Figure 3.4).

Fig. 3.3 Flow chart of PASS, adapted from (Merz et al., 2020).
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Fig. 3.4 Schematic representation of decision trees.

The method includes different stages (Figure 3.3) that can be overall summarized
in three main phases:

1. Regionalization: in this phase, the chosen local parameter sets are used to
infer the regionalization through the training of the decision tree algorithm.
Combinations of parameter sets are performed in order to obtain the best re-
gional model efficiency (ME). To improve regionalization, for each catchment
the local parameter set which is more "similar" to the one predicted by the
functional relationship at the previous step, is selected as training parameter
set, following the "regional consistency" rule. The similarity is quantified
by the sum of the differences among the locally calibrated parameters and
parameters obtained by the functional relationship. The procedure is repeated
until the variance explained by the decision tree is increasing.

2. Model run: in this phase, the model is run with the found regional parameters,
both in lumped and distributed mode. Regional parameter sets (lumped) with
ME > 0.9MEmax, where MEmax is the highest efficiency value found from
local calibration, are added to the pool of local parameter sets and used in the
next iterations.

3. Calculation of mean model efficiency: in this phase, the mean of the model
efficiencies obtained in each catchment by running the model with regional
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parameters in distributed mode is calculated. This represents a measure of
the performance of the functional relationship. Steps 1-3 are repeated up to a
maximum value.

3.6 Regional calibration

The time period considered for testing the PASS procedure with TUWmodel in
North-Western Italy is 20 years, from 2000-10-01 to 2020-09-30. Different periods
are chosen for the calibration and validation of the method as well as different
approaches based on the possible use of snow information in the objective function,
in order to provide a robust spectrum of possible calibration results, considering
different scenarios (Table 3.3). From a set of 117 sites having daily discharge
measurements in the period from 1961 to 2020, only sites with measures in both
decades from 2000-10-01 to 2010-09-30 and from 2010-10-01 to 2020-09-30 are
selected for local calibration, for a total of 104 stations widespread over the region.
As an example, the mean model efficiencies obtained by local calibration in the
period 2000-2010, for both cases when snow information is not used and when it is
used, are reported in Figure 3.5a and 3.5b.
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(a) (b)

Fig. 3.5 a) Local model efficiency (ME = KGE) for 104 sites, obtained without using snow
information. b) Local model efficiency (ME = 0.5 · KGE + 0.5 · SC) for 104 sites, obtained
using snow information. Note that the two quantities cannot be directly comparable.

Table 3.3 Scenarios for PASS regional calibration.

Calibration period Validation period Type

2000-2010 2010-2020 NO SNOW
2000-2010 2010-2020 SNOW
2010-2020 2000-2010 NO SNOW
2010-2020 2000-2010 SNOW
2005-2015 2000-2005, 2015-2020 NO SNOW
2005-2015 2000-2005, 2015-2020 SNOW

Out of the 104 catchments, the ones to be used for the regional calibration with
PASS (called training) are selected according to the following criteria: local model
efficiency (ME) > 0.75 given by at least five independent parameter sets; catchment
area < 1000 km2. This choice is based on two important assumptions that are also
reported Merz et al. (2020): 1) the PASS method is based on shuffling parameter
sets; 2) the PASS method is based on the idea of deriving regionalization rules
for distributed models from lumped parameters obtained from local calibration in
small catchments. The remaining catchments, called test, are used for validating
the procedure. Table 3.4 and 3.5 illustrate the results in terms of regional model
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efficiencies for all the scenarios, which consider different calibration - validation
periods and type of information used in the objective function.

Table 3.4 Regional model efficiencies obtained with PASS for different calibration periods.

Calibration period Type n. training mean efficiency median efficiency mean efficiency median efficiency
catchments training catchments training catchments test catchments test catchments

2000-2010 NO SNOW 70 0.6309 0.6500 0.4785 0.6000
2000-2010 SNOW 75 0.7680 0.7700 0.7017 0.7700
2010-2020 NO SNOW 72 0.6546 0.6600 0.3434 0.5000
2010-2020 SNOW 76 0.7716 0.7850 0.5954 0.7100
2005-2015 NO SNOW 72 0.6597 0.7000 0.4525 0.5750
2005-2015 SNOW 75 0.7771 0.8000 0.6790 0.7600

Table 3.5 Regional model efficiencies obtained with PASS for different validation periods.

Validation period Type n. training mean efficiency median efficiency mean efficiency median efficiency
catchments training catchments training catchments test catchments test catchments

2010-2020 NO SNOW 70 0.5819 0.6350 0.3709 0.5500
2010-2020 SNOW 75 0.7472 0.7700 0.6255 0.7200
2000-2010 NO SNOW 72 0.5679 0.5700 0.4975 0.5650
2000-2010 SNOW 76 0.7289 0.7400 0.6804 0.7600

2000-2005, 2015-2020 NO SNOW 72 0.6182 0.7000 0.3803 0.5500
2000-2005, 2015-2020 SNOW 75 0.7478 0.7800 0.6689 0.7350

The results of the regional calibration with PASS in North-Western Italy by
including snow information in the model efficiency function are presented in Pesce
et al. (2024). In this Dissertation, the value of using snow data to obtain regionally
consistent model parameters is further discussed in comparison with the case in
which no snow data is used and the objective function coincides with the Kling-
Gupta efficiency. For the sake of simplicity, the results for a single decade, i.e.
the calibration period 2000-2010, are here further analyzed. The non-exceedance
cumulative distributions of model efficiencies during the calibration period (Figure
3.6) show that, as expected, the statistics of the local model efficiencies are much
higher compared to the regional model efficiencies, obtained by running the model
with predicted distributed parameters. Moreover, it is worth noting that the median
regional model efficiency for training catchments when no snow information is
used (0.650) is higher compared to the median regional model efficiency for test
catchments (0.600). Instead, when snow information is considered, the median
performance is the same for training and test catchments (0.770). However, in both
cases, when moving to an independent validation period (Figure 3.7), the decrease
of regional model efficiencies is lower compared to the decrease of local model
efficiencies (both for training and test catchments). This confirms the robustness
of the procedure in the prediction of hydrologic variables for different spatial and
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temporal domains. In this context, it is also evaluated the impact of using distributed
model parameters, calibrated with snow data, just for streamflow simulation at the
catchment outlet (ME = KGE), within the independent validation period. The results
show that, compared to the case when snow information is not considered, there is a
certain increase in model efficiency, but this is not a significant change (Figure 3.8).
The median model efficiency for training catchments increases from 0.635 to 0.645,
while the median model efficiency for test catchments increases from 0.550 to 0.575.

(a) No snow information (b) Snow information

Fig. 3.6 Non-exceedance cumulative distribution of model efficiencies during the calibration
period (2000-2010), a) without including snow information in the objective function and b)
including snow information in the objective function. The continuos line represents the mean
model efficiency, while the dashed lines represent the 10th and 90th percentiles of model
efficiencies for 30 parameter sets.

It is of interest to compare the regionally calibrated model parameters, obtained
by using PASS, with the locally calibrated parameters (Figure 3.9). On the left
panel, the best 30 parameter sets found by local calibration are shown, while the
right panel shows the best 30 regionally predicted parameter sets. The parameter
values are normalized (the range is between 0 and 1) and the associated model
efficiency is reported. Despite the fact that model efficiency given by regionally
calibrated parameters is lower compared to the model efficiency associated with
locally calibrated parameters, it is worth noting that most of the locally calibrated
parameters span the whole possible range of values, while parameters found by
regional calibration show a much smaller spread. This is expected due to the issue of
equifinality, as discussed in the previous section. Appendix D reports this comparison
for all the 75 training catchments regionally calibrated in the period 2000-2010 using
snow information.
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(a) No Snow information (b) Snow information

Fig. 3.7 Non-exceedance cumulative distribution of model efficiencies during the validation
period (2010-2020), a) without including snow information in the objective function and b)
including snow information in the objective function. The continuos line represents the mean
model efficiency, while the dashed lines represent the 10th and 90th percentiles of model
efficiencies for 30 parameter sets.

(a) No Snow information (b) Snow information

Fig. 3.8 a) Non-exceedance cumulative distribution of model efficiencies during the validation
period (2010-2020) without including snow information in the objective function. b) Non-
exceedance cumulative distribution of regional model efficiencies during the validation period
(2010-2020), obtained using parameters calibrated with snow information for discharge
simulation only (ME = KGE).

The spatial distribution of parameters estimated using PASS is also investigated.
Figure 3.10a shows regional maps of TUWmodel parameters obtained when snow
cover information is not used. Similarly, Figure 3.10b shows the same result obtained
by using snow cover information. It is worth noting that the spatial patterns of
regionally distributed parameters seem to be in line with hydro-meteorological and
landscape features of the area (see e.g. the Alpine range or the Po Valley). By
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Fig. 3.9 Locally calibrated parameter sets (30 sets, left) vs regionally calibrated (lumped)
parameter sets (30 sets, right) obtained with PASS for 4 sites.

comparing Figure 3.10a with Figure 3.10b, it is quite evident that snow parameters
(SCF, DDF, Tr, Ts, Tm) show a better coherence in terms of spatial pattern when
snow information is considered for the calibration, compared to the case when it is
not used. In fact, the gradient of grid values when moving from the central Po Valley
to the Alpine range (basically going north and west) is sharper and values are more
consistent with what can be expected by physical processes (Figure 3.10b).
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(a) No snow cover

(b) Snow cover

Fig. 3.10 a) Regional maps of distributed TUWmodel parameters obtained with the PASS
procedure, without considering snow cover information. The color indicates the mean value
while the circle indicates its variability among 30 regionalizations. b) Regional maps of
distributed TUWmodel parameters obtained with the PASS procedure, by considering snow
cover information. The color indicates the mean value while the circle indicates its variability
among 30 regionalizations.
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Fig. 3.11 Observed discharges vs. simulated discharges with regional PASS parameters
of TUWmodel, obtained by calibration over the period 2000-2010 without using snow
information (ME = KGE), for Stura di Viù River catchment at Germagnano.
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Fig. 3.12 Observed discharges vs. simulated discharges with regional PASS parameters of
TUWmodel, obtained by calibration over the period 2000-2010 using snow information
(ME = 0.5 ·KGE +0.5 ·SC), for Stura di Viù River catchment at Germagnano.



62 Implementation of TUWmodel and regionalization with PASS

Figure 3.11 and 3.12 report the comparison between simulated and observed
runoff signatures for a single site, i.e. Stura di Viù River catchment at Germagnano,
located in the central-western part of the region with a mean elevation of 1759 m
a.s.l. The simulated runoff is obtained by regionally calibrating the model over the
period 2000-2010 without using snow cover information (Figure 3.11) and by using
snow cover information (Figure 3.12). For a detailed description of all the shown
signatures please refer to Figure Legend of Appendix E, where all the results from the
regional calibration of 75 training catchments using snow information are reported.
It can be noticed that using snow information in the calibration procedure doesn’t
significantly improve the overall ability of the model in reproducing streamflow
signatures (e.g. annual flows, seasonality). Nevertheless, when snow information is
used, the range of simulated streamflow is narrower, indicating a more consistent
model behavior.

3.7 Conclusions

This chapter deals with the application of the PASS procedure in North-Western Italy,
exploiting a decision-tree based algorithm. The results show that the PASS procedure
can be efficiently applied in the North-Western Italy territory, with similarly good
model performances as for the German case study. Despite differences in the results
based on the choice of the model efficiency function and the calibration/validation
period, it is observed that the median model efficiency for training and test catchments
in calibration mode is around 0.6-0.7 and the decrease of efficiency when moving
to an independent validation period is minimal. Including snow information in the
model efficiency function increases model performance in reproducing streamflow
but not significantly and streamflow signatures (e.g., annual flows or seasonality)
don’t seem to be better captured. Nevertheless, the range of values assumed by
simulated streamflow when snow information is considered is narrower, indicating a
more consistent model behavior and less uncertain results. This is also confirmed
by the higher spatial coherence of the snow parameter values obtained by regional
calibration using snow, compared to the case when snow information is not included.



Chapter 4

The hydroPASS R package

In this chapter, a newly developed R package is presented, with the aim of making the
PASS procedure open and reproducible and its application with different hydrologic
models more flexible. An example of application of the package with U.S. database
is also shown.

4.1 The package structure

The package aims at providing a consistent and reproducible version of the PASS
methodology, in order to be able to apply it with different distributed or semi-
distributed hydrological models and forcing datasets. For this purpose, the Git
version controlling system is adopted, together with its graphical interface GitHub
(https://github.com/alviglio/hydroPASS), which allows all contributors to work on the
package, make updates and release versions of it (Figure 4.1). In the current version
(v0.1-beta.2), the source package has the following structure:

• DESCRIPTION file, which contains general information about the package
(e.g., version, authors, etc.);

• Directory src/ which contains the Fortran code for the model SALTO;

• Directory R/ which contains R code for the functions SALTO, PASS, catchDe-
scrip, topology;

• Directory data/ which contains some data for the examples provided as support
of the functions;

https://github.com/alviglio/hydroPASS
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• Directory man/ with the help documentation for the code and data (i.e., that
builds the manual written for the package, available in Appendix B);

• Directory vignettes/ which contains a vignette about obtaining and processing
U.S. input data for running PASS.

Fig. 4.1 Screenshot of the GitHub web page of the hydroPASS package.

From the source package, installation packages are built for Windows, Linux
and Mac operating systems and are also available through GitHub (e.g., download
hydroPASS 0.1-2.zip on Windows, or hydroPASS 0.1-2.tar.gz on Linux or Mac).
The current version of the package allows to run PASS with different hydrologic
models, through the definition of a model efficiency function (objective function).
The objective function can be of low or high complexity, for example including snow
cover, but it returns a single model efficiency value that must be optimized by PASS.
For example, the procedure can be applied with the model TUWmodel, which is
available in R at: https://cran.r-project.org/web/packages/TUWmodel. The following code
provides an example on how to couple it with PASS by using a model efficiency
function:
library(TUWmodel)

?TUWmodel

ME.TUWmodel <-

function(param , # vector or matrix parameters for catchment i

cat.number , # number of catchment i

https://cran.r-project.org/web/packages/TUWmodel/index.html
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grdname , # list of grid names associated to all catchments

prec , # matrix of precipitation data for all grids

airt , # matrix of air temperature data for all grids

ep, # matrix of potential evapotranspiration ...

area , # list of proportion of catchment area contained

# in each grid for all catchments

disc , # matrix of runoff discharge for all rivers

snow , # matrix of snow cover for all grids

iwarmup =303) {

GRDNAME <- grdname [[cat.number ]]

AREA <- area[[cat.number ]]

PREC <- prec[, as.character(GRDNAME )]

AIRT <- airt[, as.character(GRDNAME )]

EP <- ep[, as.character(GRDNAME )]

DISC <- disc[, cat.number]

SNOW <- snow[, as.character(GRDNAME )]

if (!is.null(dim(param ))) param <- t(param)

# global variables are in the function

simu <- TUWmodel(prec=PREC , airt=AIRT , ep=EP,

area=AREA , param=param)

swesim <- (simu$swe > 1)[-c(1: iwarmup),]

sweobs <- (SNOW > 10)[-c(1: iwarmup),]

# Snow Cover Efficiency

SC <- mean(1 - apply(abs(swesim - sweobs), 1, mean , na.rm=T), na.rm=T)

# Runoff Kling -Gupta Efficiency

simu <- simu$q[-c(1: iwarmup )] # remove the warming period

simu[is.na(simu)] <- -999

obse <- DISC[-c(1: iwarmup )] # remove the warming period

r <- cor(simu , obse , method='pearson ', use='pairwise.complete.obs')

beta <- mean(simu)/mean(obse , na.rm=TRUE)

gamma <- (sd(simu)/mean(simu))/(sd(obse , na.rm=TRUE)/mean(obse , na.rm=TRUE))

kgeQ <- 1 - sqrt((r - 1)^2 + (beta - 1)^2 + (gamma - 1)^2)

me <- 0.5*kgeQ + 0.5*SC # mean of Runoff Kling -Gupta Efficiency

# and Snow Cover Efficiency

if (is.na(me)) me <- -999

return(me)

}

# Running PASS

run01 <- PASS(Y=train.parameters ,

X.cat=cat.CD,

X.grd=grd.CD,

grd2cat=sapply(topology , function(x) x$grd.name),

model.eff.fn=ME.TUWmodel ,

lower=c(SCF=0.9, DDF=0.0, Tr=1.01, Ts=-3.0, Tm=-2.0,

LPrat =0.0, FC=0.0, BETA =0.0, k0=0.0, k1=2.0, k2=30.0,

lsuz =1.0, cperc =0.0, bmax =0.0, croute =0.0),

upper=c(SCF=1.5, DDF=5.0, Tr=3.0, Ts=1.0, Tm=2.0,

LPrat =1.0, FC=600.0 , BETA =20.0, k0=2.0, k1=30.0, k2=250.0 ,

lsuz =100.0 , cperc =8.0, bmax =30.0, croute =50.0) ,

options=PASS.options(maxLoops =100, nGroups =10,

REGloops=5, sampling='random '),

prec=data118cat305pxl$prec ,

airt=data118cat305pxl$tmean ,

ep=data118cat305pxl$pet ,
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area=sapply(topology , function(x) x$grd.weightCat),

grdname=sapply(topology , function(x) x$grd.name),

disc=qobs , snow=data118cat305pxl$snow)

4.1.1 SALTO

SAme Like The Others (SALTO) is a distributed conceptual rainfall-runoff model.
The model represents a soil moisture accounting scheme and is similar to other well
known models, such as the HBV model. The version implemented in the package
consists of 21 parameters and 1 soil moisture layer. However, the structure of the
model allows to consider many soil layers, increasing the number of parameters
and so the complexity of the model. A further description of the model and its
implementation in the package is provided in the manual (see Appendix B).

4.1.2 PASS

As already described, the PArameter Set Shuffling (PASS) algorithm derives regional
relationships between model parameters and catchment descriptors from observed
patterns of locally calibrated parameters and descriptors through a machine learning
procedure, and provides regionally consistent parameter sets. In this section, the
PASS function implemented in hydroPASS using R code is described in details.
An example of application with the model SALTO is provided in the manual (see
Appendix B).

The PASS function inputs are shown here:
# PASS

PASS <- function(Y,

X.cat ,

X.grd ,

grd2cat ,

model.eff.fn ,

lower ,

upper ,

options=PASS.options(),

...)

PASS.options <- function(maxLoops =100, nGroups =10, REGloops=5,

generalized.mean.power=-1, proportion.max.eff.update =0.95 ,

sampling='random ', optim.subset.cat =0.7)
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Y is a list of dataframes with locally lumped calibrated model parameters or
previously obtained PASS output, which is used as starting point for further search of
regionally consistent model parameters. X.cat is a matrix or data.frame of catchment
descriptors, X.grd is a matrix or data.frame of model unit/pixel descriptors, grd2cat
is a list of model unit/pixel names belonging to each catchment, model.eff.fn is the
objective function to be optimized (maximixed), upper and lower are two vectors
identifying scalar real lower and upper bounds for each parameter to be optimized,
PASS.options is a vector containing a list of options for the PASS approach and
... refers to other arguments to be passed to model.eff.fn, such as climate input
variables. The elements read by PASS.options function are here clarified. maxLoops
is the maximum number of iterations for each PASS run; nGroups is the number
of groups over which regional optimisation is run, in order to avoid falling in local
optima; REGloops is the number of loops for the regional consistency algorithm, as
specified in Section 3.5 (i.e. for each catchment the local parameter set which is the
closest (most similar) to the one predicted by the regional relationship at the previous
step is selected as training set); generalized.mean.power is the value of the power
(p) exponent of the generalized mean of the efficiencies obtained in all catchments
with the fully distributed regional model; proportion.max.eff.update sets a
condition for adding regionalized lumped parameters to the pool of training sets;
sampling allows to choose among two possible running modes: “random”, so that
the selection of model parameters for the regionalization is random or “optim”, so
that model parameters are selected from the ones obtained in the previous run of
PASS, except for the proportion indicated in optim.subset.cat; optim.subsect.cat
indicates the proportion of catchments from which the parameters for the regional-
ization are selected randomly.

At the beginning of the algorithm run, a list of n different groups is set and, at the
first run, a null starting model efficiency is associated to each group. If the “random“
sampling is selected, at each iteration the parameter sets are randomly selected from a
constantly updated pool of possible parameter sets, a regional functional relationship
is determined and a regional mean model efficiency (MEreg) is calculated. This
MEreg is saved in the output of the group with the currently lowest ME, prioritizing
the null ones. This implies that in the first n iterations of a run, the null ME are
substituted with a real scalar number; from the n+1 iteration, the new ME substitutes
the old one in the group with the lowest ME value. In case the new ME is lower than
the previous MEs, it is simply discarded.
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The option "optim" requires at least a first run at random before being executed.
If "optim", a random group is first selected. Then, the parameter sets belonging to
that group found in the previous PASS run are partially substituted by performing a
random parameter selection on a proportion of catchments equal to optim.subset.cat.
The new set of selected parameters is used to infer the regionalization. The calculated
MEreg is compared with the overall efficiency of the same group. This is done in
order to optimize single groups.

The output of the regionalization procedure, which is saved for each group,
includes the following elements:

• overall.eff: the mean of the MEs obtained running the model with region-
alized parameters in a distributed mode in each catchment;

• selected.parameters: a matrix containing the locally calibrated parameter
sets used to infer regionalization.

• regionalized.parameters, divided in cat.par.pred, which identifies the
predicted lumped parameters for each catchment and grd.par.pred, which
identifies the predicted distributed parameters over the reference grid.

• cat.eff.lump: vector containing the MEs obtained with the predicted lumped
parameters in each catchment.

• cat.eff.dist: vector containing the MEs obtained with the predicted dis-
tributed parameters in each catchment.

An additional list is also stored called train.parameters.updated, which
contains, for each catchment, matrices with locally lumped model efficiency and
calibrated model parameters used for the training of the procedure, possibly updated
by PASS.

4.1.3 catchDescrip

The function catchDescrip reads in input a list of matrices of catchment descriptors,
a spatial polygon data frame of catchments and an array of pixel/model unit coverage
of the catchment area for each catchment (weights) to create data of descriptors both
at grid and catchment scale. Basically, descriptors are averaged over catchments by
applying a weighted mean over the grid values, using the above mentioned weights.
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4.1.4 topology

The function topology reads in input a spatial polygon data frame of catchments
and a raster of digital elevation model (dem) to derive the topology of catchments.
In particular, a sink filling of the dem and the calculation of flow directions is
performed within the function. The output includes four pieces of information for
each catchment:

• grd - index of the pixels covering the catchment;

• effarea – pixels coverage inside the catchment;

• flowto – index of the downstream pixel;

• level – level of the pixel (1 = no pixel upstream, 2 = pixels of level 1 upstream,
etc.);

A description of both catchDescrip and topology functions is provided in the manual
(Appendix B).

4.2 hydroPASS with U.S. data

The data provided in the hydroPASS package are U.S. hydrologic database pertaining
the Contiguos United States of America (CONUS), i.e. the area corresponding to
the continental portion of the USA with the exception of Alaska. The main reason
for this choice is the recent publication of the CAMELS dataset (Newman et al.,
2015), a very large catchment scale hydrometeorological dataset of 671 catchments
covering the country and with limited impact of human activities. The dataset is
supplemented with data of catchment attributes (Addor et al., 2017). Together with
CAMELS, other datasets of climate and geomorphological characteristics are used.
In particular the following data are downloaded:

• Discharge data and catchment shapefiles: CAMELS data set;

• Rainfall, temperature and potential evapotranspiration: NCA-LDAS Noah-3.3
Land Surface Model L4 Daily 0.125 x 0.125 degree V2.0;

• DEM: https://www.hydrosheds.org/;

https://www.hydrosheds.org/
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• Land Use: National Land Cover Database;

• Soil: NACP MsTMIP - Unified North American Soil Map.

A Vignette describing the source of the data and how to manipulate them in order to
use the PASS procedure is included in the package and reported in Appendix C.



Chapter 5

Identification, characterization and
classification of runoff events

In this chapter, the regionally calibrated TUWmodel is used for the identification,
characterization and classification of runoff events in North-Western Italy, with
the aim of obtaining an event typology from simulated runoff for this area, which
is coherent with the correspondent event typology that is provided by observed
discharges at gauged sites.

First, the event separation method proposed by Giani et al. (2022) is adopted
to extract events for the 117 sites with available discharge measurements over the
period 1961-2020, and observed and simulated runoff characteristics (i.e. runoff
coefficient, event duration, event peak time, event peak and event volume) are
spatially compared. The same procedure is then performed for a wider catchment
dataset, i.e. the European Catchments and River Network System (ECRINS), to get
distributed statistics of runoff event characteristics by considering events in around
700 catchments.

Secondly, the characterization and classification of runoff events following the
framework described in Tarasova et al. (2020) is performed. By using several climatic
indicators, the first-order controls of event runoff response are identified in a wide
variety of catchments. This reveals distinct regions with homogeneous event type
frequency and the spatio-temporal pattern of event type occurrence as obtained by the
simulated streamflow is coherent with the event typology from observed discharges,
reflecting the hydroclimatic conditions of the area.
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5.1 Runoff Event Identification

The runoff event extraction is performed using the methodology for rainfall-runoff
event identification proposed by Giani et al. (2022). The method is based on a
time series analysis that simultaneously considers rainfall and discharge time series
without making any a priori assumption about the baseflow separation. In fact, this
is produced a posteriori, by connecting the delimiters of the identified streamflow
events. The method can be efficiently applied at different time resolutions (i.e.
hourly or daily), as long as the resolution is sufficient to capture the time delay
between precipitation and runoff response. By looking at the simultaneous evolution
in time of rainfall and streamflow time series, the method is able to identify events
as "system" realizations. This technique is based on the Detrending Moving-average
Cross-correlation Analysis (DMCA)-based method for the estimation of the catch-
ment response time (Giani et al., 2021) and for this reason is named DMCA-Event
Separation Routine (DMCA-ESR).

5.1.1 DMCA-Event Separation Routine (DMCA-ESR)

The DMCA-ESR is based on the DMCA-based method for the estimation of the
catchment response time (Tr) (Giani et al., 2021). Tr is used for a hydrologically
meaningful selection of rainfall-runoff events that implies the grouping of all the
rainfall contributions building a streamflow event. According to the mentioned
method, Tr is defined as the average lag between the center of mass of rainfall and
the center of mass of streamflow across all the events. The method provides an
estimate of Tr by identifying the time scale for which the correlation among the
two time series is the highest. DMCA-ESR looks at the evolution in time of rainfall
and streamflow, allowing to define the event as a system. An important feature of
this method is its flexibility, as it can be applied to different time resolutions by
adjusting only one parameter, i.e. the minimum rainfall intensity which is considered
significant at a given time resolution.

In this section, the steps required by the method to perform the extraction of
rainfall-runoff events from a continuos time series are described in detail.
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1: Search of typical catchment response time

The first step is to find the characteristic Tr for the analysed catchment using the
DMCA-based method. The estimate depends on the temporal data resolution but it
is essential that the resolution is high enough to capture the delay between rainfall
and runoff response. Tr is particularly important in order to evaluate the rainfall-
streamflow interactions when contributions in the two series are grouped at the
window scale associated to Tr, i.e. Lmin. Once an estimate of Tr is produced
(Tr = Lmin−1

2 ), the steps of DMCA-based method are re-applied using the window
Lmin to obtain timeseries of rainfall and streamflow fluctuations, which are used to
identify rainfall and streamflow events (Figure 5.1).

Fig. 5.1 (a–i) Graphic representation of steps (I, II, III) of DMCA-based methodology for
moving average window lengths L = 151, L = 273, L = 351. Green lines relate to rainfall,
gray lines to streamflow. The red (blue) arrows underline periods of negative (positive)
bivariate fluctuations. (j) DMCA-based correlation coefficient variability with L, with circles
showing correlation for the three window lengths above. Adapted from Giani et al. (2021).

Step 2: Setting a rainfall fluctuation tolerance

This step is used to adjust the time series analysis technique for the long dry or steady
period required to break down the different contributions into different events. When
the fluctuation between cumulative timeseries and averaged-cumulative timeseries
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is zero, the original time series is steady, i.e. no event is occurring. These steady
state periods can be used as break points for event identification if the period has a
minimum duration of Lmin. Due to the fact that any rainfall contribution within a
window equal to Lmin, even small, would prevent the discretization of the timeseries
in different events, a tolerance for rainfall fluctuation (Rfluct.tol) is introduced. Any
rainfall fluctuation smaller than the tolerance is set to zero. To define the rainfall
fluctuation tolerance, it is considered the maximum absolute rainfall fluctuation
between cumulative rainfall and averaged-cumulative rainfall generated by a given
rainfall intensity, Rmin (Giani et al., 2022):

Rfluct.tol =
Rmin

Lmin
· Lmin −1

2
(5.1)

where Rmin
Lmin

is the absolute increment in fluctuation per time step and Lmin−1
2 is

the maximum number of timesteps for which there is an increase in fluctuation.
In Eq. (5.1) the only parameter is Rmin, which must correspond to the smallest
rainfall intensity considered significant at the specific time resolution. Following
the indication provided in Giani et al. (2021), in the range of values between 0.1
and 1 mm/hour the event selection is not very sensitive to the value of Rmin. For the
conversion of Rmin at daily resolution, the Intensity-Duration-Frequency approach
(IDF) is suggested (i.e. finding the intensity associated with the 24h duration,
considering the same return period). Following this approach, the range 0.1-1
mm/h converts to 0.02-0.2 mm/h. For the analysis conducted in the context of this
Dissertation, the value of 0.02 mm/h is selected.

Step 3: Selection of cores of rainfall and streamflow events

The core of an event is defined as the time interval within each event when both
rainfall and discharge are unsteady. This implies that rainfall and streamflow events
are associated to each other if they share the same core. The core of the rainfall-
streamflow event is identified by looking at the bivariate fluctuation (Figure 5.2b), that
is the product of rainfall fluctuations, corrected with the tolerance, and streamflow
fluctuations (Figure 5.2a). When bivariate fluctuations are zero, this reveals that
either rainfall or streamflow fluctuations (or both) are zero. This way, all the small
rainfall contributions which do not generate runoff are excluded a priori. Zero
bivariate fluctuations are break points for core identification only if two consecutive
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time steps have zero values, to prevent that a change of fluctuations sign can be
misinterpreted. The identified delimiters of the core represent the starting point to
set the delimiters of rainfall and streamflow events.

Step 4: Identification of the end of rainfall events

The first guess is that the end of the rainfall event coincides with the end of the core.
The position of the end of the rainfall event is then adjusted considering three cases:

1. The core has ended because rainfall fluctuations are zero and the rain at
that point is zero. This is the most common case, explained by the fact that
fluctuations are different from zero for a duration equal to Lmin after the rainfall
ends. In this situation, the delimiter is put backward in time, at the first time
step of non-zero rainfall (Figure 5.2c).

2. The core has ended because rainfall fluctuations are zero and the rain at that
point is different from zero. This case is generated by the introduction of the
rainfall fluctuation tolerance; the delimiter is put forward in time, at the first
time step when rainfall is lower than Rmin (Figure 5.2d).

3. The core has ended because streamflow fluctuations are zero; in this situation
the delimiter is put backward in time until the rainfall becomes larger than
Rmin (Figure 5.2e).

In the case when both rainfall and streamflow fluctuations are zero at the end of the
core, the delimiter for the end of rainfall event is put following the approach for
cores which end because of zero rainfall fluctuations.

Step 5: Identification of the beginning of rainfall events

The first guess is that the beginning of the rainfall event coincides with the beginning
of the core. The position of the beginning of the rainfall event is then adjusted
considering three cases:

1. Just before the core started, rainfall fluctuations are zero and the rain at that
point is also zero. This is the most common case, explained by the fact that
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fluctuations are different from zero for a duration equal to Lmin before the
rainfall starts. In this situation, the delimiter is put forward in time, at the first
time step of non-zero rainfall (Figure 5.2f).

2. Just before the core started, rainfall fluctuations are zero and the rain at that
point in time is different from zero. This case is generated by the introduction
of the rainfall fluctuation tolerance. The delimiter is put backward in time, at
the first time step when rainfall is lower than Rmin (Figure 5.2g).

3. Just before the core started, the streamflow fluctuations are zero; in this situa-
tion the delimiter is put backward in time until the rainfall becomes lower than
Rmin (Figure 5.2h).

Also in this case, when both rainfall and streamflow fluctuations are zero, the
delimiter for the beginning of rainfall event is put following the case of zero rainfall
fluctuations.

Step 6: Check on rainfall events

During the definition of rainfall events, there is the possibility of finding unrealistic
rainfall events which end even before starting. For this reason, at this stage all the
rainfall events which show their beginning after their end, together with the events
which are not delimited by dry periods or periods of rainfall lower than Rmin, are
discarded.

Step 7: Identification of the end of streamflow events

The position of the end of the streamflow event is adjusted considering two cases:

1. The core has ended because the rainfall fluctuations are zero. In this situation,
as first guess it is assumed that the end of the streamflow event coincides with
the end of the rainfall event. As it is expected to find the end of the streamflow
event after the rainfall event, the delimiter is put forward in time at the end of
positive streamflow fluctuations (Figure 5.2i).
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2. The core has ended because the streamflow fluctuations are zero. In this
situation, as first guess it is assumed that the end of the streamflow event
coincides with the end of the core. As it is expected to have positive streamflow
fluctuations at the end of the event, the delimiter is put backward in time when
the streamflow fluctuations become positive (Figure 5.2j).

Again, if both rainfall and streamflow fluctuations are zero, it is followed the proce-
dure indicated for zero rainfall fluctuations.

Step 8: Identification of the beginning of streamflow events

The position of the beginning of the streamflow event is adjusted considering two
cases:

1. Just before the core started the rainfall fluctuations are zero. In this situation,
as first guess it is assumed that the beginning of the streamflow event coincides
with the beginning of the rainfall event. As it is expected to find the start of
the streamflow event after the start of the rainfall event, the delimiter is put
forward in time when the streamflow fluctuations become negative (Figure
5.2k).

2. Just before the core started, the streamflow fluctuations are zero. In this
situation, as first guess it is assumed that the beginning of the streamflow event
coincides with the beginning of the core. The delimiter is put forward in time
when the streamflow fluctuations become negative (Figure 5.2l).

Again, if both rainfall and streamflow fluctuations are zero, it is followed the proce-
dure indicated for zero rainfall fluctuations.

Step 9: Check on streamflow events

During the definition of streamflow events, there is the possibility of finding unrealis-
tic streamflow events which end even before starting. For this reason, at this stage all
the streamflow events which show their beginning after their end, together with their
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corresponding rainfall events, are discarded. Other categories of events are discarded
here:

• events for which the beginning (or end) delimiter of the streamflow event
occurs earlier than the beginning (or end) delimiter of the rainfall event.

• streamflow events, and the corresponding rainfall events, which do not start
with negative fluctuations and they do not end with positive ones.

Step 10: Check on rainfall-streamflow events

Given the way rainfall-streamflow events are defined, there might be some overlaps
between contiguous rainfall events or between contiguous streamflow events. At this
stage, overlapping events are lumped together into one single event.

5.1.2 Observed and simulated runoff event characteristics for
gauged sites

In this section, the runoff event extraction is performed over the 117 stations, dis-
tributed over the region, for which streamflow data are available within the period
from 1961-01-01 to 2020-12-31. The runoff event extraction algorithm (see section
5.1.1) is run both with observed and simulated discharge data. Parameters that are
regionally calibrated with the PASS procedure during the period 2000-2010, by
using snow cover information, are used to run the simulations. In particular, all the
30 groups of parameters are used to run the simulations in the 117 catchments and
the results in terms of model efficiency are saved. In the next step, only the group
showing the highest model efficiency is used to run the simulation in each catchment
and the simulated series from 1961 to 2020 is saved. Finally, the event separation is
performed using the simulated streamflow and precipitation for all the catchments.
The precipitation input for event separation is the sum of liquid precipitation (i.e.
rainfall) and snow melt, according to the snow routine embedded in TUWmodel.
An example of event separation on a continuos streamflow series for a single site in
North-Western Italy is shown in Figure 5.3.
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Fig. 5.2 Summary of DMCA-ESR. The legend applies to all the individual subfigures (5.2a-
5.2l). Adapted from Giani et al. (2022).
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Among the entire set of 117 sites, 108 catchments for which both the observed
and simulated runoff event extraction works properly are selected. For each event,
the following runoff event characteristics are calculated:

Fig. 5.3 Example of event separation performed on Agogna river catchment at Momo (204
km2) in North-Western Italy, using the method described in Giani et al. (2022).

1. Runoff coefficient [-]: it is defined as the ratio between the direct runoff and
the precipitation volume;

2. Event duration [d]: it is defined as the length in time of the streamflow event;

3. Event peak time [d]: it is defined as the time step that corresponds to the peak
flow;

4. Event peak flow [mm/h]: it is defined as the maximum discharge level reached
during the event;

5. Event volume [mm]: it is defined as the direct runoff of the event.

First, among the set of observed and simulated events, the events showing a runoff
coefficient > 1 and/or event duration > 120 days are discarded. Runoff coefficients >
1 can rise for two main reasons: either a quota of precipitation is given by convective
storms that are not well captured by spatially distributed rain gauges or the event is
driven by intense, not captured, snowmelt. Overall, the number of events with runoff
coefficient greater than 1 is quite small, as reported in Table 5.1. The statistics for
the discarded events are reported in Table 5.2. It is worth noting that, compared to
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Table 5.1 Statistics of the number of observed and simulated events having rc > 1.

Type Min 1st Quantile Median Mean 3rd Quantile Max
Observed 0 0 1 1.66 2 25
Simulated 0 0 0 0.49 0 12

Table 5.2 Statistics of the number of observed and simulated events which are discarded.

Type Min 1st Quantile Median Mean 3rd Quantile Max
Observed 0 0 1 1.71 2 25
Simulated 0 0 1 3.09 3 65

the observed events, the number of simulated events having runoff coefficient greater
than one is lower, while the model identifies more events having extra long duration.

Secondly, the set of observed events is analyzed to get the number of events
captured by the event separation on the simulated time series. The criterion used
for the identification deals with the potential intersection among the observed and
simulated event. If this is greater or equal than 40% of the maximum length among
the length of observed and simulated event, the observed event is saved in the list of
the captured events. At the end, the ratio among captured and total observed events
in each catchment is calculated. The statistics for this variable is provided in Table
5.3.

Table 5.3 Statistics of the fraction of captured observed events over total observed events
[%].

Min 1st Quantile Median Mean 3rd Quantile Max
11 37 44.5 43.7 50 76

The matching observed and simulated events are finally compared for all the
catchments in terms of event characteristics, i.e. runoff coefficient, event duration,
event peak time, event peak, event volume (Figure 5.4 - 5.8).

The results show some clear spatial patterns of runoff characteristics over the
region. The highest values of runoff coefficient (Figure 5.4) are found in the north-
eastern part of the region (e.g., San Bernardino river catchment), in Valle d’Aosta
and in the sourthern part of the region (Bormida, Orba and Tanaro river catchments),
at medium-high elevation (Figure 5.9a). The values are lower in the central Po
Valley and in the western part. Overall, the simulations quite overestimate the mean
runoff coefficient (Figure 5.9a), especially in the South (Figure 5.4), but the spatial
pattern is captured and the range of the mean is maintained between 0 and 0.4



82 Identification, characterization and classification of runoff events

(a) Observed (b) Simulated

Fig. 5.4 Mean runoff coefficient for a) observed runoff events and b) corresponding simulated
runoff events by using the regionally calibrated TUWmodel, in 108 catchments. In the inset,
the continuos line represents the non-exceedance probability of mean runoff coefficient, while
the dashed lines represent the non-exceedance probability of the 10th and 90th percentiles of
runoff coefficient.

(a) Observed (b) Simulated

Fig. 5.5 Mean event duration for a) observed runoff events and b) corresponding simulated
runoff events by using the regionally calibrated TUWmodel, in 108 catchments. In the inset,
the continuos line represents the non-exceedance probability of mean event duration, while
the dashed lines represent the non-exceedance probability of the 10th and 90th percentiles of
event duration.
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(a) Observed (b) Simulated

Fig. 5.6 Mean event peak time for a) observed runoff events and b) corresponding simulated
runoff events by using the regionally calibrated TUWmodel, in 108 catchments. In the inset,
the continuos line represents the non-exceedance probability of mean event peak time, while
the dashed lines represent the non-exceedance probability of the 10th and 90th percentiles of
peak time.

(a) Observed (b) Simulated

Fig. 5.7 Mean event peak for a) observed runoff events and b) corresponding simulated
runoff events by using the regionally calibrated TUWmodel, in 108 catchments. In the inset,
the continuos line represents the non-exceedance probability of mean event peak, while the
dashed lines represent the non-exceedance probability of the 10th and 90th percentiles of
event peak.
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(a) Observed (b) Simulated

Fig. 5.8 Mean event volume for a) observed runoff events and b) corresponding simulated
runoff events by using the regionally calibrated TUWmodel, in 108 catchments. In the inset,
the continuos line represents the non-exceedance probability of mean event volume, while
the dashed lines represent the non-exceedance probability of the 10th and 90th percentiles of
event volume.

both for observed and simulated events. Event duration (Figure 5.5) shows a quite
limited spatial variability, but it is worth noting that there are some similarities with
the spatial pattern of runoff coefficient. In this case the simulated events, despite
capturing the observed behavior, show higher mean and variability compared to
observed events. The event peak time mimics the pattern of event duration (Figure
5.6). Finally, event peak and event volume (Figure 5.7 and 5.8), representing the
intensity and magnitude of the events, reflect the spatial pattern of runoff coefficient,
with the highest values in the North-East and in the southern catchments, and lower
values in the central and western part of the region. Figure 5.9b and 5.9c highlight
that the highest values of event peak and event volume are found for catchments
located at medium elevation (between 1000 and 1500 m a.s.l.), while lower values
are observed for both lowland and high-elevation Alpine catchments. The observed
pattern of event peak seems to be well reproduced by the model, which, instead,
tends to slightly overestimate the event volume.

Figure 5.10 and 5.11 show, respectively, the distribution of R2 and Nash Sutcliffe
Efficiency (NSE) computed on each catchment by considering the corresponding
extracted observed and simulated runoff events. The results show that while the
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(a) (b)

(c)

Fig. 5.9 a) Mean observed vs. simulated runoff coefficient. b) Mean observed vs simulated
runoff event peak. c) Mean observed vs simulated runoff event volume. Points are discretized
by mean catchment elevation [m a.s.l.].

Fig. 5.10 Distribution of R2 for observed vs. simulated runoff event characteristics, calculated
for each catchment.
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Fig. 5.11 Distribution of Nash Sutcliffe Efficiency (NSE) for observed and simulated runoff
event characteristics, calculated for each catchment.

observed event duration and peak time are poorly represented by the model (and peak
time also shows a low correlation value), the event peak and the event volume are
well represented (median NSE ≥ 0.5). The median R2 of the runoff coefficient is set
to 0.5 but the median NSE proves to be positive, meaning that the model predictions
are quite accurate.

5.1.3 Simulated runoff event characteristics for ungauged sites

In this section, the TUWmodel is used to extract simulated distributed runoff event
characteristics over North-Western Italy. This is performed by taking advantage of a
wide catchment dataset, i.e. the European Environment Agency (EEA) Catchments
and River Network System (ECRINS, 2012).

European Catchments and Rivers Network System (ECRINS) dataset

The European Catchments and River Network System (ECRINS) is the geographical
information system of European watersheds, river and lakes adopted by the Euro-
pean Environment Agency (EEA) and serving as reference system for the Water
Information System for Europe (WISE). In particular, ECRINS is the final product
obtained by the Joint Research Centre (JRC) Catchment Characterisation and Mod-
elling (CCM) activity, which first developed a Catchment Characterisation Model
(CCM) in 2003 with further geographical extension and error correction (JRC, 2008).
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The dataset is generated from a digital elevation model of 100m resolution and
results in digitised objects (mainly rivers and watersheds) with a unique code based
on the location of the feature in the hydrological system. The covered area is the
geographical Europe plus catchments with springs in Turkey and the western Caspian
catchments, for a total area of around 10 million km2 (Figure 5.12).

Fig. 5.12 Geographical extension of ECRINS, displayed with natural catchments.

The main component of this database is the Functional Elementary Catchment
(FEC), which represents the smallest drainage area delineated under the imposed
modelling constraints. These elementary catchments are defined by the accumulation
flow which identifies a likely drainage area. FEC can be either a ’continental FEC’
when built by aggregating elementary CCM catchments from a non-coastal basin, or
a ’coastal FEC’ when elementary CCM catchments belong to a coastal basin. The
rationale followed to build the FECs is based on the Strahler level of catchments
(ECRINS, 2012, Section 5.3). The FEC data structure is detailed in the feature class
C_Zhyd of ECRINS dataset (ECRINS, 2012, Table A1.1) and the main information
is reported in Table 5.4.



88 Identification, characterization and classification of runoff events

Table 5.4 Main FECs information in feature class C_Zhyd.

Variable Description
OBJECTID n/a

Bas0_ID ID of the FEC envelope
BASINNAME Name of the Bas0_ID

ZHYD FEC ID
NextDown ID of the downstream FEC

Outlet n/a
Surf FEC area [km2]
Surfc Cumulated area upstream (FEC not included) [km2]

Surffinal Cumulated area, FEC included [km2]
MeanElev Mean FEC altitude [m]

Simulated runoff event characteristics using TUWmodel and ECRINS

In this section, the results of events separation obtained by running TUWmodel
over North-Western Italy considering the ECRINS distributed dataset are presented.
The parameter sets used for discharge simulation are the outputs of the regional
calibration with PASS, during the period 2000-2010 by using snow cover information.
In order to run the model, a proper selection of the catchments falling inside the grid
of input data for North-Western Italy (OI dataset grid) is performed. In particular,
starting from few downstream catchments that are falling inside the grid, identified
by the ZHYD code, the catchments having as ’NextDown’ these catchments are
chosen. This operation is iteratively repeated up to the headwaters. A subset of 695
catchments is finally identified and represented in Figure 5.13.

For each catchment, all the 30 parameter sets (corresponding to the 30 groups
obtained as output from PASS procedure) are used, thus producing an ensemble of
30 runoff time series, from 1961 to 2020. The runoff event separation code is run
for all the 30 time series, for each catchment. Later, the results are cleaned and, in
particular, potential inconsistent cases, identified events having runoff coefficient >
1 or event duration > 120 days are removed.

Figure 5.14 - 5.16 report the mean value of runoff event characteristics calculated
over the 695 catchments. The mean value is obtained by taking the mean of the
variable over each of the 30 groups (corresponding to the 30 parametrizations) and
then averaging these values. It is worth noting that the spatial pattern of event
characteristics is in line with the results found for gauged sites (Figure 5.4-5.8).
Moreover, event duration and peak time (Figure 5.14b and 5.15a) show a similar
pattern as well as event peak and event volume (Figure 5.15b and 5.16), as can be
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Fig. 5.13 ECRINS catchments with superimposed input data grid over North-Western Italy.

expected. Table 5.5 summarizes the statistics of the five event characteristics over
the region.

5.2 Runoff Event Characterization and Classification

In the context of climate change, which impacts natural and physical processes
through a variety of mechanisms, understanding the generation processes of runoff
events is of particular importance to highlight drivers behind possible shifts in river
flows seasonality, long-term trends of floods and flood hazard changes. To this aim,
the use of a classification framework is pivotal to link runoff generation processes to
individual catchment responses at the event time scale. The importance of such a
framework lies in the reduction of a great amount of information into a fixed number
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(a) (b)

Fig. 5.14 a) Mean runoff coefficient calculated for simulated runoff events in the period
1961-2020 b) Mean event duration calculated for simulated runoff events in the period
1961-2020.

(a) (b)

Fig. 5.15 a) Mean event peak time calculated for simulated runoff events in the period 1961-
2020 b) Mean event peak calculated for simulated runoff events in the period 1961-2020.
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Fig. 5.16 Mean event volume calculated for simulated runoff events in the period 1961-2020.

Table 5.5 Statistics of simulated mean runoff event characteristics distributed over North-
Western Italy.

Runoff event characteristic Min 1st quartile Median Mean 3rd quartile Max

Runoff coefficient [-] 0.073 0.104 0.130 0.131 0.152 0.247
Event duration [d] 12.54 18.11 19.98 20.46 22.31 34.98

Event peak time [d] 4.80 6.39 7.01 7.16 7.88 12.80
Event peak [mm/h] 0.037 0.07 0.127 0.138 0.182 0.482
Event volume [mm] 2.86 9.20 15.36 17.35 23.12 77.11

of classes that can be managed. Many studies focus on process-based classification
of large runoff events (e.g., maximum annual floods) at different spatial scales, from
regional to continental (e.g., Hirschboeck, 1987; Weingartner and Diezig, 2007; Nied
et al., 2014; Sikorska et al., 2015; Merz and Blöschl, 2003; Berghuijs et al., 2016;
Berghuijs et al., 2019; Stein et al., 2019). However, these studies don’t consider the
large range of variability of runoff magnitudes and tend to neglect pre-event wetness
states and the interaction among soil moisture and precipitation, which instead are
key drivers of runoff generation (Tarasova et al., 2019). Analyzing and quantifying
the spatial and temporal variability of drivers of runoff, such as soil moisture, or
moments of flood response at the catchment scale is crucial for correctly interpreting
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runoff triggers (Viglione et al., 2010) and new available hydrometeorological datasets
(e.g. from satellites) are useful tools to accomplish this goal.

In this section, we take a further step in the event analysis by applying the
consistent framework proposed in Tarasova et al. (2020) in North-Western Italy, with
the aim of providing a picture of event types based on runoff-generation processes
over the area. Observed event types for the gauged sites are compared with the
simulated runoff event types, obtained by running TUWmodel over the study area in
a distributed mode. The framework allows to use non dimensional indicators (mainly
covariance and ratio based indicators), which are inherently less uncertain compared
to indicators of absolute value, in order to characterize space-time dynamics of
precipitation events and their interaction with antecedent states in terms of snow
cover, frozen soils and soil moisture. The derived event typology captures the first-
order controls of runoff response in a wide variety of catchments and allows to
identify sub-regions of homogeneous event type frequency in North-Western Italy.
The identified sub-regions prove to be spatially consistent when using observed and
simulated runoff, confirming the ability of the model in reproducing hydrological
processes at the event scale. The results show regional differences and similarities of
runoff generation processes over the region that are consistent with the prevailing
hydroclimatic conditions.

5.2.1 A process-based framework for event characterization

The characterization framework used in this Dissertation is a multi-layer process-
based framework for runoff event characterization, which is based on a set of
indicators describing different aspects of the transformation of rainfall into runoff
(e.g., space-time dynamics of rainfall and snowmelt, antecedent catchment wetness
states, snow cover and soil freezing conditions). The indicators are divided into
two layers, as shown in Figure 5.17. The set of runoff events is split at each layer
according to predefined thresholds, allowing to label each event with a specific
category. All the indicators used, together with the applied thresholds, are shown in
Table 5.6.
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Table 5.6 Indicators and corresponding thresholds of each characterization layer.

Layer Selected indicator (dimensionless) Expression Selected thresholds and
possibile intervals Performed split

a) Inducing event Ratio of event snowmelt volume and
total event precipitation volume

Mx,y,t

Px,y,t

Th_ratio.Rain.Melt = 0.95
[0,1]

Snowmelt vs. any other
type

Ratio of event rainfall volume and
total event precipitation volume

Rx,y,t

Px,y,t

Th_ratio.Rain.Melt = 0.95
[0,1]

Rainfall or Rain-
on-ice vs. Mixture
or Rain-on-snow

Normalized spatial covariance of event-
averaged snow cover and rainfall

covx,y(SWE t,Rt)

SWEx,y,t ∗Rx,y,t

Th_cov = 0
(-∞, +∞)

Rain-on-snow vs.
Mixture

Normalized spatial covariance of pre-
event level of soil freezing and event rainfall volume

covx,y(SF(t0),Rt)

SFx,y,t ∗Rx,y,t

Th_cov = 0
(-∞, +∞)

Rain-on-ice vs.
Rainfall

Temporal organization
Temporal coefficient of variation of

precipitation rate

√
vart(Px,y)

Px,y,t

Th_cv.temp = 1
(0, +∞)

Volume-dominated
vs. Intensity-dominated

Ratio of maximum precipitation rate and
total precipitation volume

max(Px,y(t))
Px,y,t

Th_ratio.Vol.Int. = 0.5
(0,1]

Volume-dominated vs.
Intensity dominated

Space-time organization
Spatial coefficient of variation of

precipitation event volume

√
varx,y(Pt)

Px,y,t

Th_cv.space = Q2
(0, +∞)

Local
vs. Extensive

Mean normalized spatial covariance
of precipitation rates between consecutive time steps

1
t +1

∑t
covx,y(P(t),P(t +1))

Px,y,t ∗Px,y,t

Th_cov = 0
(-∞, +∞)

Steady vs.
Unsteady

b) Wetness state Catchment-averaged antecedent soil moisture SMx,y(t0)
Th_sm = max(K)

[0,1]
Wet vs.

Dry

Spatial interaction
of precipitation and

soil moisture

Spatial coefficient of variation of
antecedent soil moisture

√
varx,y(SMt0)

SMx,y,t

Th_cv.space = Q2
(0, +∞)

Uniform vs.
Patchy

Normalized spatial covariance of
precipitation event volume and

antecedent soil moisture

covx,y(SM(t0),Pt)

SMx,y,t ∗Px,y,t

Th_cov = 0
(-∞, +∞)

Patchy No Overlap vs.
Patchy Overlap

It is worth mentioning that the proposed framework doesn’t consider streamflow
data to define categories. In the first layer of the framework the type of inducing
meteorological event is analyzed. An event is a pure snowmelt event if the volumetric
ratio of catchment-averaged event snowmelt and total precipitation is larger than
0.95. Similarly, for a pure rainfall event, the ratio of catchment-averaged rainfall
and total precipitation is larger than 0.95. A rainfall event can be in particular a
Rain-on-ice event (RoI), meaning that rain falls on frozen soils, based on the spatial
covariance of event-averaged rainfall volume and pre-event degree of soil freezing
(SF(t0)). SF(t0) is defined as :

SF(t0) =
n

∑
i=0

|Ti| (5.2)

where T is the air temperature of a snow-free pixel and n is the number of days
with air temperature below -2 ◦C during the 5 days before the start of rainfall event.
Within the sample of events that are mixture of rainfall and snowmelt, Rain-on-snow
(RoS) events are determined if the normalized spatial covariance of event averaged
snow water equivalent and event rainfall volume is positive.
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Another aspect investigated in this layer is the temporal organization of the
inducing event. In this respect, the coefficient of variation in time of the catchment-
averaged precipitation rate and the ratio of the maximum intensity to total volume
of the inducing event are considered as indicators. For the latter, the threshold
used is 0.5, so that if the ratio is higher than this threshold, the event is defined as
intensity dominated, viceversa it is volume dominated. This corresponds to runoff
generation mechanisms of infiltration-excess and saturation-excess (Horton, 1933;
Dunne, 1978).

Going beyond the temporal dimension of the runoff events, the interaction
between space and time dimensions is investigated, by using the spatial coefficient
of variation of precipitation volume and the mean spatial covariance of precipitation
rates between consecutive time steps (Table 5.6). This allows to categorize an event
as Local Steady, Local Unsteady, Extensive Steady and Extensive Unsteady (Figure
5.17). A Local event is characterized by an uneven distribution of the precipitation
volume over the catchment, suggesting a local runoff generation. On the opposite, the
event is defined Extensive if the precipitation volume is evenly distributed, suggesting
extensive runoff generation. A Steady event occurs mainly in the same part of the
catchment area during consecutive days, leading to higher likelihood of saturation.
An Unsteady event is characterized, instead, by the variation of the precipitation
centroid in time, with the event involving different portions of the catchment.

The second characterization layer divides events according to the catchment
wetness state (Figure 5.17). First, events are subdivided in Wet or Dry based
on catchment-averaged antecedent soil moisture. In theory, since the non-linear
storage-discharge relation can be different for varying catchments, defining a unique
threshold of soil moisture to classify wet and dry states can be misleading. For
this reason, in Tarasova et al. (2020) the value of soil moisture corresponding to
the maximum curvature κ of a fitted exponential function describing the non-linear
relation between the runoff coefficient (rc) and antecedent soil moisture (sm) is used
as threshold. Nevertheless, for practical reasons, in this study a single representative
value equal to 0.7 is selected as wetness state threshold.

Once defined the catchment wetness state, the spatial interaction between the
inducing precipitation event and the catchment wetness state is investigated. To
this aim, the spatial coefficient of variation of antedecent soil moisture gives the
indication of a Uniform or Patchy spatial organization of soi moisture. In case of a
Patchy (not homogeneous) organization, the spatial covariance of soil moisture state
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Fig. 5.17 The multi-layer framework for process-based characterization and categorization of
runoff events (adapted from Tarasova et al. (2020)). Indicators and categorization thresholds
used for each layer are indicated in Table 5.6.

and precipitation volume is used to detect overlaps of saturated areas and wetted areas
due to the precipitation event. This leads to the following event categories: Uniform,
Patchy Overlap or Patchy No Overlap (Figure 5.17). To summarize, the threshold
used for covariance-based indicators is 0, as positive covariance corresponds to
a spatial overlap of hydrometeorological variables. For indicators based on the
temporal coefficient of variation, the threshold is 1. Finally, spatial coefficient of
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variation is dependent on catchment size (larger catchments show higher spatial CV)
and thus, for each catchment, the median of the event values is taken as threshold.

5.2.2 Hierarchical event classification

The combination of the event categories found by applying the characterization
framework fully describes the runoff generation process of a single event. The
combinations are chosen according to some a priori knowledge on runoff generation
at catchment scale (Table 5.7), leading to a hierarchical classification (Figure 5.18).

Table 5.7 Event types and corresponding hypothesized runoff generation processes at catch-
ment scale. Adapted from Tarasova et al. (2020).

Fig. 5.18 A decision tree for the hierarchical classification of runoff events. Hypothesized
runoff generation processes corresponding to each type of runoff events are described in
Table 5.7. Adapted from Tarasova et al. (2020).
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5.2.3 Observed and simulated event typology in North-Western
Italy

In this section, the final classification of events in different types (Figure 5.18) is
performed in North-Western Italy, by considering both the 108 catchments, for which
observed discharge data is available, and the ECRINS distributed catchment dataset,
over which TUWmodel is applied. The aim is to obtain a typology both for observed
and simulated events and verify the ability of the model in reproducing the spatial
distribution of observed event type frequency over the region. This is an exemplary
application, similar to the one presented in Tarasova et al. (2020).

Observed event types

The catchments for which discharge data are available are clustered according
to the frequency of occurrence of their event types. Four clusters are identified
with specific event type distributions, based on thresholds of observed event type
frequency in each catchment, deemed suitable to describe the data variability over the
catchments. In particular, Cluster 2 gathers catchments for which the frequency of
Rain.Dry.Intensity.Extensive.Steady events is > 10% and the sum of Rain-on-snow
and Mix.Rain.Snowmelt frequencies is also > 10%. For catchments of Cluster 3,
the Mix.Rain.Snowmelt, Rain-on-snow and Snowmelt events are dominant with a
total frequency > 50%. Cluster 4 contains catchments having both a frequency of
Rain-on-snow > 10% and a Rain-on-snow and Mix.Rain.Snowmelt total frequency
> 20%. The remaining catchments, typically having a dominant Rain.Dry.Volume
component, are assigned to Cluster 1.

Looking at the results (Figure 5.19a), Cluster 1 consists of lowland catchments
that are located in the central Po river Valley, partially in the North-East (e.g, Agogna
river catchment) and in the southern part in the proximity of the Apennines (Bormida
and Tanaro river). For this cluster, intensity-dominated events under dry conditions
represent an important fraction of all events (24%) and the majority of these are
unsteady (9%). Volume-dominated events with local characteristics under dry con-
ditions (Rain.Dry.Volume.Local) represent the most dominant class (18%). Events
occurring under wet conditions and events characterized by the presence of snow
represent a small fraction of the total.
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The second cluster consists of catchments located both in lowland and at medium
elevation. With regard to Figure 1.3a, the results shows that Cervo and Sesia
catchments are included as well as Orco and, in the South, catchments pertaining
to Bormida, Tanaro and Orba river. The fraction of events impacted by snow
(Mix.Rain.Snowmelt, Rain-on-Snow, Snowmelt) is higher compared to cluster 1 and
extensive and steady rainfall events in dry conditions are dominant types for these
catchments, both intensity (11%) and volume (19%) types.

Cluster 3 includes all the Alpine catchments from South-West to North (mainly
Doria Riparia, Dora Baltea and Toce), where Snowmelt events are relevant (8% of
the total), and also large catchments extending towards the Po Valley, characterized
by high elevation zones and the presence, among others, of events being mixture of
rainfall and snowmelt (Mix.Rain.Snowmelt, 42% of the total). The portion of rainfall
events during wet conditions is very small for this cluster.

Finally, cluster 4 includes catchments that are widespread over the region but
mainly located in mountainous area, at quite high elevation. It appears to be similar
to Cluster 2 but the portion of Mix.Rain.Snowmelt, Rain-on-snow and Snowmelt is
higher (36% in total). Extensive volume-dominated events during dry conditions
prevail (the steady ones represent 17% of the total).

(a) (b)

Fig. 5.19 Regional pattern of observed event type frequency in North-Western Italy: a) spatial
distribution of four event clusters with homogeneous frequency of event types. b) frequency
of event types for each cluster.
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Simulated event types

Similarly to the observed runoff events, the same characterization and classification
procedure is performed with the simulated events, spanning the period from 1961
to 2020, by considering the ECRINS dataset. Since results in terms of event type
frequency are not dependent on the specific parameterization used, one is chosen
among the possible 30 groups derived from the regionalization procedure. The same
criteria adopted for the observed events are here used to cluster the 695 catchments
according to event frequency. Figure 5.20 reports the event type frequency associated
to each cluster and the spatial distribution of the clusters. It emerges that both
the frequency of events and the spatial pattern of clusters are consistent with the
corresponding observed ones, despite some specific differences.

In cluster 1, the volume-dominated events in dry conditions are stil dominant, but
the unsteady types (both intensity and volume) constitute an important portion of all
events. In particular, Rain.Dry.Volume.Extensive.Unsteady events represent the 19%
of the total, while Rain.Dry.Intensity.Unsteady the 11%. The portion of events that
are not pure rainfall (Rain-on-ice, Mix.Rain.Snowmelt, Rain-on-snow, Snowmelt)
is higher compared to the corresponding fraction in the observed events cluster.
Simulated clusters 2, 3 and 4 (Figure 5.20b) are very similar to the corresponding
observed clusters (Figure 5.19b) but the quota of the above mentioned event types is
higher when considering simulations. It is worth noting that in cluster 3 the fraction
of Snowmelt events (14%) is higher than the fraction of Rain-on-snow events (10%),
as opposed to the results for observed events.
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(a) (b)

Fig. 5.20 Regional pattern of simulated event type frequency in North-Western Italy: a)
spatial distribution of four event clusters with homogeneous frequency of event types. b)
frequency of event types for each cluster.

5.3 Conclusions

In this chapter, the regionally calibrated TUWmodel is used for identifying runoff
events and determining the spatial distribution of event characteristics (i.e. runoff
coefficient, event duration, event peak time, event peak and event volume) over the
region. First, the event characteristics found by using the simulated runoff series are
compared to observed event characteristics in 108 sites, where the event extraction
procedure works properly both for observed and simulated discharges. Then, the
model is applied with a wider catchment dataset to get distributed statistics of runoff
event characteristics. In a second phase, the events are characterized and classified
by using some dimensionless climatic indicators that allow to identify the runoff
generation mechanisms and produce classes of events (i.e. event types).

Concerning runoff event characteristics, the results show that the mean observed
runoff coefficient, event peak and event volume are maxima over catchments located
in the northeastern and southern part of the study area. The model is able to properly
capture the spatial pattern of observed runoff event characteristics, even if a quite
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important discrepancy is found among the mean and variability of observed and
simulated event duration. Runoff event peak and volume show quite good perfor-
mances with median R2 and Nash-Sutcliffe Efficiency (NSE) greater than 0.75 and
0.5, respectively, while the performance is lower for runoff coefficient, duration and
peak time. A consistent spatial pattern of event characteristics is obtained by running
the model in a distributed mode in ungauged sites. The highest values of the char-
acteristics, in particular runoff coefficient, event peak and event volume, are found
in catchments that are located close to the mountainous chains of North-Western
Italy (i.e. Alps and Apennines), at an altitude range of 1000-1500 metres. Instead,
catchments located at higher elevations over the Alpine range and in the Po River
Valley generally display lower values.

By analysing the results obtained with event characterization and classification,
catchments displaying the highest mean characteristics mainly belong to either cluster
2 or cluster 4, for which the portion of Rain-on-Snow and Rain.Dry.Volume.Extensive.
Steady events represent an important fraction of the total number of events. Instead,
the lowland catchments and the high-elevation catchments in the Alps belong to either
cluster 1 and 3, where volume-dominated local/unsteady events and snow-impacted
events are dominant, respectively.



Chapter 6

Discussion and Conclusions

This Dissertation deals with river flood characterization in North-Western Italy.
After a brief description of the study region and the main data used in Chapter 1, a
statistical analysis of annual maximum discharges and standard ETCCDI indices
is performed, to get an indication on which climate variables better explain the
interannual variability and the long-term tendency of floods. In the second part,
the available runoff dataset is expanded in time and space by using the conceptual
semi-distributed rainfall-runoff model TUWmodel, with the aim of characterizing
runoff events over the same region and get a picture of the classified event types,
which reflect different hydroclimatic conditions leading to floods. In this context,
the model is regionally calibrated using a decision tree machine-learning algorithm
and a documented regionalization procedure. The modelling results can be used to
detect potential temporal changes of runoff characteristics of different flood event
types and attribute these changes to climate drivers.

In Chapter 2, the temporal correlation analysis among ETCCDI indices and runoff
extremes provides interesting results in terms of extreme precipitation: R99pTOT,
R95pTOT, Rx5day, Rx1day are highly positively correlated to annual discharge
maxima, more than indices reflecting mean precipitation conditions. In particular,
R99pTOT shows higher correlation to annual floods compared to R95pTOT. This
is probably due to the fact that the former incorporates a very high precipitation
threshold, so it is a good proxy for the annual maximum flow events, while the latter
includes less intense rainfall events, not necessarily leading to the largest floods. For
this reason, R95pTOT could be used to describe other discharge indicators (e.g., flow
volume, not considered in this work). By comparing the results of maximum 1-day
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precipitation (Rx1day) and maximum consecutive 5-day precipitation (Rx5day),
it is worth noting that Rx1day shows higher correlation to annual maxima for
small catchments, while Rx5day performs better for large catchments. This can be
explained by the interplay between the duration of rainfall events and the catchment
response time. In fact, longer (shorter) rainfall events are relevant in causing floods
in larger (smaller) catchments. The majority of intermediate-sized catchments (i.e.,
100 < A < 600 km2) don’t show high correlation for extreme indices. A possible
improvement could be to adopt some ad-hoc indices to capture rainfall events with
a time-scale that is more adequate for these catchment sizes. An example is the
maximum consecutive 3-day precipitation (Rx3day), which is not considered in this
Thesis, since it is not included in the standard ETCCDI indices.

The spatial correlation analysis of tendencies is based on the assumption that
an indication of which indices are correlated to annual floods can be obtained
by searching for indices whose tendency is correlated in space (considering the
ensemble of catchments) with the tendency of floods. It is important clarifying that
the identified ETCCDI indices explain flood tendencies at a regional level, not at
a sub-regional or local level. The trend analysis highlights some limitations of the
results in terms of the statistical significance of the differences within the region,
i.e. taking into account uncertainty, the estimated trends are often overlapping. This
can be mainly attributed to the limited length of the series (15 years, on average).
Nonetheless, it is worth noting that finding trends which are significantly different
from zero is not so relevant in this analysis, since the main purpose is to check for a
coherent tendency correlation of climate indices and floods in all sites. To this regard,
the spatial correlation analysis allows to attribute the flood tendency variability that
characterizing the area.

From the results, it appears that the highest Spearman’s rank correlation is
found for the annual total precipitation, representing mean precipitation conditions.
This suggests that while extreme precipitation is highly correlated with extreme
discharges at the annual timescale, the decadal changes of extreme flows may be
better explained by the decadal changes of the average precipitation. Indeed, there
is an intimate connection between average precipitation and catchment saturation
conditions that would explain flood tendency, as demonstrated by other studies
(e.g., Šraj et al., 2016). Considering temperature indices, a quite weak negative
correlation among the tendency of annual maximum daily temperatures and flood
tendency is observed. Nonetheless, a closer look to the results reveals that by just
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considering catchments at high elevation (> 1600 m a.s.l.), the negative correlation is
stronger. This suggests that the results for temperature indices are mainly driven by
high elevation catchments, where snow/ice-related processes dominate in the runoff
response. Indeed, there is a physical connection between temperatures and snowmelt
and ice melt dynamics; increasing summer temperatures are causing the retreat
of glacierized areas and can be themselves correlated to the occurrence of longer
periods with no precipitation in the mountains, which penalize snow accumulation,
as observed in the Alps in the last 20 years (Beniston et al., 2018). The result of
these processes is a negative tendency of runoff peaks, typically in spring or summer
season. However, this conclusion is not trivial and analyzing the long-term temporal
tendency of specific flood event types in the same area (e.g., snowmelt or rain-on-
snow floods as in Sezen et al. (2020)) could be useful to reinforce the attribution of
the tendency of the observed discharge maxima.

The analysis of flood timing reveals a high seasonal concentration of floods
in spring season in the western mountainous area and in fall in the eastern and
southeastern part of the region, as expected. Spring floods are likely due to snowmelt
events occurring thanks to the quite abundant snow accumulation in winter in the
Alps, while autumn floods are tipically associated with the Atlantic circulation, which
occasionally favors intense precipitation events characterized by huge precipitation
amounts falling over Liguria and Piemonte, as reported in the Introduction of this
Dissertation.

The uncertainties found for the tendency of the indices, mainly related to the
record length and the size of the spatial domain, indicate that the correlations found
in the spatial correlation analysis may be spurious. Since, from a statistical point of
view, the regional differences are not strong, more robust approaches could be used
that also account for the expected sensitivity of the flood behavior to the covariates
(e.g., Bertola et al., 2019). Regional differences in precipitation and temperature
tendencies have already been discussed in other studies. Libertino et al. (2019) find
trends of annual maxima of precipitation over Italy, for different durations and spatial
scales. Focusing on North-Western Italy, some variability is shown for different areas
of the region, with significant positive or negative trends in hilly or mountainous
stations, opposed to an undistinct pattern over the Po Valley for 12-h and 1-day
precipitation. This is consistent with the results obtained in this analysis for indices
of precipitation intensity (Rx1day, R99pTOT). In terms of frequency of extremes,
it is here shown a general increase of the number of days with precipitation above
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20 mm (R20mm) for small and medium-sized catchments and this result is in line
with the increasing annual record breaking anomaly described in Libertino et al.
(2019) for the upper Po Region, during the late ’80s - early ’90s. Temperature
trends reveal a marked decrease of the % of cold days and cold nights (TX10p and
TN10p), which is more exacerbated in small catchments located at high elevation,
in accordance with previous studies (see e.g., Acquaotta et al., 2014). Moreover,
also warm days and warm nights (TX90p and TN90p) regionally increase over time,
in line with results of Fioravanti et al. (2015). The analysis is not multivariate and
therefore it doesn’t quantify the relative contribution of temperature and precipitation
indices in explaining flood tendencies. Other statistical tools, such as machine
learning techniques or conceptual models can be useful to measure the relative
importance of different explanatory variables (see e.g., Bertola et al., 2021; Zeng
et al., 2021). However, the results obtained here provide an indication of which
ETCCDI indices are more connected to floods. Zeng et al. (2021) also identify
total precipitation as the most important driver of streamflow variation in the U.S.,
shaping the hydrologic regime. The main implication of this study is that future
projections of mean precipitation for the Alpine area, obtained from state-of-the-art
regional climate models, may be used as covariates in non-stationary flood frequency
analysis to produce flood change projections. The reliable prediction of flood change
is undermined by the high uncertainty associated with climate models, in particular
for scenarios including the end-of-century. In this respect, it is worth noting that the
inherent uncertainty of projections of annual total precipitation is lower compared to
the uncertainty of extreme precipitation, so the use of total precipitation as covariate
can increase the reliability of future flood estimates.

In Chapter 3, the conceptual semi-distributed rainfall-runoff model TUWmodel is
implemented in the same study region. In particular, starting from locally calibrated
parameters, a regional calibration of the model using a decision-tree version of
the PASS procedure (Merz et al., 2020) is performed. The aim is to investigate
the applicability of the method in a diverse region compared to Germany and the
impact of using snow information on the calibration results, as other studies have
already discussed (Parajka and Blöschl, 2008; Tong et al., 2021). It is shown
that PASS can be efficiently applied in the study area and the resulting median
model efficiencies in calibration, for training and test catchments, are similarly
good to what obtained for Germany (0.6-0.7). Moreover, the methodology is robust
in predicting runoff when considering an independent validation period. Some
important conclusions drawn from Merz et al. (2020) are confirmed in this study.
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The parameter sets found by regional calibration show a smaller spread compared to
local parameter sets, meaning that the regional PASS calibration considerably reduces
the effect of parameter equifinality. Also, regionally distributed parameters seem
to be in line with hydro-meteorological and landscape features of the area and this
indicates that geomorphological and climatic descriptors control model parameter
values. Including snow information in the model efficiency function only produces
a little non-significant increase of model performance in simulating streamflow
and it doesn’t guarantee higher performance in reproducing streamflow signatures
(e.g., annual flows, seasonality). Nevertheless, when using snow information, the
simulations with the regionally calibrated parameters prove to be less uncertain
and the spatial pattern of snow parameters is more coherent with the climatic and
geomorphological characteristics of the study area. Chapter 4 describes the newly
developed R package called hydroPASS, designed for a flexible implementation of
PASS. hydroPASS is supported with examples of application by using large U.S.
hydrologic database (e.g., CAMELS).

The calibrated model is finally used to extract runoff events and identify runoff
event characteristics such as runoff coefficient, event duration, event peak time, event
peak and event volume (Chapter 5). The results obtained by applying the event sepa-
ration algorithm of Giani et al. (2022) highlight that TUWmodel allows to capture
the spatial pattern of observed runoff event characteristics and the performance is
particularly good for runoff event peak and volume. For this reason, it can be used in
a distributed mode in ungauged locations, providing consistent results. Nevertheless,
the event separation method shows some limitations in the identification of event
duration and peak time of events. When applied at the daily time-scale (a coarser
resolution compared to hourly scale), this method tends to identify longer and bigger
events (Figure 4, Giani et al., 2022), without distinguishing multiple peaks as poten-
tially separated events. This feature appears to be exacerbated when the snowmelt
component is an important fraction of the liquid water input, thus producing very
long events in the northeastern and southern part of the region (Figure 5.5 and 5.6).
Different event separation methods could be implemented in the same study region
to overcome this issue such us the one proposed by Tarasova et al. (2018b), which
allows to refine multiple-peaks events. The highest mean values of runoff coefficient,
event peak and event volume are found in the northeastern and southern part of the
region, at medium elevation. Tarasova et al. (2018a) obtain clusters of runoff event
characteristics for Germany, identifying regions with homogenous runoff response.
Catchments displaying the highest event characteristics in North-Western Italy share
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some common features with the ones included in cluster 1 of Tarasova et al. (2018a),
i.e. western mountainous catchments (the Rhenish Massif, Black Forest and Swabian
Jura) and the Bavarian Forest catchments, which display very high runoff coefficients,
a moderate melt component and a quite fast response. Catchments located in the
western mountainous area of North-Western Italy and, especially, in the central
Po Valley display lower values of event characteristics such as runoff coefficient,
peak and volume. They result comparable to catchments of cluster 2 and cluster 4
described in Tarasova et al. (2018a), mainly representing the Alpine Foreland and
the North German Plain, respectively.

The runoff event classification, performed first on observed runoff based on
Tarasova et al. (2020), shows that in cluster 1 intensity-dominated (mainly unsteady)
events and volume-dominated local events are relevant types, suggesting that the
main runoff mechanism is local and both infiltration excess and event-fed saturation
are possible. This in turns indicates convective activity, typical in summer, as very
likely in these catchments. This cluster shows strong similarities with cluster 5
of Tarasova et al. (2020), mainly grouping catchments located at low elevation, in
Germany. Cluster 2 identified here, instead, is characterized by extensive and steady
rainfall events in dry conditions, both intensity and volume dominated. Considering
the proximity with mountainous chains, this suggests the occurrence of slow moving
orographic storms. This cluster shares common features with cluster 6 found in
Tarasova et al. (2020), which occupies a large portion of Southern and Central
Germany. Similarly, in cluster 4 of this analysis extensive volume-dominated events
are prevalent, with a lower fraction of intensity-dominated events and a higher
presence of snow-impacted events, meaning that extensive event fed saturation, with
possible event-induced connectivity, is the most likely runoff trigger. Finally, in
cluster 3 the sum of all snow-impacted events represents more than 50% of total
events. It is interesting to note that in this study the number of dry events is way
higher than the number of wet events in all the identified clusters, and this matches
with the results found in Tarasova et al. (2020) for clusters sharing similar features
such as cluster 5 and 6, despite the thresholds used for separating wet and dry events
are different in the two studies. Other classification schemes have been recently
adopted in literature, such as the one proposed by Brazda et al. (2022) for floods over
catchments located in Europe and North-America. The method is based on the one
proposed by Sikorska et al. (2015), with an additional distinction between wet and
dry events. The results highlight that snowmelt floods are a predominant flood type in
the selected catchments, especially for low and medium-elevation catchments where
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snow-related floods constitute a much relevant portion of all events. This seems not
to be the case for the catchments analyzed in this Dissertation, even if snow-related
events constitute the dominant fraction in cluster 3. Moreover, differently from our
results, Brazda et al. (2022) show a net predominance of events with wet initial
conditions over dry events. However, these differences can be expected due to
the higher average latitude and the different climatic conditions of the catchments
considered in their study, possibly impacting both the antecedent wetness state before
floods and the flood types themselves.

The event typology obtained from simulated events in ungauged catchments is
consistent with the one obtained from observed data, both in terms of event frequency
and spatial pattern of clusters. The event type frequency of simulated events for clus-
ter 2, 3 and 4 proves to be very similar to that of the corresponding observed clusters,
while in cluster 1 the unsteady component, both intensity and volume dominated,
is more relevant compared to observations. Moreover, in cluster 3 the fraction of
Snowmelt events is higher than the fraction of Rain-on-snow events, as opposed to
the results for observed events. This can be explained by the fact that simulations
span the period 1961-2020 so they also reflect past climatic conditions which favored
colder temperatures, even during spring, leading to likely pure snowmelt events. At
the contrary, Rain-on-snow events become more important in the context of climate
change, as they are a signal of the transition between snow and rain induced by the
increase of temperature. Due to the fact that available discharge series mainly cover
the period 2000-2020, global warming is likely to have an impact on the classification
results.

The spatial distribution of the event characteristics reflects the results obtained
by event types classification. In fact, the highest values of runoff coefficient, event
peak and volume are found in the northeastern and southern part of the region, at
altitude range of 1000-1500 metres, where both rain-on-snow events and orographic
slow-moving storms play an important role (cluster 2 and 4). These event types
are typically associated with high values of runoff coefficient and effective runoff
volume, which are also likely determined by the presence of shallow, low-permeable
soils. Catchments located in the central valley and in the western Alpine area (cluster
1 and 3) generally display lower values of mean runoff event characteristics. On
the one hand, this can be explained by local runoff generation patterns, typically
occurring when the inter-event evapotranspiration is a consistent contribution to
the water balance, controlling the soil moisture of lowland catchments with high
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water storage. On the other hand, the enhanced effect of global warming in high
elevation Alpine catchments is also responsible for decreased runoff peaks and
volumes. Moreover, cluster 1 of simulated events shows the dominance of the
unsteady component, which is likely associated to lower runoff coefficient, peak and
volume.

To conclude, the analysis performed in the second part of this Dissertation pro-
vides mean regional maps of runoff event characteristics and event type frequency
that give an indication of the processes and mechanisms that spatially control runoff
(and flood) generation in North-Western Italy. Despite the already mentioned limita-
tions related to the application of the methodology in a snow-impacted area, with
the current availability of precipitation and temperature data from NWOI dataset,
covering a 60-year period from 1961 to 2020, and of classified simulated runoff
events in the same period, a possible following step of the work can be performing a
statistical analysis, similarly to what done in Chapter 2, with the aim of describing
the temporal variability of flood event type characteristics. This will allow to detect
possible long-term trends in the event characteristics and potentially attribute the
tendencies to variations in the local climate. Studying trend detection and attribution
of different river flood event types can further stimulate the discussion of the research
community on the topic of climate change impact on water extremes, which is still
very debated.
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Valent, P., Vreugdenhil, M., Wagner, W., and Blöschl, G. (2021). The value of
ASCAT soil moisture and MODIS snow cover data for calibrating a conceptual
hydrologic model. Hydrology and Earth System Sciences, 25(3):1389–1410.

Troch, P. A., Paniconi, C., and van Loon, E. E. (2003). Hillslope-storage Boussinesq
model for subsurface flow and variable source areas along complex hillslopes: 1.
formulation and characteristic response. Water Resources Research, 39(11).

Ulbrich, U., Brücher, T., Fink, A. H., Leckebusch, G. C., Krüger, A., and Pinto, J. G.
(2003). The central European floods of August 2002: Part 1 – Rainfall periods
and flood development. Weather, 58(10):371–377.



120 References

USDA-NRCS (1986). Urban Hydrology for Small Watersheds, volume 55. US
Department of Agriculture, Soil Conservation Service.

USDA-NRCS (2004). Chapter 9: Hydrologic Soil-Cover Complexes, NRCS National
Engineering Handbook, Part 630: Hydrology. US Department of Agriculture,
Natural Resources Conservation Service.

Vandewiele, G. and Elias, A. (1995). Monthly water balance of ungauged
catchments obtained by geographical regionalization. Journal of Hydrology,
170(1–4):277–291.

Viglione, A., Chirico, G. B., Komma, J., Woods, R., Borga, M., and Blöschl,
G. (2010). Quantifying space-time dynamics of flood event types. Journal of
Hydrology, 394(1-2):213–229.

Viglione, A., Merz, B., Dung, N. V., Parajka, J., Nester, T., and Blöschl, G. (2016).
Attribution of regional flood changes based on scaling fingerprints. Water Re-
sources Research, 52(7):5322–5340.

Viglione, A. and Parajka, J. (2018). Tuwmodel: Lumped Hydrological Model for
Education Purposes. R package version, pages 1–0.

Villarini, G., Smith, J. A., Serinaldi, F., and Ntelekos, A. A. (2011). Analyses of
seasonal and annual maximum daily discharge records for central Europe. Journal
of Hydrology, 399(3-4):299–312.

Viviroli, D., Mittelbach, H., Gurtz, J., and Weingartner, R. (2009). Continuous
simulation for flood estimation in ungauged mesoscale catchments of Switzerland
– Part II: Parameter regionalisation and flood estimation results. Journal of
Hydrology, 377(1–2):208–225.

Wagener, T., Sivapalan, M., Troch, P., and Woods, R. (2007). Catchment classifica-
tion and hydrologic similarity. Geography Compass, 1(4):901–931.

Wagener, T. and Wheater, H. S. (2006). Parameter estimation and regionalization for
continuous rainfall-runoff models including uncertainty. Journal of Hydrology,
320(1–2):132–154.

Weingartner, R. and Diezig, R. (2007). Hochwasserprozesstypen-Schlüssel zur
Hochwasserabschätzung. Wasser und Abfall, 9(4):18–26.

Zeng, X., Schnier, S., and Cai, X. (2021). A data-driven analysis of frequent patterns
and variable importance for streamflow trend attribution. Advances in Water
Resources, 147:103799.

Zhang, X., Hegerl, G., Zwiers, F. W., and Kenyon, J. (2005). Avoiding inhomo-
geneity in percentile-based indices of temperature extremes. Journal of Climate,
18(11):1641–1651.

Zhang, Y. and Chiew, F. H. S. (2009). Relative merits of different methods for runoff
predictions in ungauged catchments. Water Resources Research, 45(7).



References 121
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Appendix A

Summary information of catchments

Catchment Coord.E Coord.N Catchment Area Mean Elevation Mean annual precipitation Mean annual PET Aridity Index
[UTM32N] [UTM32N] [km2] [m a.s.l.] [mm yr-1] [mm yr-1] [-]

Agogna a Momo 464709 5046499 204 423 1300 934 0.718
Agogna a Novara 467981 5030915 382 332 1175 939 0.799
Anza a Macugnaga 418994 5091217 41 2657 1237 330 0.267
Artanavaz a Saint Oyen 360765 5075765 69 2239 866 443 0.512
Ayasse a Champorcher 392220 5052946 43 2368 1114 582 0.522
Banna a Poirino 407635 4975171 262 288 764 914 1.196
Banna a Santena 403910 4977515 350 287 758 915 1.207
Belbo a Castelnuovo Belbo 454039 4960718 421 372 742 909 1.225
Belbo a Rocchetta Belbo 434525 4942715 119 622 787 870 1.105
Bogna a Domodossola 443911 5107834 81 1612 1467 624 0.425
Borbera a Baracche 500788 4951811 202 862 1129 812 0.719
Borbera a Pertuso 502162 4952371 193 875 1134 809 0.713
Borbore a San Damiano d’Asti 427419 4965805 85 244 722 914 1.266
Bormida a Alessandria 472015 4972514 2594 440 961 885 0.921
Bormida a Cassine 463786 4955433 1516 493 925 865 0.935
Bormida di Mallare a Ferrania 446089 4912508 50 604 1162 871 0.750
Bormida di Millesimo a Camerana 432905 4920644 263 767 1014 816 0.805
Bormida di Millesimo a Cessole 440472 4944272 496 647 903 838 0.928
Bormida di Millesimo a Murialdo 432976 4907028 127 888 1041 778 0.747
Bormida di Spigno a Mombaldone 447206 4935280 391 491 1005 871 0.867
Bormida di Spigno a Piana Crixia 444555 4926519 252 523 1058 869 0.821
Bormida di Spigno a Valla 447475 4932026 68 468 1004 870 0.867
Bousset a Tetti Porcera 375046 4896152 37 1991 1263 720 0.570
Breuil a Alpette 336956 5064247 28 2459 928 478 0.515
Brobbio a Margarita 395470 4917082 127 729 1111 875 0.788
Bucera a Ponte Rovine 370555 4896060 28 2152 1306 613 0.469
Buthier a Place Moulin 383131 5083798 74 2800 900 390 0.433
Cannobino a Traffiume 475222 5100470 107 1107 1926 808 0.420
Casotto a Monasterolo Casotto 415233 4906954 66 1233 1048 749 0.715
Cenischia a Susa 347163 5000542 146 2033 881 672 0.763
Cervo a Passobreve 425027 5053441 75 1505 1569 726 0.463
Cervo a Quinto Vercellese 451013 5025503 1002 504 1180 879 0.745
Cervo a Vigliano Biellese 430621 5044910 133 1257 1500 764 0.509
Chiavanne a Alpette 336855 5064354 22 2485 923 489 0.530
Chisola a La Loggia 395104 4980550 464 322 912 943 1.034
Chisola a Fenestrelle 346006 4988947 154 2154 794 579 0.729
Chisone a Pinerolo 368464 4969243 586 1727 973 680 0.699
Chisone a San Martino 364406 4971647 581 1739 972 677 0.697
Chisone a Soucheres Basses 339221 4988138 93 2221 763 528 0.692
Chiusella a Gurzia 402638 5030792 142 1374 1318 793 0.602
Chiusella a Parella 405965 5030307 152 1308 1308 799 0.611
Clarea a presa centrale Chiomonte 340471 5000302 28 2298 858 565 0.659
Corsaglia a Frabosa Soprana 407136 4903042 64 1678 1156 752 0.651
Corsaglia a Presa Centrale Moline 407096 4904936 89 1525 1142 721 0.631
Corsaglia a Torre Mondovì 4125545 4912293 140 1266 1119 714 0.638
Curone a Volpedo 498654 4970400 154 636 849 861 1.014
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Catchment Coord.E Coord.N Catchment Area Mean Elevation Mean annual precipitation Mean annual PET Aridity Index
[UTM32N] [UTM32N] [km2] [m a.s.l.] [mm yr-1] [mm yr-1] [-]

Devero a Baceno 447186 5123403 106 2057 1362 650 0.477
Dora Baltea a Aosta 374919 5066248 1846 2265 835 565 0.677
Dora Baltea a Beauregard 348670 5053499 92 2607 831 546 0.657
Dora Baltea a Cignana 390990 5081622 13 2725 899 367 0.408
Dora Baltea a Mazzè 417900 5017085 3854 1883 923 617 0.668
Dora Baltea a Ponte Baio 409329 5039992 3359 2071 895 578 0.646
Dora Baltea a Ponte di Mombardone 344193 5069807 372 2412 933 505 0.541
Dora Baltea a Tavagnasco 408421 5044504 3321 2087 890 575 0.646
Dora Baltea a Verolengo 424689 5004726 3903 1862 923 621 0.673
Dora di Bardonecchia a Beaulard 323449 4990582 207 2193 795 572 0.719
Dora di Courmayeur a Prè Saint Didier 343253 5070108 222 2472 978 497 0.508
Dora di Rhemes a Notre Dame 353389 5048222 69 2664 867 460 0.531
Dora di Rhemes a Pèlaud 352495 5046587 57 2710 880 449 0.510
Dora di Rhemes a Saint Georges 356155 5057480 119 2485 829 494 0.596
Dora Riparia a Chiomonte 340659 4998256 623 2083 766 582 0.760
Dora Riparia a Oulx 329337 4988965 260 2164 767 547 0.713
Dora Riparia a Salbertrand 334481 4993854 548 2120 765 574 0.750
Dora Riparia a Sant’Antonino di Susa 362771 4996936 1041 1899 827 633 0.765
Dora Riparia a Susa 346587 5000202 694 2042 776 588 0.758
Dora Riparia a Torino Ponte Washington 399094 4992175 1322 1655 868 678 0.781
Ellero a Mondovì 406021 4915888 180 1089 1139 688 0.604
Ellero a Rastello 398721 4902052 43 1853 1238 713 0.576
Ellero a Carisio 437996 5029759 256 603 1201 831 0.692
Ellero a Sordevolo 419328 5047278 34 1533 1371 683 0.498
Ellero a Cartosio 454040 4935727 212 499 1088 840 0.772
Ellero a Sassello 457432 4926268 91 595 1267 840 0.663
Evancon a Brusson 398845 5070594 134 2491 896 413 0.461
Evancon a Champoluc 400645 5075837 102 2634 930 376 0.404
Galamba a presa centrale Chiomonte 336552 4995777 15 2410 775 623 0.804
Germanasca a Perrero 355062 4978653 189 1902 1013 642 0.634
Gesso a Andonno 375079 4905369 336 1832 1229 677 0.551
Gesso della Barra a San Giacomo 371050 4892659 20 2103 1286 648 0.504
Gesso della Valletta a San Lorenzo 371071 4901660 111 2095 1238 594 0.480
Gesso di Entracque a Diga di Piastra 371532 4898058 87 2047 1283 658 0.513
Gesso di Entracque a Entracque 368094 4901309 160 1880 1272 686 0.539
Gesso di Monte Colombo a San Giacomo 371309 4892550 25 2160 1258 699 0.556
Ghiandone a Staffarda 375770 4953868 129 605 1061 826 0.779
Grana a Monterosso 366585 4918708 110 1542 1000 768 0.768
Grand’Eyvia a Cretaz 370093 5053194 180 2582 878 595 0.678
Isorno a Pontetto 448127 5111126 70 1617 1566 742 0.474
Lys a d’Ejola 407796 5078893 30 3136 1062 240 0.226
Lys a Gressoney Saint Jean 408689 5071087 91 2645 1004 419 0.417
Lys a Guillemore 411124 5058000 201 2260 1102 535 0.485
Maira a Busca 379305 4930199 573 1689 937 675 0.720
Maira a Racconigi 394538 4957991 976 1326 922 751 0.815
Maria a San Damiano Macra 361439 4927199 452 1899 935 627 0.671
Maira a Saretto 335576 4927181 56 2411 953 593 0.622
Malone a Brandizzo 409801 5003811 333 439 1147 917 0.799
Malone a Front 395360 5015295 131 675 1301 894 0.687
Marmore a Perreres 392605 5084497 54 2739 931 279 0.300
Mastallone a Varallo 442190 5075482 147 1335 1614 775 0.480
Melezet a Melezet 315867 4991349 43 2389 896 402 0.449
Meris a Sant’Anna Valdieri 365656 4900453 23 2110 1174 640 0.545
Mongia a Mombasiglio 417497 4913268 54 818 1059 790 0.746
Negrone a Ormea 404967 4886432 68 1798 1223 703 0.575
Niguglia a Omegna 454127 5080362 125 655 1635 897 0.549
Nontey a Valnontey 370540 5049494 53 2781 828 570 0.688
Orba a Basaluzzo 474020 4957173 731 467 1151 896 0.778
Orba a Casal Cermelli 470871 4964452 801 438 1112 900 0.809
Orba a Tiglieto 468888 4930332 74 814 1372 813 0.593
Orco a Cuorgnè 394628 5027688 629 1909 1198 687 0.573
Orco a Pont Canavese 391506 5030005 614 1938 1193 684 0.573
Orco a San Benigno Canavese 406313 5011059 838 1567 1196 726 0.607
Pellice a Luserna San Giovanni 361138 4963467 216 1634 1095 673 0.615
Pellice a Villafranca Piemonte 381346 4963166 953 1542 1019 712 0.699
Pesio a Carrù 411141 4924107 360 810 1075 830 0.772
Pesio a San Bartolomeo 393299 4902836 57 1571 1264 685 0.542
Po a Carignano 396682 4973652 3956 1101 931 778 0.836
Po a Casale Monferrato 4565575 4998852 13732 1257 947 750 0.792
Po a Castiglione Torinese 404428 4998161 7685 1083 935 788 0.843
Po a Crissolo 354451 4950954 38 2251 1012 354 0.350
Po at Isola Sant’Antonio 485975 4986981 25640 959 962 802 0.834
Po a Meirano Moncalieri 395654 4983807 5310 919 912 814 0.893
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Catchment Coord.E Coord.N Catchment Area Mean Elevation Mean annual precipitation Mean annual PET Aridity Index
[UTM32N] [UTM32N] [km2] [m a.s.l.] [mm yr-1] [mm yr-1] [-]

Po a Moncalieri 395895 4983881 5048 927 909 811 0.892
Po a San Mauro Torinese 404376 4998217 7682 1083 935 788 0.843
Po a San Sebastiano 416953 5002644 9114 1081 967 791 0.818
Po a Torino Murazzi 397499 4990961 5355 914 912 815 0.894
Po a Valenza 470988 4988677 17291 1117 983 776 0.789
Rea a Dogliani 416921 4931461 69 558 798 882 1.105
Rio Bagni a Bagni di Vinadio 347299 4905908 61 2142 1071 662 0.618
Rio del Piz a Pietraporzio 343090 4911605 22 2182 1082 582 0.538
Rio Freddo a Rio Freddo 354141 4904744 37 2123 1122 540 0.481
Ripa a Bousson 327797 4977949 147 2330 792 514 0.649
Rochemolles a Rochemolles 324207 4999927 24 2641 860 559 0.650
Rutor a Promise 340966 5063082 46 2525 808 540 0.668
Rutor a La Joux 341334 5061405 42 2570 806 544 0.675
San Bernardino a San Bernardino Santino 463224 5089336 122 1259 1827 772 0.423
San Bernardino a Trobaso 464983 5088294 129 1211 1828 783 0.428
San Giovanni a Possaccio 465266 5089297 54 1002 1940 859 0.443
San Giovanni a Verbania 467272 5087416 60 933 1929 869 0.450
Sangone a Moncalieri 395076 4984680 258 770 985 876 0.889
Sangone a Trana 375550 4988107 145 1125 1027 824 0.802
Savara a Eau Rousse 360294 5047742 82 2682 848 470 0.554
Savara a Fenille 359591 5055032 131 2594 828 473 0.571
Scrivia a Guazzora 490258 4986143 949 520 1061 882 0.831
Scrivia a Isola del Cantone 496640 4943533 216 668 1429 844 0.591
Scrivia a Serravalle Scrivia 488989 4943533 216 668 1229 849 0.691
Sermenza a Rimasco 427374 5078429 82 1855 1391 628 0.451
Sesia a Borgosesia Ponte Aranco 443803 5062352 703 1504 1480 721 0.487
Sesia a Campertogno 424762 5072125 171 2127 1264 619 0.490
Sesia a Palestro 463769 5014565 2464 768 1260 843 0.669
Sesia a Vercelli 455957 5019293 2214 837 1297 830 0.640
Sessera a Pray 439377 5058122 126 1174 1666 774 0.465
Soana a Pont Canavese 390596 5030736 215 1898 1222 680 0.556
Strona di Omegna a Gravellona Toce 456135 5086079 235 877 1693 788 0.465
Strona di Vallemosso a Cossato 436248 5046479 44 777 1556 790 0.508
Stura di Demonte a Fossano 398628 4930850 1327 1518 1100 700 0.636
Stura di Demonte a Gaiola 373755 4909963 560 1819 1068 658 0.616
Stura di Demonte a Pianche 349597 4907221 180 2077 1047 574 0.548
Stura di Demonte a Roccasparvera 375650 4910905 584 1785 1067 665 0.623
Stura di Demonte a Vinadio 349628 4907193 250 2082 1054 598 0.567
Stura di Lanzo a Lanzo 380982 5013879 578 1780 1183 700 0.592
Stura di Lanzo a Torino 398253 4996117 880 1368 1177 766 0.651
Stura di Viù a Germagnano 377063 5011307 233 1759 1104 729 0.660
Stura di Viù a Lago della Rossa 354795 5014526 4 2962 1192 536 0.450
Stura di Viù a Malciaussia 354204 5007535 26 2622 920 832 0.904
Stura di Viù a Usseglio 360063 5010116 76 2393 1003 688 0.686
Tanaro a Alba 422966 4950663 3385 1072 1024 776 0.758
Tanaro a Alessandria 470235 4976004 5323 767 914 832 0.910
Tanaro a Asti 437791 4970463 4123 922 971 803 0.827
Tanaro a Clavesana 413139 4926203 1485 951 1053 788 0.748
Tanaro a Farigliano 412709 4929894 1502 945 1051 790 0.752
Tanaro a Garessio 421310 4894772 249 1435 1132 736 0.650
Tanaro a Masio 453443 4968849 4535 855 947 815 0.861
Tanaro a Montecastello 475104 4977074 7956 657 928 850 0.916
Tanaro a Nucetto 425191 4910271 375 1232 1093 758 0.694
Tanaro a Ormea 413231 4888845 176 1524 1171 740 0.632
Tanaro a Piantorre 418169 4918794 500 1067 1045 782 0.748
Tanaro a Ponte di Nava 409392 4885563 149 1580 1189 739 0.622
Tanaro a San Martino Alfieri 431007 4960571 3542 1036 1011 783 0.774
Terdoppio a Caltignaga 469533 5040651 89 254 1092 922 0.844
Ticino a Miorina 474278 5058225 6655 1290 1358 709 0.522
Toce a Agaro 446314 5126747 11 2110 1334 678 0.508
Toce a Cadarese 450177 5125409 187 2150 1259 520 0.413
Toce a Candoglia 455210 5091406 1539 1677 1437 656 0.457
Toce a Codelago 444732 5131430 26 2322 1327 666 0.502
Toce a Domodossola 446394 5106791 919 1826 1414 637 0.450
Toce a Lago Busin 451099 5133475 3 2524 1342 677 0.504
Toce a Lago d’Avino 433177 5122226 6 2550 1464 552 0.377
Toce a Lago del Sabbione 449883 5141238 14 2765 1142 344 0.301
Toce a Lago Vannino 451161 5136937 12 2527 1199 444 0.370
Uzzone a Cortemilia 436164 4936487 87 559 787 862 1.095
Varaita a Castello 345174 4941766 68 2406 956 356 0.372
Varaita a Polonghera 389172 4961944 577 1389 889 698 0.785
Varaita a Rore 358666 4937361 278 2118 925 492 0.532
Varaita a Rossana 376220 4934616 402 1797 917 597 0.651
Varaita a Sampeyre 356706 4937355 247 2197 926 490 0.529
Varaita a Torrette 349657 4938438 184 2339 933 473 0.507
Vermenagna a Limone 385934 4896191 57 1675 1276 473 0.371
Vermenagna a Robilante 381656 4902050 134 1533 1266 528 0.417
Vobbia a Isola del Cantone 497957 4942898 51 723 1351 793 0.587
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2 catchDescrip

Description

R functions to perform the PArameter Set Shuffling (PASS) approach for the calibration of dis-
tributed hydrologic models, as explained in Merz et al. (2020) <doi:10.1029/2019WR026008>.
The package contains also the SAme Like The Others (SALTO) rainfall-runoff model as an exam-
ple.

Details

Package: hydroPASS
Version: 0.0

Main changes in version 0.0
0.0-1: very first version;
0.0-4: version with both PASS and SALTO functions + data;
0.0-7: revisited version that allows using models from other R packages (exemple with TUW-
model);
0.0-10: version with U.S. data;
0.1-1: revision of SALTO model, check on U.S. analysis;
0.1-2: inclusion of vignette (see it with vignette('vignCamelDataPrep'));

Author(s)

Alberto Viglione, Ralf Merz, Matteo Pesce

Maintainer: Alberto Viglione <viglione@hydro.tuwien.ac.at>

References

All the manual references are listed here:

Merz, R., L. Tarasova and S. Basso (2020). Parameter’s controls of distributed catchment models -
How much information is in conventional catchment descriptors?, Water Resources Research, 56,
e2019WR026008, <https://doi.org/10.1029/2019WR026008>.

catchDescrip Function for the setup of catchment descriptors

Description

The catchDescrip function reads gridded catchment descriptors and a shapefile of catchments to
create data of descriptors at grid and catchment scale, in order to apply the PASS procedure.

Usage

catchDescrip(cds, catchments, weights, lon.mast, lat.mast)
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outDataPrep 3

Arguments

cds arrays of catchment descriptors
catchments SpatialPolygonsDataFrame of catchments
weights array of pixel/model unit coverage of the catchment area for each catchment
lon.mast, lat.mast

numeric vectors of input master grid coordinates

Value
train.CD_4cat104pxl

list of two matrices of catchment/model unit descriptors:
cat – matrix with N rows corresponding to each catchment whose columns are
catchment descriptors
grd – matrix with M rows corresponding to each pixel/model unit whose columns
are pixel/model unit descriptors

See Also

outDataPrep

Examples

data(outDataPrep)

ls()

names(inputCatchDescr)
CDS <- inputCatchDescr$cds
CATCHMENTS <- inputCatchDescr$catchments
WEIGHTS <- inputCatchDescr$weights
LON.M <- inputCatchDescr$lon.m
LAT.M <- inputCatchDescr$lat.m

train.CD_4cat104pxl <- catchDescrip(cds=CDS, catchment=CATCHMENTS, weights=WEIGHTS,
lon.mast=LON.M, lat.mast=LAT.M)

ls()
str(train.CD_4cat104pxl)

outDataPrep Data-sample

Description

Example output data from the vignette ’vignCamelDataPrep’

Usage

data(outDataPrep)
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4 outDataPrep

Format

The data are following:

• train.data: list of input timeseries for each of 215 pixels in the study area and of observed
runoff discharges for each of 25 catchments. The elements of the list are: prec – matrix
of precipitation input [mm/day] whose 215 columns contain the precipitation for each pixel
of the region; temp – matrix of temperature input [degC] whose 215 columns contain the
temperature for each pixel of the region; pet – matrix of potential evapotranspiration input
[mm/day] whose 215 columns contain the potential evapotranspiration for each pixel of the
region; qobs – matrix of observed stream runoff [mm/day] whose 215 columns contain the
stream runoff at each catchment outlet in the region.

• inputTopology: list of objects which are used as input for the function calculating the topol-
ogy of catchments. The elements of the list are: catchments – SpatialPolygonsDataFrame
of catchments; dem – RasterLayer of digital elevation model at 30 arc-second resolution;
lon.m,lat.m – numeric vectors of input master grid coordinates; lon.dem,lat.dem – nu-
meric vectors of digital elevation model coordinates.

• inputCatchDescr: list of objects which are used as input for the function calculating catch-
ment descriptors. The elements of the list are: cds – list of numeric arrays of catchment
descriptors of dimensions lat, lon; catchments – SpatialPolygonsDataFrame of catchments;
weights – array of pixel/model unit coverage of the catchment area for each catchment;
lat.m,lon.m – numeric vectors of input master grid coordinates.

References

Gridded rainfall and temperature data are available from NCAR:

Jasinski, M.F., S.V. Kumar, J.S. Borak, D.M. Mocko, C.D. Peters-Lidard, M. Rodell, H. Rui, H.
Kato Beaudoing, B.E. Vollmer, K.R. Arsenault, B. Li, and J.D. Bolten, 2018: NCA-LDAS Noah-
3.3 Land Surface Model L4 Daily 0.125 x 0.125 degree V2.0, Greenbelt, Maryland, USA, Goddard
Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/7V3N5DO04MAS

Daily runoff observations are available from CAMELS data set:

Addor, N., A. J. Newman, N. Mizukami, and M. P. Clark, 2017: The CAMELS data set: Catchment
attributes and meteorology for large-sample studies. Hydrol. Earth Syst. Sci. , 21, 5293–5313,
https://doi.org/10.5194/hess-21-5293-2017

Catchment descriptors are calculated from sources listed in Appendix D of:

Merz, R., A. Miniussi, S. Basso, K. J. Petersen, and L. Tarasova, 2022: More Complex is Not
Necessarily Better in Large-Scale Hydrological Modeling: A Model Complexity Experiment across
the Contiguous United States. Bulletin of the American Meteorological Society, 103(8), E1947-
E1967, https://doi.org/10.1175/BAMS-D-21-0284.1

Examples

data(outDataPrep)

ls()

str(train.data)
names(inputTopology)
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str(inputTopology)
names(inputCatchDescr)
str(inputCatchDescr)

outTrainParameters Data-sample

Description

Example input SALTO parameters for PASS from U.S. datasets (see vignette ’vignCamelDataPrep’)

Usage

data(outTrainParameters)

Format

The data are following:

• train.parameters_25cat: list of 25 matrices with locally lumped model efficiency (1st col-
umn) and calibrated model parameters used for the training of the machine-learning regional-
isation (one column per parameter, one row per set).

See Also

SALTO, PASS, outDataPrep

Examples

data(outTrainParameters)

ls()

str(train.parameters_25cat)

data(outDataPrep)

str(train.data)
names(inputTopology)
str(inputTopology)
names(inputCatchDescr)
str(inputCatchDescr)
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6 PASS

PASS PArameter Set Shuffling algorithm

Description

The PArameter Set Shuffling (PASS) algorithm derives relationship between model parameters and
catchment descriptors from observed patterns of calibrated parameters and available catchment de-
scriptors through machine-learning, and provides regionally consistent parameter sets.

Usage

PASS (Y, X.cat, X.grd, grd2cat,
model.eff.fn, lower, upper,
options=PASS.options(),
...)

PASS.options (maxLoops=100, nGroups=10, REGloops=5,
generalized.mean.power=-1, proportion.max.eff.update=0.95,
sampling='random', optim.subset.cat=0.7)

## S3 method for class 'PASS'
print(x, ...)

Arguments

Y list (N.cat) of data.frames (XXX x N.par) with locally lumped calibrated model
parameters OR output of a previous run of PASS on the same data, which serves
as a starting point for further search of regionally consistent model parameters

X.cat matrix or data.frame (N.cat x N.dsc) of catchment descriptors

X.grd matrix or data.frame (N.grd x N.dsc) of model unit/pixel descriptors

grd2cat list (N.cat) of model unit/pixel names belonging to each catchment

model.eff.fn user defined function to be optimized (maximized). The function should have
as its first argument the vector/matrix of real-valued parameters to optimize,
as second argument the catchment index, and return a scalar real result with
maximum equal to 1 (’NA’ and ’NaN’ values are not allowed). The second
argument of the function should be the catchment number (the model will be
applied to one catchment only). The other arguments of the function should
use has input all the data available for the region (all catchments, all model
units/pixels). Examples are provided below

lower, upper two vectors specifying scalar real lower and upper bounds on each parameter to
be optimized, so that the i-th element of ’lower’ and ’upper’ applies to the i-th
parameter

options list of options for the PASS approach, see PASS.options

... other arguments (for PASS further arguments to be passed to ’model.eff.fn’)

maxLoops number of loops for the serach

131



PASS 7

nGroups number of groups over which optimisation is run (used to avoid being stuck in
local optima)

REGloops number of loops for the regional consistency procedure (i.e., the parameter se-
lected for machine-learning regionalisation are the closest ones to the identified
parameters in a previous machine-learning regionalisation within REGloops)

generalized.mean.power

value of the power exponent of the generalized mean of the efficiencies obtained
in all catchments with the fully distributed regional model. The generalized
mean is used to decide whether a regionalization outperforms another. If the
power p=1 => arithmetic mean, p->0 => geometric mean, p=-1 => harmonic
mean, p=-Inf => minimum, p=+Inf => maximum

proportion.max.eff.update

if regionalized lumped parameters are found so that the model efficiency exceeds
the ’proportion.max.eff.update’ multiplied by the maximum value in the training
parameter set, then the regionalized lumped parameters are added in the training
set and used in fllowing loops

sampling if random the selection of model parameters of each catchment for the machine-
learning regionalisation is random, if optim and previousPASSout exists the
model parameters of each catchment for the machine-learning regionalisation
are selected from the ones obtained in previousPASSout except for the propor-
tion indicated in optim.subset.cat, which is selected randomly

optim.subset.cat

proportion of catchments from which the parameters for the machine-learning
regionalisation are selected randomly (the others being kept from previousPASSout)

x output of PASS

Details

Here explanation of what the function does...

Value

groups list of outputs of the PASS approach for each of the nGroups containing:
overall.eff – overall regional efficiency of the model on all catchments with
regionally consistent parameters identified by PASS (at the moment calculated
as the median efficiency for the N catchments)
selected.parameters – matrix of the model efficiency (1st column) and se-
lected parameters for training the machine-learning regionalisation that give the
best overall regional efficiency
regionalized.parameters – list of two matrices, one with N rows for the
lumped models (cat.par.pred), and the other with M rows for each pixel/model
unit (grd.par.pred)
cat.eff.lump – vector of the N efficiencies of the lumped models with param-
eters in regionalized.parameters$cat.par.pred
cat.eff.dist – vector of the N efficiencies of the distributed models with pa-
rameters in regionalized.parameters$grd.par.pred
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train.parameters.updated

list of N matrices with locally lumped model efficiency (1st column) and cali-
brated model parameters used for the training of the machine-learning region-
alisation (one column per parameter, one row per set) which may have been
updated by PASS if the regionalisation procedure has identified parameter sets
whose efficiency is comparable to the local calibration

PASS.options list of options used in the PASS approach (see above)

See Also

SALTO

Examples

## Not run:
# ----------------------------------------------------------------------------------------- #
# 1) PASS with model SALTO and KGE efficiency #
# ----------------------------------------------------------------------------------------- #

# data:
data(outDataPrep)
data(outTrainParameters)

CDS <- inputCatchDescr$cds
CATCHMENTS <- inputCatchDescr$catchments
WEIGHTS <- inputCatchDescr$weights
LON.M <- inputCatchDescr$lon.m
LAT.M <- inputCatchDescr$lat.m
train.CD_25cat215pxl <- catchDescrip(cds=CDS, catchment=CATCHMENTS, weights=WEIGHTS,

lon.mast=LON.M, lat.mast=LAT.M)

CATCHMENTS <- inputTopology$catchments
DEM <- inputTopology$dem
LON.M <- inputTopology$lon.m
LAT.M <- inputTopology$lat.m
LON.DEM <- inputTopology$lon.dem
LAT.DEM <- inputTopology$lat.dem
# the following takes some time
train.topology_25cat215pxl <- topology(catchments=CATCHMENTS, dem=DEM, lon.mast=LON.M,

lat.mast=LAT.M, lon.dem=LON.DEM, lat.dem=LAT.DEM)

# Define an efficiency function:
# The function should have as its first argument the vector/matrix of real-valued parameters
# to optimize, as second argument the catchment index, and return a scalar real result with
# maximum equal to 1 ('NA' and 'NaN' values are not allowed). The second argument of the
# function should be the catchment number (the model will be applied to one catchment only).
# The other arguments of the function should use has input all the data available for the
# region (all catchments, all model units/pixels).
KGE.SALTO <- function(param, cat.number, prec, temp, pet,

effarea, grdname, flowto, level, disc, iwarmup=100) {
GRDNAME <- grdname[[cat.number]]
EFFAREA <- effarea[[cat.number]]
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FLOWTO <- flowto[[cat.number]]
LEVEL <- level[[cat.number]]
PREC <- prec[, as.character(GRDNAME)]
TEMP <- temp[, as.character(GRDNAME)]
PET <- pet[, as.character(GRDNAME)]
DISC <- disc[, cat.number]
# global variables are in the function
simu <- SALTO(prec=PREC, temp=TEMP, pet=PET,

effarea=EFFAREA, grdname=GRDNAME, flowto=FLOWTO, level=LEVEL,
param=param)$q

if (all(!is.na(simu))) {
simu[is.na(simu)] <- -999
simu <- simu[-c(1:iwarmup)] # remove the warming period
obse <- DISC[-c(1:iwarmup)] # remove the warming period
r <- cor(simu, obse, method='pearson', use='pairwise.complete.obs')
beta <- mean(simu)/mean(obse)
gamma <- (sd(simu)/mean(simu))/(sd(obse)/mean(obse))
kgeQ <- 1 - sqrt((r - 1)^2 + (beta - 1)^2 + (gamma - 1)^2)

} else kgeQ <- -999
return(kgeQ) # Kling-Gupta Efficiency

}

# this takes long
run01 <- PASS(Y=train.parameters_25cat,

X.cat=train.CD_25cat215pxl$cat,
X.grd=train.CD_25cat215pxl$grd,
grd2cat=sapply(train.topology_25cat215pxl, function(x) x$grd),
model.eff.fn=KGE.SALTO,
lower=c(-3,0,1,0.1,0.1,-99,-3, 0, 10,0.1,0.1,

0.1,0.1, 0,0.1, 30,0.1, 100,0.1,0.1,0.1),
upper=c( 3,0,1, 10, 10,-99, 3,100,3000, 20, 2,

50, 5,10, 5,400, 5,15000, 5, 5, 30),
options=PASS.options(maxLoops=2000, nGroups=10, REGloops=5, sampling='random'),

prec=train.data$prec,
temp=train.data$temp,
pet=train.data$pet,
effarea=sapply(train.topology_25cat215pxl, function(x) x$effarea),
grdname=sapply(train.topology_25cat215pxl, function(x) x$grd),
flowto=sapply(train.topology_25cat215pxl, function(x) x$flowto),
level=sapply(train.topology_25cat215pxl, function(x) x$level),
disc=train.data$qobs)

#
# Loop 200 out of 2000 loops
# Loop 400 out of 2000 loops
# Loop 600 out of 2000 loops
# Loop 800 out of 2000 loops
# Loop 1000 out of 2000 loops
# Loop 1200 out of 2000 loops
# Loop 1400 out of 2000 loops
# Loop 1600 out of 2000 loops
# Loop 1800 out of 2000 loops
# Loop 2000 out of 2000 loops
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#
# Time difference of 31.28067 mins
run01

# Output of the PArameter Set Shuffling algorithm:
#
# number of catchments: 4
# number of model units (e.g. pixels): 104
# sampling strategy: random
# number of loops: 2000
# number of groups: 10
# number of loops for regional consistency: 5
# distributed regionalization efficiencies:
# Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 Group10
# Min. 0.413 0.395 0.373 0.393 0.398 0.396 0.394 0.373 0.363 0.348
# 1st Qu. 0.427 0.409 0.388 0.429 0.426 0.422 0.418 0.388 0.388 0.376
# Median 0.479 0.471 0.436 0.462 0.438 0.463 0.475 0.436 0.447 0.419
# Mean 0.480 0.475 0.478 0.493 0.487 0.492 0.473 0.478 0.474 0.475
# 3rd Qu. 0.532 0.536 0.526 0.525 0.499 0.534 0.531 0.526 0.532 0.518
# Max. 0.548 0.564 0.666 0.654 0.674 0.646 0.548 0.667 0.639 0.715
# updated number of train parameter sets: 1029

run02 <- PASS(Y=run01,
X.cat=train.CD_25cat215pxl$cat,
X.grd=train.CD_25cat215pxl$grd,

grd2cat=sapply(train.topology_25cat215pxl_125cat215pxl, function(x) x$grd),
model.eff.fn=KGE.SALTO,
lower=c(-3,0,1,0.1,0.1,-99,-3, 0, 10,0.1,0.1,

0.1,0.1, 0,0.1, 30,0.1, 100,0.1,0.1,0.1),
upper=c( 3,0,1, 10, 10,-99, 3,100,3000, 20, 2,

50, 5,10, 5,400, 5,15000, 5, 5, 30),
options=PASS.options(maxLoops=2000, nGroups=10, REGloops=4,

sampling='optim', optim.subset.cat=0.7),
prec=train.data$prec,
temp=train.data$temp,
pet=train.data$pet,
effarea=sapply(train.topology_25cat215pxl, function(x) x$effarea),
grdname=sapply(train.topology_25cat215pxl, function(x) x$grd),
flowto=sapply(train.topology_25cat215pxl, function(x) x$flowto),
level=sapply(train.topology_25cat215pxl, function(x) x$level),
disc=train.data$qobs)

#
# Loop 200 out of 2000 loops
# Loop 400 out of 2000 loops
# Loop 600 out of 2000 loops
# Loop 800 out of 2000 loops
# Loop 1000 out of 2000 loops
# Loop 1200 out of 2000 loops
# Loop 1400 out of 2000 loops
# Loop 1600 out of 2000 loops
# Loop 1800 out of 2000 loops
# Loop 2000 out of 2000 loops
#
# Time difference of 26.98754 mins
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run02
# Output of the PArameter Set Shuffling algorithm:
#
# number of catchments: 4
# number of model units (e.g. pixels): 104
# sampling strategy: optim
# number of loops: 2000
# number of groups: 10
# number of loops for regional consistency: 4
# proportion of randomized parameters (when optim): 0.7
# distributed regionalization efficiencies:
# Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 Group10
# Min. 0.413 0.395 0.389 0.393 0.398 0.396 0.389 0.373 0.363 0.348
# 1st Qu. 0.427 0.409 0.398 0.429 0.426 0.422 0.398 0.388 0.388 0.376
# Median 0.479 0.471 0.459 0.462 0.438 0.463 0.460 0.436 0.447 0.419
# Mean 0.480 0.475 0.495 0.493 0.487 0.492 0.493 0.478 0.474 0.475
# 3rd Qu. 0.532 0.536 0.556 0.525 0.499 0.534 0.555 0.526 0.532 0.518
# Max. 0.548 0.564 0.672 0.654 0.674 0.646 0.665 0.667 0.639 0.715
# updated number of train parameter sets: 3831

run03 <- PASS(Y=run02,
X.cat=train.CD_25cat215pxl$cat,
X.grd=train.CD_25cat215pxl$grd,
grd2cat=sapply(train.topology_25cat215pxl, function(x) x$grd),
model.eff.fn=KGE.SALTO,
lower=c(-3,0,1,0.1,0.1,-99,-3, 0, 10,0.1,0.1,

0.1,0.1, 0,0.1, 30,0.1, 100,0.1,0.1,0.1),
upper=c( 3,0,1, 10, 10,-99, 3,100,3000, 20, 2,

50, 5,10, 5,400, 5,15000, 5, 5, 30),
options=PASS.options(maxLoops=2000, nGroups=10, REGloops=3,

sampling='optim', optim.subset.cat=0.5),
prec=train.data$prec,
temp=train.data$temp,
pet=train.data$pet,
effarea=sapply(train.topology_25cat215pxl, function(x) x$effarea),
grdname=sapply(train.topology_25cat215pxl, function(x) x$grd),
flowto=sapply(train.topology_25cat215pxl, function(x) x$flowto),
level=sapply(train.topology_25cat215pxl, function(x) x$level),
disc=train.data$qobs)

#
# Loop 200 out of 2000 loops
# Loop 400 out of 2000 loops
# Loop 600 out of 2000 loops
# Loop 800 out of 2000 loops
# Loop 1000 out of 2000 loops
# Loop 1200 out of 2000 loops
# Loop 1400 out of 2000 loops
# Loop 1600 out of 2000 loops
# Loop 1800 out of 2000 loops
# Loop 2000 out of 2000 loops
#
# Time difference of 23.23943 mins
run03

136 Manual of the R package ’hydroPASS’



12 PASS

# Output of the PArameter Set Shuffling algorithm:
#
# number of catchments: 4
# number of model units (e.g. pixels): 104
# sampling strategy: optim
# number of loops: 2000
# number of groups: 10
# number of loops for regional consistency: 3
# proportion of randomized parameters (when optim): 0.5
# distributed regionalization efficiencies:
# Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 Group10
# Min. 0.413 0.395 0.389 0.393 0.398 0.396 0.389 0.406 0.363 0.400
# 1st Qu. 0.427 0.409 0.398 0.429 0.426 0.422 0.398 0.441 0.388 0.439
# Median 0.479 0.471 0.459 0.462 0.438 0.463 0.460 0.488 0.447 0.483
# Mean 0.480 0.475 0.495 0.493 0.487 0.492 0.493 0.488 0.474 0.483
# 3rd Qu. 0.532 0.536 0.556 0.525 0.499 0.534 0.555 0.535 0.532 0.528
# Max. 0.548 0.564 0.672 0.654 0.674 0.646 0.665 0.570 0.639 0.566
# updated number of train parameter sets: 4945

run04 <- PASS(Y=run03,
X.cat=train.CD_25cat215pxl$cat,
X.grd=train.CD_25cat215pxl$grd,
grd2cat=sapply(train.topology_25cat215pxl, function(x) x$grd),
model.eff.fn=KGE.SALTO,
lower=c(-3,0,1,0.1,0.1,-99,-3, 0, 10,0.1,0.1,

0.1,0.1, 0,0.1, 30,0.1, 100,0.1,0.1,0.1),
upper=c( 3,0,1, 10, 10,-99, 3,100,3000, 20, 2,

50, 5,10, 5,400, 5,15000, 5, 5, 30),
options=PASS.options(maxLoops=2000, nGroups=10, REGloops=2,

sampling='optim', optim.subset.cat=0.3),
prec=train.data$prec,
temp=train.data$temp,
pet=train.data$pet,
effarea=sapply(train.topology_25cat215pxl, function(x) x$effarea),
grdname=sapply(train.topology_25cat215pxl, function(x) x$grd),
flowto=sapply(train.topology_25cat215pxl, function(x) x$flowto),
level=sapply(train.topology_25cat215pxl, function(x) x$level),
disc=train.data$qobs)

#
# Loop 200 out of 2000 loops
# Loop 400 out of 2000 loops
# Loop 600 out of 2000 loops
# Loop 800 out of 2000 loops
# Loop 1000 out of 2000 loops
# Loop 1200 out of 2000 loops
# Loop 1400 out of 2000 loops
# Loop 1600 out of 2000 loops
# Loop 1800 out of 2000 loops
# Loop 2000 out of 2000 loops
#
# Time difference of 19.6393 mins
run04
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# Output of the PArameter Set Shuffling algorithm:
#
# number of catchments: 4
# number of model units (e.g. pixels): 104
# sampling strategy: optim
# number of loops: 2000
# number of groups: 10
# number of loops for regional consistency: 2
# proportion of randomized parameters (when optim): 0.3
# distributed regionalization efficiencies:
# Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 Group10
# Min. 0.413 0.395 0.389 0.393 0.398 0.396 0.389 0.406 0.363 0.400
# 1st Qu. 0.427 0.409 0.398 0.429 0.426 0.422 0.398 0.441 0.388 0.439
# Median 0.479 0.471 0.459 0.462 0.438 0.463 0.460 0.488 0.447 0.483
# Mean 0.480 0.475 0.495 0.493 0.487 0.492 0.493 0.488 0.474 0.483
# 3rd Qu. 0.532 0.536 0.556 0.525 0.499 0.534 0.555 0.535 0.532 0.528
# Max. 0.548 0.564 0.672 0.654 0.674 0.646 0.665 0.570 0.639 0.566
# updated number of train parameter sets: 5202

## End(Not run)

SALTO SAme Like The Others rainfall-runoff model

Description

The SAme Like The Others (SALTO) model is a distributed conceptual rainfall-runoff model. The
model is a representative of a soil moisture accounting scheme and similar to many other well-
known models in hydrology, such as the HBV model or elements of the SUPERFLEX modeling
approach.

Usage

SALTO (prec, temp, pet, effarea=1, grdname=1,
flowto=0, level=1, sm_layer=1,
param=c(TS=0, TS_R=0, BETA_SNOW=1,

DDF_NR=2, DDF_R=2, DDF_INC=-99,
TM=0, SM_MIN_1=100, SM_MAX_1=1000,
BETA_RC_1=1, BETA_AET_1=0.5,
K_RS_1=10, BETA_RS_1=1,
PERCMAX_1=5, BETA_PERC_1=1,
K_GW=100, BETA_GW=1, GW_S_MAX=5000, BETA_DQ_GW=1,
K_RIVER=1, BETA_RIVER=1), itimesteps=NULL)

## S3 method for class 'SALTO'
print(x, ...)

## S3 method for class 'SALTO'
plot(x, time, which=1, ...)
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Arguments

prec matrix of precipitation input [mm/timestep] whose columns contain the precip-
itation for each pixel/part of the catchment

temp matrix of temperature input [degC] whose columns contain the temperature for
each pixel/part of the catchment

pet matrix of potential evapotranspiration input [mm/timestep] whose columns con-
tain the potential evapotranspiration for each pixel/part of the catchment

effarea vector of what proportion of catchment area is contained in each pixel/part of
the catchment, the sum should be equal to 1

grdname pixel/model unit number covering the catchment

flowto downstream pixel/model unit (use -99 for the outlet pixel)

level pixel/model unit level (1=highest headwater, with no upstream neighbour, 2=only
level 1 upstream neighbours, etc.)

sm_layer number of soil moisture layers, which affects the number of parameters of the
model

param parameters of the SALTO model (one row per pixel/part of the catchment, or
a single vector for the same parameters for each pixel/part of the catchment)
which are:

TS threshold temperature above which precipitation is rain [degC]
TS_R ???

BETA_SNOW the non linear parameter for snowmelt [-]
DDF_NR degree day factor [mm/degC/timestep] for ???
DDF_R degree day factor [mm/degC/timestep] for ???

DDF_INC degree day factor [mm/degC/timestep] for ???
TM threshold temperature above which melting starts [degC]

SM_MIN_1 min. soil moisture storage [mm] for the first soil moisture layer
SM_MAX_1 max. soil moisture storage [mm] for the first soil moisture layer

BETA_RC_1 the non linear parameter for runoff production [-] for the first soil moisture layer
BETA_AET_1 the non linear parameter for evapotranspiration [-] for the first soil moisture layer

K_RS_1 storage coefficient for fast response [timestep] for the first soil moisture layer
BETA_RS_1 power coefficient for fast response [-] for the first soil moisture layer
PERCMAX_1 max percolation rate [mm/timestep] for the first soil moisture layer

BETA_PERC_1 the non linear parameter for percolation [-] for the first soil moisture layer
SM_MIN_2 min. soil moisture storage [mm] for the second soil moisture layer
SM_MAX_2 max. soil moisture storage [mm] for the second soil moisture layer

BETA_RC_2 the non linear parameter for runoff production [-] for the second soil moisture layer
BETA_AET_2 the non linear parameter for evapotranspiration [-] for the second soil moisture layer

K_RS_2 storage coefficient for slow response [timestep] for the second soil moisture layer
BETA_RS_2 power coefficient for slow response [-] for the second soil moisture layer
PERCMAX_2 max percolation rate [mm/timestep] for the second soil moisture layer

BETA_PERC_2 the non linear parameter for percolation [-] for the second soil moisture layer
SM_MIN_3 min. soil moisture storage [mm] for the third soil moisture layer
SM_MAX_3 max. soil moisture storage [mm] for the third soil moisture layer
BETA_RC_3 the non linear parameter for runoff production [-] for the third soil moisture layer
BETA_AET_3 the non linear parameter for evapotranspiration [-] for the third soil moisture layer
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K_RS_3 storage coefficient for slow response [timestep] for the third soil moisture layer
BETA_RS_3 power coefficient for slow response [-] for the third soil moisture layer
PERCMAX_3 max percolation rate [mm/timestep] for the third soil moisture layer

BETA_PERC_3 the non linear parameter for percolation [-] for the third soil moisture layer
K_GW storage coefficient for groundwater response [timestep]

BETA_GW the non linear parameter for groundwater response [-]
GW_S_MAX max. groundwater storage [mm]

BETA_DQ_GW power coefficient for groundwater diverted to river [-]
K_RIVER storage coefficient for river routing [timestep]

BETA_RIVER power coefficient for river routing [-]

itimesteps number of timesteps ???

x output of SALTO

time time variable, for plots

which which plot: 1 = full timeseries; 2 = annual timeseries

... other arguments

Details

Here explanation of what the function does...

Value

itimesteps number of timesteps

igrdicat number of pixels/parts of the catchment

upsneighb square matrix of 0s and 1s with dimention equal to the number of pixel/part
of the catchment, upsneighb[34,58] = 1 if pixel 58 is upstream of pixel 34,
otherwhise 0

effarea vector of what proportion of catchment area is contained in each pixel/part of
the catchment, the sum should be equal to 1

prec matrix of precipitation input [mm/timestep] whose rows contain the precipita-
tion for each pixel/part of the catchment

temp matrix of temperature input [degC] whose rows contain the temperature for each
pixel/part of the catchment

pet matrix of potential evapotranspiration input [mm/timestep] whose rows contain
the potential evapotranspiration for each pixel/part of the catchment

sm_layer number of soil moisture layers, which affects the number of parameters of the
model

TS threshold temperature above which precipitation is rain [degC]

TS_R ???

BETA_SNOW the non linear parameter for snowmelt ???

TM threshold temperature above which melting starts [degC]

DDF_NR degree day factor [mm/degC/timestep] for ???
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DDF_R degree day factor [mm/degC/timestep] for ???

DDF_INC degree day factor [mm/degC/timestep] for ???

SM_MIN min. soil moisture storage [mm]

SM_MAX max. soil moisture storage [mm]

BETA_RC the non linear parameter for runoff production [-]

BETA_AET the non linear parameter for evapotranspiration [-]

K_RS storage coefficient for fast/slow response [timestep]

BETA_RS power coefficient for fast/slow response [-]

PERCMAX max percolation rate [mm/timestep]

BETA_PERC the non linear parameter for percolation [-]

K_GW storage coefficient for groundwater response [timestep]

BETA_GW the non linear parameter for groundwater response [-]

GW_S_MAX max. groundwater storage [mm]

BETA_DQ_GW power coefficient for groundwater diverted to river [-]

K_RIVER storage coefficient for river routing [timestep]

BETA_RIVER the non linear parameter for river routing [-]

SWE_START initial snow water equivalent in each pixel/part of the catchment [mm]

SM_START initial soil moisture in each pixel/part of the catchment [mm]

RS_S_START initial lateral runoff storage in each pixel/part of the catchment [mm]

GW_S_START initial groundwater storage in each pixel/part of the catchment [mm]

RIVER_S_START initial storage in the river in each pixel/part of the catchment [mm]

swe output timeseries of snow water equivalent in each pixel/part of the catchment
[mm]

sm output timeseries of soil moisture in each pixel/part of the catchment [mm]

aet output timeseries of actual evapotranspiration in each pixel/part of the catchment
[mm/timestep]

sm_perc output timeseries of soil moisture percolation in the next soil layer in each
pixel/part of the catchment [mm/timestep]

rs_s output timeseries of fast runoff storage in each pixel/part of the catchment [mm]

rs_q output timeseries of fast runoff in each pixel/part of the catchment [mm/timestep]

gw_s output timeseries of groundwater storage in each pixel/part of the catchment
[mm]

gw_q output timeseries of groundwater discharge in each pixel/part of the catchment
[mm/timestep]

river_s output timeseries of river storage in each pixel/part of the catchment [mm]

gw_out output timeseries of groundwater outflow in each pixel/part of the catchment
[mm/timestep]

qsim output timeseries of produced runoff in each pixel/part of the catchment [mm/timestep]

q output timeseries of produced runoff at the catchment outlet [mm/timestep]
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See Also

PASS

Examples

## Not run:
data(outDataPrep)
data(outTrainParameters)

CATCHMENTS <- inputTopology$catchments
DEM <- inputTopology$dem
LON.M <- inputTopology$lon.m
LAT.M <- inputTopology$lat.m
LON.DEM <- inputTopology$lon.dem
LAT.DEM <- inputTopology$lat.dem
# the following takes some time
train.topology_25cat215pxl <- topology(catchments=CATCHMENTS, dem=DEM, lon.mast=LON.M,

lat.mast=LAT.M, lon.dem=LON.DEM, lat.dem=LAT.DEM)

# select data for one catchment
whichcatchment = 2
whichpixels <- which(match(colnames(train.data_4cat104pxl$prec),

as.character(train.topology_4cat104pxl[[whichcatchment]]$grd),
nomatch=0) > 0)

PREC <- train.data$prec[, whichpixels]
TEMP <- train.data$temp[, whichpixels]
PET <- train.data$pet[, whichpixels]
EFFAREA <- train.topology_25cat215pxl[[whichcatchment]]$effarea
GRDNAME <- train.topology_25cat215pxl[[whichcatchment]]$grd
FLOWTO <- train.topology_25cat215pxl[[whichcatchment]]$flowto
LEVEL <- train.topology_25cat215pxl[[whichcatchment]]$level
PARAM <- train.parameters_4cat[[whichcatchment]][3, -1]
QOBS <- train.data$qobs[, whichcatchment]
TIME <- as.Date(rownames(train.data$qobs))

# run the model
output <- SALTO(prec=PREC, temp=TEMP, pet=PET,

effarea=EFFAREA, grdname=GRDNAME, flowto=FLOWTO, level=LEVEL,
param=PARAM)

output
# Output of the model SALTO:
#
# simulations of 3652 days
# with inputs on 12 pixels/model units
#
# mean annual temperature of 7.2 degC
# mean annual potential evapotranspiration of 728 mm/a
# mean annual precipitation of 1003 mm/a
# mean annual actual evapotranspiration of 465 mm/a
# mean annual runoff of 868 mm/a
# quantiles of the simulated daily stream runoff (mm/d):
# Min. 1st Qu. Median Mean 3rd Qu. Max.
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# 0.000 0.758 1.408 2.377 2.768 46.703
str(output)

# plot daily observed vs. simulated streamflow runoff (mm/d)
plot(output, TIME, which=1)
lines(TIME, QOBS)

# plot annual values (mm/a)
QOBSa <- tapply(QOBS, substr(TIME, 1, 4), mean, na.rm=TRUE)*365
plot(output, TIME, which=2)
lines(as.numeric(names(QOBSa)), QOBSa, col=1)

# Calibration example
require(DEoptim)

negME.SALTO <- function(param, prec, temp, pet, effarea, grdname, flowto, level, disc) {
# global variables are in the function
simu <- SALTO(prec=prec, temp=temp, pet=pet,

effarea=effarea, grdname=grdname, flowto=flowto, level=level, param=param)$q
if (!all(is.na(simu))) {
simu[is.na(simu)] <- -999
simu <- simu[-c(1:303)] # remove the warming period
obse <- disc[-c(1:303)] # remove the warming period
r <- cor(simu, obse, method='pearson', use='pairwise.complete.obs')
beta <- mean(simu)/mean(obse)
gamma <- (sd(simu)/mean(simu))/(sd(obse)/mean(obse))
kgeQ <- 1 - sqrt((r - 1)^2 + (beta - 1)^2 + (gamma - 1)^2)

} else kgeQ <- -999
return(-kgeQ) # negative Kling-Gupta Efficiency

}
calibr_out <- DEoptim(fn=negME.SALTO,

lower=c(TS=-3.0, TS_R=0, BETA_SNOW=1,
DDF_NR=0.1, DDF_R=0.1, DDF_INC=-99,
TM=-3.0, SM_MIN_1=0, SM_MAX_1=10,
BETA_RC_1=0.1, BETA_AET_1=0.1,
K_RS_1=0.1, BETA_RS_1=0.1,
PERCMAX_1=0.0, BETA_PERC_1=0.1,
K_GW=30, BETA_GW=0.1, GW_S_MAX=100, BETA_DQ_GW=0.1,
K_RIVER=0.1, BETA_RIVER=0.1),

upper=c(TS=3.0, TS_R=0, BETA_SNOW=1,
DDF_NR=10, DDF_R=10, DDF_INC=-99,
TM=3.0, SM_MIN_1=100, SM_MAX_1=3000,
BETA_RC_1=20, BETA_AET_1=2.0,
K_RS_1=50, BETA_RS_1=5.0,
PERCMAX_1=10, BETA_PERC_1=5.0,
K_GW=400, BETA_GW=5.0, GW_S_MAX=15000, BETA_DQ_GW=5.0,
K_RIVER=5.0, BETA_RIVER=30),

control=DEoptim.control(NP=NA, itermax=200, reltol=1e-3, steptol=10, trace=5),
prec=PREC, temp=TEMP, pet=PET,
effarea=EFFAREA, grdname=GRDNAME, flowto=FLOWTO, level=LEVEL,

disc=QOBS)
# Iteration: 5 bestvalit: -0.522257 bestmemit: 1.358058 ...
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# Iteration: 10 bestvalit: -0.522257 bestmemit: 1.358058 ...
# Iteration: 15 bestvalit: -0.627414 bestmemit: 0.387819 ...
# Iteration: 20 bestvalit: -0.631475 bestmemit: -0.729270 ...
# Iteration: 25 bestvalit: -0.646940 bestmemit: -0.729270 ...
# Iteration: 30 bestvalit: -0.650348 bestmemit: 0.273490 ...
# Iteration: 35 bestvalit: -0.659448 bestmemit: -2.720806 ...
# Iteration: 40 bestvalit: -0.669184 bestmemit: -0.663057 ...
# Iteration: 45 bestvalit: -0.691207 bestmemit: 1.554097 ...
# Iteration: 50 bestvalit: -0.692687 bestmemit: 1.554097 ...
# Iteration: 55 bestvalit: -0.695200 bestmemit: 1.554097 ...
# Iteration: 60 bestvalit: -0.702177 bestmemit: 0.340355 ...
# Iteration: 65 bestvalit: -0.702213 bestmemit: 0.340355 ...
# Iteration: 70 bestvalit: -0.705200 bestmemit: -1.303549 ...
# Iteration: 75 bestvalit: -0.705612 bestmemit: -1.303549 ...
# Iteration: 80 bestvalit: -0.705612 bestmemit: -1.303549 ...

calibr_sim <- SALTO(prec=PREC, temp=TEMP, pet=PET,
effarea=EFFAREA, grdname=GRDNAME, flowto=FLOWTO, level=LEVEL,
param=calibr_out$optim$bestmem)

calibr_sim
# Output of the model SALTO:
#
# simulations of 3652 days
# with inputs on 12 pixels/model units
#
# mean annual temperature of 7.2 degC
# mean annual potential evapotranspiration of 728 mm/a
# mean annual precipitation of 1003 mm/a
# mean annual actual evapotranspiration of 583 mm/a
# mean annual runoff of 835 mm/a
# quantiles of the simulated daily stream runoff (mm/d):
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.07153 0.74396 1.42160 2.28617 2.67042 36.99902

plot(calibr_sim, TIME, which=1)
lines(TIME, QOBS)

## End(Not run)

topology Function for the setup of catchment topology

Description

The topology function reads a shapefile of catchments, a digital elevation model and master grid
and dem coordinates to derive the topology of catchments.

Usage

topology(catchments, dem, lon.mast, lat.mast, lon.dem, lat.dem)
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20 topology

Arguments

catchments SpatialPolygonsDataFrame of catchments

dem RasterLayer of digital elevation model
lon.mast, lat.mast

numeric vectors of input master grid coordinates
lon.dem, lat.dem

numeric vectors of DEM coordinates

Value
train.topology_4cat104pxl

list of N data.frames (N = number of catchments) each of them having the fol-
lowing columns:
grd – pixel/model unit number covering the catchment
effarea – pixel/model unit coverage of the catchment area
flowto – downstream pixel/model unit (use -99 for the outlet pixel)
level – pixel/model unit level (1 = highest headwater, with no upstream neigh-
bour, 2 = only level 1 upstream neighbours, etc.)

See Also

outDataPrep

Examples

data(outDataPrep)

ls()

names(inputTopology)
CATCHMENTS <- inputTopology$catchments
DEM <- inputTopology$dem
LON.M <- inputTopology$lon.m
LAT.M <- inputTopology$lat.m
LON.DEM <- inputTopology$lon.dem
LAT.DEM <- inputTopology$lat.dem

## Not run:
train.topology_4cat104pxl <- topology(catchments=CATCHMENTS, dem=DEM, lon.mast=LON.M,

lat.mast=LAT.M, lon.dem=LON.DEM, lat.dem=LAT.DEM)
ls()
str(train.topology_4cat104pxl)

## End(Not run)
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U.S. Data Preparation for hydroPASS

Matteo Pesce, Alberto Viglione

Politecnico di Torino — May 4, 2023

Introduction

With this document, the preparation of US-CAMEL data for the application of the model SALTO and
the PASS regional calibration routine is demonstrated. The following data have been downloaded:

• Discharge data and catchment shapefiles: CAMELS data set,
https://ral.ucar.edu/solutions/products/camels;

• Rainfall, temperature and potential evapotranspiration: NCA-LDAS Noah-3.3 Land Surface
Model L4 Daily 0.125 x 0.125 degree V2.0,
https://disc.gsfc.nasa.gov/datasets/NCALDAS NOAH0125 D 2.0/summary;

• DEM: https://www.hydrosheds.org/;

• Land Use: National Land Cover Database,
https://www.usgs.gov/centers/eros/science/national-land-cover-database;

• Soil: NACP MsTMIP - Unified North American Soil Map,
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds id=1242.

For the implementation of the scripts, the following R packages are needed:

require(raster)

require(rgdal)

require(maptools)

require(rgrass)

1 Catchments and DEM

Read shapefiles of Hydrologic Unit Code (HUC) = 1:

catshape.file = paste('/work/users/matteo/Models/PASS/testModels/UFZHalleWork/',

'AmericanData/CAMELS/basin_timeseries_v1p2_metForcing_obsFlow/',

'basin_dataset_public_v1p2/shapefiles/Region_01_nhru_simplify_100.shp', sep='')

shape <- readOGR(catshape.file)

Merge polygons by gageid:

1
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1. CATCHMENTS AND DEM

shape <- spTransform(shape, CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"))

shape <- shape[!(shape$GAGEID == '01150900'),] # remove this catchment as obs. discharge not present

shape <- shape[!(shape$GAGEID == '01195100'),] # incomplete series (no 2000-2010)

shape <- shape[!(shape$GAGEID == '04296000'),] # incomplete series (no 2000-2010)

GAGE.ID <- shape$GAGEID

shape.union <- unionSpatialPolygons(shape, GAGE.ID)

shape.agg <- data.frame(aggregate(shape[,c(10,52,53)], list(GAGE.ID), FUN = sum))

rownames(shape.agg) <- shape.agg$Group.1

catchments <- SpatialPolygonsDataFrame(shape.union, shape.agg)

rownames(catchments@data) <- 1:length(catchments)

catchments@data

extent_Bacini <- extent(catchments)*1.08

Read the DEM file:

dem.file <- '/work/users/matteo/Models/PASS/testModels/UFZHalleWork/AmericanData/hydroSHEDS/hyd_na_dem_30s.tif'

dem <- raster(dem.file)

dem <- crop(dem, extent_Bacini)

# add dem coordinates

points <- data.frame(rasterToPoints(dem, spatial=TRUE))

lat.dem <- rev(unique(points$y))

lon.dem <- sort(unique(points$x))

plot(dem)

plot(catchments, add=TRUE)

pointLabel(coordinates(catchments), labels=rownames(catchments@data))

2
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2. DISCHARGE

2 Discharge

Read txt files of streamflow of Hydrologic Unit Code (HUC) = 1:

path_disch <- paste('/work/users/matteo/Models/PASS/testModels/UFZHalleWork/',

'AmericanData/CAMELS/basin_timeseries_v1p2_metForcing_obsFlow/',

'basin_dataset_public_v1p2/usgs_streamflow/01', sep='')

disch.files <- list.files(path = path_disch, pattern = "_streamflow_qc.txt$", full.names=TRUE)

gauges.codes <- gsub('/', "", gsub(path_disch, "",(gsub("_streamflow_qc.txt", "", disch.files))))

obs_Q <- lapply(disch.files, function(x) read.table(x, header=FALSE, sep=''))

obs_Q <- lapply(obs_Q, setNames, c('ID_GAUGE','YEAR','MONTH','DAY','DISCHARGE','FLAG'))

names(obs_Q) <- gauges.codes

obs_Q <- obs_Q[-which(names(obs_Q) %in% c('01195100','04296000'))]

#str(obs_Q)

discharge <- matrix(nrow = nrow(obs_Q[[1]]), ncol = length(obs_Q))

rownames(discharge) <- as.character(seq(as.Date('1980-01-01'), as.Date('2014-12-31'), 'days'))

for (i in 1:ncol(discharge)){
discharge[,i] <- obs_Q[[i]]$DISCHARGE

}
colnames(discharge) <- names(obs_Q)

str(discharge)

## num [1:12784, 1:25] 655 640 625 620 605 585 570 555 540 535 ...

## - attr(*, "dimnames")=List of 2

## ..$ : chr [1:12784] "1980-01-01" "1980-01-02" "1980-01-03" "1980-01-04" ...

## ..$ : chr [1:25] "01013500" "01022500" "01030500" "01031500" ...

discharge[discharge == -999] <- NA

discharge <- discharge/35.315 # cubic feet --> cubic meter

plot(as.Date(rownames(discharge)), discharge[,i], type='l', xlab='', ylab=paste('Catch.', i, ' daily Q (m3/s)'))

3
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3. INPUT CLIMATE VARIABLES

Select the period of interest:

discharge <- discharge[rownames(discharge)>='2000-10-01' & rownames(discharge)<='2010-09-30', ]

Divide by area (official information on area)

gauges.info <- paste('/work/users/matteo/Models/PASS/testModels/UFZHalleWork/',

'AmericanData/CAMELS/basin_timeseries_v1p2_metForcing_obsFlow/',

'basin_dataset_public_v1p2/basin_metadata/gauge_information.txt', sep='')

GAUGES_INFO <- read.delim(gauges.info, header=T, sep='\t')
GAUGES_INFO <- GAUGES_INFO[,c(1:6)]

colnames(GAUGES_INFO) <- c('HUC', 'GAGE_ID', 'GAGE_NAME', 'LAT', 'LONG', 'DRAINAGE_AREA')

GAUGES_INFO$GAGE_ID <- paste0("0",GAUGES_INFO$GAGE_ID)

GAUGES_INFO <- GAUGES_INFO[,c(2,4,5,6)]

GAUGES_INFO <- GAUGES_INFO[GAUGES_INFO$GAGE_ID %in% names(obs_Q), ]

GAUGES_INFO # 25 basins

## GAGE_ID LAT LONG DRAINAGE_AREA

## 1 01013500 47.23739 -68.58264 2252.70

## 2 01022500 44.60797 -67.93524 573.60

## 3 01030500 45.50097 -68.30596 3676.17

## 4 01031500 45.17501 -69.31470 769.05

## 5 01047000 44.86920 -69.95510 909.10

## 6 01052500 44.87739 -71.05749 383.82

## 7 01054200 44.39044 -70.97964 180.98

## 8 01055000 44.64275 -70.58878 250.64

## 9 01057000 44.30399 -70.53968 190.92

## 10 01073000 43.14870 -70.96506 31.30

## 11 01078000 43.56646 -71.74786 222.46

## 12 01118300 41.47482 -71.83424 10.36

## 13 01121000 41.84371 -72.16897 70.25

## 14 01123000 41.67177 -72.05230 77.85

## 15 01134500 44.51172 -71.83731 195.13

## 16 01137500 44.26867 -71.63036 228.55

## 17 01139000 44.15034 -72.06509 246.33

## 18 01139800 44.09284 -72.33565 22.80

## 19 01142500 43.93451 -72.65788 82.17

## 20 01144000 43.71424 -72.41815 1790.24

## 21 01162500 42.68259 -72.11508 49.71

## 22 01169000 42.63842 -72.72509 230.64

## 23 01170100 42.70342 -72.67065 106.99

## 24 01181000 42.23731 -72.89565 243.50

## 25 01187300 42.03732 -72.93899 53.92

disch <- round(t(t(discharge)*86.4/GAUGES_INFO$DRAINAGE_AREA), 4)

Add information on gauges coordinates:

catchments$lat <- GAUGES_INFO[,c(2)]

catchments$lon <- GAUGES_INFO[,c(3)]

IDcatchments <- catchments$Group.1

IDcatchments

## [1] "01013500" "01022500" "01030500" "01031500" "01047000" "01052500"

## [7] "01054200" "01055000" "01057000" "01073000" "01078000" "01118300"

## [13] "01121000" "01123000" "01134500" "01137500" "01139000" "01139800"

## [19] "01142500" "01144000" "01162500" "01169000" "01170100" "01181000"

## [25] "01187300"

3 Input climate variables

Read the data file names:

4
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3. INPUT CLIMATE VARIABLES

path_clim <- '/work/users/matteo/Models/PASS/testModels/UFZHalleWork/AmericanData/NCALDAS'

clim.files <- list.files(path = path_clim, pattern = '.nc4', recursive = TRUE, full.names=TRUE)

Select the period of interest: e.g. 2000-2010

files10yrs <- clim.files[clim.files>= grep('20001001', clim.files, value=TRUE) &

clim.files <= grep('20100930', clim.files, value=TRUE)]

Select one day, as an example, and plot the rain in mm/day:

file_test <- files10yrs[6] # it rained a bit in the 6th day

Y <- raster(file_test, varname='Rainf')

# delimit the region of interest

#extent_Bacini <- extent(catchments)*1.08

#crop area

Ycrop <- crop(Y, extent_Bacini)*86400 # in mm/day

lon.m <- sort(unique(rasterToPoints(Ycrop, spatial=FALSE)[,1]))

lat.m <- rev(unique(rasterToPoints(Ycrop, spatial=FALSE)[,2]))

res.m <- res(Ycrop)[1]

irow.m <- nrow(Ycrop)

icol.m <- ncol(Ycrop)

grd.id <- matrix(1:(irow.m*icol.m), nrow=irow.m, byrow=TRUE)

plot(Ycrop)

plot(catchments, add=T)

grid.master <- Ycrop

m.grid <- rasterToPolygons(grid.master, na.rm=FALSE)

lines(m.grid)

# text(m.grid, labels=as.numeric(rownames(m.grid@data)), cex=0.50, col=2, font=2)

# ok
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5
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3. INPUT CLIMATE VARIABLES

Build a raster as a grid for the inputs:

r <- raster(

xmn=range(lon.m)[1] - (0.5*res.m), xmx=range(lon.m)[2] + (0.5*res.m),

ymn=range(lat.m)[1] - (0.5*res.m), ymx=range(lat.m)[2] + (0.5*res.m),

ncol=icol.m, nrow=irow.m,

crs=CRS('+proj=longlat +datum=WGS84 +no_defs'),

vals=1

)

r100 <- raster(res=res(r)/100, extent(r), crs=CRS('+proj=longlat +datum=WGS84 +no_defs'), vals=1)

Create the raster of weights:

weights <- array(NA, dim=c(irow.m, icol.m, length(catchments)))

for (icat in 1:length(catchments)){
dummy <- mask(r100, catchments[icat,])

dummy[is.na(dummy)] <- 0

weights[,,icat] <- as.matrix(aggregate(dummy, fact=100, fun=sum)/10000) #matrix of catchment area coverage

weights[,,icat][weights[,,icat] <= 0.005] <- 0

} # it takes 2 min

dimnames(weights)[[3]] <- IDcatchments

Populate the input arrays:

indices <- list()

for (i in 1:length(catchments)){
res <- which(!(weights[,,i] == 0), arr.ind=T)

indices[[i]] <- sort(grd.id[res])

}

pixels_cov <- unique(unlist(indices))

prec <- array(numeric(0),c(length(lat.m), length(lon.m), length(files10yrs)))

temp <- array(numeric(0),c(length(lat.m), length(lon.m), length(files10yrs)))

tmax <- array(numeric(0),c(length(lat.m), length(lon.m), length(files10yrs)))

tmin <- array(numeric(0),c(length(lat.m), length(lon.m), length(files10yrs)))

pet <- array(numeric(0),c(length(lat.m), length(lon.m), length(files10yrs)))

for (i in 1:dim(prec)[3]){
print(i)

Pr <- raster(files10yrs[i], varname='Rainf') # load the variable as raster

Pr_crop <- crop(Pr, extent_Bacini) # extent of the selected Basins (North-Eastern US)

prec[,,i] <- (as.matrix(Pr_crop))*86400 # convert to matrix and to [mm/d]

Temp <- raster(files10yrs[i], varname='Tair_f')

Temp_crop <- crop(Temp, extent_Bacini)

temp[,,i] <- (as.matrix(Temp_crop))-273.15

Temp_max <- raster(files10yrs[i], varname='Tair_f_max')

Temp_max_crop <- crop(Temp_max, extent_Bacini)

tmax[,,i] <- (as.matrix(Temp_max_crop))-273.15

Temp_min <- raster(files10yrs[i], varname='Tair_f_min')

Temp_min_crop <- crop(Temp_min, extent_Bacini)

tmin[,,i] <- (as.matrix(Temp_min_crop))-273.15

PotEvap <- raster(files10yrs[i], varname='PotEvap')

PotEvap_crop <- crop(PotEvap, extent_Bacini)

pet[,,i] <- (as.matrix(PotEvap_crop))*86400

} # i from 1 to 3652 ; it takes long: 18 min

Convert the inputs into a 2D structure:

train.data <- vector('list', 4)

names(train.data) <- c('prec','temp','pet','qobs')

t.arr <- matrix(NA, nrow = dim(prec)[3], ncol = dim(prec)[1]*dim(prec)[2])

for (i in 1:3) train.data[[i]] <- t.arr

z <- 1

for (i in 1:dim(prec)[1]){
for (j in 1:dim(prec)[2]){
train.data$prec[,z] <- prec[i,j,]

6
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3. INPUT CLIMATE VARIABLES

train.data$temp[,z] <- temp[i,j,]

train.data$pet[,z] <- pet[i,j,]

z <- z + 1

}
}

for (i in 1:3){
colnames(train.data[[i]]) <- 1:(dim(prec)[1]*dim(prec)[2])

rownames(train.data[[i]]) <- as.character(seq(as.Date('2000-10-01'), as.Date('2010-09-30'), "days"))

}

train.data$qobs <- disch

train.data$prec <- train.data$prec[, c(pixels_cov)]

train.data$temp <- train.data$temp[, c(pixels_cov)]

train.data$pet <- train.data$pet[, c(pixels_cov)]

dim(train.data$prec)

## [1] 3652 215

colnames(train.data$prec)

## [1] "87" "88" "89" "131" "132" "133" "134" "135" "136" "137"

## [11] "177" "178" "179" "180" "181" "182" "183" "184" "224" "225"

## [21] "226" "227" "228" "229" "271" "272" "273" "274" "275" "319"

## [31] "320" "322" "935" "936" "981" "982" "983" "1029" "1030" "1031"

## [41] "1076" "1077" "1078" "1125" "463" "464" "509" "510" "511" "512"

## [51] "513" "556" "557" "558" "559" "560" "561" "603" "604" "605"

## [61] "606" "607" "608" "609" "651" "652" "653" "654" "655" "656"

## [71] "698" "699" "700" "701" "702" "703" "746" "747" "748" "749"

## [81] "750" "751" "793" "794" "795" "796" "797" "798" "781" "782"

## [91] "783" "828" "829" "830" "831" "875" "876" "877" "878" "879"

## [101] "923" "924" "925" "926" "871" "872" "873" "917" "918" "919"

## [111] "920" "965" "966" "967" "968" "1012" "1013" "1014" "1015" "911"

## [121] "912" "957" "958" "959" "1004" "1005" "1006" "1148" "1193" "1194"

## [131] "1195" "1240" "1241" "1008" "1009" "1010" "1056" "1057" "1150" "1151"

## [141] "1152" "1197" "1198" "1199" "1617" "1618" "1422" "1468" "1469" "1470"

## [151] "1471" "1517" "2222" "2269" "2078" "2125" "2126" "2173" "1047" "1093"

## [161] "1094" "1095" "1141" "1189" "1190" "1191" "1192" "1237" "1238" "1239"

## [171] "1184" "1185" "1231" "1232" "1233" "1280" "1277" "1278" "1275" "1276"

## [181] "1322" "1323" "1273" "1274" "1320" "1321" "1324" "1367" "1368" "1369"

## [191] "1370" "1371" "1372" "1414" "1415" "1416" "1417" "1418" "1749" "1750"

## [201] "1796" "1797" "1744" "1745" "1791" "1792" "1882" "1883" "1929" "1930"

## [211] "1931" "1977" "1978" "2024" "2025"

str(train.data)

## List of 4

## $ prec: num [1:3652, 1:215] 0 0 0.2784 0 0.0504 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:3652] "2000-10-01" "2000-10-02" "2000-10-03" "2000-10-04" ...

## .. ..$ : chr [1:215] "87" "88" "89" "131" ...

## $ temp: num [1:3652, 1:215] 12.41 14.14 13.03 12.29 8.11 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:3652] "2000-10-01" "2000-10-02" "2000-10-03" "2000-10-04" ...

## .. ..$ : chr [1:215] "87" "88" "89" "131" ...

## $ pet : num [1:3652, 1:215] 1.43 2.24 1.7 2.04 2.05 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:3652] "2000-10-01" "2000-10-02" "2000-10-03" "2000-10-04" ...

## .. ..$ : chr [1:215] "87" "88" "89" "131" ...

## $ qobs: num [1:3652, 1:25] 0.116 0.113 0.113 0.105 0.101 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:3652] "2000-10-01" "2000-10-02" "2000-10-03" "2000-10-04" ...

## .. ..$ : chr [1:25] "01013500" "01022500" "01030500" "01031500" ...
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4 Catchment descriptors

4.1 Climate descriptors

Temperature:

tmean_series <- matrix(NA, nrow = dim(temp)[3], ncol = dim(temp)[1]*dim(temp)[2])

z <- 1

for (i in 1:dim(temp)[1]){
for (j in 1:dim(temp)[2]){
tmean_series[,z] <- temp[i,j,]

z <- z + 1

}
}
colnames(tmean_series) <- 1:ncol(tmean_series)

library(zoo)

tmean_series <- zoo(tmean_series, seq(as.Date('2000-10-01'), as.Date('2010-09-30'), "days"))

Precipitation:

prec_series <- matrix(NA, nrow = dim(temp)[3], ncol = dim(temp)[1]*dim(temp)[2])

z <- 1

for (i in 1:dim(prec)[1]){
for (j in 1:dim(prec)[2]){
prec_series[,z] <- prec[i,j,]

z <- z + 1

}
}
colnames(prec_series) <- 1:ncol(prec_series)

prec_series <- zoo(prec_series, seq(as.Date('2000-10-01'), as.Date('2010-09-30'), "days"))

Potential evapotranspiration:

pet_series <- matrix(NA, nrow = dim(temp)[3], ncol = dim(temp)[1]*dim(temp)[2])

z <- 1

for (i in 1:dim(pet)[1]){
for (j in 1:dim(pet)[2]){
pet_series[,z] <- pet[i,j,]

z <- z + 1

}
}
colnames(pet_series) <- 1:ncol(pet_series)

pet_series <- zoo(pet_series, seq(as.Date('2000-10-01'), as.Date('2010-09-30'), "days"))

Climatic descriptors:

# Long-term mean annual precipitation

CL_MAP <- round(apply(prec_series, 2, mean)*365.25) # [mm]

# Long-term mean annual temperature

CL_MAT <- round(apply(tmean_series, 2, mean), 1) # [degC]

# Long-term mean potential evapotranspiration

CL_PET <- round(apply(pet_series, 2, mean)*365.25) # [mm]

# Aridity index (Budyko, 1974) as ratio of mean annual potential evaporation and mean annual precipitation

CL_PETovP <- round(CL_PET/CL_MAP, 2) # [-]

monthlyP <- aggregate(prec_series, format(time(prec_series), '%m'), mean)*30 # [mm]

# ratio of long-term summer precipitation (May-Oct) and winter precipitation (Nov-Apr)

CL_Psum2win <- round(apply(monthlyP[5:10,], 2, sum)/apply(monthlyP[-c(5:10),], 2, sum), 2)

# Long-term median maximum daily precipitation

CL_R50 <- round(apply(aggregate(prec_series, format(time(prec_series), '%Y'), max), 2,

median), 1) # [mm/day]

# Long-term 95th percentile of maximum daily prec.

CL_R95 <- round(apply(aggregate(prec_series, format(time(prec_series), '%Y'), max), 2,

quantile, probs=0.95, na.rm=T), 1) # [mm/day]

# Long-term mean absolute difference of rainfall amount between two consecutives days

CL_dRD2D <- round(apply(prec_series, 2, FUN=function(x) mean(abs(diff(x)))), 2) # [mm]
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4.2 Morphology and topology descriptors

Calculate elevation statistics over the cells:

incells <- extract(dem, m.grid) # it takes 1 min

elevstats <- list()

elevstats$ncells <- unlist(lapply(incells, function(x) sum(!is.na(x))))

elevstats$meanelev <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

elevstats$sd <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) sd(x, na.rm=TRUE) else NA))

elevstats$CV <- round(elevstats$sd/elevstats$meanelev, 4)

elevstats$maxelev <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) max(x, na.rm=TRUE) else NA))

elevstats$minelev <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) min(x, na.rm=TRUE) else NA))

elevstats$q01 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.01, na.rm=TRUE) else NA))

elevstats$q05 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.05, na.rm=TRUE) else NA))

elevstats$q10 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.10, na.rm=TRUE) else NA))

elevstats$q25 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.25, na.rm=TRUE) else NA))

elevstats$q50 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.50, na.rm=TRUE) else NA))

elevstats$q75 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.75, na.rm=TRUE) else NA))

elevstats$q90 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.90, na.rm=TRUE) else NA))

elevstats$q95 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.95, na.rm=TRUE) else NA))

elevstats$q99 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.99, na.rm=TRUE) else NA))

elevstats$ncells2000 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) sum(x >= 2000, na.rm=TRUE) else NA))

elevstats <- as.data.frame(elevstats)

str(elevstats)

elevstats$CV[which(elevstats$CV=='Inf')] <- NaN

MP_mean_dem <- elevstats$meanelev

MP_cv_dem <- elevstats$CV

layout(matrix(1:4, nrow=2, byrow=TRUE))

plot(dem, legend.args=list(text='elev. (m)'))

plot(catchments, add=TRUE)

values(grid.master) <- elevstats$meanelev

plot(grid.master, legend.args=list(text='mean (m)'))

plot(catchments, add=TRUE)

values(grid.master) <- elevstats$sd

plot(grid.master, legend.args=list(text='sd (m)'))

plot(catchments, add=TRUE)

values(grid.master) <- elevstats$CV

plot(grid.master, legend.args=list(text='CV ()'))

plot(catchments, add=TRUE)
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Set GRASS environment and database location:

initGRASS(gisBase='/usr/lib/grass78', home=getwd(), gisDbase='GRASS_TEMP', mapset='PERMANENT', override=TRUE)

execGRASS('g.proj', flags = 'c', epsg = 4326)

execGRASS('g.mapset', flags = 'c', mapset = 'new_mapset')

Import raster to GRASS and set region:

10
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writeRaster(dem, filename = 'DTM.tif', format = 'GTiff', overwrite = TRUE)

execGRASS('r.in.gdal', flags='o', parameters=list(input='DTM.tif', output='elev'))

execGRASS('g.region', flags='p', parameters=list(raster='elev'))

execGRASS('r.watershed', flags='overwrite',

parameters=list(elevation='elev', threshold=1000, convergence=5, memory=300,

accumulation='ACCUMp', tci='TCIp', spi='SPIp', drainage='DRAINp', basin='BASINp', stream='STREAMp',

length_slope='LSLOPEp', slope_steepness='STEEPp'))

dir.create(file.path("./", "GRASSoutputs"), showWarnings = FALSE)

Run grass tools and export results:

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('ACCUMp'),

output=c('./GRASSoutputs/ACCUMp.tif'), nodata=-9999))

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('TCIp'),

output=c('./GRASSoutputs/TCIp.tif'), nodata=-9999))

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('SPIp'),

output=c('./GRASSoutputs/SPIp.tif'), nodata=-9999))

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('DRAINp'),

output=c('./GRASSoutputs/DRAINp.tif'), nodata=-9999))

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('BASINp'),

output=c('./GRASSoutputs/BASINp.tif')))

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('STREAMp'),

output=c('./GRASSoutputs/STREAMp.tif')))

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('LSLOPEp'),

output=c('./GRASSoutputs/LSLOPEp.tif'), nodata=-9999))

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('STEEPp'),

output=c('./GRASSoutputs/STEEPp.tif'), nodata=-9999))

Read exported files:

DRAINp <- raster('./GRASSoutputs/DRAINp.tif')

#plot(DRAINp)

ACCUMp <- raster('./GRASSoutputs/ACCUMp.tif')

#plot(ACCUMp)

#plot(log(ACCUMp))

BASINp <- raster('./GRASSoutputs/BASINp.tif')

#plot(BASINp)

STREAMp <- raster('./GRASSoutputs/STREAMp.tif')

#plot(STREAMp)

TCIp <- raster('./GRASSoutputs/TCIp.tif')

#plot(TCIp)

SPIp <- raster('./GRASSoutputs/SPIp.tif')

#plot(SPIp)

LSLOPEp <- raster('./GRASSoutputs/LSLOPEp.tif')

#plot(LSLOPEp)

STEEPp <- raster('./GRASSoutputs/STEEPp.tif')

#plot(STEEPp)

From STREAMp (raster) calculate the shapefile of river network (STREAMvect.shp):

execGRASS('r.thin', flags='overwrite', parameters=list(input='STREAMp', output='thinned'))

execGRASS('r.to.vect', flags=c('overwrite', 'v'), parameters=list(input='thinned',

output='STREAMvect', type='line'))

#export

execGRASS("v.out.ogr", flags='overwrite', parameters=list(input=c('STREAMvect'),

output=c('./GRASSoutputs/STREAMvect.shp')))

#read exported file

streams <- readOGR('./GRASSoutputs/STREAMvect.shp')

#plot(dem)

#lines(streams)

#ok

Calculate slope and aspect:

11
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execGRASS('r.slope.aspect', flags='overwrite', parameters=list(elevation='elev', slope='SLOPEp', aspect='ASPECTp',

pcurvature='PCURVp', tcurvature='TCURVp'))

#export

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('SLOPEp'),

output=c('./GRASSoutputs/SLOPEp.tif'), nodata=-9999))

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('ASPECTp'),

output=c('./GRASSoutputs/ASPECTp.tif'), nodata=-9999))

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('PCURVp'),

output=c('./GRASSoutputs/PCURVp.tif'), nodata=-9999))

execGRASS('r.out.gdal', flags='overwrite', parameters=list(input=c('TCURVp'),

output=c('./GRASSoutputs/TCURVp.tif'), nodata=-9999))

#read exported file

SLOPEp <- raster('./GRASSoutputs/SLOPEp.tif')

#plot(SLOPEp)

ASPECTp <- raster('./GRASSoutputs/ASPECTp.tif')

#plot(ASPECTp)

PCURVp <- raster('./GRASSoutputs/PCURVp.tif')

#plot(PCURVp)

TCURVp <- raster('./GRASSoutputs/TCURVp.tif')

#plot(TCURVp)

Calculate slope statistics over the cells:

incells <- extract(SLOPEp, m.grid) # it takes 4 min

slopestats <- list()

slopestats$ncells <- unlist(lapply(incells, function(x) sum(!is.na(x))))

slopestats$mean <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

slopestats$sd <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) sd(x, na.rm=TRUE) else NA))

slopestats$CV <- slopestats$sd/slopestats$mean

slopestats$max <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) max(x, na.rm=TRUE) else NA))

slopestats$min <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) min(x, na.rm=TRUE) else NA))

slopestats$q01 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.01, na.rm=TRUE) else NA))

slopestats$q05 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.05, na.rm=TRUE) else NA))

slopestats$q10 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.10, na.rm=TRUE) else NA))

slopestats$q25 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.25, na.rm=TRUE) else NA))

slopestats$q50 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.50, na.rm=TRUE) else NA))

slopestats$q75 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.75, na.rm=TRUE) else NA))

slopestats$q90 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.90, na.rm=TRUE) else NA))

slopestats$q95 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.95, na.rm=TRUE) else NA))

slopestats$q99 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.99, na.rm=TRUE) else NA))

slopestats <- as.data.frame(slopestats)

MP_mean_slope <- slopestats$mean

layout(matrix(1:4, nrow=2, byrow=TRUE))

plot(SLOPEp, legend.args=list(text='slope (%)'))

plot(catchments, add=TRUE)

values(grid.master) <- slopestats$mean

plot(grid.master, legend.args=list(text='mean (%)'))

plot(catchments, add=TRUE)

values(grid.master) <- slopestats$sd

plot(grid.master, legend.args=list(text='sd (%)'))

plot(catchments, add=TRUE)

values(grid.master) <- slopestats$CV

plot(grid.master, legend.args=list(text='CV ()'))

plot(catchments, add=TRUE)
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Calculate aspect statistics over the cells:

incells <- extract(ASPECTp, m.grid) # it takes 4 min

aspectstats <- list()

aspectstats$ncells <- unlist(lapply(incells, function(x) sum(!is.na(x))))

aspectstats$mean <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

aspectstats$sd <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) sd(x, na.rm=TRUE) else NA))

aspectstats$CV <- aspectstats$sd/aspectstats$mean

13
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aspectstats$max <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) max(x, na.rm=TRUE) else NA))

aspectstats$min <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) min(x, na.rm=TRUE) else NA))

aspectstats$q01 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.01, na.rm=TRUE) else NA))

aspectstats$q05 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.05, na.rm=TRUE) else NA))

aspectstats$q10 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.10, na.rm=TRUE) else NA))

aspectstats$q25 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.25, na.rm=TRUE) else NA))

aspectstats$q50 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.50, na.rm=TRUE) else NA))

aspectstats$q75 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.75, na.rm=TRUE) else NA))

aspectstats$q90 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.90, na.rm=TRUE) else NA))

aspectstats$q95 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.95, na.rm=TRUE) else NA))

aspectstats$q99 <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) quantile(x, prob=.99, na.rm=TRUE) else NA))

aspectstats <- as.data.frame(aspectstats)

MP_mean_aspect <- aspectstats$mean

layout(matrix(1:4, nrow=2, byrow=TRUE))

plot(ASPECTp, legend.args=list(text='aspect (d)'))

plot(catchments, add=TRUE)

values(grid.master) <- aspectstats$mean

plot(grid.master, legend.args=list(text='mean (d)'))

plot(catchments, add=TRUE)

values(grid.master) <- aspectstats$sd

plot(grid.master, legend.args=list(text='sd (d)'))

plot(catchments, add=TRUE)

values(grid.master) <- aspectstats$CV

plot(grid.master, legend.args=list(text='CV ()'))

plot(catchments, add=TRUE)
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Here circular statistics shoud have been used.

15
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5 Land use

landuse.file <- paste('/work/users/matteo/Models/PASS/testModels/UFZHalleWork/',

'AmericanData/NLCD_landcover/nlcd_2019_land_cover_l48_20210604.img', sep='')

land <- raster(landuse.file)

land0 <- crop(land, extent(1000005, 2342655, 2299995, 3310005))

land <- projectRaster(land0, res=c(0.0125,0.0125), crs="+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs", method='ngb')

land_crop <- crop(land, extent_Bacini)

Land cover reclassification:

#unique(as.matrix(land_crop))

rclmat <- matrix(c(10.9,12,1, # classes 11 and 12 Water

20.9,24,2, # classes 21 to 24 Developed

30.9,31,3, # class 31 Barren

40.9,43,4, # classes 41 to 43 Forest

50.9,52,5, # classes 51 to 52 Shrubland

70.9,74,6, # classes 71 to 74 Herbaceous

80.9,82,7, # classes 81 to 82 Planted/cultivated

89.9,90,8, # classes 90 and 95 to Wetlands

94.9,95,8,

-1,0,NA), ncol=3, byrow=TRUE)

landcrop_rcl <- reclassify(land_crop, rclmat)

plot(landcrop_rcl)

#plot(m.grid, add=TRUE)

plot(catchments, add=TRUE)
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Landcover statistics over the cells:
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incells <- extract(landcrop_rcl, m.grid) # it takes less than 1 min

# 8 classes:

# Percent of the catchment covered with water

LD_water <- round(100*unlist(lapply(incells, function(x) sum(x == 1, na.rm=T)/sum(!is.na(x))))) # [%]

# Percent of the catchment covered with artificial surfaces

LD_developed <- round(100*unlist(lapply(incells, function(x) sum(x == 2, na.rm=T)/sum(!is.na(x))))) # [%]

# Percent of the catchment covered with barren land

LD_barren <- round(100*unlist(lapply(incells, function(x) sum(x == 3, na.rm=T)/sum(!is.na(x))))) # [%]

# Percent of the catchment covered with forest

LD_forest <- round(100*unlist(lapply(incells, function(x) sum(x == 4, na.rm=T)/sum(!is.na(x))))) # [%]

# Percent of the catchment covered with shrubland

LD_shrubland <- round(100*unlist(lapply(incells, function(x) sum(x == 5, na.rm=T)/sum(!is.na(x))))) # [%]

# Percent of the catchment covered with herbaceous

LD_herbaceous <- round(100*unlist(lapply(incells, function(x) sum(x == 6, na.rm=T)/sum(!is.na(x))))) # [%]

# Percent of the catchment covered with planted/cultivated

LD_planted <- round(100*unlist(lapply(incells, function(x) sum(x == 7, na.rm=T)/sum(!is.na(x))))) # [%]

# Percent of the catchment covered with wetlands

LD_wetlands <- round(100*unlist(lapply(incells, function(x) sum(x == 8, na.rm=T)/sum(!is.na(x))))) # [%]

6 Soil

Read soil data:

path_soil <- '/work/users/matteo/Models/PASS/testModels/UFZHalleWork/AmericanData/NACP-SOIL/data'

soil.files <- list.files(path = path_soil, pattern = '.tif', recursive = TRUE, full.names=TRUE)

nameschar <- c("SCOMP_DOM", "SDEPTH", "S_CAEX", "S_CLAY", "S_GRAVEL", "S_OC", "S_PH", "S_REF_BULK_DENSITY",

"S_SAND", "S_SILT", "T_CAEX", "T_CLAY", "T_GRAVEL", "T_OC", "T_PH", "T_REF_BULK_DENSITY",

"T_SAND", "T_SILT")

SOILchar <- list()

for (i in 1:length(soil.files)){
SOILchar[[i]] <- crop(raster(soil.files[i]), extent_Bacini)

}
names(SOILchar) <- nameschar

Soil depth:

incells <- extract(SOILchar$SDEPTH, m.grid) # it takes 10 sec

SDEPTH <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE),2) else NA))

layout(matrix(1:2, nrow=1, byrow=TRUE))

plot(SOILchar$SDEPTH, legend.args=list(text='SDEPTH'))

plot(catchments, add=TRUE)

values(grid.master) <- SDEPTH

plot(grid.master, legend.args=list(text='SDEPTH'))

plot(catchments, add=TRUE)
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Sub-soil:

incells <- extract(SOILchar$S_CAEX, m.grid) # it takes 16 sec

S_CAEX <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE),2) else NA))

incells <- extract(SOILchar$S_CLAY, m.grid) # it takes 10 sec

S_CLAY <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

incells <- extract(SOILchar$S_GRAVEL, m.grid) # it takes 10 sec

S_GRAVEL <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

incells <- extract(SOILchar$S_OC, m.grid)

S_OC <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

incells <- extract(SOILchar$S_PH, m.grid)

S_PH <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

incells <- extract(SOILchar$S_REF_BULK_DENSITY, m.grid)

S_REF_BULK_DENSITY <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE),2) else NA))

incells <- extract(SOILchar$S_SAND, m.grid)

S_SAND <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

incells <- extract(SOILchar$S_SILT, m.grid)

S_SILT <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

layout(matrix(1:9, nrow=3, byrow=TRUE))

values(grid.master) <- S_CAEX

plot(grid.master, legend.args=list(text='S_CAEX'))

plot(catchments, add=TRUE)

values(grid.master) <- S_CLAY

plot(grid.master, legend.args=list(text='S_CLAY'))

plot(catchments, add=TRUE)

values(grid.master) <- S_GRAVEL

plot(grid.master, legend.args=list(text='S_GRAVEL'))

plot(catchments, add=TRUE)

values(grid.master) <- S_OC

plot(grid.master, legend.args=list(text='S_OC'))

plot(catchments, add=TRUE)

values(grid.master) <- S_PH

plot(grid.master, legend.args=list(text='S_PH'))

plot(catchments, add=TRUE)
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6. SOIL

values(grid.master) <- S_REF_BULK_DENSITY

plot(grid.master, legend.args=list(text='S_BD'))

plot(catchments, add=TRUE)

values(grid.master) <- S_SAND

plot(grid.master, legend.args=list(text='S_SAND'))

plot(catchments, add=TRUE)

values(grid.master) <- S_SILT

plot(grid.master, legend.args=list(text='S_SILT'))

plot(catchments, add=TRUE)

Top-soil:

incells <- extract(SOILchar$T_CAEX, m.grid)

T_CAEX <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE),2) else NA))
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6. SOIL

incells <- extract(SOILchar$T_CLAY, m.grid)

T_CLAY <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

incells <- extract(SOILchar$T_GRAVEL, m.grid)

T_GRAVEL <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

incells <- extract(SOILchar$T_OC, m.grid)

T_OC <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

incells <- extract(SOILchar$T_PH, m.grid)

T_PH <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

incells <- extract(SOILchar$T_REF_BULK_DENSITY, m.grid)

T_REF_BULK_DENSITY <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE),2) else NA))

incells <- extract(SOILchar$T_SAND, m.grid)

T_SAND <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

incells <- extract(SOILchar$T_SILT, m.grid)

T_SILT <- unlist(lapply(incells, function(x) if (sum(!is.na(x)) > 0) round(mean(x, na.rm=TRUE)) else NA))

layout(matrix(1:9, nrow=3, byrow=TRUE))

values(grid.master) <- T_CAEX

plot(grid.master, legend.args=list(text='T_CAEX'))

plot(catchments, add=TRUE)

values(grid.master) <- T_CLAY

plot(grid.master, legend.args=list(text='T_CLAY'))

plot(catchments, add=TRUE)

values(grid.master) <- T_GRAVEL

plot(grid.master, legend.args=list(text='T_GRAVEL'))

plot(catchments, add=TRUE)

values(grid.master) <- T_OC

plot(grid.master, legend.args=list(text='T_OC'))

plot(catchments, add=TRUE)

values(grid.master) <- T_PH

plot(grid.master, legend.args=list(text='T_PH'))

plot(catchments, add=TRUE)

values(grid.master) <- T_REF_BULK_DENSITY

plot(grid.master, legend.args=list(text='T_BD'))

plot(catchments, add=TRUE)

values(grid.master) <- T_SAND

plot(grid.master, legend.args=list(text='T_SAND'))

plot(catchments, add=TRUE)

values(grid.master) <- T_SILT

plot(grid.master, legend.args=list(text='T_SILT'))

plot(catchments, add=TRUE)
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6. SOIL

cds_list <- list(CL_MAP, CL_MAT, CL_PET, CL_PETovP, CL_R50, CL_R95, CL_dRD2D,

MP_mean_dem, MP_cv_dem, MP_mean_slope, MP_mean_aspect,

LD_water, LD_developed, LD_barren, LD_forest, LD_shrubland,

LD_herbaceous, LD_planted, LD_wetlands,

SDEPTH, S_CAEX, S_CLAY, S_GRAVEL, S_OC, S_PH, S_REF_BULK_DENSITY, S_SAND, S_SILT,

T_CAEX, T_CLAY, T_GRAVEL, T_OC, T_PH, T_REF_BULK_DENSITY, T_SAND, T_SILT)

cds_names <- c("CL_MAP","CL_MAT","CL_PET", "CL_PETovP", "CL_R50", "CL_R95", "CL_dRD2D",

"MP_mean_dem", "MP_cv_dem", "MP_mean_slope", "MP_mean_aspect",

"LD_land_use_water", "LD_land_use_developed", "LD_land_use_barren", "LD_land_use_forest",

"LD_land_use_shrubland", "LD_land_use_herbaceous",

"LD_land_use_planted", "LD_land_use_wetlands",

"SOIL_maximum_soil_depth", "SOIL_subsoil_cation_exchange", "SOIL_mean_subsoil_clay",

"SOIL_mean_subsoil_gravel", "SOIL_mean_subsoil_organic_carbon", "SOIL_mean_subsoil_ph",

"SOIL_mean_subsoil_bulk_density", "SOIL_mean_subsoil_sand",

"SOIL_mean_subsoil_silt", "SOIL_topsoil_cation_exchange",

"SOIL_mean_topsoil_clay", "SOIL_mean_topsoil_gravel",

"SOIL_mean_topsoil_organic_carbon", "SOIL_mean_topsoil_ph",
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7. SAVE VARIABLES

"SOIL_mean_topsoil_bulk_density", "SOIL_mean_topsoil_sand", "SOIL_mean_topsoil_silt")

cds <- vector("list", length(cds_list))

for (i in 1:length(cds_list)){
cds[[i]] <- matrix(cds_list[[i]], length(lat.m), length(lon.m), byrow=TRUE)

}
names(cds) <- cds_names

7 Save variables

Save the variables to be used with SALTO and PASS:

str(train.data)

## List of 4

## $ prec: num [1:3652, 1:215] 0 0 0.2784 0 0.0504 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:3652] "2000-10-01" "2000-10-02" "2000-10-03" "2000-10-04" ...

## .. ..$ : chr [1:215] "87" "88" "89" "131" ...

## $ temp: num [1:3652, 1:215] 12.41 14.14 13.03 12.29 8.11 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:3652] "2000-10-01" "2000-10-02" "2000-10-03" "2000-10-04" ...

## .. ..$ : chr [1:215] "87" "88" "89" "131" ...

## $ pet : num [1:3652, 1:215] 1.43 2.24 1.7 2.04 2.05 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:3652] "2000-10-01" "2000-10-02" "2000-10-03" "2000-10-04" ...

## .. ..$ : chr [1:215] "87" "88" "89" "131" ...

## $ qobs: num [1:3652, 1:25] 0.116 0.113 0.113 0.105 0.101 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:3652] "2000-10-01" "2000-10-02" "2000-10-03" "2000-10-04" ...

## .. ..$ : chr [1:25] "01013500" "01022500" "01030500" "01031500" ...

inputTopology <- list(catchments, dem, lon.m, lat.m, lon.dem, lat.dem)

names(inputTopology) <- c("catchments", "dem", "lon.m", "lat.m", "lon.dem", "lat.dem")

#str(inputTopology)

inputCatchDescr <- list(cds, catchments, weights, lat.m, lon.m)

names(inputCatchDescr) <- c("cds", "catchments", "weights", "lat.m", "lon.m")

#str(inputCatchDescr)

save(list=c('train.data','inputTopology','inputCatchDescr'),

#file='inputTopologyCatchDescr47x50_traindata25cat215pxl.RData',

file='outDataPrep.RData',

compress='xz') # 7.9M

8 Prepare input to pass

Prepare the catchment descriptor and topology inputs for PASS:

library(hydroPASS)

load('outDataPrep.RData')

# analogous to: data('outDataPrep')

CDS <- inputCatchDescr$cds

CATCHMENTS <- inputCatchDescr$catchments
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8. PREPARE INPUT TO PASS

WEIGHTS <- inputCatchDescr$weights

LON.M <- inputCatchDescr$lon.m

LAT.M <- inputCatchDescr$lat.m

train.CD_25cat215pxl <- catchDescrip(cds=CDS, catchment=CATCHMENTS, weights=WEIGHTS,

lon.mast=LON.M, lat.mast=LAT.M)

CATCHMENTS <- inputTopology$catchments

DEM <- inputTopology$dem

LON.M <- inputTopology$lon.m

LAT.M <- inputTopology$lat.m

LON.DEM <- inputTopology$lon.dem

LAT.DEM <- inputTopology$lat.dem

# the following takes some time

train.topology_25cat215pxl <- topology(catchments=CATCHMENTS, dem=DEM, lon.mast=LON.M,

lat.mast=LAT.M, lon.dem=LON.DEM, lat.dem=LAT.DEM)

Local calibration of SALTO:

library(hydroPASS)

require(DEoptim)

negME.SALTO <- function(param, prec, temp, pet, effarea, grdname, flowto, level, disc) {
# global variables are in the function

simu0 <- SALTO(prec=prec, temp=temp, pet=pet,

effarea=effarea, grdname=grdname, flowto=flowto, level=level, param=param)$qsim

simu <- simu0[which.max(apply(simu0, 1, sum)), ] # <- this is a quick fix that should be taken care of

if (!all(is.na(simu))) {
simu[is.na(simu)] <- -999

simu <- simu[-c(1:303)] # remove the warming period

obse <- disc[-c(1:303)] # remove the warming period

r <- cor(simu, obse, method='pearson', use='pairwise.complete.obs')

beta <- mean(simu)/mean(obse)

gamma <- (sd(simu)/mean(simu))/(sd(obse)/mean(obse))

kgeQ <- 1 - sqrt((r - 1)^2 + (beta - 1)^2 + (gamma - 1)^2)

} else kgeQ <- -999

#if (is.na(kgeQ)) kgeQ <- -999

return(-kgeQ) # negative Kling-Gupta Efficiency

}

load('outDataPrep.RData')

# analogous to: data('outDataPrep')

qualicodici <- colnames(train.data$qobs)

parametriLOCcalibrati <- array(NA, dim=c(25, 22, 30),

dimnames=list(qualicodici,

c('ME', 'TS','TS_R','BETA_SNOW',

'DDF_NR','DDF_R','DDF_INC',

'TM','SM_MIN','SM_MAX',

'BETA_RC','BETA_AET','K_RS','BETA_RS',

'PERCMAX','BETA_PERC',

'K_GW','BETA_GW','GW_S_MAX',

'BETA_DQ_GW','K_RIVER','BETA_RIVER'),

paste('run', 1:30, sep='')))

for (jjj in 1:30) {
for (iii in 1:length(qualicodici)) {
codice <- qualicodici[iii]

print(paste(iii, '-', codice, 'run', jjj))

whichcatchment <- which(colnames(train.data$qobs) == codice)

whichpixels <- which(match(colnames(train.data$prec),

as.character(train.topology_25cat215pxl[[whichcatchment]]$grd),

nomatch=0) > 0)

PREC <- train.data$prec[, whichpixels]

TEMP <- train.data$temp[, whichpixels]

PET <- train.data$pet[, whichpixels]

EFFAREA <- train.topology_25cat215pxl[[whichcatchment]]$effarea

GRDNAME <- train.topology_25cat215pxl[[whichcatchment]]$grd

FLOWTO <- train.topology_25cat215pxl[[whichcatchment]]$flowto

LEVEL <- train.topology_25cat215pxl[[whichcatchment]]$level

QOBS <- train.data$qobs[, whichcatchment]
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8. PREPARE INPUT TO PASS

TIME <- as.Date(rownames(train.data$qobs))

# Calibration

timestamp()

calibr <- try(DEoptim(fn=negME.SALTO,

lower=c(TS=-2.0, TS_R=0, BETA_SNOW=1,

DDF_NR=0.1, DDF_R=0.1, DDF_INC=-99,

TM=-3.0, SM_MIN_1=0, SM_MAX_1=10,

BETA_RC_1=0.1, BETA_AET_1=0.1,

K_RS_1=0.1, BETA_RS_1=0.1,

PERCMAX_1=0.0, BETA_PERC_1=0.1,

K_GW=30, BETA_GW=0.1, GW_S_MAX=100, BETA_DQ_GW=0.1,

K_RIVER=0.1, BETA_RIVER=0.1),

upper=c(TS=2.0, TS_R=0, BETA_SNOW=1,

DDF_NR=10, DDF_R=10, DDF_INC=-99,

TM=3.0, SM_MIN_1=100, SM_MAX_1=1000,

BETA_RC_1=20, BETA_AET_1=5.0,

K_RS_1=50, BETA_RS_1=5.0,

PERCMAX_1=10, BETA_PERC_1=5.0,

K_GW=400, BETA_GW=5.0, GW_S_MAX=15000, BETA_DQ_GW=5.0,

K_RIVER=5.0, BETA_RIVER=30),

control=DEoptim.control(NP=NA, itermax=200, reltol=1e-3, steptol=10, trace=5,

parallelType=1, limitCores=32, packages=c('hydroPASS')),

prec=PREC, temp=TEMP, pet=PET,

effarea=EFFAREA, grdname=GRDNAME, flowto=FLOWTO, level=LEVEL,

disc=QOBS))

if (class(calibr) != 'try-error') {
parametriLOCcalibrati[as.character(codice), 1, jjj] <- -calibr$optim$bestval

parametriLOCcalibrati[as.character(codice), -1, jjj] <- calibr$optim$bestmem

}
timestamp()

}
}

train.parameters_25cat <- vector('list', dim(parametriLOCcalibrati)[1])

names(train.parameters_25cat) <- dimnames(parametriLOCcalibrati)[[1]]

for (i in 1:length(train.parameters_25cat)) {
train.parameters_25cat[[i]] <- t(parametriLOCcalibrati[i,,])

}

save(train.parameters_25cat, file='outTrainParameters.RData', compress='xz')
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Appendix D

Locally vs. regionally calibrated
lumped parameters
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Fig. D.1 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters (30
sets, right) with PASS for four sites.



174 Locally vs. regionally calibrated lumped parameters

Fig. D.2 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters (30
sets, right) with PASS for four sites.
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Fig. D.3 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters (30
sets, right) with PASS for four sites.



176 Locally vs. regionally calibrated lumped parameters

Fig. D.4 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters (30
sets, right) with PASS for four sites.
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Fig. D.5 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters (30
sets, right) with PASS for four sites.



178 Locally vs. regionally calibrated lumped parameters

Fig. D.6 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters (30
sets, right) with PASS for four sites.
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Fig. D.7 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters (30
sets, right) with PASS for four sites.



180 Locally vs. regionally calibrated lumped parameters

Fig. D.8 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters (30
sets, right) with PASS for four sites.
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Fig. D.9 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters (30
sets, right) with PASS for four sites.



182 Locally vs. regionally calibrated lumped parameters

Fig. D.10 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters
(30 sets, right) with PASS for four sites.
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Fig. D.11 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters
(30 sets, right) with PASS for four sites.



184 Locally vs. regionally calibrated lumped parameters

Fig. D.12 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters
(30 sets, right) with PASS for four sites.
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Fig. D.13 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters
(30 sets, right) with PASS for four sites.



186 Locally vs. regionally calibrated lumped parameters

Fig. D.14 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters
(30 sets, right) with PASS for four sites.
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Fig. D.15 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters
(30 sets, right) with PASS for four sites.



188 Locally vs. regionally calibrated lumped parameters

Fig. D.16 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters
(30 sets, right) with PASS for four sites.
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Fig. D.17 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters
(30 sets, right) with PASS for four sites.



190 Locally vs. regionally calibrated lumped parameters

Fig. D.18 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters
(30 sets, right) with PASS for four sites.
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Fig. D.19 Locally calibrated parameters (30 sets, left) vs. regionally calibrated parameters
(30 sets, right) with PASS for four sites.



Appendix E

Observed vs. Simulated discharges
with regional PASS parameters

Legend for all the figures

• 1st row: simulated (red) vs. observed (black) daily discharges for the full
simulation period (red shading indicates the range of the simulated daily
discharges with the parameter sets obtained with PASS);

• 2nd row, 1st column: simulated (red) vs. observed (black) daily discharges
for a couple of years (red shading indicates the range of the simulated daily
discharges with the parameter sets obtained with PASS);

• 2nd row, 2nd column: simulated (red) vs. observed (black) daily discharges in
logarithmic scale for a couple of years (red shading indicates the range of the
simulated daily discharges with the parameter sets obtained with PASS);

• 3rd row, 1st column: annual components of the water balance: simulated
runoff (red), observed runoff (black), observed precipitation (blue), observed
potential evapotranspiration (dashed orange line), and simulated actual evapo-
transpiration (orange) (red shading indicates the range of the simulated annual
runoff with the parameter sets obtained with PASS);

• 3rd row, 2nd column: seasonality of the water balance: simulated runoff
(red), simulated runoff in the years when runoff was observed (dashed red
line), observed runoff (black), observed precipitation (blue), observed potential
evapotranspiration (dashed orange line), simulated actual evapotranspiration



193

(orange), simulated snow water equivalent (grey) (red shading indicates the
range of the simulated seasonal runoff with the parameter sets obtained with
PASS);

• 4th row, 1st column: simulated annual flow duration curve (mean = thick red,
confidence bounds = thin red), observed annual flow duration curve (mean =
thick black, confidence bounds = thin black) (red shading indicates the range
of the simulated mean annual flow duration curve with the parameter sets
obtained with PASS);

• 4th row, 2nd column: simulated maximum annual daily discharges (red bars),
observed maximum annual daily discharges (black dots) (red shading indi-
cates the range of the simulated maximum annual daily discharges with the
parameter sets obtained with PASS);

• 5th row, 1st column: simulated empirical flood frequency curve (red), simu-
lated empirical flood frequency curve in the years when runoff was observed
(dashed red line), observed empirical flood frequency curve (black) (red shad-
ing indicates the range of the simulated empirical flood frequency curve with
the parameter sets obtained with PASS);

• 5th row, 2nd column: fully distributed model efficiency ME = 0.5 ·KGE +

0.5 · SC, and mean pixel parameter sets obtained with PASS (i.e., not to be
confused with the lumped parameter sets of Appendix D).



194 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.1 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 001.
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Fig. E.2 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 002.



196 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.3 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 003.
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Fig. E.4 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 004.



198 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.5 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 005.
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Fig. E.6 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 006.



200 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.7 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 007.
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Fig. E.8 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 008.



202 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.9 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 009.
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Fig. E.10 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 010.



204 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.11 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 011.
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Fig. E.12 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 012.



206 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.13 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 013.
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Fig. E.14 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 014.



208 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.15 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 015.
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Fig. E.16 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 016.



210 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.17 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 017.
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Fig. E.18 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 018.



212 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.19 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 019.
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Fig. E.20 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 020.



214 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.21 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 021.
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Fig. E.22 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 022.



216 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.23 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 023.
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Fig. E.24 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 024.



218 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.25 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 025.
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Fig. E.26 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 026.



220 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.27 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 027.
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Fig. E.28 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 028.



222 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.29 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 029.
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Fig. E.30 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 030.



224 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.31 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 031.
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Fig. E.32 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 032.



226 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.33 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 033.
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Fig. E.34 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 034.



228 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.35 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 035.
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Fig. E.36 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 036.



230 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.37 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 037.
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Fig. E.38 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 038.



232 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.39 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 039.
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Fig. E.40 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 040.



234 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.41 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 041.
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Fig. E.42 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 042.



236 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.43 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 043.
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Fig. E.44 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 044.



238 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.45 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 045.
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Fig. E.46 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 046.



240 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.47 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 047.
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Fig. E.48 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 048.



242 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.49 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 049.
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Fig. E.50 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 050.



244 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.51 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 051.
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Fig. E.52 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 052.



246 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.53 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 053.
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Fig. E.54 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 054.



248 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.55 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 055.
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Fig. E.56 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 056.



250 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.57 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 057.
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Fig. E.58 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 058.



252 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.59 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 059.
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Fig. E.60 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 060.



254 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.61 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 061.
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Fig. E.62 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 062.



256 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.63 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 063.
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Fig. E.64 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 064.



258 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.65 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 065.
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Fig. E.66 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 066.



260 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.67 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 067.
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Fig. E.68 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 068.



262 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.69 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 069.
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Fig. E.70 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 070.



264 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.71 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 071.
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Fig. E.72 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 072.



266 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.73 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 073.
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Fig. E.74 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 074.



268 Observed vs. Simulated discharges with regional PASS parameters

Fig. E.75 Simulated vs. observed discharges with regional PASS parameters obtained by
calibration over the period 2000-2010 for TUWmodel, catchment 075.
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