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Abstract

This research work deals with the identification of flood event drivers in North-
Western Italy, both through a statistical analysis of streamflow annual maxima and
the application of a conceptual semi-distributed hydrological model. The work
provides different perspectives on how to study extreme events at the regional scale,
focusing on a set of non-regulated catchments located in North-Western Italy, within

the Alpine region.

After a preliminary analysis of the study area and the main data used, in Chapter
2 a correlation analysis between climate and flood indices at different temporal
scales is widely discussed. In particular, annual maximum flows, extracted from the
daily streamflow series, are correlated with the standard Climate Change Indices
(ETCCD]) of precipitation and temperature, which are commonly used in climate
research. A temporal correlation analysis, performed in order to identify which
climate drivers better explain the interannual variability of floods, is followed by
a spatial correlation analysis of temporal trends of the variables, with the aim of
capturing the influence of climate (decadal) variability on the tendency of annual
maximum discharges. The results show that, while at the annual timescale floods are
highly correlated with indices of precipitation extremes, the tendencies of discharge
maxima seem to be better explained by the mean precipitation over the catchment. A
following step of the work involves the characterization and classification of different
runoff event types over the region, which potentially allows to study how different
flood event types regionally change over time.

To this aim, in the second part (Chapter 3-4) a conceptual semi-distributed hydro-
logic model is calibrated over the study area, first with locally observed discharge
data and then regionally, by using the PArameter Set Shuffling (PASS) procedure
(Merz et al., 2020), a robust and well documented regionalization procedure that
allows to transfer the information contained into locally calibrated parameters and

catchment descriptors to the entire domain. In this work, PASS is implemented with a



decision tree machine learning algorithm for the regionalization of model parameters.
In particular, the advantage of using snow information in the calibration procedure
is further investigated. In addition, a newly developed R package, useful to make
the application of the procedure more flexible, is presented, together with examples
of application based on a well known comprehensive U.S. hydrologic database that
is publicly accessible. It appears from the results that PASS can be efficiently used
for the regionalization of model parameters in the study area, by providing consis-
tent relationships among climatic or geomorphological characteristics and model
parameters while confirming the effect of reduction of parameter equifinality. The
inclusion of snow in the model efficiency function doesn’t significantly improve
model simulations but provides more consistent results for snow parameters and,

overall, less uncertain model simulations.

In Chapter 5, the regionally calibrated model is used for identifying, characteriz-
ing and classifying runoff events in the same study region. The aim is to extend the
observed dataset in space and time in order to get a timeseries of spatially distributed
simulated events spanning 60 years from 1961 to 2020. First, the ability of the model
in reproducing observed runoff event characteristics (i.e. runoff coefficient, event
duration, event peak time, event peak, event volume) is evaluated by comparing
model simulations with observations in gauged sites. Then, regionally distributed
runoff event characteristics for the period 1961-2020 are obtained by considering
a wider catchment dataset, i.e. the European Catchments and Rivers Network Sys-
tem (ECRINS, 2012), over which the model with regionally calibrated parameters
is applied. The results for the gauged catchments show that the model is able to
properly capture the spatial pattern of observed runoff characteristics, in particular
runoff event peak and volume, with a median Nash-Sutcliffe Efficiency (NSE) greater
than 0.5, while the performance for runoff coefficient, duration and peak time is
lower. It is worth noting that the value of the runoff coefficient, event peak and
event volume is maximum in the southern and northeastern part of the region, in
catchments located at medium elevation in the proximity of Alps and Apennines.
Consistent results are also obtained by running the model in a distributed mode
in ungauged sites. By using several climatic indicators describing different event
features of the observed data that are not limited to discharge (i.e., type of inducing
event, space-time organization, wetness state of the catchment and spatial interaction
of precipitation and soil moisture), the first-order controls of event runoff response
are identified in the gauged catchments using the framework presented in Tarasova

et al. (2020), and this reveals four distinct clusters (sub-regions) with homogeneous
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event type frequency. In particular, cluster 1 mainly consists of lowland catchments
where intensity-dominated and local volume-dominated events under dry conditions
constitute a relevant quota of total events, suggesting that the main runoff generation
mechanism is a local one with possible infiltration excess or event-fed saturation.
These mechanisms indicate that convective activity is a very likely phenomenon
leading to floods in these catchments. Cluster 2 includes catchments that are located
both in lowland and at medium elevation. The fraction of events characterized by
the presence of snow is higher compared to the previous cluster and extensive and
steady rainfall events, both intensity and volume-dominated, are dominant types
for this cluster. This indicates the potential occurrence of orographic slow-moving
storms. The third cluster covers a large portion of the Alpine range, from South-West
to North, and includes all high elevation catchments strongly impacted by snow
processes and large valley catchments characterized by high-elevation zones. In-
deed, the majority of events in this cluster is represented by mixture of rainfall and
snowmelt and a moderate fraction is given by pure snowmelt events. Finally, cluster
4 includes catchments located all over the region at quite high elevation, both along
the Alps and the Apennines. This cluster has some similarities with cluster 2 but
the fraction of events impacted by snow processes is much higher and extensive
volume-dominated events during dry conditions prevail, suggesting extensive event
fed-saturation as a major runoff generation mechanism, with possible event-induced
connectivity. By applying the same framework regionally in ungaged sites using
simulated events that span the period 1961-2020, we find that the spatial pattern of
event type occurrence as obtained by the model is coherent with the event typology
from observed discharges and reflects the hydroclimatic conditions of the area. The
main differences concern cluster 1, which shows a higher quota of unsteady events
(mainly volume-dominated), and cluster 3, in which the fraction of snowmelt events
overcomes that of rain-on-snow events. The event types classification allows to
better explain the spatial distribution of event characteristics. The highest values of
runoff coefficient, event peak and volume are found for catchments of cluster 2 or 4,
where rain-on-snow events and orographic slow-moving storms, with an extensive
and steady structure, play a role in the runoff generation. Instead, catchments per-
taining to cluster 1 and 3, showing lower values of these characteristics, are strongly
impacted by either local runoff events that massively depend on the intensity of inter-
event evapotranspiration and on soil moisture state, unsteady volume-dominated
events and mixture of rainfall and snowmelt events.

Finally, Chapter 6 is dedicated to final Discussion and Conclusions.
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This Thesis represents a contribution to the hydrological community by providing
insights on the added value of using regionally calibrated distributed hydrological
models to describe flood events in a snow-dominated area, compared to a standard
statistical analysis of extremes. It is also provided a coded version of an established
regionalization procedure, to allow a flexible use of such models for a variety of
hydrological regimes. Future research can build upon the time-series of simulated
events and the results of event classification to study the possible spatial and temporal
correlations among climate variables and specific flood event types.
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Introduction

The hydrological cycle is strongly impacted by the pattern variation of climate
variables such as temperature and precipitation. Higher temperatures induce an
increase of potential evaporation and, at high elevation, changes in snow dynamics,
which affect runoff production.

In the last decades, high elevation areas are given particular attention as their
hydrological regimes, being strongly influenced by snow dynamics and changes in
glaciated areas, are especially vulnerable to climate change (IPCC, 2019). Over the
last century, the Alps have experienced an increase in temperature by a factor of 1.6
higher than the average worldwide temperature increase (Brunetti et al., 2009). In the
Alpine region, monthly and extreme runoff is characterized by a strong seasonality,
with maximum runoff typically occurring in spring and summer, driven by the
snowmelt, and minimum runoff in winter. The interest of the hydrologic community
is to understand how this pattern has changed in the past and is going to change
in the future. For this reason, the impact of precipitation and temperature patterns
on river flows is a well discussed topic and the attention is particularly devoted to
floods.

River floods are, indeed, one of the most impacting natural hazards, leading to
huge annual average damages in different sectors of the society, which are expected
to rapidly increase (IPCC, 2022). Large floods have occurred in Europe in the last
decades; among these we distinguish events in Central Europe in 2002, 2013, and
2021 (e.g., Bloschl et al., 2013; Kreienkamp et al., 2021; Ulbrich et al., 2003), winter
floods in North-West England in 2009 and 2015/2016 (e.g., Barker et al., 2016;
Miller et al., 2012), autumn floods in North-Western Italy such as 1994, 2000, 2016
and 2020 in Piemonte (e.g., Cassardo et al., 2001; Grazzini et al., 2020), 2011 in
Liguria (Silvestro et al., 2012; Silvestro et al., 2016) and finally the spring flood of
2023 in Emilia-Romagna, Italy (Arrighi and Domeneghetti, 2024). Based on this
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evidence, many studies focus on the detection of past changes in flood hazard. In
these studies, Mann-Kendall test is generally adopted to detect changes in the mean
annual flood magnitude and frequency (Mediero et al., 2014; Petrow and Merz, 2009;
Prosdocimi et al., 2014; Villarini et al., 2011). Among them, Bloschl et al. (2019)
analyse the most comprehensive dataset of observations in Europe (Hall et al., 2015)
and extract spatial patterns of trends in the annual maximum streamflow for the
period 1960-2010. An attribution to possible drivers of floods is also performed by
considering as candidates the annual maximum seven-day precipitation, the highest
monthly soil moisture and the spring temperature as a proxy for snowmelt and snow-
to-rain transition. Many studies consider non-stationary flood frequency analysis
for flood change attribution, by modelling distribution parameters with time-varying
climatic covariates (e.g., Prosdocimi et al., 2014; Prosdocimi et al., 2015; §raj et al.,
2016; Viglione et al., 2016). Bertola et al. (2020) analyse the differences between
small and large flood changes in Europe and Bertola et al. (2021) attribute them to
corresponding drivers. Other studies focus on future flood projections, by considering
changes in the magnitude of annual extreme flows (Hanus et al., 2021) or flood
quantiles (e.g., Alfieri et al., 2015; Rojas et al., 2012). Alfieri et al. (2015) compare
an ensemble of European flood projections for different future time periods with
flood simulations for an historical period. They analyse the possible interconnections
among two possible drivers of change, such as the annual precipitation and the annual
maximum daily precipitation, and flood change at the regional scale. Both the annual
precipitation amount and the annual maximum daily precipitation are examples
of standard climate indices, as defined by the Commission for Climatology/World
Climate Research Programme/Technical Commission for Oceanography and Marine
Meteorology (CCI/WCRP/JCOMM) Expert Team on Climate Change Detection
and Indices (ETCCDI, see e.g., Zhang et al., 2005). ETCCDI indices are widely
used in the climate literature to represent temperature and precipitation extremes
and they can be applied to study a variety of extreme events such as heavy rain,
floods, droughts, heat waves, etc. It is of interest to evaluate whether and which
ETCCDI indices are relevant for characterizing and, therefore, predicting flood

changes, particularly in a snow-dominated region.

So, the first part of this Thesis is devoted to explore the possible correlations
between the annual maximum daily discharges and ETCCDI indices time series at
the catchment scale in North-Western Italy (Pesce et al., 2022). This provides an
indication of which extreme precipitation and temperature indices could be used as
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covariates for estimating annual flood probabilities and their temporal change over

this region.

It is well established in literature that the use of hydrological models can be of
particular importance for a more comprehensive quantification and characterization
of the changes occurring in the hydrological regime, whose drivers are phenomena
tipically occurring at large scales, up to the global scale (e.g. climate change). This
can be performed taking advantage of distributed hydrological models through the
estimation of spatially consistent model parameters that represent different phys-
ical processes. The consistency of the parameter values is obtained by finding a
functional relationship between the parameters and climatic and geomorphological
characteristics of the area over which the model is calibrated, also defined as catch-
ment descriptors. The idea is to obtain parameter sets for each gridded element (more
generally hydrologic unit) having the same functional relationship with catchment
descriptors, following a process-based approach (Archfield et al., 2015; Clark et al.,
2016; Gupta et al., 2014; Mizukami et al., 2017; Paniconi and Putti, 2015). Param-
eters regionalization techniques also find wide application in the context of runoff
prediction in ungauged basins (Bloschl et al., 2013; Merz and Bloschl, 2004; Parajka
et al., 2013; Seibert, 1999; Troch et al., 2003). Among the different techniques,
an innovative one is the PArameter Set Shuffling (PASS) procedure, proposed by
Merz et al. (2020), based on the concept of using machine learning algorithms to
derive relationships linking locally calibrated parameters and catchment descriptors,
which can be used to predict spatially distributed parameters. When dealing with
the calibration of hydrological models, one main topic is the choice of the objective
function and many studies demonstrate the adding value, in terms of improving
the prediction and reducing the uncertainty, of multiple objective calibration i.e.
constraining the model to some additional hydrological variables other than runoff,

such as snow cover or soil moisture (Parajka and Bloschl, 2008; Tong et al., 2021).

On this premise, in the second part, a conceptual semi-distributed hydrologic
model is regionally calibrated on the same study area, by taking advantage of the
PASS method. The method is implemented with a decision-tree algorithm that
transfers parameter values to the entire domain, by using the information contained
in local parameters and catchment descriptors. A multi-objective calibration of the
model is used by considering MODIS satellites products as snow cover information.
The main assumption is that including snow information in the calibration procedure

could improve the representation of the hydrological processes in an Alpine setting,
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leading to improved streamflow simulations. A newly developed R package fostering
the flexibility of the procedure is also presented and examples are provided with

openly accessible, well known U.S. hydrologic database.

In the final part of this Dissertation, the regionally calibrated model is used for
identifying, characterizing and classifying runoff events in North-Western Italy. The
identification of runoff events is performed by using the algorithm proposed by Giani
et al. (2022) that allows to identify and extract the main runoff characteristics (i.e.
runoff coefficient, event duration, peak time, event peak and volume). Given the
reasonably acceptable performance of the model in reproducing the above mentioned
observed characteristics, the model is run all over the region in order to get distributed
regional statistics and it is then used for the characterization and classification of
the identified runoff events. Many studies recently cover the topic of process-based
classification of large runoff events, at different spatial scales (Merz and Bloschl,
2003; Berghuijs et al., 2016; Berghuijs et al., 2019; Stein et al., 2019). However, they
lack in taking into account pre-event wetness and its connection with precipitation
events, whose importance is highlighted in Viglione et al. (2010). This explains the
work of Tarasova et al. (2019), discussing the main drivers of runoff generation by
also including catchment wetness, leading up to the definition of a process-based
framework for event characterization and classification (Tarasova et al., 2020), which
is used in this Thesis. In particular, using several climatic indicators, the main
mechanisms responsible for event runoff response are identified, revealing four
zones of North-Western Italy with homogeneous event type frequency. During my
PhD, I had the opportunity to spend three months at the Department of Catchment
Hydrology of the Helmholtz Centre for Environmental Research (UFZ), led by Prof.
Ralf Merz, where I worked on event identification, classification and characterization,
taking advantage of the expertise of the research team, in particular of Dr. Phd Larisa

Tarasova.

The Thesis is structured as follows. Chapter 1 gives an overview of the study
region and the main data used. Chapter 2 presents the correlation analysis between
annual maximum discharges and ETCCDI indices. Chapter 3 describes the regional
calibration of the semi-distributed model over North-Western Italy, using the PASS
procedure. Chapter 4 presents the R package "hydroPASS’, used to implement the
PASS procedure, with examples from U.S. database. Chapter 5 is dedicated to runoff
event identification, characterization and classification. Finally, Chapter 6 provides
final Discussion and Conclusions.



Chapter 1

Study Region and Data

1.1 Climate and flow data

The study region is broadly coincident with the upper part of the drainage basin
of the Po River and drains the semicircle of Alps and Apennines surrounding the
region on three sides. The climate is temperate, and of type continental, becoming
progressively temperate-cold and cold as altitude rises. Rainfall falls mainly in spring
and autumn on most of the territory, and in summer in the higher inland Alpine areas.
The heterogeneity of this area in terms of elevation and dominance of snow related
processes leads to peculiar effects of precipitation and temperature change on floods.
Figure 1.1 shows the study area in terms of elevation and river network. For the
elevation, the digital elevation model provided by EarthEnv at 90m resolution is used
(https://www.earthenv.org/DEM.html), while the river network is extracted from the EEA
Catchments and Rivers Network System ECRINS v1.1 (ECRINS, 2012).
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Fig. 1.1 Map of North-Western Italy region, with elevation and river network.

In this Thesis, daily precipitation [mm d!'] and minimum and maximum daily
temperature [°C] data are provided by a gridded dataset, covering the period from
01-12-1957 up to 31-12-2019, with cell resolution of 0.125° x 0.125°. This is de-
rived by spatial regridding through Optimal Interpolation (OI) of daily observations
from meteorological stations, collected by the Hydrographic Office network and
the network of the Regional Environmental Protection Agengy (ARPA) telemetry
stations (NWOI dataset, https://www.arpa.piemonte.it/scheda-informativa/dataset-griglia-nwioi).
The technique allows to obtain a regular grid by homogeneization of observational
data from different networks and sources. The potential evapotranspiration is cal-
culated with the modified Blaney-Criddle equation (Doorenbos and Pruitt, 1977),
by considering the mean daily temperature and the mean daily percentage of annual
daytime hours for a latitude of 45° N.

Figure 1.2 reports some mean climatic characteristics of the study area, referred
to the period 2000-2019, calculated using the OI dataset. The aridity index, defined


https://www.arpa.piemonte.it/scheda-informativa/dataset-griglia-nwioi
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as the ratio between mean annual potential evapotranspiration and mean annual
precipitation, is provided as it is a widely used climate indicator in hydrology
(Bloschl et al., 2013). It is worth noting that in the Alps, particularly in the northern
area, there is a tendency towards more humid conditions, characterized by high
precipitation amounts, while the central lowland area is experiencing more arid
conditions, as shown by potential evapotranspiration and aridity index maps. Both
the mean annual precipitation and the precipitation extremes show the highest rainfall
values in the northern part of the region and in the south-east, along the Apennines.
Appendix A provides some geographical and topographical characteristics of 197
sites located over the study area, extracted from the Atlante dei Bacini Imbriferi
Piemontesi (AtlanteBacinilmbriferi.pdf), together with information about mean climatic
characteristics at the catchment scale, calculated over the period 2000-2019 (mean

annual precipitation, mean annual potential evapotranspiration and aridity index).

In this Thesis, data from the regional stream gauge network managed by the
regional environmental protection agency (Arpa Piemonte) are used. Data can be
downloaded from Arpa Piemonte website (https://www.arpa.piemonte.it/temi/acqua). In
particular, mean daily discharges in m3/s are considered, which are obtained by
averaging the 48 half-hourly values recorded each day.

1.2 Catchment Water Balance

In this section the water balance of the catchments located over the region is analysed.
The water balance is governed by the following mass balance equation:

ds

E:P—Q—G—E (1.1)
where % represents the variation of storage in time, P represents precipitation, Q is
the outlet discharge, G the recharge of acquifers and E the actual evapotranspiration.
At long time scale (e.g., 20 years) it is assumed that the storage variation is neglibile,
as all the water entering the control volume, here assumed as delimited by the
catchment boundaries, is equal to the water exiting it. For evaluating the water
balance of the catchments it is also assumed that the groundwater flux is negligible,
so that the water balance equation reduces to:

P=Q+E (1.2)


http://www.idrologia.polito.it/didattica/PIT/2013/2_AnalisiRegionale/AltroMateriale/DATI_AtlanteBaciniImbriferi.pdf
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Fig. 1.2 Maps of the mean annual precipitation in mm/yr (MAP), temperature in °C (MAT),
potential evapotranspiration in mm/yr (PET), aridity index (AI), median of the annual
maximum daily precipitation in mm/d (R50) and 95th quantile of the annual maximum daily
precipitation in mm/d (R95) for the study area, derived from the Optimal Interpolation (OI)
database. Reference period: 2000-2019 (hydrologic year: 1% October 1999-30" September
2019)

where the terms are long-term rate of precipitation (P), long-term rate of evapotran-
spiration (£) and long-term rate of runoff (Q). According to the prevailing climate
conditions, a catchment can be energy limited or water limited. It is energy limited
when the ratio between the long-term potential evapotranspiration and rainfall (i.e.
the Aridity Index) is lower than 1, so the long-term evapotranspiration corresponds
to potential evapotranspiration (E = EP). On the contrary, it is water limited when
the Aridity Index is greater than 1 and the actual long-term evapotranspiration corre-
sponds to precipitation (E = P). These two cases are well represented in the Budyko
diagram (Figure 1.3b).
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Fig. 1.3 a) Map of North-Western Italy region, with elevation, river network, catchment
boundaries and outlets colored by main rivers. b) Budyko curve of the catchments located
over the study area (black solid line). The blue line represents the energy and water limits to
the evaporative index. The statistics are calculated over the period 2000-2019 (hydrologic
year: 1%t October 1999 - 30" September 2019).

Budyko was a Russian climatologist, one of the founders of physical climatology.
The Budyko diagram (Budyko, 1974) defines the space where points should be lo-
cated if the water balance is met. Catchments that are energy limited, so experiencing
humid conditions, should be located along the bisecting line or just below. Instead,
catchments that are water limited, so placed in arid conditions, should be located
along the straight line corresponding to E/P = 1, or just below. Budyko determined

the analytical expression of the curve representing points in the diagram, which is
given below (black solid line in Figure 1.3b):

17y 12
% = {% [1 —exp (—%))} tanh <%)> } (1.3)

The water balance is evaluated for a selection of 95 stations over the study region

(Figure 1.3a), having at least 9 years of data in the period 1990-2019. The records
start not earlier than 1996. Table 1.1 provides some topographical and climatic
characteristics of the 95 sites. For uniformity reasons, the long-term fluxes are
calculated over the period 2000-2019, by considering the hydrologic year. The results
are shown in Figure 1.3b. Most catchments are confined in the energy limited region

of the Budyko diagram, so they experience humid conditions. It can be observed
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that the majority of catchments are placed close to the Budyko curve, but a bunch of
catchments shows very low values of the ratio among long-term evapotranspiration
and precipitation. This is probably due to issues of precipitation undercatch, which
appears particularly in the mountains when precipitation is snowfall, leading to an
underestimation of the precipitation flux which in turn decreases the numerator of
the ratio and so the ratio. For six catchments, the long term discharge appears to
be higher than precipitation, leading to negative values of E/P. The most negative
values refer to two stations along Corsaglia river and Pesio river catchment at San
Bartolomeo. The average mean elevation of catchments for which the balance
is not met is 1590 m.a.s.l. with two stations located over 2000 m.a.s.l. Overall,
catchments showing low values of long-term actual evapotranspiration (E/P < 0.2)
are located at medium to high elevation with an average of 1625 m a.s.l. Finally, few
catchments are outside the allowed region with anomalies in the E/P value, meaning
that the actual evapotranspiration is higher than the potential evapotranspiration.
This can be the result of a water withdrawal, for example for irrigation needs in these
catchments or the presence of other fluxes (e.g., acquifer recharge), which decreases
the contribution to runoff discharge.

Table 1.1 Statistics of topographical and climatic characteristics for the 95 catchments con-
sidered in the study. Reference period: 2000-2019 (hydrologic year: 1% October 1999-30™
September 2019).

mean | CV | min | 25% | median | 75% | max
Area (km?) 1596 | 2.32 38 146 336 951 | 25640

Mean elevation (m a.s.l.) 1186 | 0.488 | 244 | 678.5| 1125 1666 | 2339

Mean Annual precipitation (mm yr—') | 1095 | 0.210 | 722 932 1051 1212 | 1827
Mean annual runoff (mm yr‘]) 698 | 0.495 | 148 460 644 897 1583
Aridity index (-) 0.722 | 0.254 | 0.350 | 0.606 | 0.718 | 0.816 | 1.266

1.3 Land use and Curve Number data

In this section, the land cover characteristics of the study area are discussed. Data
are provided by the Corine Land Cover dataset 2018 (https://land.copernicus.eu/pan-
european/corine-land-cover), which gives land cover information at 100 m spatial resolu-
tion over Europe. Starting from the entire dataset, the North-Western Italy region
is selected and land use classes are reclassified into five classes (Urban, Small
vegetation, Agriculture, Forest, Wetland), according to Table 1.2.


https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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Table 1.2 Corine Land Use 2018 Classes vs Reclassified Classes.

Corine Land Use Class

Reclassified Class

Continuos urban fabric

Discontinuos urban fabric

Industrial or commercial units Urban
Road and rail networks and associated land

Port Areas

Airports

Mineral extraction sites

Dump sites

Construction sites Small veg
Green urban areas

Sport and leisure facilities

Non-irrigated arable land

Permanently irrigated land

Rice fields

Vineyards

Fruit trees and berry Plantation

Olive groves Agriculture
Pastures

Annual crops associated with permanent crops
Complex cultivation patterns

Land principally occupied by agriculture

with significant areas of natural vegetation

Agro-forestry areas

Broad-leaved forest
Coniferous forest

Mixed forest

Natural grasslands

Moors and heathland
Sclerophyllous vegetation

Transitional woodland-shrub

Forest

Beaches, dunes, sands
Bare rocks

Sparsely vegetated areas
Burnt areas

Glaciers and perpetual snow

Small veg

Inland marshes
Peat bogs

Salt marshes
Salines
Intertidal flats
Water courses
Water bodies
Coastal lagoons
Estuaries

Sea and ocean

Wetland
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Fig. 1.4 Reclassified Corine Land Cover Dataset over North-Western Italy.

Figure 1.4 shows the spatial distribution of land cover type over North-Western
Italy. The urban settlements, in particular Turin in Piemonte and Milan in Lombardia,
can be spotted. The Po Valley is characterized by agricultural fields, while the
mountain ranges, (i.e. Alps and Appennines) are characterized by forests and, at
very high elevation, sparse vegetation and perennial snow and glaciers. Also water
bodies, such as lakes, are quite visible in the map. The Optimal Interpolation grid is
considered to calculate the percentage of pixels pertaining to a specific class inside
each cell and the result is provided in Figure 1.5. The new rasters are used for the

application of the parameter regionalization method which is discussed in Chapter 3.
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Fig. 1.5 Maps of the fraction (%) of land use classes (urban, small vegetation, agriculture,
forest, wetland) for the study area.

Land use or land cover information is essential to determine the Curve Number
(CN). CN is a parameter whose value ranges from 0 to 100, summarizing three
characteristics related to soil: the soil typology, land use and soil moisture level
before the rainfall event. The theoretical limits of CN = 0 and CN = 100 represent the
case when all the precipitation infiltrates in the soil and when all the precipitation is
transformed into surface runoff, respectively. The Soil Conservation Service-Curve
Number (SCS-CN) method classifies the soil in four hydrologic groups (USDA-
NRCS, 1986):

* A - Soils with low potential for surface runoff. This group includes deep sands
with very low silt and clay and also deep permeable gravel.

* B - Soils with quite low potential for surface runoff. This group includes
the majority of sandy soils, less deep compared to group A. High infiltration

capacity even at saturation conditions.

e C - Soils with quite high potential for surface runoff. It includes thin soils
with substantial amount of clay and colloids (but less than in group D). Low

infiltration capacity at saturation.
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* D - Soils with high potential for surface runoff. This group includes clay soils
with high swelling capacity but also thin soils with an impermeable layer close

to the surface.

At first, a CN reflecting averaged soil moisture conditions (CNyy) is considered.
Tables provided by the United States Department of Agriculture (USDA-NRCS,
1986; USDA-NRCS, 2004) reporting CNyy values for rural and urbanized areas are
used to determine values of CNyy associated to the different hydrologic soil types
and the land use classes of the Corine Land Cover 2018 (Table 1.3). The CNyj values
are attributed to the new classes by direct comparison with the classes provided by
USDA or by physical consistency among the two sources. Starting from the rasters of
soil characteristics identified by using the Harmonized World Soil Database (HWSD;
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/), it is defined a raster
of soil typology for our study area, by adopting the following simplified criteria,
based on the mass fraction [% wt.] of sand, clay and silt in the topsoil (0-30 cm) and
subsoil (30-100 cm):

* A - Soils with S_SAND > 70 & (S_CLAY + S_SILT) <30, T_SAND > 70
& (T_CLAY + T_SILT) <30

« B - Soils with 50 < S_SAND < 70 & 30 < (S_CLAY + S_SILT) < 50, 50 <
T_SAND < 70 & 30 < (T_CLAY + T_SILT) < 50

* C - Soils with 20 < S_SAND < 50 & 50 < (S_CLAY + S_SILT) < 80 &
S_CLAY > 10,20 < T_SAND < 50 & 50 < (T_CLAY + T_SILT) <80 &
T_CLAY > 10

* D - Soils with 10 < S_SAND < 20 & 80 < (S_CLAY + S_SILT) <90 &
S_CLAY > 20, 10 < T_SAND < 20 & 80 < (T_CLAY + T_SILT) <90 &
T_CLAY > 20

The CNy is used to determine the corrisponding CNj for drier soil moisture
conditions and CNyyy for wetter conditions. The formula used are the following
(Mishra et al., 2008):

CNp
CNj = 1.4
1 23 20.013CNy (1.4

CN
CNy = = (1.5)

0.43+0.0057CNp


http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/
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Fig. 1.6 Maps of the Curve Number (CNj, CNyj, CNyyp) for the study area.

Figure 1.6 represents the spatial distribution of the mean CN values over North-
Western Italy, by considering the Optimal Interpolation grid. It is worth noting that
the highest values are found around Vercelli province, in the East, where rice fields
represent a dominant cultivation, and in the Alps (northwest area), characterized by
glaciers and perpetual snow. The lowest CNs are instead found in forestry areas in
the West and in the South, in Liguria region, where vineyards and olive groves are
typically present. As for the land cover, the gridded CNs are used as descriptors in
the PASS regionalization method described in Chapter 3.
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Table 1.3 CNp; values associated to the Corine Land Use classes and the four hydrologic soil
types A-B-C-D, derived by USDA-NRCS (1986) and USDA-NRCS (2004).

Corine Land Use Class A B C D
Continuos urban fabric 77 8 90 92
Discontinuos urban fabric 61 75 83 87
Industrial or commercial units 89 92 94 95
Road and rail networks and associated land 98 98 98 98
Port Areas 98 98 98 98
Airports 98 98 98 98
Mineral extraction sites 76 85 89 91
Dump sites 76 85 89 91
Construction sites 76 85 89 91
Green urban areas 39 61 74 80
Sport and leisure facilities 49 69 79 84
Non-irrigated arable land 61 73 81 84
Permanently irrigated land 63 73 80 83
Rice fields 96 96 96 96
Vineyards 66 74 80 82
Fruit trees and berry plantation 62 71 78 81
Olive groves 62 71 78 8l
Pastures 30 58 71 78
Annual crops associated with permanent crops 64 73 79 82
Complex cultivation patterns 64 73 79 82
Land principally occupied by agriculture 64 73 79 82
with significant areas of natural vegetation

Agro-forestry areas 64 73 79 82
Broad-leaved forest 36 60 73 79
Coniferous forest 45 66 77 83
Mixed forest 36 60 73 79
Natural grasslands 49 69 79 84
Moors and heathland 35 56 70 77
Sclerophyllous vegetation 35 56 70 77
Transitional woodland-shrub 43 65 76 82
Beaches, dunes, sands 49 68 79 84
Bare rocks 76 85 89 91
Sparsely vegetated areas 63 77 85 88
Burnt areas 63 77 85 88
Glaciers and perpetual snow 98 98 98 98
Inland marshes 98 98 98 98
Peat bogs 98 98 98 98
Salt marshes 98 98 98 98
Salines 98 98 98 98
Intertidal flats 98 98 98 98
Water courses 98 98 98 98
Water bodies 98 98 98 98
Coastal lagoons 98 98 98 98
Estuaries 98 98 98 98

Sea and ocean 98 98 98 98




Chapter 2

Correlation of Climate and Flood
Indices

In this chapter, a correlation analysis is performed between annual maximum mean
daily discharges and standard climate indices of precipitation and temperature ex-
tremes, as defined by the Commission for Climatology/World Climate Research
Programme/Technical Commission for Oceanography and Marine Meteorology
(CCI/WCRP/JCOMM) Expert Team on Climate Change Detection and Indices
(ETCCDI, see e.g., Peterson, 2005; Zhang et al., 2005). ETCCDI indices are tipi-
cally used in the climate literature to study a variety of extreme events such as heavy
rain, floods, droughts, heat waves, etc. In particular, they find wide application in
climate change studies, not limited to past climate change, but also future changes
by using projections of climate models (e.g., Sardella et al., 2020). Nonetheless,
few studies have focused on the relationship between ETCCDI indices and peak
discharges and it is of interest in hydrology to evaluate which ETCCDI indices are
relevant for characterizing and predicting flood changes in the Alpine region.

2.1 Data and Methods

A description of the 27 ETCCDI indices considered in this study is provided in Table
2.1. ETCCDI indices are calculated at the annual timescale using the NWOI dataset.
For this purpose the climdex.pcic.ncdf R library is used (https:/github.com/pacificclimate

/climdex.pcic.ncdf), which performs an automatic calculation that saves the gridded


https://github.com/pacificclimate/climdex.pcic.ncdf
https://github.com/pacificclimate/climdex.pcic.ncdf
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outputs as netCDF files. Indices are referred to thresholds calculated over the base
period 1961-1990. The annual maximum mean daily discharge is selected as typical
flood index, as reported in literature on flood change (e.g., Bloschl et al., 2017;
Bloschl et al., 2019). The choice of mean daily flow rather than peak flow is ex-
plained by the better consistency among the former and the space-time scale of
climate indices. Years with missing daily data covering a period greater or equal to 3
months are discarded from the analysis. Both the annual maximum discharge and the
ETCCDI indices are calculated considering the hydrologic year (1% October - 30"
September). Average annual indices at the catchment scale are obtained by clipping
the gridded dataset based on catchment boundaries, by making use of a weighted
average, considering the proportion of each cell inside the catchment. The indices
are coupled with the flow annual maxima, so only years with available discharge
data are considered. The choice of a quite coarse data resolution is made based
on two reasons: first, this is consistent with the outputs of regional climate models
(EURO-CORDEX); secondly, the aim of this research work is to describe regional
floods, not local flash floods.

Figure 2.1 shows several information about flood data used. In particular, Figure
2.1a and Figure 2.1b show the dependence of the mean annual specific flood (MAF)
and the coefficient of variation (CV) of annual specific floods on catchment area.
MAF and CV decrease with catchment area, as expected. Fitting a linear model
to data, which is equivalent to assuming a power law relationship between the
variables and catchment area, unveils a pattern which is already found in other
studies (e.g., Lun et al., 2021; Merz and Bloschl, 2003; Merz and Bloschl, 2005).
The coefficients () of MAF and CV found for North-Western Italy area (-0.136
and -0.049, respectively) are consistent with the ones found in Lun et al. (2021) for
the Alpine area (-0.208 and -0.020, respectively), but closer to values pertaining to
the Atlantic region (-0.184 and -0.042, respectively). However, the number of sites
considered here and their record length, which are smaller than in Lun et al. (2021),

determine a remarkable scatter.

Two types of correlation analysis are considered: on the one hand a temporal
correlation is performed at the annual time scale among maximum discharges and
ETCCDI indices for each catchment, in order to capture the best covariates explaining
the annual variability of floods (Section 2.1.1). On the other hand, in the spirit of
comparative hydrology (Falkenmark and Chapman, 1989), trends of maximum
discharges and trends of ETCCDI indices are spatially correlated, in order to find
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Table 2.1 ETCCDI climate indices

Index

Description

FD - Number of frost days

SU - Number of summer days
ID - Number of icing days

TR - Number of tropical nights

GSL - Growing season length

TXx
TNx
TXn
TNn
TN10p
TX10p
TN90p
TX90p

WSDI - Warm speel duration index

CSDI - Cold speel duration index

DTR - Daily temperature range

Rx1day

Rx5day

SDII - Simple precipitation intensity index

R10mm
R20mm
R1mm
CDD
CWD
RO5pTOT
R99pTOT

PRCPTOT

Annual count of days when TN (daily minimum temperature) < 0°C [days]
Annual count of days when TX (daily maximum temperature) > 25°C [days]
Annual count of days when TX (daily maximum temperature) < 0°C [days]
Annual count of days when TN (daily minimum temperature) > 20°C [days]
Annual (1% Jan to 31% Dec in Northern Hemisphere (NH), 1% July

to 30™ June in Southern Hemisphere (SH)) count between

first span of at least 6 days with daily mean temperature TG > 5°C

and first span after July 1% (Jan 1% in SH) of 6 days with TG < 5°C.

Annual maximum value of daily maximum temperature [°C]

Annual maximum value of daily minimum temperature [°C]

Annual minimum value of daily maximum temperature [°C]

Annual minimum value of daily minimum temperature [°C]

Percentage of days when daily minimum temperature < 10" percentile
Percentage of days when daily maximum temperature < 10" percentile
Percentage of days when daily minimum temperature > 90" percentile

Percentage of days when daily maximum temperature > 90" percentile

Annual count of days with at least 6 consecutive days when daily
maximum temperature > 90" percentile [days]

Annual count of days with at least 6 consecutive days when
daily minimum temperature < 10" percentile [days]

Annual mean difference between daily maximum temperature and daily
minimum temperature [°C]

Annual maximum 1-day precipitation [mm]

Annual maximum consecutive 5-day precipitation [mm]
Average precipitation rate on wet days (R > 1mm) [mm/day]
Annual count of days when precipitation > 10mm [days]
Annual count of days when precipitation > 20mm [days]

Annual number of wet days [days]

Maximum length of dry spell i.e. number of consecutive days with precipitation < Imm [days]

Maximum length of wet spell i.e. number of consecutive days with precipitation > Imm [days]

Annual total precipitation when daily precipitation is greater than the 95" percentile [mm]

Annual total precipitation when daily precipitation is greater than the 99" percentile [mm]

Annual total precipitation in wet days [mm]

which covariates best explain the regional variability of the decadal tendency of

floods (Section 2.1.2). By focusing on multi-year tendency rather than on annual

variability, the latest analysis can be useful to select specific ETCCDI indices as

possible climate covariates of flood discharges, for regional non-stationary flood
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Fig. 2.1 a) Mean annual specific flood (MAF) vs. catchment area. b) Coefficient of variation
(CV) of annual specific floods vs. catchment area, colored as in Figure 1.3a. Lines are
ordinary least squares regression lines. The values of the slope (f3) for a double logarithmic
relationship are also reported. *Indicates statistical significance for a one-sided t-test at
the 5% significance level. c) Area vs. mean catchment elevation. d) Data consistency vs.
catchment area.

frequency analysis. Finally, circular statistics is used to describe the average timing

and concentration of observed maximum discharges (Section 2.1.3).

2.1.1 Correlation measures

In the first analysis, Spearman’s rank correlation is applied to annual data in order to
determine which indices show the highest temporal correlation with annual maximum
daily discharges. The choice of the Spearman correlation instead of other measures of
variable association (e.g., Pearson) is justified by the non-linear relationship between
precipitation, temperature and discharge. The Pearson correlation coefficient between

two variables x and y can be expressed as follows (Helsel et al., 2020, Chapter 8.2):

1 & [(x—% yi—y cov(x,y)
- = 2.1
Txy n—lé( Oy )( oy 0xOy 21
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where n is the length of the sample, X and y are the mean values of x and y, ox and
oy are the standard deviations of x and y. The Spearman correlation coefficient is
defined as the Pearson correlation coefficient among the ranks (Rx and Ry) of the
variables:

PReky = cov(Rx,Ry) 2.2)

ORxORy

where cov(Rx, Ry) is the covariance of rank variables, orx and ORy are the standard
deviations of the rank variables. By substituting the ranks into Equation (2.1), the
coefficient can be computed with the following formulation, which holds in case of

no ties (Helsel et al., 2020, Chapter 8.3):

2
Z (Rley1> (%l)
= =l 23
The significance of p under the null hypothesis of no-correlation between the vari-
ables is tested with the test statistic S (Helsel et al., 2020, Chapter 8.3):

5= 3 (R~ Ry = (1= p) " =)/ 24

with the right hand formulation that holds in case of no ties. For small sample sizes
(n < 20), the algorithm AS 89 (Best and Roberts, 1975) allows to compute exact
p-values, by calculating the discrete probability distribution of S. For large sample

sizes (n > 20), the test is computed on the transformed variable:

t=——— 2.5
s (2.5)
where n is the length of the two tested samples and ¢ follows a Student’s t-distribution
with n-2 degrees of freedom, under the null hypothesis of no-correlation between
the variables (Helsel et al., 2020, Chapter 8.2). Accordingly, p-values are calculated

with the following formulation:
p=1—Fabs(t),n—2) (2.6)

where F(abs(t),n —2) is the non-exceedance probability associated with abs(t) for
a Student’s t-distribution with n — 2 degrees of freedom. If ties are present, this is
the approach used for the calculation of p-values. One-sided tests at 5% significance
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level are considered, both for positive and negative correlation. Confidence intervals
of the correlation are given by the Fisher z transform of the correlation (Fisher,
1915):

(e
z=7 In (1 — p) = arctanh(p) (2.7)

assuming z as normally distributed with standard deviation:

1
n—3

c,= (2.8)

Finally, a transformation allows to obtain confidence intervals in correlation units.

The same procedure is also applied to detrended data, to check for the potential
impact of trends in the data on the results of annual correlation among maximum
discharges and ETCCDI indices. To this aim, the Theil-Sen linear regression model
with time is adopted (Section 2.1.2). The detrending is performed for each catchment,
by subtracting the predicted values to the observed values of the variable and then the
correlation is calculated on the residuals. For each index, a regional mean Spearman
correlation coefficient is calculated, weighted for the uncertainty associated with the
single correlation values. In particular, the weights are function of the confidence

intervals of the correlation coefficients:
wi = (up; — lowi)_1 (2.9)

where wj is the weight associated to catchment 7, up; and low; are, respectively, the
upper and lower bounds of the confidence interval. In this Thesis, the Spearman’s
rank correlation is also applied to evaluate the correlation among dedacal tendencies
of annual maximum discharges and tendencies of climate indices. The choice of this
measure is justified by its application in other studies that analyse the interconnection

among discharge maxima and climate variables (e.g., Bloschl et al., 2019).

2.1.2 Tendency measures

The potential presence of decadal tendencies in the data is checked for both the
annual maximum discharge and climate indices. To this aim, the Theil-Sen model is
adopted, as defined by Theil (1950), with further investigations by Sen (1968). This
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is a robust nonparametric linear regression model:
y=a+p -x (2.10)

where the slope estimator (f3) represents the median of the slopes calculated for all

possible pair of values assumed by the variable over the years:

ﬁzmaﬁm(n_x)J<j @.11)
Jj—i
where y refers to the annual values of the variable and i, j refer to distinct years. The
decadal tendencies will be plotted as the percentage of the mean value of the variable
per year (i.e., 100-B /mean(y)). The intercept (o) of the regression line is obtained
following the approach used by Conover (1999):

O = Ymed — B * Xmed (2.12)

where Xmeq and ynmeq are the medians of x and y, which represent time and the selected

variable, respectively.

The trend significance is evaluated with one-sided Mann-Kendall tests (Mann,
1945) at the 5% significance level. The test statistic is calculated by computing the
sum of the sign of differences for all @ pairs extracted from the n observations:

S= z”: sgn(xj —Xx;) (2.13)

—l—l7 if (Xj —xi) >0
sgn(xj—x;) =4 0, if (xj—x;) =0 (2.14)
-1, if ()Cj —Xi) <0

For n > 10 (Kendall, 1948), the normal approximation test can be used. The test
statistic Z is defined as:
Sl ifS>0

\/var(S)’
Z=1¢ 0,ifS=0 (2.15)

S+l
Joar)’ if $<0
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with var(S) being the variance of S:

n(n—1)(2n+5) — fltj(tj C1)(245)
£

var(S) = T (2.16)

where g represents the number of groups of tied values and 7; the number of ties in

group j. In case of no ties the formulation becomes:

n(n—1)(2n+5)
18

var(S) = (2.17)
Z is distributed as a standard normal distribution under the null hypothesis of no
trend of the variable (Mann, 1945). If the test provides Z > 0, this is an indication
of increasing trend (and viceversa) and p-values are computed as the exceedance
probability associated with Z (one-sided tests). Besides the test, confidence intervals
are computed for 3, as a measure of uncertainty in the trends estimation, by selecting
the upper and lower limits within the sample of slopes. Following Hollander et al.
(1999), the critical value is given by the quantile of the standard normal distribution
Z e, where « is the confidence level, and the upper and lower ranks of the slopes are

found by:
N +Za~/var(S)
0= 2 +1 (2.18)
2
N —Za~/var(S)
R = d (2.19)
2

where N = @ is the number of computed slopes. The confidence level used

in this analysis is 0.10, which is coherent with the Mann-Kendall test at the 5%
significance level, applied for positive and negative trends separately. Also for
the analysis of tendency, a regional mean tendency is provided, weighting for the

uncertainty associated with the single tendencies. The weights are given by:
w; = el Kupi—lowi) (2.20)

with k = 0.25, to constrain the weights range in case of confidence range equal to 0.
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2.1.3 Circular statistics

Circular statistics (Bayliss and Jones, 1993; Mardia, 1972) is adopted to provide
information on the seasonality of flood indices. The choice of this approach is
justified by its application in previous large-scale studies on river flood timing in
Europe (Bloschl et al., 2017). For each site, the average day of the year on which
floods have occurred is calculated. The date of occurrence D; of a flood in year i is

converted to an angle 6;:

2
6,=D;,-— 0<6,<2m (2.21)

i
where D; = 1 corresponds to January 1 and D; = m; to December 31 , and m;
represents the number of days in that year. The average date of occurrence D of a

flood is calculated as follows:

tan—! )X; e £>0,5>0
D= tan! (%)%—i—n <0 (2.22)
tan!(I)- L +2r £>0,5<0,
with
1 n
x=-Y cos(6) (2.23)
iz
1 n
y=-) sin(6) (2.24)
i=1
1 n
n=—-Y m 2.25

where X and y are the cosine and sine components of the average date, respectively,
m is the average number of days per year (365.25), and 7 is the total number of flood
peaks observed at the site. The concentration R of the date of occurrence around the

average date is:
R=+x+37> 0<R<I1 (2.26)

R spans from R = 0 (no concentration, i.e. floods are widely dispersed over the year)

to R =1 (all floods at a site occur on the same day of the year).
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2.2 Results

2.2.1 Temporal correlation of annual climate and flood indices

In this section, the results of the correlation among the annual time series of ETCCDI
indices and the annual maximum discharges are shown. The analysis gives similar
outcomes when using original and detrended data, indicating that the analysis is
robust and is not affected by the presence of tendencies in the data. The Spearman’s
rank correlation coefficients for the ETCCDI indices showing the highest mean
regional correlation are reported in Figure 2.2. As one could expect, annual maximum
flows show the highest correlation with indices of precipitation extremes: the annual
maximum 1-day precipitation (Rx1day), the annual maximum consecutive 5-day
precipitation (Rx5day), the annual total precipitation when daily precipitation is
above the 95" daily percentile (R95pTOT) and the annual total precipitation when
daily precipitation is above the 99" daily percentile (R99pTOT). Indices reflecting
average rainfall conditions, such as the simple precipitation intensity index (SDII)
and the annual total precipitation (PRCPTOT) show a lower mean correlation. Figure
2.2 reveals that the strength of the correlation depends on catchment area. This is
particularly clear for Rx5day, which shows higher correlation values compared to
Rxlday for large catchments (A > 2000 km?), while the opposite happen for the
small ones (A < 100 km?). Moreover, RO9pTOT shows more significant correlation
with maximum discharges than R95pTOT, especially for medium-to-large sized
catchments (A > 500 km?). Results for PRCPTOT generally indicate a weaker
correlation compared to other indices and no significant results are found for very
large catchments located over the Po River valley. Temperature indices don’t reveal
high and significant correlation with discharge extremes.
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Fig. 2.2 Spearman’s rank correlation coefficients among annual maximum mean daily
discharges and a) maximum 5-day precipitation (Rx5day), b) annual total precipitation above
the 99" percentile (R99pTOT), c) maximum 1-day precipitation (Rx1day), d) annual total
precipitation above the 95" percentile (RO5pTOT), ) simple precipitation intensity index
(SDII), f) annual total precipitation (PRCPTOT) for all catchments vs. catchment area,
colored as in Figure 1.3a. For each index, the regional mean correlation coefficient (p) and
the percentage of significant cases (n) (one-sided tests at 5% level), are reported. Full dots
represent catchments with significant positive correlation, while empty dots represent not
significant positive correlation.

2.2.2 Decadal tendency of climate and flood indices

It is of interest to investigate whether the decadal tendency of flood magnitudes is
function of the same climate indices which are relevant to explain the annual floods.
In this section the tendencies of both annual maximum discharges and ETCCDI
indices over the period 2000-2019 are evaluated. Figure 2.3 shows the estimated

trends in the annual maximum flows. The results show there is not a dominant
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tendency at the regional scale and some noise appears in the data, mainly due to the
limited length of the time series (7% of the sites have a significant trend according to
one-sided Mann-Kendall tests at the 5% significance level). Many stations are placed
on the same river from upstream to downstream and some spatial coherence in terms
of tendency can be observed. Bormida and Tanaro catchments (pink and red points in
Figure 2.3, respectively), which are located in the southern part of the region, show a
positive tendency, while the sign is less homogeneous in other macro-catchments.
Looking at the Po River (blue points), for example, the tendency is negative for
small catchments, which are tipically the Alpine ones, while for medium-sized hilly
catchments it is positive and for the largest valley catchments no distint sign can be
recognized. Also in the smallest Sesia catchments (light green points) the tendency

is negative.
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Fig. 2.3 Trends of annual maximum mean daily discharge for each catchment vs. catchment
area, colored as in Figure 1.3a. The regional mean trend (V) is also reported.
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Fig. 2.4 Trends of a) annual total precipitation above the 99" percentile (R99pTOT), b)
annual total precipitation above the 95" percentile (R95pTOT), ¢) annual number of days
when precipitation is above 20mm (R20mm), d) annual total precipitation (PRCPTOT), e)
maximum 5-day precipitation (Rx5day), f) maximum 1-day precipitation (Rx1day), for each
catchment vs. catchment area, colored as in Figure 1.3a. For each index, the regional mean
trend (V) is reported.

Contrary to river flows, ETCCDI indices reveal significant tendencies both for
precipitation and temperature. Figure 2.4 shows the main outcomes for precipitation
indices. The trends are mainly positive and extreme indices (R99pTOT, R95pTOT)
reveal a decreasing tendency for increasing catchment area, especially for the Po
River catchments (blue points). Total precipitation (PRCPTOT) shows a clear pattern
as it experiences a positive significant tendency in around 50% of the catchments,
but the spatial variability does not seem to be a function of catchment area. R20mm,
Rx5day and Rx1day show lack of a strong spatial heterogeneity, indicating that they

may not be ideal in explaining the spatial variability of flood decadal tendencies.
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Fig. 2.5 Trends of a) warm spell duration index (WSDI), b) % of days when the maximum
temperature is lower than the 10th percentile (TX10p), ¢) % of days when the minimum
temperature is lower than the 10th percentile (TN10p), d) maximum value of daily minimum
temperature (TNXx), ) maximum value of daily maximum temperature (TXx), f) growing
season length (GSL) for each catchment vs. catchment area, colored as in Figure 1.3a. For
each index, the regional mean trend (V) is reported.

The most important results for temperature indices are presented in Figure 2.5.
Almost all catchments experience a marked negative tendency of % of cold days
(TX10p) and % of cold nights (TN10p). Moreover, for these indices, the tendency
increases for increasing catchment area. This means that the intensity of warming is
actually decreasing for increasing area. Trends of the annual maximum of minimum
temperature (TNx), annual maximum of maximum temperature (TXx) and the
growing season length (GSL) are also reported. The relative trend magnitude for
these indices is lower and the spatial variability seems also limited, but they show a

significant relationship with flood trends (see Section 2.2.3).
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2.2.3 Correlation of decadal tendencies of climate and flood in-
dices

The most relevant results of the spatial correlation analysis among decadal tendencies
of ETCCDI indices and decadal tendencies of annual maximum discharge are shown

in Figure 2.6, where results are discretized according to mean catchment elevation

(circle sizes).
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Fig. 2.6 Trends of a) annual total precipitation (PRCPTOT), b) maximum 1-day precipitation
(Rx1day), c¢) annual total precipitation above the 99™ percentile (R99pTOT), d) growing
season length (GSL), ) maximum value of daily maximum temperature (TXX), f) maximum
value of daily minimum temperature (TNx) vs. trends of annual maximum mean daily
discharges, discretized by mean catchment elevation, colored as in Figure 1.3a. Spearman’s
rank correlation coefficients (p) are reported.

Looking at precipitation indices, the total annual precipitation (PRCPTOT) ten-
dency has the highest significant correlation with annual flood tendency, as unveiled

by a one-sided test at 5% significance level (p = 0.5), with lower values for the
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annual maximum consecutive 1-day precipitation (Rx1day) and the annual total
precipitation exceeding the 99 daily percentile (R99pTOT). This points out that the
long-term variability of floods seems to have a stronger relation with the tendency of
mean precipitation, rather than the one of extreme precipitation.

Temperature indices show weaker correlation with the tendency of floods. In
particular, there is a significant positive correlation (p = 0.277) with the tendency of
the growing season length (GSL) and a negative correlation with the tendency of the
maximum value of the daily maximum temperature (TXx) and maximum value of
the daily minimum temperature (TNx) (p =-0.310 and -0.215, respectively).

2.2.4 Seasonality of flood indices

The timing of observed annual discharge maxima reveals some seasonality over the
study area. Figure 2.7 shows that floods are not evenly distributed over the year,
in particular in the western and southeastern part of the region, characterized by
the presence of Alps and Apennines, where floods typically occur in late spring
and in the autumn season, respectively. On the contrary, in the central area and
in the northern part of the region, floods are quite evenly distributed and a strong

seasonality is lacking.
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Fig. 2.7 Observed average timing of river floods in North-Western Italy, 2000-2019. Each
arrow represents one site. Color and arrow direction indicate the average timing of floods,
the length of the arrow indicate the concentration of the date of occurrence, where 1 indicates
the flood occurs on the same date.

2.3 Conclusions

The work discussed in this chapter aims at understanding the possible interrelations
among the annual maximum daily discharges and standard climate indices (ETCCDI)
at the catchment scale in North-Western Italy, over the period 2000-2019. The first
analysis is a temporal correlation performed at the annual scale, to assess which
indices better explain the interannual variability of discharge maxima. The second
analysis is a spatial correlation of the tendencies of annual discharge maxima and
climate indices time series aimed at explaining the multi-annual tendency of floods

with different potential climate drivers.

It is shown that indices of extreme precipitation such as RO9pTOT, R95pTOT,
Rx5day, Rx1day are highly positively correlated to annual discharge maxima at the
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annual timescale, more than indices reflecting mean precipitation conditions, and for
Rx5day and Rx1day the correlation value depends on catchment area. In contrast
with this result, the decadal changes of extreme flows may be better explained by the
decadal changes of the average precipitation. Temperature indices, instead, are not
major controls of annual discharge maxima.

The observed maxima are timely concentrated during late spring over the western
part of the region and during fall in the southeastern part, suggesting the diversity of

the main runoff generation mechanisms that spatially drive floods in the study area.



Chapter 3

Implementation of TUWmodel and
regionalization with PASS

In this chapter, an application of PASS in North-Western Italy, in the context of
the Alpine region, is presented, based on the work of Merz et al. (2020). They
test the PASS approach in 263 German catchments, to infer parameters of the
distributed conceptual hydrological model SALTO. The median model efficiency
obtained for training and test catchments is similar to the one obtained by other
studies using similar approaches, but Merz et al. (2020) highlight that a unique
combination of catchment descriptors controlling model parameters is not found
and many regional functional relationships between descriptors and parameters give
similar model performances. The aim of this analysis is to evaluate the applicability
of the procedure in a diverse region compared to Germany, and the impact of using

snow cover information on the simulation results.

3.1 Data

The different types of data used in the analysis are listed as follows:
« Discharge data [m>/s] from the regional stream gauge network managed by
the regional environmental protection agency (Arpa Piemonte);

 Daily precipitation and minimum and maximum daily temperature: from
1961 to 2020, provided by a gridded dataset with cell resolution 0.125° x



36

Implementation of TUWmodel and regionalization with PASS

0.125°, derived by spatial interpolation of daily observations taken from a
dense network of meteorological stations (Optimal Interpolation (OI) Dataset,
Arpa Piemonte);

A digital elevation model (DEM) at around 90 m resolution derived from

https://www.earthenv.org;
Catchment boundaries for 197 catchments in Piemonte and Valle d’ Aosta;

Catchment descriptors associated to the pixels, which are consistent with the
Supporting Information S2 in Merz et al. (2020). In particular, 79 descritors
are used, divided in 5 categories: Climate (Ol dataset); ETCCDI indices (OI);
Morphology (DEM); Land Use (Corine Land Cover 2018); Soil (Harmonized
World Soil Database).

Snow cover data provided by daily maps of the Normalized Difference Snow
Index (NDSI), at 500 m spatial resolution, obtained combining the MODIS
products from Terra (MOD10A1) and Aqua (MYD10A1) satellites (Parajka
and Bloschl, 2008; Tong et al., 2021). The NDSI values range between 0 and
100 and snow cover is typically considered to be present i