
Doctoral Dissertation
Doctoral Program in Electronics and Telecommunications Engineering

(36thcycle)

Towards Trustworthy Data-driven

Modeling and Control of Unmanned

Aerial Vehicles

By

Weibin Gu

Supervisor:

Prof. Alessandro Rizzo

Doctoral Examination Committee:

Prof. Marco Cognetti, LAAS-CNRS Toulouse and Université Toulouse III, France

Prof. Carlo Novara, Politecnico di Torino, Italy

Prof. Maurizio Porfiri, New York University Tandon School of Engineering, U.S.A.

Prof. Simona Sacone, University of Genova, Italy

Prof. Kimon P. Valavanis, University of Denver, U.S.A.

Politecnico di Torino

2024

Declaration

I hereby declare that, the contents and organization of this dissertation con-

stitute my own original work and does not compromise in any way the rights of

third parties, including those relating to the security of personal data.

Weibin Gu

2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.

degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my loving parents and wife, whose

unwavering support and encouragement have been my pillars along this

transformative journey.

Acknowledgements

First and foremost, words cannot express my deepest gratitude to Prof. Alessan-

dro Rizzo, my dear supervisor, for his unwavering patience and support along

my Ph.D. journey, which were pivotal to me, especially during the first two years

amidst the COVID-19 pandemic. His professionalism, mentorship, and attention

to detail positively impacted both my academic and personal growth. My pro-

found appreciation is also extended to the defense committee for providing valu-

able insights that enriched my dissertation. Undoubtedly, this endeavor would

not have been possible without the generous support from MOST (The National

Centre for Sustainable Mobility), FAIR (Future Artificial Intelligence Research),

and Amazon Science, who offered essential funding for my research.

Special appreciation is reserved for Prof. Stefano Primatesta, who unceasingly

provided useful comments and proofread my research papers. Thanks also go

to Prof. Marina Indri, Prof. Michele Taragna, and Prof. Carlo Novara, for their

instructive feedback on the yearly EECE Poster Days, and to Prof. Stefano Grivet-

Talocia, the Ph.D. coordinator of the EECE Department, for his daily support

throughout my doctoral program. I am also grateful to Prof. Kimon P. Valavanis

from University of Denver, for his savvy advice at the onset of this journey.

Lastly, I would be remiss in not mentioning my family – my parents Qin Shi

and Zhihao Gu, my wife Ziyan Wang, and my grandparents – for their unfaltering

belief in me, which, along this transformative venture, served as a constant source

of strength and motivation. My sincere gratitude also extends to my friends and

colleagues for their emotional support, as well as numerous others, whose names

I cannot list here, for their encouragement and assistance.

In some sense, this dissertation goes beyond just being the work of a sole

author; it is a dedication to pushing scientific boundaries shaped by collective

wisdom. Since the commencement of this journey, I feel truly fortunate to have

v

worked with and been supported by numerous like-minded individuals with

brilliant minds and supportive organizations in carrying out this research. Thank

you all again for being a part of my memorable journey!

Funding Acknowledgement: The research activities of this thesis have been

partly carried out within the MOST – Sustainable Mobility National Research

Center and received funding from the European Union Next-GenerationEU (PI-

ANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPO-

NENTE 2, INVESTIMENTO 1.4 – D.D. 1033 17/06/2022, CN00000023) and within

the FAIR - Future Artificial Intelligence Research and received funding from the

European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RE-

SILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3 – D.D.

1555 11/10/2022, PE00000013). The views and opinions expressed in this work

are solely those of the authors, and neither the European Union nor the European

Commission can be held responsible for them. Additionally, Weibin Gu acknowl-

edges partial support from the 2021 Amazon Research Award titled “Physics-

Informed Machine Learning for Trustworthy Control of Autonomous Robots.”

Abstract

Unmanned Aerial Vehicles (UAVs) have gained significant attention and utility

in various aspects of daily life, ranging from entertainment, like aerial photogra-

phy, to meeting industrial demands such as delivery of goods and infrastructure

inspection. As tasks and environments become more complex, advanced control

algorithms are needed to ensure safe operations. While model-based control

techniques have shown effectiveness in controller design, their performance heav-

ily relies on accurate mathematical models, posing challenges in scenarios with

uncertainties and disturbances. In response, data-driven methods, particularly

learning-based approaches, have shown promise in accurate modeling due to

their powerful approximation capabilities. End-to-end learning-based solutions

have also emerged, mitigating the requirement for system knowledge in control

synthesis. However, learning-based approaches, especially deep learning, are of-

ten regarded as black-box models, lacking interpretability and raising trust issues

about their deployment in safety-critical systems like quadrotors. Moreover, many

current studies on learning-based approaches are offline, trained before task exe-

cution, which introduces potential risks in real-world execution and compromises

generalization to unseen scenarios.

This thesis aims to advance trustworthy data-driven modeling and control

of quadrotors, focusing on two main parts: modeling and control design. In the

modeling part, we propose a novel machine learning paradigm called Physics-

informed Machine Learning (PIML) for quadrotor dynamical modeling. PIML

integrates domain knowledge and empirical data to enhance the trustworthiness

of the model, outperforming black-box and conventional mathematical mod-

els in terms of both modeling error and physical consistency. Our model also

demonstrates improved learning capability with smaller data sets and provides

interpretability through post-hoc visualization. In the control design part, we ad-

dress control problems of a quadrotor subject to parametric and non-parametric

vii

uncertainties. For parametric uncertainties, we develop a novel adaptive geomet-

ric controller, of which the synthesis is based on rotation matrix rather than Euler

angles or quaternions, thereby avoiding issues such as gimbal lock and unwinding

phenomena. Consequently, this controller enables aggressive maneuvers like 360◦

flips and elliptical helix trajectory tracking, even in the presence of uncertain mass

and inertia matrix. To handle non-parametric uncertainties like wind gusts, we

introduce a novel learning-based controller featuring online learning capability

through the reservoir computing paradigm. We investigate the interpretability

of our learning-based model through post-hoc analysis on model dynamics and

parameters, providing valuable insights for understanding the model’s behavior.

Comparisons with offline solutions in the literature demonstrate the superior

generalizability and tracking performance of our learning-based controller in

facing unseen scenarios, thanks to its online learning ability. This, along with

insights from post-hoc analysis, instills trust in our data-driven solution.

We anticipate a growing trend of data-driven solutions for robotics in the

near future, driven by both market demands and technological advancements

like Large Language Models (LLMs). Hence, infusing trust into these data-driven

solutions is crucial, particularly for applications or products with potential safety

implications. Although the research in trustworthy data-driven methods is still

in its early stages, we acknowledge the collaborative efforts from various fields,

such as robotics and machine learning, toward the common goal. These collective

endeavors will ensure the successful deployment of intelligent systems in the

real world, improving the lives of individuals and benefiting society as a whole.

This thesis aims to contribute to this process by providing valuable insights and

enlightening researchers in the field, serving as a small step in the larger journey

towards advancing trustworthy data-driven modeling and control of quadrotors.

Contents

List of Figures xi

List of Tables xv

1 Background and Motivation 1

1.1 Overview of Unmanned Aerial Vehicles 1

1.2 The Synergy of Modeling and Control 4

1.2.1 The Past: Model-based Methods 5

1.2.2 The Present: Data-driven Methods 7

1.2.3 The Future: Forging a Path to Trust 9

1.3 Building Trust in Algorithms: Trustworthy Machine Learning 10

1.3.1 Transparent Models . 11

1.3.2 Post-hoc Interpretability Techniques 13

1.4 Thesis Outline and Contributions . 13

2 Preliminaries 16

2.1 Notation . 16

2.2 Mathematical Model of Quadrotors 17

2.3 Exponential and Logarithm Map . 18

2.4 Artificial Neural Networks . 20

2.4.1 Historical Perspective . 20

2.4.2 Mathematical Model of Artificial Neurons 21

Contents ix

2.4.3 Classifications of Neural Networks 21

2.4.4 Training Methods . 23

3 Physics-informed Neural Modeling 26

3.1 Introduction . 26

3.2 Related Work . 28

3.3 Physics-informed Neural Network . 30

3.3.1 Network Structure . 31

3.3.2 Incorporation of Physics as Learning Bias 32

3.3.3 Cyclical Annealing Scheduler 36

3.3.4 Post-hoc Model Interpretability Visualization 37

3.4 Results and Discussion . 38

3.4.1 Simulator . 38

3.4.2 Network Training . 39

3.4.3 Model Comparison and Ablation Study 40

3.4.4 Computational Complexity . 47

3.5 Conclusions . 48

4 Robust Adaptive Controller Design for Parametric Uncertainties 50

4.1 Introduction . 50

4.2 Related Work . 52

4.3 Problem Formulation . 55

4.4 Control Synthesis for Position Tracking 56

4.5 Control Synthesis for Attitude Tracking 59

4.6 Results and Discussion . 66

4.6.1 Simulator . 66

4.6.2 Maneuver #1: Doing a 360◦ Flip 67

4.6.3 Maneuver #2: Tracking an Elliptical Helix Trajectory 68

x Contents

4.6.4 Maneuver #3: Tracking a Figure-8 Trajectory 70

4.7 Conclusions . 71

5 Learning-based Controller Design for Non-Parametric Uncertainties 73

5.1 Introduction . 73

5.2 Problem Formulation . 75

5.3 Reservoir Computing Paradigm . 76

5.3.1 Mathematical Model of Echo State Networks 76

5.3.2 Training Methods . 77

5.3.3 Echo State Property . 77

5.4 Learning-based Tracking Controller 78

5.4.1 Online Learning Module for Residual Dynamics 78

5.4.2 Tracking Control Laws . 80

5.5 Post-hoc Analysis of Model Dynamics and Interpretability 83

5.6 Results and Discussion . 85

5.6.1 Simulator . 86

5.6.2 Network Selection and Training 86

5.6.3 Flight Control with Online Learning 87

5.6.4 Comparison with an Offline Learning-based Controller . . . 90

5.7 Conclusions . 93

6 Concluding Remarks and Future Work 95

References 98

Appendix A Multirotor Ground Effect Plugin 108

List of Figures

1.1 Hardware components of UAVs. 2

1.2 Software components of UAVs. 2

1.3 Classification of UAVs: Features and limitations. 3

1.4 Taxonomy of flight control methodologies. 6

1.5 Evolution of UAV control: Current trends and characteristics. 10

1.6 Explainable AI techniques. 11

1.7 Fundamental principles of PIML. 12

1.8 Post-hoc visualization workflow for a trained model. 14

2.1 Evolution of ANNs: Timeline and milestones. 20

2.2 Simplified neuron model and typical architecture of FNNs. 21

3.1 Main concept of PINN. 31

3.2 Correlation within training data series. (a), (b), (e), (f), (i), (j): The

derivative of angular rate and the corresponding PWM signals. (c),

(g), (k): Coherence plots for roll, pitch, and yaw motion, with PCCs

indicated in gray boxes. (d), (h), (i): CCE plots for roll, pitch, and yaw

motion, depicting data samples (blue dots) and 3σ CCEs (orange

ellipses). 34

3.3 Illustration of cyclical annealing scheduler λLM in Eq. (3.4). 37

xii List of Figures

3.4 Data collection in the visual and physical simulator. (a) Manual

flight of a quadrotor in the simulator. (b) User interface of QGround-

Control.(c) Configuration of the employed quadrotor overlaid with

a body-fixed reference frame. (d) Flight trajectory with a colorbar

indicating the magnitude of linear velocity. 39

3.5 Simulated flight data with ground effect. (Top) Parametric model

of quadrotor ground effect compared with simulator-collected data

samples†. (Bottom) Training flight data, showing ground effect force

along body z-axis (Fg ,z) and quadrotor altitude (Z), with shaded

areas indicating data partitioning (training/validation/test). 41

3.6 Simulated flight with periodic wind. The top three plots depict the

composition of aerodynamic forces, including drag and wind. The

bottom plot illustrates the profile of periodic wind in the forward di-

rection with a speed of vwind = 2.5sin(πt
5)+2.5, overlaid with shaded

areas indicating data partitioning (training/validation/test). 44

3.7 Test error comparison on D1 data set. The chart shows test errors

for models M2 to M10†. Light red bars represent models (M2-M4)

trained on 60% of data without BN. Green bars represent models

(M5-M6) trained on 60% of data with BN. Yellow and orange bars

show models (M7-M10) with BN trained on 20% of the data and

evaluated on 40% and 80% of the data, respectively. Error bars

denote standard deviation. 45

3.8 Comparison of CCE between vanilla DNN and PINN. Targets and

predictions are represented by dots and plus signs, respectively.

Shaded ellipses illustrate 3σ CCEs, with dashed lines highlighting

the slope. 46

3.9 Test error comparison on D2 and D3 data sets. All results are aver-

aged over multiple seeds, with error bars representing the standard

deviation. 48

4.1 Control scheme of the proposed robust adaptive geometric tracking

controller on SE(3). 55

4.2 Numerical analysis of the bounds of ∥Jl (r̃)−⊤∥F over S = {φa : |φ| <
π,a ∈S2}. 65

List of Figures xiii

4.3 360◦ flip maneuver. (a) Flip illustration in X-Z plane. (b) Quadrotor

position p. (c) Euler anglesφ,θ,ψ. (d) Attitude error ∥r̃∥2 and control

inputs f ,τ. 67

4.4 Elliptical helix trajectory tracking. (a) 3-D visualization† . (b) Com-

parisons under nominal and uncertain scenarios. (c) Mass estima-

tion m̄ and inertia matrix estimation error ∥J̃∥2. (d) Attitude error

∥r̃∥2 and control inputs f ,τ. 69

4.5 Figure-8 trajectory tracking. (a) 3-D visualization with a colorbar

indicating the absolute value of the magnitude of linear velocity

v. (b) Quadrotor position p. (c) Linear velocity v and Euler angles

φ,θ,ψ. (d) Motor speeds. 70

5.1 Control scheme of the proposed learning-based tracking con-

troller. The online learning module for non-parametric uncertainty

estimation (framed by an orange dashed box) takes as inputs the

online measurements of quadrotor states x = [p⊤,v⊤,η⊤,ω⊤]⊤ and

control inputs u = [f⊤u ,τ⊤u]⊤, and generates uncertainty estimates

∆̂= [f̂⊤a , τ̂⊤a]⊤. 78

5.2 Structure of online residual learning module: Deep ESN and data

buffer. The data buffer of length Nb stores the feature and label data

from flight history in a column-wise fashion (shown by green blocks),

which are subsequently used for online training of readout weights

of ESN (depicted in orange arrows). The ESN model adopts a hier-

archical architecture for reservoir layers (shaded in blue) between

which inter-layer connections exist (depicted in yellow arrows). . . 81

5.3 Asymptotic stable behavior of reservoir layers ensured by ESP re-

flects the goodness of reservoir dynamics. 84

5.4 Online learning performance over 50 simulation campaigns. (a)

Predictions of quadrotor ground effect. (b) Predictions of periodic

wind. (c) Training time of ESN for learning ground effect and peri-

odic wind. 88

xiv List of Figures

5.5 Comparison of control behavior between our proposed learning-

based controller and a nominal controller. (a) Tracking perfor-

mance for executing a figure-8 maneuver (viewed in 2D). (b) Control

input. (c) Position and velocity. 89

5.6 Comparison of control behavior between our proposed learning-

based controller (ESN) and an offline learning-based controller

(FNN). (a) Distribution shift in Euler angles (i.e., network inputs).

(b) Distribution shift in network predictions and the learning per-

formance of FNN. (c) Tracking performance for executing a figure-8

maneuver. (d) Position and velocity. 92

5.7 Post-hoc visualization using t-SNE. (a) Clustering of readout weight

matrix. (b)-(f) Clustering of reservoir states. 93

A.1 Architecture and components of our custom simulation environ-

ment. (a) Microsoft AirSim and UE4, (b) PX4 firmware, (c) Ground

control station, QGroundControl, and (d) Overall architecture of the

simulation environment enhanced with our ground effect imple-

mentation. 111

A.2 Comparison of two ground effect models: Cheeseman-Bennett

model vs. parametric model. 115

List of Tables

1.1 Comparison of advantages and disadvantages: Linear controllers

(top) vs. Nonlinear controllers (bottom). 8

2.1 Classification of ANNs. 23

3.1 Quadrotor specifications. 40

3.2 Models for comparison and ablation studies. We analyzed: (i)

model structure (2nd−4th column), (ii) application of Batch Normal-

ization (BN) (5th −6th column), (iii) regularization hyperparameter

settings (7th −8th column), and (iv) training data set (9th −12th col-

umn). Bullets (•) symbolizes the highlighted features present within

the model. 42

3.3 Comparison results of dynamical modeling. ∆y denotes the ab-

solute value of prediction error between prediction ŷ and label y.

∆mi denotes the absolute difference of slope (or rotation angle) be-

tween prediction and label CCEs, where i =φ,θ,ψ denotes the three

degrees of rotation. (̄·) denotes averaging over multiple seeds and

σ(·) denotes the corresponding standard deviation. Superscript †

and ‡ denote linearized mathematical model (3.2) and vanilla DNN,

respectively. The results of comparison and ablation studies are

reported in groups, which are separated by horizontal lines, with the

best performance indicated in bold. 43

xvi List of Tables

4.1 Comparative analysis of selected literature on geometric control

with applications to quadrotors. We compared the error function

for rotational configuration (2nd column), control methods for han-

dling uncertainties (3rd column), and obtained results (4th column;

Num: numerical, Sim: simulation, Exp: experimental). 53

5.1 ESN parameters. 86

5.2 Tracking errors of three different controllers over 20 simulation

campaigns. Controllers include: (i) A nominal controller, (ii) a

learning-based controller with offline-trained FNN, and (iii) our

proposed learning-based controller with online residual learning

using ESN. 91

Chapter 1

Background and Motivation

1.1 Overview of Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs), colloquially referred to as drones, have

emerged as versatile platforms with considerable applicability across diverse do-

mains, owing to their capacity for autonomous or remote task execution. Typically,

they represent a wide range of aerial vehicles operated without a human pilot

onboard, controlled either autonomously by onboard computers or remotely by a

human operator.

From a system-level viewpoint, UAVs exhibit a sophisticated interplay of hard-

ware and software components. Hardware components include airframe struc-

tures, propulsion mechanisms, avionic systems, payload modules, power units,

and landing gears; see, e.g., Fig. 1.1 for a detailed breakdown. The software con-

stituents of UAVs comprise critical functionalities necessary for their autonomous

operation. This includes the flight control system, responsible for stabilizing and

maneuvering the UAV, the navigation system, which utilizes sensor measurements

to determine its precise location, the guidance system, governing its trajectory

towards predefined waypoints or objectives, and the mission planning system,

orchestrating complex tasks and coordinating multiple UAVs in collaborative

missions. Together, these software components form the backbone of UAV auton-

omy, enabling the execution of diverse missions with precision and efficiency. An

overview of the software components of UAVs is illustrated in Fig. 1.2. It is worth

noting that operators retain the authority to intervene and control the UAV using

2 Background and Motivation

Fig. 1.1 Hardware components of UAVs.

remote controllers or ground control stations (referred to as “ground control” in

Fig. 1.2) during tasks, serving as common tools for monitoring and supervision.

Fig. 1.2 Software components of UAVs.

From a structural and propulsion standpoint, UAVs can be systematically

classified into distinct categories, which include fixed-wing, rotary-wing (encom-

passing both single-rotor or helicopter and multirotor configurations), tilt-rotor,

and tailsitter UAVs [1]. In addition, there are morphing or bio-inspired UAVs

(see, e.g., [2]) capable of dynamically altering their external configuration to suit

varying mission environments during flight. However, these are not addressed

here due to scope limitations. A concise overview of the features and operational

constraints of various types of UAVs is presented in Fig. 1.3.

1.1 Overview of Unmanned Aerial Vehicles 3

Fig. 1.3 Classification of UAVs: Features and limitations.

In this study, our focus lies on quadrotors as the system under control. Quadro-

tors are multirotor UAVs characterized by a four-rotor configuration, hence the

name “quad”rotor. Over the past years, quadrotors have garnered substantial

attention and demonstrated significant utility in various aspects of our daily

lives, spanning from entertainment, like aerial photography, to meeting indus-

trial demands such as delivery of goods and infrastructure inspection; see, e.g.,

[3–9]. This is attributed by and large to their high mobility, Vertical Takeoff and

Landing (VTOL) capability, as well as low maintenance cost. Nonetheless, the

design of controllers for quadrotors toward either trajectory tracking or attitude

stabilization is non-trivial due to the inherent nonlinearities and strong coupling

properties in quadrotor dynamics, let alone uncertainties and disturbances, which

are ubiquitous in real-world flight operations [10]. The challenge further escalates

when the quadrotor is assigned to perform aggressive maneuvers, particularly for

specific tasks such as aerial acrobatics or rapid changes in direction [11, 12].

In summary, the rapid proliferation of UAVs in the 21st century has given rise

to an unparalleled demand for control algorithms that not only ensure satisfactory

tracking performance but also facilitate safe and trustworthy operations. This

necessity becomes particularly pronounced in complex and densely populated

4 Background and Motivation

environments to enable real-world deployment while minimizing the risk of injury

and property damage.

1.2 The Synergy of Modeling and Control

Modeling and control are core areas of UAV research, indispensable for un-

derstanding dynamic behavior and devising algorithms for stabilizing and ma-

neuvering these aerial platforms. In the context of controller design, a broad

spectrum of methodologies is available, spanning from classical Proportional-

Integral-Derivative (PID) control to modern Model-Based Control (MBC) and

learning-based control techniques. PID controllers, often deployed as model-free

solutions for industrial applications, remain popular due to their simplicity and

effectiveness in stabilizing quadrotors, particularly for fundamental tasks such

as hovering and altitude control. However, they may struggle with more complex

maneuvers or in the presence of disturbances.

To address these issues, modeling techniques come to the rescue, historically

evolving from transfer functions derived from First Principle Models (FPMs), such

as Ordinary Differential Equations (ODEs) rooted in Newton-Euler equations or

Lagrangian mechanics [13], thus laying the groundwork for frequency domain

controller design. Nowadays, state-space formulations have gained prevalence

for time-domain control synthesis, characterizing the dynamics of the quadrotor

in terms of position, velocity, orientation, and angular rate. More sophisticated

models may incorporate additional complexities such as aerodynamic effects,

motor dynamics, and environmental factors such as wind. Model-based control

techniques [14], such as Feedback Linearization (FL), Backstepping Control (BSC),

Sliding Mode Control (SMC), and adaptive control, offer distinct advantages in

effectively managing the nonlinear dynamics of quadrotors, facilitating precise tra-

jectory tracking and robustness against uncertainties and disturbances. Nonethe-

less, these techniques often require detailed knowledge of system dynamics and

may entail considerable computational resources.

Recent trends in the literature have witnessed a surge in the adoption of ma-

chine learning and Artificial Intelligence (AI) methodologies for quadrotor con-

trol [10]. Notably, deep Reinforcement Learning (RL) has emerged as a promising

approach for learning complex control policies directly from synthetic or real-

1.2 The Synergy of Modeling and Control 5

world data, empowering quadrotors to execute agile maneuvers and navigate dy-

namic environments adeptly [15]. Deep Neural Networks (DNNs) hold potential

for building control-oriented models in a more effective way within model-based

control frameworks [16]. While these learning-based approaches can potentially

outperform traditional control methods in challenging scenarios, they typically

require large amounts of training data and may lack interpretability compared to

model-based control techniques.

Overall speaking, the choice of modeling and control techniques for quadro-

tors depends on the requirements of the specific application, the available compu-

tational resources, and the desired trade-offs between performance, robustness,

and simplicity. Synergistic integration of multiple approaches, such as combining

model-based models with data-driven methods, holds promise for enhancing

the capabilities of quadrotor systems. In the subsequent discussion, we walk

through the evolution of modeling and control techniques for UAVs: examining

their historical development, current state, and potential future advancements. A

categorization of control methodologies for UAV control is illustrated in Fig. 1.4.

1.2.1 The Past: Model-based Methods

MBC techniques have witnessed widespread adoption in recent decades, ow-

ing to their foundation in analytical formulations of system dynamics expressed

through differential equations, thereby informing the controller design with as-

sured performance. Model-based controllers can be further categorized into two

classes: linear and nonlinear, as depicted in Fig. 1.4.

Linear controllers involve Single-Input Single-Output (SISO) and Multi-Input

Multi-Output (MIMO) methods. Examples of SISO methods include PID con-

trol, while MIMO methods encompass Linear Quadratic Regulator (LQR), Linear

Quadratic Gaussian (LQG), H∞/H2 control, Gain Scheduling (GS), and Model

Predictive Control (MPC), among others. Nonlinear controllers can be divided

into linearized and fully nonlinear methods. Linearized methods start with a non-

linear model and proceed with linearization to derive a linear model for control

design, including FL, SMC, MPC, adaptive control, and so forth. Fully nonlinear

methods, such as BSC, can be applied directly to nonlinear dynamics without the

need for linearization.

6 Background and Motivation

Fig. 1.4 Taxonomy of flight control methodologies.

A notable limitation of all MBC techniques lies in their dependence on the

accuracy of the mathematical model describing the system under control [10].

Real-world flight scenarios introduce uncertainties and disturbances such as

parametric variations and unmodeled dynamics, which pose challenges to the

construction of accurate control-oriented models, ultimately impacting control

1.2 The Synergy of Modeling and Control 7

performance adversely. A major concern is the risk of system instability, which in

the context of UAVs can lead to hazardous deviations from intended trajectories

and potential accidents [17].

In response to modeling challenges exacerbated by uncertainties and distur-

bances, researchers in the control community have dedicated considerable effort

to robust and adaptive control theory [18]. For example, adaptive backstepping

controllers was developed to accommodate changes in the mass, inertia, and

payload properties of the UAV [9, 19]. Additionally, an adaptive sliding backstep-

ping control scheme was proposed to ensure attitude tracking in the presence of

unmodeled dynamics [20]. However, many resulting control schemes suffer from

mathematical complexity and the design very often leans toward conservative

approaches tailored to worst-case scenarios, thereby constraining the ability to

guarantee desired performance [18]. Table 1.1 summarizes the advantages and

the limitations of linear and nonlinear controllers.

1.2.2 The Present: Data-driven Methods

In contrast to model-based controllers, data-driven controllers aim to learn the

complex dynamics of the real system directly from empirical data sets, including

uncertainties and disturbances. Broadly speaking, data-driven approaches can be

categorized into learning-based methods and non-learning-based methods. The

latter includes methods like Active Disturbance Rejection Control (ADRC) [21] and

Hankel-matrix-based identification and control [22]. Despite ADRC’s effectiveness

and widespread recognition as a robust alternative to PID control, it requires

tuning, and a rigorous stability proof seems lacking. While Hankel-matrix-based

method exhibits promise for linear systems, its extension to nonlinear systems

remains an open research area.

Learning-based methods, on the other hand, harness the powerful approxima-

tion capabilities of Artificial Neural Networks (ANNs) [23–25], leveraging recent

advancements in big data and computer hardware. Numerous studies employ-

ing DNNs to learn various uncertainties have demonstrated the effectiveness

of learning-based methods [26–28]. However, a prominent challenge with deep

learning lies in its interpretability, primarily due to the black-box nature of DNNs.

This may impede the deployment of DNN-based solutions in real-world safety-

8 Background and Motivation

C
o

n
tro

ller
A

d
van

tages
L

im
itatio

n
s

P
ID

E
asy

im
p

lem
en

tatio
n

.
(i)

Lack
o

fro
b

u
stn

ess;(ii)
N

eglecto
fd

yn
am

ic
co

u
p

lin
g.

LQ
R

/LQ
G

G
u

aran
teed

stab
ility

m
argin

s
fo

r
LQ

R
.

(i)
L

im
ited

ap
p

licab
ility

to
sp

ecifi
c

o
p

eratin
g

co
n

d
itio

n
s;(ii)

D
ep

en
-

d
en

ce
o

n
fu

llstate
feed

b
ack

fo
r

LQ
R

;(iii)
D

egrad
ed

p
erfo

rm
an

ce
o

f
K

alm
an

fi
lter

in
LQ

G
;(iv)

D
isregard

fo
r

o
u

tp
u

tco
n

strain
ts.

H
∞

A
b

ility
to

h
an

d
le

p
aram

etric
u

n
-

certain
ties

an
d

u
n

m
o

d
eled

d
y-

n
am

ics.

(i)
C

o
n

servative
d

esign
fo

r
ad

d
ressin

g
stru

ctu
ral

u
n

certain
ties;

(ii)
P

rereq
u

isite
o

fco
m

p
reh

en
sive

u
n

d
erstan

d
in

g
o

fth
e

system
m

o
d

el.

G
S

C
ap

ab
ility

to
cover

a
b

road
sp

ec-
tru

m
offl

igh
ten

velop
es

an
d

op
-

eratin
g

co
n

d
itio

n
s.

(i)U
n

stead
y

tran
sition

d
u

rin
g

sw
itch

es;(ii)C
om

p
lex

an
d

cu
m

b
ersom

e
d

esign
p

ro
cesses.

A
d

ap
tive

C
ap

ab
ility

to
h

an
d

le
p

aram
etric

u
n

certain
ties.

(i)R
eq

u
irem

en
tfor

com
p

lex
an

alysis
an

d
th

e
u

n
d

erstan
d

in
g

ofsystem
d

yn
am

ics;(ii)Su
scep

tib
le

to
p

aram
eter

d
riftin

d
u

ced
by

p
rocess

n
oise;

(iii)
Im

p
racticalim

p
lem

en
tatio

n
o

flarge
ad

ap
tatio

n
rates.

F
L

C
ap

ab
ility

to
h

an
d

le
n

o
n

lin
eari-

ties.
(i)

H
igh

co
m

p
u

tatio
n

alco
m

p
lexity;(ii)

D
em

an
d

in
g

req
u

irem
en

t
fo

r
m

o
d

elaccu
racy.

M
P

C
(i)

P
red

ictio
n

cap
ab

ilities;
(ii)

E
xp

licith
an

d
lin

g
o

fco
n

strain
ts

o
n

co
n

tro
lin

p
u

t.

(i)H
igh

d
em

an
d

for
accu

racy
in

p
red

iction
m

od
els;(ii)T

im
e-in

ten
sive

fo
r

o
n

lin
e

o
p

tim
izatio

n
p

ro
ced

u
res.

SM
C

In
sen

sitive
con

trolp
erform

an
ce

to
m

od
elin

g
errors

an
d

p
aram

et-
ric

u
n

certain
ties.

(i)
C

h
atterin

g
in

d
u

ced
by

freq
u

en
tco

n
tro

ller
sw

itch
es;(ii)

C
h

allen
ges

in
stab

ility
an

alysis
d

u
e

to
h

igh
ly

n
o

n
lin

ear
slid

in
g

m
o

d
e

su
rface.

B
SC

W
ell-su

ited
fo

r
u

n
d

eractu
ated

system
s.

(i)
R

eq
u

ires
a

n
o

n
lin

ear
m

o
d

elin
low

er
trian

gu
lar

fo
rm

(referred
to

as
p

u
re-feed

b
ack

fo
rm

);(ii)
H

igh
co

m
p

u
tatio

n
alco

m
p

lexity
fo

r
co

m
p

u
t-

in
g

d
erivatives

o
fp

seu
d

o
co

n
tro

lin
p

u
ts.

Tab
le

1.1
C

o
m

p
ariso

n
o

fad
van

tages
an

d
d

isad
van

tages:Lin
ear

co
n

tro
llers

(to
p

)
vs.N

o
n

lin
ear

co
n

tro
llers

(b
o

tto
m

).

1.2 The Synergy of Modeling and Control 9

critical systems such as UAVs, as practitioners may lack trust in these models [29].

Another challenging aspect is the generalizability of the trained model to un-

seen data [10], particularly for offline-trained models, as their performance may

degrade when confronted with Out-Of-Distribution (OOD) data samples.

1.2.3 The Future: Forging a Path to Trust

As the UAV industry tackles increasingly challenging tasks in demanding en-

vironments (see Fig 1.5), traditional model-based methods, discussed in Sec-

tion 1.2.1, may fall short. On the other hand, the adoption of state-of-the-art

learning-based approaches raises concerns about trustworthiness, particularly in

emerging technologies like AI. Trustworthiness necessitates human understand-

ing and appropriate trust, especially for novel techniques such as deep learning

solutions [29], which are commonly black-box in nature. Performance metrics

for DNNs typically rely on numerical deviations in input-output assessments,

leading to poorly interpretable outcomes and limited generalization beyond the

training dataset due to undesired spurious relationships among features and la-

bels. As mentioned in Section 1.2.2, this limitation becomes particularly critical

when DNNs are employed as control-oriented models or within control synthesis,

potentially yielding effective yet inexplicable behaviors in response to external

stimuli.

An intuitive solution to achieve generalizable and interpretable learning-based

solutions is to integrate model-based and data-driven approaches [10], leveraging

the strengths of both and hopefully resulting in “interpretable AI techniques”, as

outlined in Fig 1.5. For example, domain knowledge can be used for constructing

a nominal system model, while learning takes in charge of the residual dynamics

that the model cannot reproduce. Yet, integrating knowledge and data remains

challenging, particularly as the learning module for residuals lacks transparency

and requires interpretation. Evidently, establishing trust has become an exigent re-

quirement for the smooth deployment of AI solutions in real-world safety-critical

systems. In the following, we will delve into ongoing endeavors in this direction.

10 Background and Motivation

Fig. 1.5 Evolution of UAV control: Current trends and characteristics.

1.3 Building Trust in Algorithms: Trustworthy Ma-

chine Learning

While the pursuit of trustworthy AI is still nascent, collective and interdisci-

plinary efforts are already underway. Notably, trust is one of the crucial aspects

of achieving a broader concept known as explainable AI [29], which also emcom-

passes goals such as fairness, privacy awareness, and causality in the development

of novel AI technologies.

Two primary techniques are employed for explainable AI: constructing trans-

parent models and providing post-hoc interpretability analysis, as depicted in

Fig. 1.6 (reproduced from [29]). Transparent models, in contrast to black-box

models, inherently offer a certain degree of interpretability. They can be evaluated

using qualitative metrics such as simulatability, decomposability, and algorith-

mic transparency. Simulatability serves as an indicator of model complexity; for

example, a simple neural network (e.g., with one hidden layer and five hidden neu-

rons) aligns with this characteristics, while a rule-based system with numerous

rules does not. Decomposability refers to the ability to explain individual compo-

nents of the model such as inputs and calculations, without relying on additional

1.3 Building Trust in Algorithms: Trustworthy Machine Learning 11

tools like post-hoc interpretability techniques. Algorithmic transparency, in a

broad sense, implies that the model can be comprehensively understood through

mathematical analysis.

On the other side of the spectrum, post-hoc interpretability techniques are

applied to models that lack inherent interpretability. These techniques aid hu-

mans in explaining systems and processes, which include text explanations, visual

explanations, local explanations, explanations by example, explanations by sim-

plification and feature relevance explanations techniques.

Fig. 1.6 Explainable AI techniques.

1.3.1 Transparent Models

Taking into account the qualitative measures mentioned earlier, namely simu-

latability, decomposability, and algorithmic transparency, certain machine learn-

ing models stand out for their transparency. These include linear/logistic re-

gression, decision trees, K-Nearest Neighbors (KNN), rule-based learners, and

Bayesian models; for detailed comparisons, please refer to Table 2 in [29]. How-

ever, it is worth noting that ANNs, which are among the most commonly used

machine learning models today, lack transparency in most cases, except for shal-

low and simple structures. This has led to the emergence of a new paradigm

known as Physics-Informed Machine Learning (PIML) [30].

The emerging paradigm of PIML demonstrates promising capabilities in align-

ing learning models with physical principles. Illustrated in Fig. 1.7(a), PIML mod-

els offer several advantages over data-driven models. Firstly, they exhibit the

12 Background and Motivation

ability to learn from limited data and generalize well beyond the training set by

integrating domain knowledge. Secondly, with careful incorporation of this knowl-

edge, PIML models can achieve certain degree of interpretability, distinguishing

them from purely black-box approaches. In comparison to traditional FPMs, PIML

models alleviate the stringent requirements for comprehensive domain expertise

to construct accurate models.

Fig. 1.7 Fundamental principles of PIML.

Developing a PIML solution involves introducing suitable observational, in-

ductive, or learning biases, as illustrated in Fig. 1.7(b) (reproduced from [30]).

Observational biases are introduced through data that encapsulate underlying

physical laws or through meticulously designed data augmentation techniques.

Inductive biases entail prior assumptions that are integrated into the model ar-

chitecture, ensuring that the predictions adhere to a predefined set of physical

laws expressed as hard constraints. Learning biases are introduced through the

selection of appropriate loss functions, guiding the model in the training phase to

converge towards solutions consistent with the underlying physics. While such

soft constraints may only approximately satisfy physical laws, they offer a flexible

framework for integrating a broad spectrum of learning biases, including integral

and differential equations.

1.4 Thesis Outline and Contributions 13

1.3.2 Post-hoc Interpretability Techniques

For non-transparent machine learning models like DNNs, various post-hoc

analysis options are available, including model simplification, feature relevance

assessment, and visualization [29].

Model simplification techniques reconstruct a new system based on the trained

model, aiming to maintain similar performance while reducing complexity. Fea-

ture relevance methods indirectly explain the behavior of the model by calculating

relevance scores for its variables, revealing their impact on model output.

Visualization techniques provide a straightforward assessment of a model’s

behavior. To address the curse of dimensionality in high-dimensional datasets,

common practices involve using dimension reduction techniques such as Principal

Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE),

and autoencoder. These techniques reduce the dataset’s dimensionality before

applying clustering algorithms for feature extraction on feature vectors. Further-

more, alternative visualization tools for interpreting models include methods

like heatmap analysis. Figure 1.8 illustrates the procedural steps for post-hoc

visualization of a trained model. It highlights that post-hoc visualization is an

additional step performed after model training, making it suitable for transparent,

partially transparent, or non-transparent models. Visualizations play a crucial

role in enhancing the understanding of complex variable interactions within the

model, even for users unfamiliar with machine learning.

1.4 Thesis Outline and Contributions

The remainder of this thesis is structured as follows. Chapter 2 lays the founda-

tion for the subsequent chapters, including notations, mathematical formulations

for quadrotor modeling, and background knowledge on ANNs. Chapter 3 explores

interpretable neural modeling for quadrotor dynamics using Physics-Informed

Neural Networks (PINNs). Thanks to the incorporation of domain knowledge into

the machine learning framework, we demonstrate some promising results on the

learning capability of PINNs in terms of modeling error and physical consistency,

compared to conventional FPM and purely black-box DNN models. In addition,

we have made an implementation of multirotor ground effect open source (see

14 Background and Motivation

Fig. 1.8 Post-hoc visualization workflow for a trained model.

Appendix A), providing it as a plug-in for Microsoft AirSim simulator to facilitate

UAV research endeavors. The majority of the contents therein have been previ-

ously published in the Robotics and Autonomous Systems journal, as referenced

in [31].

Chapters 4 and 5 focus on controller design for quadrotors subject to uncertain-

ties and disturbances. Specifically, Chapter 4 addresses parametric uncertainties

in quadrotor mass and inertia matrix, leveraging MBC techniques. This approach

is chosen due to the strengths of adaptive control in handling structural uncer-

tainties and interpretability, compared to learning-based approaches. Differing

from previous studies, we develop an adaptive geometric controller based on

rotation matrices, which demonstrates the capability to execute aggressive ma-

neuvers under uncertainties without suffering from gimbal lock or unwinding

phenomena associated with other attitude representations such as Euler angles

and quaternions. Projection operators are also introduced to enhance the robust-

ness of the adaptive design against external disturbances or noise in the system. A

manuscript containing the majority of this chapter is currently undergoing review

by a journal, as cited in [32].

1.4 Thesis Outline and Contributions 15

Chapter 5 explicitly handles non-parametric uncertainties such as wind gusts

in the controller design. We propose a novel learning-based controller that learns

the uncertainties within flight and incorporates the estimated uncertainties into

the controller to compensate for them. This online learning capability is endowed

with the Reservoir Computing (RC) paradigm. In addition to achieving satisfactory

tracking performance, we enhance the interpretability of our learning-based

model through post-hoc analysis, allowing for better understanding of model

behavior by humans. We also demonstrate the benefits of online learning over

offline learning on OOD flight data. A manuscript that includes the majority of

this chapter has been accepted by a conference, as cited in [33].

In conclusion, this thesis has made the following main contributions:

(i) A novel approach for quadrotor dynamical modeling is proposed, which

strikes a balance between accuracy and interpretability by integrating knowl-

edge and data.

(ii) A novel adaptive geometric controller is developed, enabling quadrotors to

perform aggressive maneuvers under parametric uncertainties.

(iii) A novel learning-based controller is introduced to handle non-parametric

uncertainties in quadrotors, featuring online learning capability and inter-

pretability.

(iv) An implementation of multirotor ground effect is presented as a plug-in to

AirSim, providing a realistic simulation environment.

Chapter 2

Preliminaries

2.1 Notation

Henceforth, we use case-sensitive bold symbols to represent multidimensional

variables, e.g., a stands for a vector, while A stands for a matrix. The n-dimension

Euclidean space is denoted by Rn with Euclidean norm ∥·∥2. The transpose op-

erator of a vector or a matrix is denoted by (·)⊤. The trace, determinant, and

eigenvalues of a matrix are denoted by tr(A), det(A), and λ(A), respectively. The

Frobenius norm of a matrix is denoted by ∥A∥F =
√

tr(AA⊤). The positive and

semi-positive definiteness of a matrix are denoted by A ≻ 0 and A ⪰ 0, respec-

tively. The symbol e3 denotes a vector pointing upwards in the unit 2-sphere

S2 = {a ∈ R3 : ∥a∥2 = 1} and In denotes an n ×n identity matrix. The hat opera-

tor is denoted by (·)∧ : R3 → so(3) and inversely, the vee operator is denoted by

(·)∨ : so(3) →R3, where so(3) represents the Lie algebra associated with a special or-

thogonal group SO(3) = {R ∈R3×3 : R⊤R = I3,det(R) = 1}. The symbol L∞ denotes

the space of bounded functions and C k (k = 0,1,2, · · ·) denotes the differentiability

class of a function if its derivatives up to kth order exist and are continuous.

2.2 Mathematical Model of Quadrotors 17

2.2 Mathematical Model of Quadrotors

We consider the following mathematical model that in general describes the

kinematics and the dynamics of a quadrotor

ṗ = v, (2.1a)

mv̇ = mg e3 +Rfu + fa , (2.1b)

Ṙ = Rω∧, (2.1c)

Jω̇=−ω∧Jω+τu +τa , (2.1d)

where p,v ∈ R3 denote the position and linear velocity in inertial frame, ω =
[p, q,r]⊤ ∈R3 denotes the body-fixed angular rate, and R ∈ SO(3) denotes the rota-

tion matrix from body to inertial frame, constructed by Euler angles η= [φ,θ,ψ]⊤

(roll, pitch, yaw) following “3-2-1” convention1. Moreover, fu = [0,0,T]⊤ ∈R3,τu =
[τu,x ,τu,y ,τu,z]⊤ ∈ R3 denote the body wrench produced by the four rotors (i.e.,

control inputs) where T ∈R is the total thrust. fa ∈R3,τa ∈R3 denote the lumped

uncertainties including unmodeled dynamics and disturbances. m ∈R,J ∈R3×3

denote the quadrotor mass and inertia matrix, g ∈ R denotes the gravitational

constant, e3 = [0,0,1]⊤ is a vector in the unit 2-sphere S2, and (·)∧ :R3 → so(3) de-

notes the hat operator that converts real vectors into Lie algebras. Specifically, the

hat operator applied toω in (2.1c) is equivalent to the skew-symmetric operator

as

ω∧ =

 0 −r q

r 0 −p

−q p 0

 ∈ so(3). (2.2)

North-East-Down (NED) and Forward-Right-Down (FRD) conventions are adopted

for (local) inertial and body(-fixed) reference frame, respectively.

It is important to note that (2.1c) is not the sole representation for rotational

kinematics; alternative expressions using Euler angles and quaternions are also

1The 3-2-1 rotation sequence is commonly used for aerospace applications to describe the
orientation of aerospace vehicles from inertial frame to body frame. Specifically, it means rotations
about z-axis, then y-axis, followed by x-axis. The right hand rule is adopted for all the rotations.

18 Preliminaries

valid such as

η̇= Tω, where T =

1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ/cosθ cosφ/cosθ

 , (2.3a)

q̇ = 1

2
q⊗ω, (2.3b)

where q ∈R4 denotes quaternions, and ⊗ denotes the quaternion product.

By incorporating the rotor model, the generated thrust T and torque τu can be

further translated into the actual control command, i.e., the rotor angular speeds

ni (i = 1,2,3,4) expressed in revolutions per second, as
T

τu,x

τu,y

τu,z

=


cT cT cT cT

−cT l cT l cT l −cT l

cT l −cT l cT l −cT l

cQ cQ −cQ −cQ


︸ ︷︷ ︸

:=M


n2

1

n2
2

n2
3

n2
4

 , (2.4)

where cT denotes the dimensional thrust coefficient, cQ denotes the dimensional

moment coefficient, and l denotes the moment arm (i.e., the distance from the

rotor axis to the principal axis of the quadrotor). Note that M (referred to as the

mixer matrix) depends on the airframe layout. To prevent the need for special

case handling and improve reusability in the core controllers, mixer logic is typi-

cally separated in the controller design2. In other words, thrust and torques are

generally treated as the control inputs rather than the actuator commands.

2.3 Exponential and Logarithm Map

The exponential map relates a matrix Lie group to its associated Lie algebra.

For rotations, it can be computed through Rodrigues’ rotation formula [34] as

R = exp(φ∧) = I3 + sin(φ)a∧+ (1−cos(φ))a∧a∧, (2.5)

2A commonly adopted practice of separating mixer logic and controller can be found here:
https://docs.px4.io/v1.12/en/concept/mixing.html.

https://docs.px4.io/v1.12/en/concept/mixing.html

2.3 Exponential and Logarithm Map 19

whereφ=φa, a ∈S2 is the rotation axis, and φ ∈R is the rotation angle3.

The inverse of the exponential map is called “logarithmic map” [35] denoted

as

φ= log(R)∨, (2.6)

which can be computed from

φ= arccos
(tr(R)−1

2

)
, (2.7)

φ=φa = φ

2sin(φ)
(R−R⊤)∨. (2.8)

Remark. The exponential map from so(3) to SO(3) is surjective-only, meaning that

there exist multiple candidates of so(3) that yield the same element of SO(3). This

can be revealed by the fact that R = exp((φ+2πn)a∧), with n being an arbitrary

integer and the ambiguity in the sign ofφ due to the even function cos(φ). Nonethe-

less, we can confine the map such that it is bijective by: (i) limiting |φ| <π, and (ii)

determining the correct sign of φ through verifying if the rotation matrix generated

by such φ using (2.5) is correct; if not, reversing the sign of φ and recalculating the

rotation axis. □

Moreover, the left Jacobian of SO(3) [35] is defined as

Jl (φ) =
∫1

0
exp(φ∧)αdα (2.9)

= sin(φ)

φ
I3 +

(
1− sin(φ)

φ

)
aa⊤+ 1−cos(φ)

φ
a∧, (2.10)

and its inverse is given by

Jl (φ)−1 = φ

2
cot

(φ
2

)
I3 +

(
1− φ

2
cot

(φ
2

))
aa⊤− φ

2
a∧. (2.11)

Remark. There exist singularities associated with Jl using the above equations

due to the appearance of cot(φ/2) at φ = 2πn with n being an arbitrary integer.

To address this, we can use the following approximations: Jl (φ) ≈ I3 + 1
2φ

∧ and

Jl (φ)−1 ≈ I3 − 1
2φ

∧ [35]. □
3Please note that there is a slight abuse of notation here. The symbol φ now denotes the angle

of rotation in view of axis-angle representation and has nothing to do with the roll angle previously
defined for describing the orientation of the quadrotor.

20 Preliminaries

2.4 Artificial Neural Networks

2.4.1 Historical Perspective

The smallest element in ANNs is named as neuron by analogy with neuro-

physiology, whose simplified model was firstly studied by McCulloch and Pitts

in the 1940s [36]. Few years later, the very first simple model of ANN, namely

perceptron, was proposed by Rosenblatt [37], which was a supervised learning

model receiving wide attention. However, subsequent research progress was

somehow impeded at that time until Back-Propagation (BP) algorithm appeared

in 1986 [38], a powerful tool for training Feedforward Neural Networks (FNNs)

proposed by Rumelhart et al. Coupled with Multi-Layer Perceptrons (MLPs), a

number of problems on classification and regression could be practically solved

with satisfactory results. Nonetheless, the thriving development of Support Vector

Machines (SVMs) starting from 1992 witnessed AI winter for the next decade. In

2006, Hinton et al. proposed the concept of deep learning as opposed to shal-

low learning [39]. Given many more layers, Deep Neural Networks (DNNs) are

endowed with much powerful potential, especially in pattern recognition and

object detection [40]. Motivated by deep learning, an increasing number of ANNs

with more complicated architecture have been popping up since then. Figure 2.1

(reprinted from [10]) depicts the brief history of ANNs indicated with big events

happened.

Fig. 2.1 Evolution of ANNs: Timeline and milestones.

2.4 Artificial Neural Networks 21

2.4.2 Mathematical Model of Artificial Neurons

An artificial neuron (or simply, a neuron) behaves like a function in principle.

The simple model of a neuron generally consists of a scalar-valued activation

function f : R→ R and two training parameters, namely input weight matrix

W ∈R1×N and bias weight b ∈R, where N is the number of elements in the input

vector p ∈ RN×1. The output a ∈ R is generated through a = f (Wp+ b) where

the engaged activation function f (·) could be hard-limit, linear, log-sigmoid or

tan-sigmoid function [41], chosen by the designers considering the requirements

of network performance. Built by neurons, an ANN can be considered as a typical

network, which is made up of a single input layer, single or multiple hidden

layers, and a single output layer; see, e.g., Fig. 2.2 (reprinted from [10]). Each layer

(except the input) comprises a number of neurons, possibly governed by different

activation functions.

Fig. 2.2 Simplified neuron model and typical architecture of FNNs.

2.4.3 Classifications of Neural Networks

In terms of neuron connections, ANNs can be categorized into one of the

following two types: feed-forward and recurrent. Neurons in an FNN only receives

22 Preliminaries

input from previous layer (see, e.g., Fig. 2.2), whereas feedback connections exist

in a Recurrent Neural Network (RNN). Due to these additional connections, RNNs

are endowed with large dynamical memory which FNNs generally do not possess,

however, at the cost of increasing complexity.

In terms of dynamic characteristics, RNNs may also be named as dynamic

networks as opposed to static networks referring to FNNs. Note that with the use

of Tapped Delay Lines (TDLs), FNNs can also be considered as dynamic networks.

For example, Focused Time-Delay Neural Network (FTDNN)4 (as part of a general

class of dynamic networks, namely focused networks) refers to FNNs with tapped

delay lines only at the input.

In Table 2.1, some typical and widespread ANNs are presented and classified

based on neuron connections. These representatives are also marked in Fig. 2.1

for visualization purposes. In the sequel, we provide a brief introduction to these

ANNs, recalling their origin and key features.

MLPs [37] and Radial Basis Function Neural Networks (RBFNNs) [42] were

the two well-studied architecture of FNNs originated in the late 1900s, mainly

differing in the underlying activation functions. Subsequently, many variations

had appeared with different functions taking on the role of activation function.

For example, Wavelet Neural Network (WNN) was proposed by Zhang et al. in

1992 to decrease the number of nodes required in the network by using Mex-

ican hat wavelet as activation function [43]; Rectified-Linear Unit (ReLU) was

firstly introduced to a dynamical network by Hahnloser et al. in 2000 to solve

gradient vanishing issues [44]. On the other hand, motivated by cerebellum neu-

rophysiological model, Cerebellar Model Articulation Controller or Cerebellar

Model Arithmetic Computer (CMAC) was initially proposed by Albus for robotic

manipulator control in 1975 [45].

Under the category of RNNs, Hopfield networks served as content-addressable

memory systems with saturated linear transfer functions, popularized by Hopfield

in 1982 [46]. Later in 1990, Elman networks were proposed which are normally

two-layer RNNs having a feedback connection from the output of the hidden layer

to its input [47]. Due to this additional connection, Elman networks have the

capabilities of detecting and generating time-varying patterns. Echo State Net-

4More details can be referred to the MathWorks Documentation on “Design Time Series
Time-Delay Neural Networks": https://ww2.mathworks.cn/help/deeplearning/ug/
design-time-series-time-delay-neural-networks.html.

https://ww2.mathworks.cn/help/deeplearning/ug/design-time-series-time-delay-neural-networks.html
https://ww2.mathworks.cn/help/deeplearning/ug/design-time-series-time-delay-neural-networks.html

2.4 Artificial Neural Networks 23

works (ESNs) are a special type of RNNs, initially introduced by Jaeger in 2001 [48].

Thanks to the concept of RC, the training of such RNNs became conceptually sim-

ple and computationally inexpensive. Long Short-Term Memory (LSTM) networks

are a typical type of RNNs, firstly proposed by Hochreiter and Schmidhuber in

1997 [49], capable of learning long-term dependencies by solving the problem of

vanishing gradients [50]. Similar to LSTM units, Gated Recurrent Units (GRUs) are

a gating mechanism particularly used in RNNs while involving fewer parameters,

firstly introduced by Cho et al. in 2014 [51].

At last, we stress the importance of a series of biologically plausible neuron

models, namely spiking neurons, which describe the properties of biological

neurons to communicate via voltage spikes. The earliest spiking neuron model

is called Hodgkin-Huxley model [52] while the Leaky Integrate-and-Fire (LIF)

model [53] is more preferable in the controller design due to its simpler structure.

Such bio-inspired neural networks are known as Spiking Neural Networks (SNNs).

Type of connection Neural network model

Feed-forward Multi-Layer Perceptron (MLP)
Radial Basis Function Neural Network (RBFNN)
Rectified-Linear Unit (ReLU) network
Wavelet Neural Network (WNN)
Cerebellar Model Articulation Controller (CMAC)

Recurrent Elman network
Hopfield network
Echo State Network (ESN)
Long Short-Term Memory (LSTM) network
Gated Recurrent Unit (GRU) network
Spiking Neural Network (SNN)

Table 2.1 Classification of ANNs.

2.4.4 Training Methods

Broadly speaking, machine learning encompasses three main paradigms: su-

pervised, unsupervised, and reinforcement learning. In supervised learning, algo-

rithms learn from labeled data, while unsupervised learning dicovers patterns

24 Preliminaries

from unlabeled data without explicit supervision. Reinforcement learning, in

contrast, enables agents to learn by interacting with an environment, receiving

feedback through rewards or penalties.

In the context of supervised learning, the BP algorithm stands out as a widely

adopted techniques for training ANNs. Rooted in gradient descent, the BP algo-

rithm iteratively adjusts network parameters – namely, weights and biases. The

procedures for updating these parameters through the BP algorithm are as follows:

(i) Take a batch of training data.

(ii) Perform forward-propagation to calculate the loss (e.g., the difference be-

tween predicted and labeled output).

(iii) Perform back-propagation on the loss to derive gradients with respect to

network parameters.

(iv) Update network parameters through gradient descent.

However, the BP algorithm works only for FNNs and requires modifications to

be successfully applied to RNNs. For example, Back-Propagation Through Time

(BPTT) [54] and Real Time Recurrent Learning (RTRL) [55] are the two alternatives

for training RNNs.

Besides gradient-based approaches, linear regression proves to be an efficient

and effective method for certain ANN architectures (e.g., ESNs) due to its one-shot

training process. Moreover, training ANNs extends beyond supervised learning

methods and includes approaches like RL or computational methods such as

Particle Swarm Optimization (PSO). In the context of controller design, network

parameters can also be adjusted using Lyapunov stability theory, providing the

essential mathematical proof of stability.

Depending on the mode of network training, ANNs can be further classified as

either offline or online networks. Offline networks refer to those with pre-trained

and fixed network parameters. For applications where offline training time is not

critical, such networks are prevalent as they offer, by and large, higher accuracy

models. On the contrary, online networks refer to those with online adaptation

of network parameters. Due to this unique learning ability, online networks are

of great interest to applications where online learning is desirable. For example,

2.4 Artificial Neural Networks 25

constructing the dynamic model of a UAV using an online network would be more

ideal, allowing for the automatic capture of all dynamic changes by adjusting the

network weights in real-time. However, since online networks involves online

adaptation, the resulting learning process can be computationally expensive and

may suffer from divergence owing to a paucity of data.

Chapter 3

Physics-informed Neural Modeling

3.1 Introduction

As partially discussed in Section 1.2, the 21st century has witnessed an explo-

sive growth of civil applications of UAVs, ranging from the inspection of industrial

infrastructures such as power line and wind turbine to the operations in human-

interactive environments such as delivery of goods, to name a few [56]. Such

a scenario unprecedentedly calls for control algorithms that not only provide

sufficient tracking performance, but also enable safe and trustworthy operations,

especially in complex and populated environments, to facilitate real-world de-

ployment as well as to avoid injury and property damage by all means.

MBC techniques have found great applicability in the last decades thanks to

the underlying analytical formulation of system dynamics in terms of differential

equations, which typically informs the design of performance-guaranteed control

techniques [10]. However, a remarkable drawback of MBC techniques is their

heavy reliance on the accuracy of the mathematical model of the system under

control [18]. Uncertainties and disturbances such as parametric uncertainty and

unmodeled dynamics are ubiquitous in real-world flight, which may set back the

derivation of such control-oriented models, with a clear adverse impact on the

control performance. A typical example is the loss of system stability, which, for

UAVs, results in dangerous and uncontrollable deviations from the planned path,

eventually incurring accidents [17].

3.1 Introduction 27

To address the modeling issues induced by uncertainties and disturbances,

many efforts in the control community have been put forward in robust and

adaptive control theory [18]. For example, adaptive backstepping controllers were

designed to account for the changes in mass and inertia matrix of UAV [19], and in

payload [9]; another adaptive sliding backstepping control scheme was proposed

to guarantee attitude tracking under unmodeled dynamics [20]. Nonetheless,

most of the resulting controllers are usually mathematically complex and the

design very often leans toward conservative approaches, tuned on the demanding,

yet unlikely, worst-case scenario, thus limiting the possibilities of guaranteeing

desired performance [18].

On the other side of the spectrum, data-driven approaches have been pur-

sued with the aim to learn the real system dynamics in its entire complexity from

empirical data sets, including uncertainties and disturbances, which could be sub-

sequently used for MBC design. ANNs, as universal approximators with powerful

learning capability, have probably raised the most interest for UAV dynamical

modeling due to the advances in computer hardware in recent years; see, e.g.,

[26–28, 57, 58]. As they started to be applied to the growing UAV industry, trust-

worthiness becomes an exigent demand, which by definition [29], requires human

to understand, appropriately trust, especially for new techniques. Due to the

black-box (a.k.a., model-agnostic) nature of ANNs, however, the performance

metrics mainly rely on the assessment of input-output numerical deviations of

the available data. Hence, the outcome of the learning process is typically poorly

interpretable, often implying a lack of generalization capability outside the train-

ing data set due to undesirably learned spurious relationships among features and

labels. This issue becomes particularly harmful when ANNs are used as a control-

oriented model to design control actions, since such systems respond to external

stimuli with behaviors that are maybe effective yet inexplicable. While nowadays

practitioners and society are far from being concerned just by performance, such

risk evidently reduces the overall trustworthiness of the control system [29].

To meet the expectations of both accurate and interpretable neural modeling,

here we propose a novel approach for dynamical modeling of quadrotors, inspired

by PIML [30], an emerging machine learning paradigm that aims at achieving

better generalization capability by incorporating a-priori system knowledge into

the learning process. Such paradigm has been successfully applied for mod-

eling in many scientific and engineering disciplines such as acoustic field of a

28 Physics-informed Neural Modeling

quadrotor [59–61], robotic manipulator [62–64], lake temperature [65], pandemic

spread [66], just to list a few. In our context, we seamlessly embed the law of con-

servation of momentum into the training of a DNN in the form of soft constraints

(or learning bias) to model fast, high-dimensional, and highly nonlinear dynamics.

Comparison and ablation studies have been carried out over multiple seeds in

a visual and physical simulator that we customized on top of AirSim [67] on sev-

eral data sets including aerodynamics such as drag, ground effect, and periodic

wind. It has been consistently shown that our proposed PINN outperforms both

linearized mathematical model and purely black-box approach such as vanilla

DNN [58] in terms of test error (generalizability on unseen data) and exhibits

better learning capability of underlying relationships than vanilla DNN by means

of Covariance Confidence Ellipse (CCE) [68], a post-hoc model interpretability

technique introduced to reveal physical consistency of the learned model.

3.2 Related Work

Recent endeavors that are closely aligned with our work stem from two dis-

tinct communities: UAV and machine learning . However, each community has

different research focuses, which are outlined as follows:

(i) Learning-based dynamical modeling of UAVs

Previous studies in the UAV community have extensively explored the effec-

tiveness of deep learning techniques for dynamical modeling of UAVs, owing

to their ability to capture intricate features hidden within the data. Notable

examples include the successful adoption of DNN for learning the dynamics

of helicopters [57] and quadrotors [58] from real flight data. Besides full

dynamics modeling, recent research has demonstrated the feasibility of

utilizing DNN to learn residual forces and torques resulting from advanced

aerodynamics such as quadrotor ground effect [26] and aerodynamic inter-

actions between multirotors [27]. However, despite the promising results

achieved in these studies, vanilla DNN architectures are typically employed,

which are notorious for their purely black-box nature and may result in

learning physically inconsistent relationships and reduced generalization

capability [30].

3.2 Related Work 29

In regard to this issue, only a few attempts have been made to enhance the

interpretability of learned models. For example, in [69], a hybrid approach

combining analytical and empirical techniques was proposed for linear

velocity estimation of a quadrotor.Similarly, [16] adopted a hybridization

strategy for quadrotor dynamical modeling, combining Blade-Element-

Momentum (BEM) theory with a neural network to compensate for residual

dynamics using real flight data of agile maneuvers. However, the struc-

ture and training process of these networks remain opaque. More recently,

Domain Adversarially Invariant Meta-Learning (DAIML) was proposed to

learn the shared representation of winds offline and then update wind-

specific linear coefficients online [28]. While DAIML offers interpretability

by visualizing clustered linear coefficients associated with similar wind

speeds, it necessitates comprehensive data collection across various wind

conditions, which can be labor-intensive and time-consuming.

(ii) Learning dynamics from trajectory data using PINNs

The recent success of using PINN to solve Partial Differential Equations

(PDEs) [70] has sparked a surge of interest among machine learning re-

searchers in learning dynamics from trajectory data while incorporating

physical insights. In this context, research efforts can broadly be categorized

into two streams: structured and unstructured learning.

Structured learning frameworks such as Lagrangian neural networks [62–64]

and Hamiltonian neural networks [71, 72] leverage Lagrangian and Hamilto-

nian mechanics to inform the structure of neural ODE of the system. These

approaches offer the advantage of guaranteeing energy conservation, pro-

vided the system does not involve non-conservative forces such as friction.

While this could hold true for the dynamical modeling of robotic manipula-

tors, the primary application of research within this stream, the presence

of aerodynamic effects can substantially impact quadrotor flight dynamics,

thereby posing challenges to applying these frameworks in such scenarios.

On the other hand, unstructured learning incorporates a priori domain

knowledge into the loss function as learning bias to achieve more physi-

cally consistent predictions. Sometimes referred to as Theory-Guided Data

Science (TGDS) [73], the crux of unstructured learning involves embed-

ding knowledge from the outset [29] and assessing its compliance with the

30 Physics-informed Neural Modeling

knowledge eventually learned by the model. Ongoing research in various

scientific and engineering domains has demonstrated the effectiveness of

this approach, including acoustic field modeling of quadrotors [59–61], lake

temperature modeling [65], and pandemic spread prediction [66].

3.3 Physics-informed Neural Network

In this section, we detail our proposed PINN for modeling the inverse dynam-

ics of the quadrotor. Following the unstructured learning strategy, our primary

goal is to identify proper domain knowledge and incorporate it into the network

training process. This enables the resulting network to generate predictions that

align more closely with physical principles. In other words, this process can also be

seen as the development of a customized physics-informed loss function, which

guides the network – whether it takes the form of a FNN or RNN – to learn the

underlying relationships within the data.

The main concept is illustrated in Fig. 3.1. The PINN is essentially a vanilla

DNN trained using a physics-informed loss function, integrating prior domain

knowledge. This differs from the conventional approaches that use a model-

agnostic loss function. In addition to assessing prediction accuracy, the perfor-

mance of the network will be further evaluated through post-hoc visualization.

This analysis aims to understand the capability of the network to effectively learn

prior knowledge, which can subsequently inform controller design.

In the sequel, we begin by providing the details of the chosen network architec-

ture. Then, we delve into the rationale behind and the methodology of integrating

physics principles into network training through a customized physics-informed

loss function. Furthermore, we shed light on the post-hoc interpretability visu-

alization, which serves to validate the proficiency of the network in extracting

underlying knowledge. Additionally, we introduce a practical technique for fine-

tuning regularization parameters to enhance training performance specifically

tailored to our application.

3.3 Physics-informed Neural Network 31

Fig. 3.1 Main concept of PINN.

3.3.1 Network Structure

The proposed PINN, which approximates the inverse of quadrotor dynam-

ics (2.1), can be expressed as ŷ = PINN(x;Θ), where x denotes the network input

in the form of a vector consisting of quadrotor states and accelerations, ŷ denotes

the network predictions on control inputs, andΘ denotes the trainable network

parameters. Since yaw angle may suffer from abrupt changes from 0 to 2π, sine

and cosine operators are used for embedding to ensure the continuity of the signal.

Besides, we use the dimensionless form of Pulse-Width Modulation (PWM) of

rotors as control inputs due to the signal property from the visual and physical

simulator that we set up for data collection as will be discussed in Section 3.4.1.

Therefore, the input (or feature) and the output (or prediction, denoted with (̂·))

of the network are formulated as follows:

• x := (v̇⊤,ω̇⊤,v⊤,ω⊤,φ,θ, sinψ,cosψ)⊤ ∈R15,

• ŷ := (û1, û2, û3, û4)⊤ ∈R4, where ui is the PWM signal of each rotor.

32 Physics-informed Neural Modeling

We opt for a DNN as the foundational architecture for our network. Hence,

our PINN can be re-reformulated as

PINN(x,Θ) := f ◦ g ◦ · · · ◦ f ◦ g︸ ︷︷ ︸
Nl hidden layers

(W[1]x+b[1]), (3.1)

where {W[1],b[1]} is the pair of network parameters of the first layer in Θ, g (·) =
ReLU(·) is the activation function, and f (β) = W[i]β+b[i], with i = 1,2, · · · , Nl . Note

that if the model described in Eq. (3.1) is trained using a conventional loss function

such as the Mean Square Error (MSE) between y and ŷ, it essentially constitutes

a vanilla DNN, as demonstrated in prior works (e.g., see [58]). However, in the

subsequent discussion, we elaborate on our customized physics-informed loss

function. This function is meticulously designed with the specific objective of

guiding the network to capture the intrinsic relationships within the input-output

data pair, thereby facilitating generalization capabilty to unseen data sets.

3.3.2 Incorporation of Physics as Learning Bias

The absense of universally accepted mathematical representations or empiri-

cal domain expertise in advanced aerodynamics presents a big challenge when

attempting to incorporate domain knowledge into the learning process. Conse-

quently, we pivot towards harnessing fundamental physical principles to steer

the network training. For quadrotors, the law of conservation of momentum

emerges as an effective guide, as it inherently governs the dynamical equations

and embodies the fundamental property of the system. Thus, the crux of the issue

boils down to integrating this physical law into the network training process; or in

other words, effectively embedding physics into loss terms that the network can

learn.

The embedding of the law of conservation of momentum is motivated by

the observed correlation between accelerations and control inputs. Using our

collected data, which includes agile maneuvers with drag, as shown in Fig. 3.2, we

can easily assess the Pearson Correlation Coefficient (PCC) between the derivative

of roll angular rate ṗ and the PWM signals utilized to generate such acceleration.

This correlation coefficient is calculated at 0.67, indicating a significant correlation

between these two quantities. Graphically, the data series exhibit a remarkable

3.3 Physics-informed Neural Network 33

similarity in pattern, as evident in Figs. 3.2 (a)&(b). This strong correlation also

holds true for pitch and yaw motion, as illustrated in Figs. 3.2 (e)&(f), (i)&(j).

For better visualization, we present the sorted samples with CCE [68], which

represents the enclosure of 98.9% of data, as depicted in Figs. 3.2 (d)&(h)&(i).

The positive correlation can be visually implied by the slope (or, more precisely,

the rotation angle) of the CCEs. From a mathematical standpoint, it becomes

straightforward that ω̇ and τu are collinear under conditions where nonlinearities

and aerodynamics are marginal; see, e.g., the subsequent linearized quadrotor

dynamics derived from (2.1b) and (2.1d)

v̇x =− 1

m
θT, v̇y = 1

m
φT, v̇z =− 1

m
T + g ,

ṗ = 1

Jxx
τu,x , q̇ = 1

Jy y
τu,y , ṙ = 1

Jzz
τu,z ,

(3.2)

where Jxx , Jy y , Jzz denote the moment of inertia along the principal axes.

Based on the aforementioned empirical findings, we devised a local mono-

tonicity loss term to embed the law of conservation of momentum into the loss

function for network training. This term penalizes the deviations from consistent

patterns between two data series. More specifically, if one data series increases

while another decreases, the network is penalized by incorporating the local

monotonicity loss term into the overall loss function during training. The detailed

implementation of the local monotonicity loss term is outlined in Algorithm 1,

where we utilize the differentiable approximation of the sign function, tanh(·),

to assess if two data series share the same pattern. Additionally, we apply the

local monotonicity loss term to all three degrees of rotation, resulting in the final

physics-informed loss function for network training as

L =LMSE +
∑

i
λi

LML i
LM, i = {φ,θ,ψ}, (3.3)

where λLM is the hyperparameter and LMSE is the (conventional) MSE between

targets and predictions.

Note that we chose not to directly incorporate the PCC into the composition

of the final loss function. This decision stems from the fact that PCC is dependent

on the assumptions on the data distribution and may result in poor training

performance. However, it serves as an effective metric for assessing the correlation

34 Physics-informed Neural Modeling

Fig.3.2
C

o
rrelatio

n
w

ith
in

train
in

g
d

ata
series.(a),(b

),(e),(f),(i),(j):T
h

e
d

erivative
o

fan
gu

lar
rate

an
d

th
e

co
rresp

o
n

d
in

g
P

W
M

sign
als.

(c),(g),(k):C
oh

eren
ce

p
lots

for
roll,p

itch
,an

d
yaw

m
otion

,w
ith

P
C

C
s

in
d

icated
in

gray
b

oxes.(d
),(h

),(i):C
C

E
p

lots
for

roll,p
itch

,an
d

yaw
m

o
tio

n
,d

ep
ictin

g
d

ata
sam

p
les

(b
lu

e
d

o
ts)

an
d

3
σ

C
C

E
s

(o
ran

ge
ellip

ses).

3.3 Physics-informed Neural Network 35

between variables once the data vectors are available. Notably, it may happen

that two data series with different patterns might have the same PCC value1.

Hence, using PCC for training would steer the network parameters toward similar

values even in presence of different input patterns, clearly leading to ill-posed

optimization problems.

Furthermore, it is important to acknowledge that the observation of shared

patterns between data series may not always hold true, and hence, neither does the

devised local monotonicity loss term. This is because our proposed embedding

(i.e., local monotonicity loss term) is an approximation rather than a precise

mathematical equation. However, this discrepancy typically arises only when the

system dynamics are dominated by the highly nonlinear aerodynamic terms. To

address this challenge, we treat the local monotonicity loss as an auxiliary learning

bias – a soft constraint that can be violated – to enhance network learning through

the introduction of a hyperparameter λLM, which governs the strength of the local

monotonicity loss term. Additionally, the value of λLM is dynamically adjusted

using the cyclical annealing method [74] as explained next.

Algorithm 1: Calculation of physics-informed loss function

Input: Training data D, network parameterΘ
Parameter: Batch size Nb , hyperparameter λLM

Output: Physics-informed loss L

1 Function LocalMonotonicityLoss(m, n):
2 LMm , LMn ← tanh(m[2, Nb]−m[1, Nb −1]), tanh(n[2, Nb]−n[1, Nb −1])
3 loss ← 1

Nb
(1−LMm ×LMn) // element-wise multiplication

4 return loss

5 Xbatch ,Ybatch ← DataLoader(D, Nb) // X is feature, Y is label
6 Ŷbatch ← PINN(Xbatch ,Θ) // forward propagation
7 LMSE ← 1

Nb
(Ŷbatch −Ybatch)2 // conventional MSE

8 LLM ← LocalMonotonicityLoss(Ŷbatch , Xbatch)
9 L ←LMSE +λLMLLM

10 return L

1An explanatory example: Let the first pair of data series be x1 = [1,2,3,4,5], y1 = [1,−2,−3,4,5]
and the second pair of data series be x2 = [1,2,3,4,5], y2 = [1,2,3,1.9455,2.5]. Although both pairs
have similar PCC values of approximately 0.626, the increasing/decreasing pattern between xi

and yi , where i = 1,2, significantly differs. On the other hand, the proposed local monotonicity
loss can tell the difference in patterns, with value of 1.0 for i = 1 and of 0.5 for i = 2.

36 Physics-informed Neural Modeling

3.3.3 Cyclical Annealing Scheduler

When aerodynamics dominate over the body wrench generated by the four

rotors, the two loss terms in Eq. (3.3) may contradict each other, leading to in-

effective guidance for the network in learning the real aerodynamic effects. To

mitigate this issue, we employ a practical strategy known as cyclical annealing

scheduler. Originally introduced to address the Kullback–Leibler (KL) vanishing

problem in Variational Autoencoders (VAEs) [74], this technique cyclically adjusts

the hyperparameter of the KL regularizer. Similar to our physics-informed loss

function, a VAE loss function comprises MSE (i.e., reconstruction error) and the

KL regularizer. By scheduling the hyperparameter of the KL regularizer in a cycli-

cal fashion, it was empirically found that the network can leverage latent codes

learned in the previous cycle as warm re-starts, thereby progressively improving

the performance.

In our approach, we apply a similar concept, but with inverse scheduling as

λLM =


1−β
1−Rλmax ifβ> R,

λmax ifβ≤ R,
with β= mod(k,⌈T /M⌉)

⌈T /M⌉ , (3.4)

where k denotes the current epoch index, T denotes the maximum number of

epochs, λmax denotes the maximum value to which λLM will be annealed, M de-

notes the number of cycles, R denotes the proportion used to maintain λmax, and

⌈·⌉ denotes the ceiling function that maps the argument to the smallest integer

greater than or equal to its value. As such, the training process is split into M

cycles, each starting from λmax, where the network predominantly adheres to local

monotonicity, and gradually decreasing to 0. At this point, our physics-informed

loss function transitions towards resembling the conventional loss function, aim-

ing solely to minimize the MSE. This cyclical progression is visualized in Fig. 3.3

with parameters: (M ,R,λmax,T) = (5,0.5,0.1,300). Empirical evidence suggests

that this scheduling strategy facilitates improved performance over successive

cycles.

3.3 Physics-informed Neural Network 37

Fig. 3.3 Illustration of cyclical annealing scheduler λLM in Eq. (3.4).

3.3.4 Post-hoc Model Interpretability Visualization

To cultivate trustworthy AI, it is essential not only to develop transparent

models such as our proposed PINN, but also to employ post-hoc interpretability

techniques. These techniques include explanations by example, text explanations,

and feature relevance, among others [29].

In this context, we utilize post-hoc visualization methods to enhance the

interpretability of the learned model. Unlike the approach in [28], where dimen-

sionality reduction technique was employed to cluster different wind conditions,

we use CCE, as discussed earlier. CCE provides insights into both PCC and MSE,

making it a valuable tool for assessing the model’s behavior during training or

deployment. Indeed, the rotation angle of the CCE allows for a comprehension of

the PCC, while the height and width of the CCE offer information about the MSE.

This dual representation enables a comprehensive understanding of the model’s

performance, facilitating interpretation for users who may not be familiar with

the intricacies of deep learning.

38 Physics-informed Neural Modeling

3.4 Results and Discussion

3.4.1 Simulator

To streamline data collection, our work employs a simulator built upon the

visual and physical simulator AirSim [67], Unreal Engine 4 (UE4)2, PX4 [75], and

QGroundControl3; see Figs. 3.4 (a) and (b) for illustration. Compared with other

open-source simulator alternatives such as Gazebo [76], X-Plane4 and MathWorks

quadcopter project5, AirSim offers a more complex and realistic environment.

Leveraging advanced rendering techniques from UE4 and incorporating various

sensors and aerodynamics features such as drag force, AirSim provides a sophis-

ticated simulation platform with a physical engine at its core. Additionally, its

exceptional extensibility allows for seamless integration with different hardware

platforms and software protocols, while also enabling customization of person-

alized Application Programming Interfaces (APIs) and functionalities using C++

and Python.

In our experiments, alongside data collection coding, we developed a custom

C++ class integrated with AirSim’s source code to simulate the quadrotor ground

effect, thereby further enhancing the fidelity of our simulator. Specifically, we

incorporated two ground effect models: a simple Cheeseman-Bennett model [77]

and a parametric model derived from polynomial fitting using empirical data [78],

as depicted in Fig.3.5. Moreover, we provide user-level APIs in both C++ and

Python, namely simSetGroundEffect, to facilitate the research efforts of other

UAV community researchers. Our implementation complements the advanced

aerodynamics already available in AirSim such as drag, enabling users to safely col-

lect representative flight data under ground effect conditions by flying the quadro-

tor very close to the ground in the simulator. For more detailed design informa-

tion and usage instructions regarding our ground effect implementation, readers

are kindly directed to either Appendix A or the GitLab repository. The GitLab

repository contains a self-explanatory README file that provides comprehensive

2An advanced real-time 3D creation tool: https://www.unrealengine.com/en-US.
3A ground control station for the MAVLink protocol: http://qgroundcontrol.com/.
4X-Plane, a flight simulator: https://www.x-plane.com/.
5MathWorks quadcopter project based on the Parrot® series of mini-drones: https://www.

mathworks.com/help/aeroblks/quadcopter-project.html.

https://www.unrealengine.com/en-US
http://qgroundcontrol.com/
https://www.x-plane.com/
https://www.mathworks.com/help/aeroblks/quadcopter-project.html
https://www.mathworks.com/help/aeroblks/quadcopter-project.html

3.4 Results and Discussion 39

Fig. 3.4 Data collection in the visual and physical simulator. (a) Manual flight of a
quadrotor in the simulator. (b) User interface of QGroundControl.(c) Configuration of the
employed quadrotor overlaid with a body-fixed reference frame. (d) Flight trajectory with
a colorbar indicating the magnitude of linear velocity.

information about the project. One can access the repository and the README file

at the following URL: https://gitlab.com/PoliToComplexSystemLab/AirSim-GE.

3.4.2 Network Training

Thanks to the visual and physical simulator described in Section 3.4.1, training

data sets can be easily and safely collected through manual flight of the quadrotor.

The quadrotor specifications6 are given in Table 3.1. Various maneuvers, includ-

ing aerodynamics and other uncertainties, can be performed using a joystick or

gamepad. In total, we collected three data sets for our experiments:

(i) D1: Agile maneuver with maximum linear speed up to 8ms−1 and drag force,

resulting in approximately 15k data samples (see Fig. 3.4 (d)),

(ii) D2: Near-ground flight incorporating both drag force and ground effect [78],

resulting in approximately 6k data samples (see Fig. 3.5),

6The thrust and power constants reported here are dimensionless.

https://gitlab.com/PoliToComplexSystemLab/AirSim-GE

40 Physics-informed Neural Modeling

Parameter Notation Selected Value

Mass m 1.5kg
Inertia Jxx 1.469e−2 kgm2

Jy y 1.686e−2 kgm2

Jzz 3.093e−2 kgm2

Thrust constant CT 1.099e−1
Power constant CP 4.016e−2

Propeller diameter D 0.2286m
Propeller spacing 2l 0.690m

Table 3.1 Quadrotor specifications.

(iii) D3: Agile maneuver with both drag force and periodic wind, resulting in

approximately 5k data samples (see Fig. 3.6).

All three data sets comprise the physical quantities of the quadrotor necessary for

network training and ablation studies, with a fixed sampling time of 0.05sec.

After a trial-and-error procedure, we determined that using 10 hidden layers,

each with 25 hidden neurons, resulted in neural networks with satisfactory perfor-

mance after training. Prior to training, we initialized all network parameters (i.e.,

Θ) using the Xavier initialization method, and we selected a batch size of 64 data

samples. We employed the Adam optimizer with weight decay (an alternative to

network structural error) during training to mitigate the risk of overfitting.

3.4.3 Model Comparison and Ablation Study

To demonstrate the effectiveness of the proposed PINN, we performed exten-

sive comparisons among a variety of models, which can be categorized into:

(i) linearized mathematical model,

(ii) purely black-box model (i.e., vanilla DNN similar to [58]),

(iii) PINN model (with same structural settings as the vanilla one).

Additionally, an ablation study was carried out to investigate the influence of

using Batch Normalization (BN) and the cyclical annealing scheduler alongside

3.4 Results and Discussion 41

Fig. 3.5 Simulated flight data with ground effect. (Top) Parametric model of quadrotor
ground effect compared with simulator-collected data samples†. (Bottom) Training flight
data, showing ground effect force along body z-axis (Fg ,z) and quadrotor altitude (Z),
with shaded areas indicating data partitioning (training/validation/test).

† The parametric model is derived in [78]. In the top figure, x-axis represents the ratio
between altitude above the ground, Z , and propeller radius, R, and y-axis represents the
ratio between the lift experienced while hovering In-Ground Effect (IGE) and
Out-of-Ground Effect (OGE).

our PINN. A brief overview of all the models considered in our comparison and

ablation studies is reported in Table 3.2.

All three test data sets were used for evaluation, taking into account drag,

ground effect, and periodic wind. In our assessment trials, all the considered

models were evaluated under a single setting with one selected test data set for

20 trials, and the results were averaged over multiple seeds. These averaged

results, including both prediction error (∆y := y− ŷ) and the difference in slope (or

rotation angle) between prediction and label CCEs, denoted by ∆m, are reported

in Table 3.3. Note that ∆m serves as an indicator of how well the network learns

the prior knowledge, in our case, the conservation law of momentum.

Linearized mathematical model as baseline. We first examined the perfor-

mance of the linearized mathematical model given by (3.2) (referred to as “Model

1” in Table 3.3) compared with a vanilla DNN (“Model 2”) and PINNs (“Model

42 Physics-informed Neural Modeling

Tab
le

3.2
M

o
d

els
fo

r
co

m
p

ariso
n

an
d

ab
latio

n
stu

d
ies.

W
e

an
alyzed

:
(i)

m
o

d
elstru

ctu
re

(2
n

d−
4

th
co

lu
m

n
),(ii)

ap
p

licatio
n

o
f

B
atch

N
o

rm
alizatio

n
(B

N
)

(5
th−

6
th

co
lu

m
n

),(iii)
regu

larizatio
n

h
yp

erp
aram

eter
settin

gs
(7

th−
8

th
co

lu
m

n
),an

d
(iv)

train
in

g
d

ata
set(9

th−
12

th

co
lu

m
n

).B
u

llets
(•)

sym
b

o
lizes

th
e

h
igh

ligh
ted

featu
res

p
resen

tw
ith

in
th

e
m

o
d

el.

M
o

d
el

Stru
ctu

re
B

N
H

yp
erp

aram
eter

D
ata

set
ID

Lin
earized

m
o

d
el

V
an

illa
D

N
N

P
IN

N
w

/o
w

/
C

o
n

stan
t

C
yclical

an
n

ealin
g

D
1

D
2

D
3

R
ed

u
ced

d
ata

set

1
•

◦
◦

n
/a

n
/a

n
/a

n
/a

•
◦

◦
◦

2
◦

•
◦

•
◦

n
/a

n
/a

•
◦

◦
◦

3
◦

◦
•

•
◦

•
◦

•
◦

◦
◦

4
◦

◦
•

•
◦

◦
•

•
◦

◦
◦

5
◦

•
◦

◦
•

n
/a

n
/a

•
◦

◦
◦

6
◦

◦
•

◦
•

◦
•

•
◦

◦
◦

7
◦

•
◦

◦
•

n
/a

n
/a

•
◦

◦
•

8
◦

◦
•

◦
•

◦
•

•
◦

◦
•

9
◦

•
◦

◦
•

n
/a

n
/a

•
◦

◦
•

10
◦

◦
•

◦
•

◦
•

•
◦

◦
•

11
◦

•
◦

◦
•

n
/a

n
/a

◦
•

◦
◦

12
◦

◦
•

◦
•

◦
•

◦
•

◦
◦

13
◦

•
◦

◦
•

n
/a

n
/a

◦
◦

•
◦

14
◦

◦
•

◦
•

◦
•

◦
◦

•
◦

3.4 Results and Discussion 43

Ta
b

le
3.

3
C

om
p

ar
is

on
re

su
lt

s
of

d
yn

am
ic

al
m

od
el

in
g.
∆

y
d

en
o

te
s

th
e

ab
so

lu
te

va
lu

e
o

fp
re

d
ic

ti
o

n
er

ro
r

b
et

w
ee

n
p

re
d

ic
ti

o
n

ŷ
an

d
la

b
el

y.
∆

m
i

d
en

o
te

s
th

e
ab

so
lu

te
d

if
fe

re
n

ce
o

fs
lo

p
e

(o
r

ro
ta

ti
o

n
an

gl
e)

b
et

w
ee

n
p

re
d

ic
ti

o
n

an
d

la
b

el
C

C
E

s,
w

h
er

e
i
=
φ

,θ
,ψ

d
en

o
te

s
th

e
th

re
e

d
eg

re
es

o
fr

o
ta

ti
o

n
. (̄
·)d

en
o

te
s

av
er

ag
in

g
ov

er
m

u
lt

ip
le

se
ed

s
an

d
σ

(·)
d

en
o

te
s

th
e

co
rr

es
p

o
n

d
in

g
st

an
d

ar
d

d
ev

ia
ti

o
n

.S
u

p
er

sc
ri

p
t†

an
d

‡
d

en
o

te
lin

ea
ri

ze
d

m
at

h
em

at
ic

al
m

o
d

el
(3

.2
)

an
d

va
n

ill
a

D
N

N
,r

es
p

ec
ti

ve
ly

.T
h

e
re

su
lt

s
o

fc
o

m
p

ar
is

o
n

an
d

ab
la

ti
o

n
st

u
d

ie
s

ar
e

re
p

o
rt

ed
in

gr
o

u
p

s,
w

h
ic

h
ar

e
se

p
ar

at
ed

b
y

h
o

ri
zo

n
ta

ll
in

es
,w

it
h

th
e

b
es

tp
er

fo
rm

an
ce

in
d

ic
at

ed
in

b
o

ld
.

D
at

a
se

t
M

o
d

el
∆

y
σ

(∆
y)

∆
m
φ

σ
(∆

m
) φ

∆
m
θ

σ
(∆

m
) θ

∆
m
ψ

σ
(∆

m
) ψ

D
1

1†
1.

02
3e

−1
n

/a
1.

32
1

n
/a

6.
32

7
n

/a
9.

20
0e

−2
n

/a
2‡

3.
86

7e
−3

2.
42

4e
−4

22
.6

69
4.

60
3

25
.3

09
4.

62
6

1.
40

2
0.

46
6

3
3.

77
5e

−3
3.

52
5e

−4
12

.5
07

1.
66

6
1.

70
6

1.
49

8
0.

11
8

9.
61

1e
−2

4
3.

49
3e

−3
3.

29
6e

−4
16

.5
50

2.
51

7
23

.5
43

4.
23

8
0.

46
3

0.
20

4
5‡

2.
62

5e
−3

1.
16

0e
−4

26
.4

09
4.

74
6

28
.2

81
5.

49
1

0.
49

9
0.

11
8

6
2.

48
0e

−3
1.

03
0e

−4
24

.3
37

3.
55

5
28

.6
04

4.
61

8
0.

27
3

0.
06

77
7‡

4.
87

4e
−3

6.
76

4e
−4

33
.7

17
4.

99
4

22
.9

97
4.

76
2

0.
34

7
0.

14
2

8
3.

79
3e

−3
3.

44
4e

−4
6.

55
0

1.
54

6
6.

47
2

1.
47

8
0.

13
6

4.
22

7e
−2

9‡
5.

98
1e

−3
1.

19
0e

−3
40

.4
89

7.
63

1
23

.1
96

6.
78

2
0.

26
9

0.
14

1
10

4.
40

5e
−3

6.
18

5e
−4

12
.0

53
1.

17
6

1.
17

1
1.

38
3

0.
31

6
3.

02
1e

−2
D

2
11

‡
2.

74
7e

−4
4.

57
0e

−5
4.

58
2

1.
82

9
1.

61
5

0.
79

6
57

.0
40

11
.8

49
12

2.
58

0e
−4

4.
29

0e
−5

5.
66

2
2.

03
1

1.
72

4
0.

63
1

23
.3

99
5.

52
1

D
3

13
‡

4.
77

1e
−3

3.
66

1e
−4

9.
52

6
4.

68
6

18
.9

04
5.

06
5

6.
95

4
0.

99
7

14
4.

52
5e

−3
3.

08
7e

−4
5.

75
4

3.
31

5
16

.5
87

3.
20

2
1.

72
9

0.
71

6

44 Physics-informed Neural Modeling

Fig. 3.6 Simulated flight with periodic wind. The top three plots depict the composition
of aerodynamic forces, including drag and wind. The bottom plot illustrates the profile of
periodic wind in the forward direction with a speed of vwind = 2.5sin(πt

5)+2.5, overlaid
with shaded areas indicating data partitioning (training/validation/test).

3 and 4”) using the D1 data set. It was observed that both the vanilla DNN and

PINN, regardless of the settings, significantly outperformed the linearized model

in terms of prediction error by at least one order of magnitude. This result was

expected since drag, included during data collection, becomes non-negligible for

agile maneuvers, thereby degrading the performance of the linearized model. In-

terestingly, the linearized model exhibited relatively small values for∆m, implying

that it is “generally” more physically consistent compared with those learning-

based models. Despite sound somewhat contradictory, it can be understood

because CCE extracts linearity from the data to reveal the global trend, which is

more robust to aerodynamic-dominant data samples than MSE. In other words,

3.4 Results and Discussion 45

Fig. 3.7 Test error comparison on D1 data set. The chart shows test errors for models M2
to M10†. Light red bars represent models (M2-M4) trained on 60% of data without BN.
Green bars represent models (M5-M6) trained on 60% of data with BN. Yellow and orange
bars show models (M7-M10) with BN trained on 20% of the data and evaluated on 40%
and 80% of the data, respectively. Error bars denote standard deviation.

† The abbreviations of the employed loss function for different models are indicated in
gray boxes on the right: “MSE” denotes the vanilla DNN, “PHY-CONST” denotes the
PINN with a constant hyperparameter (λLM =λmax), and “PHY-CA” denotes the PINN
with cyclical annealing scheduler.

although the linearized model has a larger “bias” in prediction, it achieves a higher

“variance” in terms of the slope of CCE.

Effectiveness of PINN and cyclical annealing scheduler. We then found that

PINNs (“Model 3 and 4”) exhibited superior performance compared with the

vanilla DNN (“Model 2”) in terms of prediction error (for better visualization, see

Fig. 3.7). Moreover, the use of cyclical annealing scheduler (“Model 4” with settings

from Fig. 3.3) further enhanced the performance compared to the one using a

constant value of regularizer (“Model 3”). To provide more insights, we plot 3σ

CCE, a post-hoc model interpretability technique, for the predictions generated

by both the vanilla DNN and the PINN for a single seed. Despite competitive

test error performance (3.322× 10−3 for the former while 3.061× 10−3 for the

latter), Fig. 3.8 illustrates that the prediction CCE of the vanilla DNN has a larger

46 Physics-informed Neural Modeling

deviation of slope (or rotation angle) compared with the target CCE than the PINN

does. This implies that the PINN is more capable of learning prior knowledge and

maintaining physical consistency in the learned model.

Fig. 3.8 Comparison of CCE between vanilla DNN and PINN. Targets and predictions are
represented by dots and plus signs, respectively. Shaded ellipses illustrate 3σ CCEs, with
dashed lines highlighting the slope.

Benefitting from BN. As an effective practice for enhancing network optimiza-

tion by eliminating internal covariate shifts within each layer, we investigated

if PINN could take advantage of BN (note that “Model 2 to 4” do not use BN).

From Table 3.3 or Fig. 3.7, it can be seen that we achieved the best model (“Model

6”) for D1 data set using PINN with both cyclical annealing scheduler and BN.

It is worth noting that the vanilla DNN also reached competitive performance

with BN (“Model 5”), which we believe both models in this scenario are nearing

performance saturation due to the large data set and the powerful learning po-

tential provided by DNN and practical techniques. However, as we will see next,

PINN establishes a noticeable superiority over vanilla DNN when facing relatively

smaller data sets.

Performance on reduced data set. To assess the advantage of the PINN in

terms of generalization capability on unseen data enriched by informed physics,

we re-trained both the vanilla DNN and the PINN on a reduced data comprising

only 20% (approximately ∼ 3k samples) of D1, as opposed to 60% (approximately

3.4 Results and Discussion 47

∼ 9k samples). In this circumstance, PINNs (“Model 8 and 10”) demonstrated

notable performance superiority over vanilla DNNs (“Model 7 and 9”) in terms

of both prediction error and physical consistency. However, it is worth noting

that both networks experienced performance degradation compared to their

counterparts trained on the original (full) data set. This outcome underscores the

better generalization capability of PINNs in the small data regime. Our proposed

method thus offers an effective means to training DNN-based controllers with

small data sets while maintaining acceptable generalization capability – an aspect

that is critical in numerous robotics and control applications [79]. Additionally, it

lays the groundwork for future research directions such as online modeling using

real flight.

Evaluation on data sets with ground effect and periodic wind. Lastly, we

assessed the performance of the vanilla DNN and PINN on D2 (with added ground

effect) and D3 (with periodic wind). The network structures remained the same,

except for the addition of altitude as an extra input feature for both networks

trained with D2, as altitude is known to be critical for ground effect [78, 80]. From

Fig. 3.9 and Table 3.3, it is straightforward to observe that the PINN demonstrates

lower prediction error on both data sets and exhibits higher physical consistency

in terms of CCEs. Therefore, despite being guided by the conservation law of

momentum instead of direct knowledge on aerodynamics, the resulting PINN still

shows better generalization capability compared with the vanilla DNN, even in

the presence of various or combined aerodynamic effects.

3.4.4 Computational Complexity

Compared to the vanilla DNN, the additional computational complexity of

our proposed PINN mainly arises from the inclusion of the local monotonicity

loss (Algorithm 1), which involves tanh(·) and other basic arithmetic operators.

Leveraging automatic differentiation by PyTorch (e.g., torch.autograd), back-

propagation using the chain rule of known gradients can be easily performed, as

Algorithm 1 is implemented entirely using tensors.

In our training trials, conducted over 20 runs with random seeds, using a

training data set of size ∼ 12k (∼ 9k for training, ∼ 3k for validation) and running

for 300 epochs, training a vanilla DNN (“Model 2” in Table 3.3) took ∼ 234sec

48 Physics-informed Neural Modeling

Fig. 3.9 Test error comparison on D2 and D3 data sets. All results are averaged over
multiple seeds, with error bars representing the standard deviation.

(∼ 3.9min), while training a proposed PINN (“Model 4” in Table 3.3) took ∼ 373sec

(∼ 6.2min) using CUDA on a laptop with an AMD Ryzen 7 5800h and NVIDIA

GeForce RTX 3060. This increase in training time is partially offset by the fact

that PINNs generally achieve better performance to vanilla DNNs in small data

regimes [30]. While online implementation may still be impractical for both

networks, their usage is generally acceptable for non-time-critical situations where

offline training is feasible.

3.5 Conclusions

Learning-based approaches such as DNNs have garnered unprecedented at-

tention for modeling and control for robotics in recent years. Nonetheless, their

black-box nature raises concerns about interpretability, particularly in safety-

critical robotic applications. In this chapter, we address this challenge by intro-

ducing a PINN for learning quadrotor dynamics, which integrates prior domain

knowledge into a DNN architecture. We elaborate on how to seamlessly embed

the conservation law of momentum into the training loss function using a cyclical

annealing scheduler, following an unstructured learning strategy. Additionally, we

adopt CCEs as a post-hoc model interpretability visualization tool to evaluate and

understand the behavior of the learned model, thus enhancing its trustworthiness.

3.5 Conclusions 49

To facilitate data collection, we set up a visual and physical simulator based on

AirSim, incorporating a customized implementation of quadrotor ground effect.

We provide user-level APIs in both C++ and Python, which are publicly avail-

able for further research in the UAV community. Through extensive simulation

campaigns over multiple seeds, our proposed PINN consistently demonstrates

superior generalization capability compared with both linearized mathematical

model and vanilla DNN, evaluated on complete and reduced data sets including

various aerodynamic effects. We also conduct ablation studies and analyze the

additional computational complexity of our proposed approach compared with

vanilla DNNs.

In our ongoing efforts, we aspire to delve deeper into the potential of PINN

in online learning, leveraging real flight data for enhanced model refinement

and adaptation. Integrating the proposed PINN as a control-oriented model into

the controller design is another potential research direction, which allow us to

thoroughly assess its impact on closed-loop performance of the system under

control, potentially paving the way for more robust and efficient UAV control

systems. Last but not least, we are eager to explore new paradigms of PINN

that seamlessly combine structured and unstructured learning methodologies,

harnessing their complementary strengths to advance the development of UAV

modeling and control even further.

Chapter 4

Robust Adaptive Controller Design for

Parametric Uncertainties

4.1 Introduction

The design of controllers for quadrotors toward either trajectory tracking or

attitude stabilization is non-trivial due to the inherent nonlinearities and strong

coupling properties in quadrotor dynamics, let alone uncertainties and distur-

bances, which are ubiquitous in real-world flight operations [10]. The challenge

further escalates when the quadrotor is assigned to perform aggressive maneu-

vers, particularly for specific tasks such as aerial acrobatics or rapid changes in

direction [11, 12].

For decades, a number of nonlinear control methodologies such as BSC [81],

SMC [82], MPC [83], and Disturbance-Observer-Based Control (DOBC) [84] have

been studied to guarantee stability and performance of systems under control.

Most of these designs were based on local coordinates such as Euler angles and

quaternions to describe the rotational kinematics and dynamics of quadrotors.

Despite merits, such as quaternions being the minimal representation without

singular points[85], and Euler angles providing an intuitive representation for 3-D

rotations, local coordinates come with inherent limitations that hinder practical

applications, especially for aggressive maneuvers [86]. Specifically, Gimbal lock

(or singularity), arisen from Euler angles, results in the loss of one degree of

freedom in 3-D orientation systems [87]; unwinding phenomena with quaternion

4.1 Introduction 51

representations can cause rotations through large angles before stabilizing at the

desired attitude, even with a close initial state [88]. These issues are particularly

undesirable in aerospace applications, as they may induce catastrophic instability.

Geometric control techniques have been lately proven effective in tackling

these issues, especially in the execution of aggressive maneuvers; see, e.g., [89–95].

Instead of using local coordinates, geometric controllers are designed directly on

the special orthogonal group SO(3), which is a nonlinear manifold on which the

configuration space of attitude dynamics evolves. For example, one of the first

applications of geometric control to quadrotors was [89], where a controller was

proposed on the nonlinear configuration Lie group. As such, through the intrinsic

characterization of the geometric properties of nonlinear manifolds, singularities

and ambiguities associated with local coordinates can be circumvented, thereby

enabling the execution of large-angle rotational maneuvers.

While notable advancements have been made in geometric control for quadro-

tors, crucial gaps persist, particularly in addressing uncertainties and disturbances

as well as in selecting configuration error functions. Like other model-based con-

trol approaches, the effectiveness of the control law derived from SO(3) hinges

on the precise knowledge of system parameters. Additionally, the exploration

of configuration error functions for control synthesis remains an open topic in

geometric control, sometimes chosen without careful consideration. While some

studies draw on the results in [89] (see, e.g., [4, 6, 91, 93, 96]), it was noted that

the chosen configuration error vector can lead to degraded performance with

increasing initial attitude error, prompting a new error function proportional to

the rotation angle for consistent tracking performance [90]. Another alternative

for the configuration error function is the logarithmic map of SO(3) [35]. Thanks

to the inherent ability to transform geodesics on SO(3) into straight lines in its

Lie algebra so(3), the logarithmic map establishes a proportional relationship

between the magnitude of the attitude error vector and the rotation angle, with

a higher constant of proportionality than that used in [90], hence facilitating ac-

celerated convergence rates for tracking errors [95, 97]. However, existing studies

in this direction focus only on the nominal case, neglecting uncertainties and

disturbances, which could potentially compromise controller performance or

even lead to instability.

52 Robust Adaptive Controller Design for Parametric Uncertainties

In this chapter, we present a novel robust adaptive geometric controller for

quadrotor aggressive maneuvers in the presence of parametric uncertainties,

namely quadrotor mass and inertia matrix. Specifically, the control problem on

SE(3) is decomposed into two distinct sub-tasks, i.e., position tracking on R3 and

attitude tracking on SO(3) [98]. As illustrated in Fig. 4.1, our proposed method uti-

lizes BSC for thrust determination and the logarithmic map of SO(3) to represent

the attitude error for torque determination. In contrast to the existing approaches

in [94] and [95] that employ the logarithmic map for nominal conditions, we

present a fully nonlinear control synthesis on SE(3) capable of addressing uncer-

tainties, thereby extending its applicability beyond linearized and uncertainty-free

scenarios. Two adaptive laws are derived through Lyapunov analysis, aimed at

dynamically compensating for uncertainties in the mass and inertia matrix. Along

with the use of projection operators [18], we show asymptotically stable track-

ing on SE(3) and the boundedness of all signals in the closed-loop system even

when there exist nonparametric uncertainties such as sensor noise [99]. The main

outcomes from this chapter are summarized as follows:

(i) We developed a novel adaptive geometric controller, utilizing the logarith-

mic map of SO(3) for attitude tracking and the BSC for position tracking, for

executing aggressive maneuvers without requiring precise knowledge of the

quadrotor mass and inertia matrix.

(ii) We proved almost globally asymptotically stable tracking and the bounded-

ness of all signals in the closed-loop system through Lyapunov analysis.

(iii) We enhanced the robustness of adaptive laws by applying projection opera-

tors to prevent system from parameter drift in the presence of nonparamet-

ric uncertainties.

4.2 Related Work

Efforts in the field of geometric control for quadrotors can be generally classi-

fied into two classes: one focuses on addressing uncertainties and disturbances,

while the other centers around the selection of configuration error functions. A

comparative analysis of prior studies is summarized in Table 4.1.

4.2 Related Work 53

R
o

ta
ti

o
n

al
er

ro
r

C
it

at
io

n
(Y

ea
r)

R
o

b
u

st
n

es
s

an
d

ad
ap

ta
b

il
it

y
R

es
u

lt
s

1 2
tr

(I
−R

d b
)

[8
9]

(2
01

0)
n

/a
N

u
m

[9
1]

(2
01

3)
In

te
gr

al
co

n
tr

o
lf

o
r

h
an

d
li

n
g

co
n

st
an

td
is

tu
rb

an
ce

s
N

u
m

,E
xp

[9
3]

(2
01

4)
A

d
ap

ti
ve

la
w

s
fo

r
u

n
m

o
d

el
ed

d
yn

am
ic

s
N

u
m

,E
xp

[4
](

20
19

)
C

o
n

tr
o

lo
fa

q
u

ad
ro

to
r-

p
u

lle
y-

lo
ad

sy
st

em
N

u
m

[6
](

20
21

)
C

o
n

tr
o

lo
fq

u
ad

ro
to

r
lo

ad
tr

an
sp

o
rt

in
g

vi
a

el
as

ti
c

ca
b

le
s

N
u

m

[9
6]

(2
01

8)
C

o
n

tr
o

lo
fq

u
ad

ro
to

r
lo

ad
tr

an
sp

o
rt

in
g

vi
a

ri
gi

d
ca

b
le

s
N

u
m

2
−√ 1

+t
r(

R
d b

)
[9

0]
(2

01
0)

St
ab

il
iz

at
io

n
u

n
d

er
an

u
n

kn
ow

n
in

er
ti

a
m

at
ri

x
N

u
m

1 2
tr

[G
(I
−R

d b
)]

,G
≻

0
[9

2]
(2

01
3)

A
ro

b
u

st
ad

ap
ti

ve
la

w
fo

r
th

e
in

er
ti

a
m

at
ri

x
an

d
b

o
u

n
d

ed
d

is
tu

rb
an

ce
s

E
xp

[1
00

](
20

20
)

A
ro

b
u

st
ad

ap
ti

ve
la

w
fo

r
ce

n
te

r
o

fg
ra

vi
ty

N
u

m
1 2

tr
[K

(I
−R

R
⊤ d

)]
,K

≻
0

[1
01

](
20

17
)

C
o

n
tr

o
lo

fa
ti

lt
ro

to
r

N
u

m

∥lo
g(

R
d b

)∨
∥

[9
4]

(2
01

5)
n

/a
E

xp

[1
02

](
20

17
)

n
/a

Si
m

[9
5]

(2
02

1)
n

/a
Si

m
,E

xp

[9
7]

(2
02

2)
n

/a
N

u
m

H
yb

ri
d

er
ro

r
[1

03
](

20
16

)
n

/a
Si

m
,E

xp

Ta
b

le
4.

1
C

o
m

p
ar

at
iv

e
an

al
ys

is
o

fs
el

ec
te

d
li

te
ra

tu
re

o
n

ge
o

m
et

ri
c

co
n

tr
o

lw
it

h
ap

p
li

ca
ti

o
n

s
to

q
u

ad
ro

to
rs

.
W

e
co

m
p

ar
ed

th
e

er
ro

r
fu

n
ct

io
n

fo
r

ro
ta

ti
o

n
al

co
n

fi
gu

ra
ti

o
n

(2
n

d
co

lu
m

n
),

co
n

tr
o

lm
et

h
o

d
s

fo
r

h
an

d
li

n
g

u
n

ce
rt

ai
n

ti
es

(3
rd

co
lu

m
n

),
an

d
o

b
ta

in
ed

re
su

lt
s

(4
th

co
lu

m
n

;N
u

m
:n

u
m

er
ic

al
,S

im
:s

im
u

la
ti

o
n

,E
xp

:e
xp

er
im

en
ta

l)
.

54 Robust Adaptive Controller Design for Parametric Uncertainties

One line of research aims at extending the results in [89] by taking into account

uncertainties and disturbances. For example, [91] adopted integral control terms

to guarantee almost global asymptotic stability when there exist fixed disturbances

in both translational and rotational dynamics; [92] proposed a robust adaptive

tracking controller without the knowledge of the inertia matrix and guaranteed

the boundedness of tracking errors in the presence of unstructured disturbances;

[93] developed adaptive control laws that guarantees asymptotic convergence

of tracking errors for modeling error and uncertainties in dynamical equations;

and [100] proposed an adaptive law for the geometric controller to estimate the

center of gravity of the quadrotor, which differs from the geometric center. Other

applications to tiltrotor [101] and load transportation quadrotor [4, 6, 96] can also

be considered to fall into this class.

Another avenue of research contributes to exploring configuration error func-

tions, an ongoing subject in geometric control. These functions continue to be

extensively examined and, at times, selected without meticulous consideration

[90]. For example, the configuration error functions chosen in [89] may result in

diminished performance as the initial attitude error tends to grow. To counter

this issue, several alternatives have been proposed to ensure consistent tracking

performance by constructing a proportional relationship to the rotation angle.

[90] adopted a revised version of [89] for the stabilization of a quadrotor subject

to unknown inertia matrix; [97] designed a quadratic cost function in the Lie alge-

bra through its gradient for the control on Lie groups thanks to their symmetry

structure such that faster error convergence can be achieved; [94] proposed a PID

controller directly on so(3), the Lie algebra associated with SO(3), with rotation

modeled using exponential coordinates to perform complex acrobatic maneuvers;

[102] employed a homogeneous method to address the finite-time control prob-

lem of a quadrotor on a Lie group, utilizing exponential and logarithmic maps;

[95] presented a geometric tracking controller based on the logarithmic map of

SO(3), achieving faster convergence speed of tracking error; [104] studied the

performance of several attitude error vectors for the control of a quadrotor subject

to rotor failures; and [103] proposed a hybrid attitude controller which guarantees

global exponential stability and overcomes the topological obstacles of global

control on SO(3) [86]. Nonetheless, almost none of these studies incorporate

robust or adaptive designs to handle uncertainties and disturbances.

4.3 Problem Formulation 55

4.3 Problem Formulation

Our control objective is to achieve asymptotically stable tracking for a quadro-

tor that satisfies (2.1) of a given, possibly aggressive, reference trajectory ξref(t) in

the presence of uncertain mass and inertia matrix while ensuring that all signals

in the closed-loop system remain bounded.

To this end, we present a robust adaptive geometric tracking controller on

SE(3) as illustrated in Fig. 4.1, which consists of: (i) a backstepping controller

for thrust determination and providing attitude reference (in terms of body z-

axis) to the inner-loop attitude controller, (ii) a geometric controller based on

the logarithmic map of SO(3) to generate commanded torques for attitude track-

ing, and (iii) two adaptive laws for handling uncertainties in mass and inertia

matrix, robustified by projection operators. For the control synthesis discussed

in Section 4.4 and Section 4.5, we make the following assumptions necessary

for the subsequent control synthesis and simplify our notation by dropping the

time-dependent components.

Fig. 4.1 Control scheme of the proposed robust adaptive geometric tracking controller on
SE(3).

Assumption 4.3.1. The reference trajectory is given as ξref(t) = [p⊤
ref(t)ψref(t)]⊤ ∈R4

(i.e., position and yaw angle) using the differential flatness property of quadrotors

[105]. Moreover, it satisfies ξref(t) ∈C 3, i.e., the derivatives up to ξ(3)
ref (t) exist and

are continuous.

56 Robust Adaptive Controller Design for Parametric Uncertainties

Assumption 4.3.2. The derivatives up to the 3rd order of the reference trajectory are

bounded, i.e., ξ(k)
ref (t) ∈L∞ (k = 0,1,2,3).

Assumption 4.3.3. The quadrotor mass m and inertia matrix J are uncertain but

slowly time-varying, with their variations bounded, i.e., ṁ, J̇ ∈L∞.

4.4 Control Synthesis for Position Tracking

In this section, we present the primary results for achieving globally asymp-

totically stable tracking of position reference in the presence of uncertain mass

through backstepping formulation. Additionally, to enhance the robustness of the

adaptive law under nonparametric uncertainties such as sensor noise, a projec-

tion operator is applied to guarantee the boundedness of estimated parameters

and avoid sudden instability.

Theorem 4.4.1 (Adaptive Tracking Control for Translational Dynamics). Con-

sider the translational dynamics given by (2.1a), (2.1b), and for a given tracking

command pref ∈C 3, we define a control input (4.1) and an adaptive law for mass

estimation (4.2) as

f = m̄(−Kv ṽ− p̃− g e3 + v̇r), (4.1)

˙̄m = γm ṽ⊤(Kv ṽ+ p̃+ g e3 − v̇r), (4.2)

vr = ṗref −Kp p̃, (4.3)

where γm ∈ R is a positive constant, and Kp ,Kv ∈ R3×3 are positive definite gain

matrices. The estimate of m is given by m̄1, with the estimation error defined as

m̃ := m −m̄. The virtual control input vr ∈R3 in (4.3) is derived from backstepping

formulation. Then, the zero equilibrium of translational tracking errors (r̃, ṽ) =
(0,0) is globally asymptotically stable, and furthermore the mass estimation error

m̃ is uniformly bounded.

Proof. To show that Theorem 4.4.1 holds, we start with designing the certainty-

equivalent controller by assuming perfect knowledge on quadrotor mass (m). Sub-

sequently, we relax this assumption, accounting for the unknown mass, resulting in

the final control law with adaptation.

1Throughout Chapter 4, we opt for the notation (̄·) to represent estimated variables, as opposed
to the conventional (̂·). This choice is made to prevent confusion with the hat operator, defined as
(·)∧ :R3 → so(3).

4.4 Control Synthesis for Position Tracking 57

Defining the position tracking error as

p̃ := p−pref, (4.4)

it is straightforward to design a virtual control input (4.3) such that if v perfectly

tracks vr . Hence, the following two Lyapunov conditions are met:

V1(p̃) = 1

2
p̃⊤p̃ > 0,

V̇1(p̃) = p̃⊤ ˙̃p = p̃⊤(v− ṗref) < 0.

Next, define the velocity tracking error as

ṽ := v−vr , (4.5)

and construct the composite Lyapunov candidate function

V2(p̃, ṽ) =V1(p̃)+ 1

2
ṽ⊤ṽ > 0.

We can easily derive the desired (nominal) thrust vector

f = m(−Kv ṽ− p̃− g e3 + v̇r) (4.6)

using backstepping technique [106] along with translation dynamics (2.1b), such

that

V̇2(p̃, ṽ) = p̃⊤ ˙̃p+ ṽ⊤ ˙̃v

= p̃⊤(ṽ−Kp p̃)+ ṽ⊤(g e3 − 1

m
f Re3 − v̇r)

=−p̃⊤Kp p̃+ ṽ⊤(p̃+ g e3 − 1

m
f Re3 − v̇r)

=−p̃⊤Kp p̃− ṽ⊤Kv ṽ < 0.

That being said, under nominal conditions (i.e., m is perfectly known), if we choose

the desired thrust and the desired body z-axis, which shall be opposite to the thrust

58 Robust Adaptive Controller Design for Parametric Uncertainties

direction, as

f = ∥f∥, (4.7)

zB,des =
f

∥f∥ ∈S2, (4.8)

where B denotes quantities expressed in the body frame. Then, p̃, ṽ will globally

asymptotically go to zero for t →∞.

Now, we assume m to be unknown and rewrite the certainty equivalent control

law (4.6) by replacing m with its estimate m̄, yielding (4.1). To derive the adaptive

law for m̄, we construct a composite Lyapunov candidate function and take the

time derivative as

V3(p̃, ṽ,m̃) =V2(p̃, ṽ)+ 1

2γmm
m̃2 > 0.

Hence,

V̇3(p̃, ṽ,m̃) = p̃⊤ ˙̃p+ ṽ⊤ ˙̃v+ 1

γmm
m̃ ˙̃m

(4.1)= −p̃⊤Kp p̃+ ṽ⊤
(
p̃+ g e3 + m̄

m
(−Kv ṽ− p̃− g e3 + v̇r)− v̇r

)
+ 1

γmm
m̃ ˙̃m. (4.9)

Recalling Assumption 4.3.3, the following equalities hold:

m̄

m
= 1− m̃

m
,

˙̃m =− ˙̄m,

which allow us to further organize (4.9) as

V̇3(p̃, ṽ,m̃) =−p̃⊤Kp p̃− ṽ⊤Kv ṽ+ m̃

γmm

(
− ˙̄m+γm ṽ⊤(Kv ṽ+ p̃+g e3− v̇r)

)
. (4.10)

By selecting the adaptive law for mass estimation as in (4.2), it can be proved that

V̇3(p̃, ṽ,m̃) ≤ 0, which implies p̃, ṽ,m̃ ∈L∞, but with no guarantees on asymptotic

stability. Nonetheless, we have ˙̃p = ṽ−Kp p̃ ∈L∞, m̄ ∈L∞ from Assumption 4.3.3,

and v̇r ∈L∞ from (4.3) together with Assumption 4.3.2. Hence, it can be proved that

v̇ = g e3+ 1
m m̄(−Kv ṽ−p̃−g e3+v̇r) ∈L∞. From (4.5), we get ˙̃v = v̇−p̈ref+Kp ˙̃p ∈L∞.

Therefore, V̈3 =−2p̃⊤Kp ˙̃p−2ṽ⊤Kv ˙̃v ∈L∞, implying that V̇3 is uniformly continu-

4.5 Control Synthesis for Attitude Tracking 59

ous. By invoking Barbalat’s Lemma, it can be concluded that limt→∞ V̇3(t) = 0, i.e.,

p̃, ṽ → 0 for t →∞. □

Proposition 4.4.1 (Robustification of Adaptive Law using Projection Operator).

To improve the robustness of estimation algorithms (such that parameter drift

can be avoided when sensor noise exists in the system), the adaptive law of mass

estimation (4.2) is adjusted as

˙̄m = Projγm
(m̄, ṽ⊤(p̃+ g e3 − v̇r +Kv ṽ),h),

where Proj(·) denotes Γ-projection [18], and the continuously differentiable convex

function h :R×R×R→R is chosen as

h(m̄,m0,ϵm) = m̄2 −m2
0

2ϵmm0 +ϵ2
m

,

where m0 and ϵm are two constant scalar quantities. If m̄(t = 0) ∈ Ωm = {m̄ ∈
R : h(m̄,m0,ϵm) ≤ 1}, then we can conclude m̄(t) ∈Ωm , or equivalently, ∥m̄(t)∥ ≤
m0 +ϵm ,∀t ≥ 0, guaranteeing the boundedness of the estimated parameter.

Proof. The readers interested in the proof of projection operator are kindly referred

to [18, 107] for details. □

4.5 Control Synthesis for Attitude Tracking

In this section, we first introduce the attitude and angular velocity error dy-

namics based on the logarithmic map of SO(3). Then, we present the main results

on achieving almost globally asymptotically stable tracking of attitude reference

in the presence of uncertain inertia matrix through geometric control synthesis.

Lastly, in the same vein as in Section 4.4, we also ensure the boundedness of

estimation parameters by projection operator even when nonparametric uncer-

tainties exist.

The desired orientation for attitude control can be expressed in terms of ro-

tation matrix, which can be derived by using heading angle reference and the

60 Robust Adaptive Controller Design for Parametric Uncertainties

desired body z-axis (4.8) from the backstepping controller as

yc = [−sin(ψref), cos(ψref), 0]⊤,

xB,des = y∧
c zB,des /∥y∧

c zB,des∥,

yB,des = z∧B,desxB,des,

Ri
d = [xB,des, yB,des, zB,des],

where Ri
d represents the rotation matrix from desired frame (denoted by D) to

inertial frame (denoted by I). Such formulation is similar to that in [105], with a

slight difference due to the rotation convention used (here we use “3-2-1”, whereas

in [105] they use “3-1-2”). Since Ri
d ∈ SO(3), we can therefore write

Ṙi
d = Ri

d
Dω∧

d/i ,

where the subscripts describe the relation of the rotational motion, e.g., ωd/i

indicates the rotational motion of desired frame with respect to inertial frame,

and the left superscripts indicate the reference frames.

Next, we introduce the definition of attitude and angular velocity error vector

based on the logarithmic map of SO(3).

Definition 4.5.1 (Attitude and Angular Velocity Error Vector). For a given tracking

command (Ri
d ,Dωd/i), and current attitude and angular velocity (Ri

b ,Bωb/i), we

define an attitude error vector r̃ : SO(3)×SO(3) →R3 and an angular velocity error

vector ω̃ : SO(3)×R3 ×SO(3)×R3 →R3 as

r̃(Ri
b ,Ri

d) := log((Ri
b)⊤Ri

d)
∨ = log(Rb

d)
∨

, (4.11)

ω̃(Ri
b ,Bωb/i ,Ri

d ,Dωd/i) :=Bωd/b = Rb
d

Dωd/i −Bωb/i . (4.12)

By Definition 4.5.1, we can derive the error dynamics of attitude and angular

velocity as stated in Proposition 4.5.1. Since we are going to formulate our main

results in the body frame,ω’s in the sequel are by default expressed in the body

frame, hence left superscripts B are omitted unless ambiguities must be resolved.

4.5 Control Synthesis for Attitude Tracking 61

Proposition 4.5.1 (Attitude and Angular Velocity Error Dynamics). The dynamics

of r̃ and ω̃ satisfy

˙̃r = Jl (r̃)−1ω̃, (4.13)

J ˙̃ω= Jω̇d/i − Jω∧
b/iωd/i +ω∧

b/i Jωb/i −τ, (4.14)

where Jl (·)−1 is the inverse of the left Jacobian as in (2.11).

Proof. The attitude error dynamics can be derived from (2.5) by using the time

derivative of matrix exponential

Ṙb
d = d

d t
exp(r̃∧)

=
∫1

0
exp(αr̃∧)˙̃r∧ exp((1−α)r̃∧)dα

=
(∫1

0
(Rb

d)α˙̃r∧(Rb
d)−αdα

)
Rb

d .

Using the definition of left Jacobian of SO(3) as given in (2.9) and the fact that

(Rφ)∧ = Rφ∧R⊤ [35], we can rearrange the above equation as

Ṙb
d (Rb

d)⊤ =
∫1

0

(
(Rb

d)α˙̃r
)∧ =

(
Jl (r̃)˙̃r

)∧
. (4.15)

Meanwhile, we have

Ṙb
d = Rb

d
Dω∧

d/b = Rb
d (Rd

b
Bωd/b)∧

= Rb
d

(
Rd

b
Bω∧

d/b(Rd
b)⊤

)
=Bω∧

d/b(Rd
b)⊤ = ω̃∧Rb

d .
(4.16)

Combining (4.15) and (4.16) yields attitude error dynamics (4.13).

The angular velocity error dynamics can be derived by taking the time derivative

of (4.12) as

˙̃ω= d

d t
(Rb

d
Dωd/i)−Bω̇b/i

= Ṙb
d

Dωd/i +Rb
d

Dω̇d/i −Bω̇b/i

(4.12),(4.16)========= (Rb
d

Dωd/i −Bωb/i)∧Rb
d

Dωd/i +Rb
d

Dω̇d/i −Bω̇b/i

=−Bω∧
b/i Rb

d
Dωd/i +Rb

d
Dω̇d/i −Bω̇b/i .

62 Robust Adaptive Controller Design for Parametric Uncertainties

Multiplying both sides of the equation above with J and substituting JBω̇b/i with

rotational dynamics (2.1d) yields the angular velocity error dynamics (4.14). □

We are now poised to present the main results of adaptive tracking control

for rotational dynamics, leveraging the following lemma to establish asymptotic

stability.

Lemma 4.5.1 (A Special Case of Barbalat’s Lemma [18]). Let f : [0,∞) → R. If

f , ḟ ∈L∞ and f ∈Lp for some p ∈ [1,∞), then f (t) → 0 as t →∞.

Theorem 4.5.1 (Adaptive Tracking Control for Rotational Dynamics). Consider the

attitude and angular velocity error dynamics given by (4.13) and (4.14), we define

a control input (4.17) and an adaptive law for inertia matrix estimation as

τ= J̄ω̇d/i − J̄ω∧
b/iωd/i +ω∧

b/i J̄ωb/i + Jl (r̃)−⊤Kr r̃+Kwω̃, (4.17)

˙̄J = γJ (ẽω̇⊤
d/i − ẽω⊤

d/iω
∧
b/i −ω∧

b/i ẽω⊤
b/i), (4.18)

where γJ ∈ R is a positive constant, and Kr ,Kw ∈ R3×3 are positive definite gain

matrices. The estimate of J is given by J̄, with estimation error defined as J̃ := J−J̄. Let

ẽ := ω̃+c r̃ ∈R3 be a composite error, then the zero equilibrium of rotational tracking

errors (r̃,ω̃) = (0,0) is almost globally asymptotically stable, and furthermore the

inertia matrix estimation error J̃ is uniformly bounded if the control parameter

c ∈R is selected such that

c ∈
(
0,min

{√√√√λrλm

λ2
M

,
4λrλwϱm

4λrλMϱmϱM +λ2
w

})
, (4.19)

where λr := λmin(Kr), λw := λmin(Kw), λw := λmax(Kw), λm := λmin(J), λM :=
λmax(J), and ϱm ,ϱM are the lower and upper bounds of ∥Jl (r̃)−⊤∥F, respectively.

Proof. Similar to the proof of Theorem 4.4.1, we first derive the certainty-equivalent

control law by assuming perfect knowledge on J, followed by the relaxation of such

assumption and the adaptive control synthesis.

Let (r̃,ω̃) ∈S ×R3, where S = {φa : |φ| <π,a ∈S2}, and consider the Lyapunov

candidate function

V4(r̃,ω̃) = 1

2
r̃⊤Kr r̃+ 1

2
ω̃⊤Jω̃.

4.5 Control Synthesis for Attitude Tracking 63

By taking the time derivative and plugging it in the attitude and angular velocity

error dynamics (4.13) and (4.14), we obtain

V̇4(r̃,ω̃) = r̃⊤Kr ˙̃r+ ω̃⊤J ˙̃ω

= r̃⊤Kr Jl (r̃)−1ω̃+ ω̃⊤(
Jω̇d/i − Jω∧

b/iωd/i +ω∧
b/i Jωb/i −τ

)
= ω̃⊤(

Jl (r̃)−
⊤

Kr r̃+ Jω̇d/i − Jω∧
b/iωd/i +ω∧

b/i Jωb/i −τ
)
.

Hence, V̇4(r̃,ω̃) = −ω̃⊤Kwω̃ ≤ 0 if the desired (nominal) torque control input is

designed as

τ= Jω̇d/i − Jω∧
b/iωd/i +ω∧

b/i Jωb/i + Jl (r̃)−⊤Kr r̃+Kwω̃. (4.20)

Furthermore, from V̇4(r̃,ω̃) = 0, we have ω̃= 0, which implies ˙̃ω= 0. Using (4.14)

we can further deduce that Jω̇d/i − Jω∧
b/iωd/i +ω∧

b/i Jωb/i −τ = 0. Lastly, using

the fact that Jl (r̃)−⊤Kr is full-rank and from (4.20), we conclude that r̃ = 0, hence

showing that the largest invariant set in S ×R3 is the origin. By LaSalle’s invariance

principle, we can draw conclusions on asymptotic stability.

Then, we consider J to be uncertain and therefore we replace it by its estimate J̄

in the certainty-equivalent controller (4.20), yielding (4.17). To derive the adaptive

law for J̄, we consider a composite Lyapunov candidate function as

V5(r̃,ω̃, J̃) =V4(r̃,ω̃)+ (cJω̃)⊤r̃+ 1

2γJ
∥J̃∥2

F

≥ 1

2
λm∥ω̃∥2 + 1

2
λr ∥r̃∥2 − cλM∥ω̃∥∥r̃∥+ 1

2γJ
∥J̃∥2

F

= ζ⊤1 W1ζ1,

where
ζ1 := [∥r̃∥, ∥ω̃∥, ∥J̃∥F]⊤ ∈R3 and

W1 :=


1
2λr −1

2 cλM 0

−1
2 cλM

1
2λm 0

0 0 1
2γJ

 ∈R3×3.

Therefore, ensuring V5(r̃,ω̃, J̃) > 0 is equivalent to having W1 ≻ 0, or more precisely

by Sylvester’s criterion,

|c| <
√√√√λrλm

λ2
M

. (4.21)

64 Robust Adaptive Controller Design for Parametric Uncertainties

Taking the time derivative of V5(r̃,ω̃, J̃) and using trace properties as well as the

fact that x⊤(y∧z) = y⊤(z∧x) = z⊤(x∧y) holds for arbitrary vectors x,y,z with same

dimension, we have

V̇5(r̃,ω̃, J̃) = ω̃⊤J ˙̃ω+ r̃⊤Kr ˙̃r+ (cJ ˙̃ω)⊤r̃+ (cJω̃)⊤˙̃r+ 1

γJ
tr(J̃⊤˙̃J)

(4.13),(4.14),(4.17)============== ω̃⊤(
J̃ω̇d/i − J̃ω∧

b/iωd/i +ω∧
b/i Jωb/i −ω∧

b/i J̄ωb/i

− Jl (r̃)−⊤Kr r̃−Kwω̃
)+ c r̃⊤

(
J̃ω̇d/i − J̃ω∧

b/iωd/i +ω∧
b/i Jωb/i −ω∧

b/i J̄ωb/i

− Jl (r̃)−⊤Kr r̃−Kwω̃
)+ r̃⊤Kr Jl (r̃)−1ω̃+ (cJω̃)⊤Jl (r̃)−1ω̃+ 1

γJ
tr(J̃⊤˙̃J)

= (ω̃⊤+ c r̃⊤)J̃ ˙̃ωd/i − (ω̃⊤+ c r̃⊤)J̃ω∧
b/iωd/i + (J̃ωb/i)⊤(ω̃∧ωb/i + c r̃∧ωb/i)

− (ω̃⊤+ c r̃⊤)Jl (r̃)−⊤Kr r̃− (ω̃⊤+ c r̃⊤)Kwω̃+ r̃⊤Kr Jl (r̃)−1ω̃

+ (cJω̃)⊤Jl (r̃)−1ω̃+ 1

γJ
tr(J̃⊤˙̃J)

= tr
{

J̃⊤
[− 1

γJ

˙̄J+ ẽω̇⊤
d/i + ẽω⊤

d/iω
∧
b/i −ω∧

b/i ẽω⊤
b/i

]}+ ω̃⊤(
cJJl (r̃)−1 −Kw

)
ω̃

− c r̃⊤Jl (r̃)−⊤Kr r̃− c r̃⊤Kwω̃.

By selecting the adaptive law for inertia matrix estimation as given in (4.18), we

can show that

V̇5(r̃,ω̃, J̃) =−c r̃⊤Jl (r̃)−⊤Kr r̃+ ω̃⊤(
cJJl (r̃)−1 −Kw

)
ω̃− c r̃⊤Kwω̃

≤−cλrϱm∥r̃∥2 + (cλMϱM −λw)∥ω̃∥2 + cλw∥r̃∥∥ω̃∥
=−ζ⊤2 W2ζ2,

where
ζ2 := [∥r̃∥, ∥ω̃∥]⊤ ∈R2 and

W2 :=
[

cλrϱm −1
2 cλw

−1
2 cλw λw − cλMϱM

]
∈R2×2.

That being said, V̇5(r̃,ω̃, J̃) is bounded from above, being semi-negative definite

when W2 ≻ 0, or equivalently

0 < c < 4λrλwϱm

4λrλMϱmϱM +λ2
w

, (4.22)

which, together with the inequality given in (4.21), yields the sufficient condi-

tion (4.19). Hence, by far, we have shown that limt→∞V5(t) =V5,∞ and r̃,ω̃, J̃ ∈L∞.

4.5 Control Synthesis for Attitude Tracking 65

Furthermore, from Eq. (4.13) and Eq. (4.14), we can deduce that ˙̃r, ˙̃ω ∈L∞. Since

r̃,ω̃ ∈L2 (by having
∫∞

0 ζ2(τ)⊤W2ζ2(τ)dτ≤V5(0)−V5,∞ <∞), it can be then con-

cluded using Lemma 4.5.1 that r̃,ω̃→ 0 for t →∞. □

Remark. No assumptions were made about the symmetry of the estimated inertia

matrix J̃ (i.e., J̃ = J̃⊤) throughout the proof of Theorem 4.5.1. This is due to the fact

that the (direct) adaptive law (4.18) does not guarantee convergence to the ground

truth J; it only ensures the boundedness of the estimation error. Acknowledging that

the symmetric property of inertia matrix is grounded in physics, one could explore

alternative forms of adaptive laws (e.g., via indirect methods) or learning rules (e.g.,

neural networks) to incorporate this structural information.

Moreover, the inequality condition (4.22) can be obtained due to the fact that

λr ,λM ,ϱm ,ϱM are positive. Observing the first two conditions is straightforward:

Kr ≻ 0 is ensured by design, as stated in Theorem 4.5.1; rigid body inertia matrices

are known to be positive semidefinite, and for quadrotors, it is positive definite, i.e.,

J ≻ 0. For ϱm ,ϱM , they are the lower and upper bound for ∥Jl (r̃)−⊤∥F, hence being

functions of r̃ ∈ S = {φa : |φ| < π,a ∈ S2}. We show their positiveness in Fig. 4.2,

through numerical analysis in MATLAB. □

Fig. 4.2 Numerical analysis of the bounds of ∥Jl (r̃)−⊤∥F over S = {φa : |φ| <π,a ∈S2}.

Similar to the robustification of adaptive law of mass estimation (4.2), we apply

Γ-projection to (4.18) with slight difference of using its matrix extension as stated

in the sequel.

Proposition 4.5.2 (Robustification of Adaptive Law using Projection Operator).

The adaptive law of inertia matrix estimation (4.18) is adjusted as

˙̄J = ProjγJ
(J̄, ẽω̇⊤

d/i − ẽω⊤
d/iω

∧
b/i −ω∧

b/i ẽω⊤
b/i , H),

66 Robust Adaptive Controller Design for Parametric Uncertainties

where H consists of three continuously differentiable convex functions, specifically

H = [h1,h2,h3]⊤ ∈R3, with

hi (J̄(:, i), j0(i),ϵJ (i)) = ∥J̄(:, i)∥2 − j0(i)2

2ϵJ (i)j0(i)+ϵJ (i)2
, i = {1,2,3},

and j0,ϵJ ∈R3 are two constant vector quantities.

Proof. The readers interested in the proof of projection operator are kindly referred

to [18, 107] for details. □

4.6 Results and Discussion

In this section, we present the simulation results of our proposed controller

for executing aggressive maneuvers. We start with introducing the simulation

environment along with the corresponding settings adopted in our study, followed

by showcasing the tracking performance as well as the parameter estimation

under uncertainties. In particular, we compare our proposed approach with a

prior work [95], which also uses the logarithmic map of SO(3) to formulate the

attitude configuration error, and demonstrate the superiority of our controller in

handling parameter uncertainties.

4.6.1 Simulator

The simulation environment for evaluating our proposed controller is the

MathWorks quadcopter project2, based on the Parrot® series of mini-drones.

It consists of a nonlinear quadrotor model with sensor and actuator dynam-

ics, as well as dynamic environmental modeling, providing a medium-fidelity

simulator ideal for verifying control algorithms. Comparable with other simu-

lator alternatives such as AirSim and Gazebo, as demonstrated in Section 3.4.1,

Simulink features a user-friendly interface, MATLAB integration, extensive block

library, real-time simulation, code generation capabilities, and widespread in-

dustry adoption, making it particularly well-suited for control system simulation.

2MathWorks quadcopter project based on the Parrot® series of mini-drones: https://www.
mathworks.com/help/aeroblks/quadcopter-project.html.

https://www.mathworks.com/help/aeroblks/quadcopter-project.html
https://www.mathworks.com/help/aeroblks/quadcopter-project.html

4.6 Results and Discussion 67

The nominal parameters of the quadrotor used in the simulation are m = 0.063kg,

J = 1e−4 ·diag(0.5829,0.7169,1)kgm2, g = 9.8ms−2.

4.6.2 Maneuver #1: Doing a 360◦ Flip

Fig. 4.3 360◦ flip maneuver. (a) Flip illustration in X-Z plane. (b) Quadrotor position p. (c)
Euler angles φ,θ,ψ. (d) Attitude error ∥r̃∥2 and control inputs f ,τ.

We first demonstrate the results of the proposed controller for performing a

360◦ flip maneuver. This is achieved by concatenating three control phases, which

is shown in Fig. 4.3(a). The quadrotor is commanded to first take off and stop at

a hovering condition: p = (0,0−4)⊤,v =ω= (0,0,0)⊤,R = I3. Then, at 15sec, it is

commanded to follow the desired trajectory:

Ri
d (t) = I3 + sin(4πt)φ∧

d + (1−cos(4πt))(φdφ
⊤
d − I3),

φd = [0, 1, 0]⊤,

68 Robust Adaptive Controller Design for Parametric Uncertainties

which is a flipping maneuver where the quadrotor rotates about φd by 360◦.

During the execution of such a trajectory, the backstepping controller is disabled

since the control objective is to rotate the quadrotor instead of driving it to a

desired position. Correspondingly, the desired rotation matrix is directly fed to the

geometric controller as a reference signal to generate proper torques for attitude

tracking, yielding a so-called attitude controlled flight mode [93]. Lastly, the

backstepping controller is again enabled to stabilize the quadrotor at a hovering

condition: p = (0,0−2)⊤,R = I3. No uncertainties are considered for this maneuver

as the quadrotor completes the flip in under 0.1sec. Any uncertainties in mass or

inertia matrix prior to the flip will be addressed beforehand.

Figure 4.3(b) and Figure 4.3(c) show the position and Euler angles, respectively,

during the 360◦ flip. The latter illustrates the pitch angle θ transitioning from 0 to

180deg and then from −180deg back to 0, completing the 360◦ flip. Notably, dur-

ing the flip aroundφd , the quadrotor deviates from its original position in x-axis,

due to the temporary deactivation of backstepping controller. The corresponding

attitude error and control inputs are shown in Fig 4.3(d).

4.6.3 Maneuver #2: Tracking an Elliptical Helix Trajectory

Next, we demonstrate the ability of the quadrotor to track an elliptical helix

trajectory (see Fig. 4.4(a)) in the presence of imprecise knowledge on mass and

inertia matrix.

The quadrotor is commanded to first take off and fly to the initial position:

[p⊤(t)ψ(t)] = [0,0−5,0], then track the following desired trajectory starting at

10sec:

[p⊤
ref(t)ψref(t)] = [t , sin(

π

7
t),−4−cos(

π

7
t),sin(0.3t)].

As indicated in Figure 4.4(b), we introduce an increase of inertia matrix of the

quadrotor to diag(0.0030,0.0037,0.0051)kgm2 at 10sec and an increase of mass to

0.093kg at 20sec.

To highlight the importance of our adaptive designs, we conduct a comparative

analysis of the tracking performance between our proposed controller and the

one in [95]. From Fig. 4.4(b), it can be observed that our controller successfully

tracks the reference trajectory under conditions of uncertainty in both mass and

inertia matrix (see orange curve), whereas the controller in [95] fails for either

4.6 Results and Discussion 69

Fig. 4.4 Elliptical helix trajectory tracking. (a) 3-D visualization† . (b) Comparisons under
nominal and uncertain scenarios. (c) Mass estimation m̄ and inertia matrix estimation
error ∥J̃∥2. (d) Attitude error ∥r̃∥2 and control inputs f ,τ.

† The nominal tracking subject to uncertain inertia matrix is not depicted in the 3-D
visualization due to its unstable behavior, resulting in a cluttered and confusing plot.
However, for completeness, we include it in the X-Z plane visualization in Fig. 4.4(b).

single uncertainty (see yellow curve when only uncertain mass exists and light

red curve when only uncertain inertia matrix exists), even resulting in instability.

Bounded mass estimate and the estimation error of inertia matrix are further

noted for our adaptive designs in Fig. 4.4(c), validating Theorem 4.4.1 and 4.5.1.

Oscillations have been observed in parameter estimation, which may arise from

either the fast dynamics of the controlled system or a high adaptation gain being

employed. Moreover, the attitude error and the control inputs are presented in

Fig. 4.4(d), from which we observe that the controller in [95] (yellow curve) is

incapable of reducing the attitude error in the presence of uncertainties, thereby

70 Robust Adaptive Controller Design for Parametric Uncertainties

stressing the importance as well as the effectiveness of the adaptive design in our

proposed controller.

4.6.4 Maneuver #3: Tracking a Figure-8 Trajectory

Fig. 4.5 Figure-8 trajectory tracking. (a) 3-D visualization with a colorbar indicating the
absolute value of the magnitude of linear velocity v. (b) Quadrotor position p. (c) Linear
velocity v and Euler angles φ,θ,ψ. (d) Motor speeds.

Lastly, we demonstrate the effectiveness of the proposed controller in suc-

cessfully executing a variety of aggressive maneuvers by tracking a high-speed

Figure-8 trajectory (see Fig. 4.5(a)). Similar to Section 4.6.3, the quadrotor is first

commanded to reach the starting position and then begins to track the following

desired trajectory at 10sec:

[p⊤
ref(t)ψref(t)] = [8cos(0.35t),8sin(0.7t),−4,0].

4.7 Conclusions 71

In addition to the parametric uncertainties in m and J, we incorporate sensor

noises3 and actuator dynamics4 in the simulation.

From Fig. 4.5(b) and (d), we observe satisfactory tracking performance, par-

ticularly in horizontal coordinates, alongside the corresponding motor speeds

reported in RPM, respectively. The aggressive nature of the commanded maneu-

vers can be revealed in Fig. 4.5(a) and (c), showcasing both high linear velocity

(with a maximum absolute value exceeding 9m/sec) and large roll angle (with a

maximum absolute value more than 30deg). It is noteworthy that the performance

of altitude tracking exhibits room for improvement, which is attributed to the

rapid changes in linear velocities and Euler angles, leading to altitude loss. Our

simulations (results not presented here) suggest that mitigating the aggressiveness

of maneuvers can lead to enhanced altitude tracking performance.

4.7 Conclusions

In this chapter, we introduced a novel adaptive geometric tracking controller

tailored for quadrotor aggressive maneuvers. The control synthesis is inherently

nonlinear, leveraging BSC for position tracking and the logarithmic map of SO(3)

for attitude tracking, underpinned by rigorous proofs using Lyapunov analysis.

The advantages of our proposed approach lie in its ability to effectively handle

uncertainties, making it robust against variations in mass and inertia matrices

as well as non-parametric uncertainties such as sensor noises. This is achieved

through two specifically designed adaptive laws, complemented by projection

operators that enhance robustness to sensor noise.

Through extensive simulations, we demonstrated the effectiveness of our pro-

posed controller in executing diverse aggressive maneuvers, including a 360◦ flip,

an elliptical helix trajectory, and a figure-8 trajectory. Notably, our controller

exhibits superior performance compared to a recent study analogous to our ap-

proach, thereby showcasing applicability beyond uncertainty-free scenarios.

3The 3-axis Inertial Measurement Unit (IMU) employed in the simulation sets ac-
celerometer measurement bias to [0.0900,−0.0600,0.3370]⊤msec2, gyro measurement bias
to [−0.0095,−0.0075,0.0015]⊤rad/sec, and noise power (or the height of the power spec-
tral density of the white noise) for each axis of the accelerometer and gyroscope to 1.0 ×
10−3 ·[0.2183,0.1864,0.3725,0.0000,0.0000,0.0000]⊤m/sec2/Hz.

4This includes rotor dynamics, which is a nonlinear function of air density, body velocity of
rotor, angular velocity, and rotor speed; see, e.g., [108] for more details.

72 Robust Adaptive Controller Design for Parametric Uncertainties

However, our study identified room for improvement in altitude tracking for

figure-8 maneuvers, potentially influenced by rapid changes in linear velocities

and Euler angles during aggressive maneuvers. Future potential work also in-

volves validating the proposed controller through real-world experimental tests,

providing a practical assessment of its efficacy. Furthermore, our ongoing research

focuses on extending the controller to explicitly address unmodeled dynamics

and disturbances, aiming to broaden its applicability across various operational

scenarios.

Chapter 5

Learning-based Controller Design for

Non-Parametric Uncertainties

5.1 Introduction

While quadrotors have achieved impressive feats in tasks such as hovering and

trajectory tracking [15, 94, 105], their complex dynamics, nonlinearity, and under-

actuation make them vulnerable to uncertainties and disturbances, such as wind.

Ignoring these factors can lead to detrimental effects on control, possibly resulting

in crashes. To improve robustness and prevent instability in dynamic control sys-

tems, model-based approaches, particularly robust control and adaptive control,

have undergone extensive studies over the last two decades; see, e.g., [13] and the

references therein. It is noteworthy, however, that robust control may exhibit over-

conservative performance due to assumptions made on the uncertainty bounds;

whereas adaptive control, mostly suitable in handling parametric uncertainties,

requires persistent excitation conditions. In complex and highly dynamic scenar-

ios, data are accessible in the form of online measurements and prior knowledge

about uncertainties is often scant. Hence, data-driven approaches are enticing for

both system identification and controller design; see, e.g., leveraging the direct

utilization of data to improve performance and alleviating the requirements for

extensive prior knowledge [21, 22, 26–28, 109, 110].

Data-driven approaches can be generally classified into methods based on

learning and those that do not rely on learning. The latter includes methods

74 Learning-based Controller Design for Non-Parametric Uncertainties

like ADRC [21] and Hankel-matrix-based identification and control [22]. Despite

ADRC’s effectiveness and widespread recognition as a robust alternative to PID

control, it requires tuning, and a rigorous stability proof seems lacking. While

Hankel-matrix-based method exhibits promise for linear systems, its extension

to nonlinear systems remains an open research area. Learning-based methods,

on the other hand, harness the powerful approximation capabilities of ANNs,

leveraging recent advancements in big data and computer hardware. A num-

ber of studies utilizing DNNs to learn various uncertainties have substantiated

the effectiveness of learning-based methods; see, e.g., [26–28]. Nonetheless, a

well-known challenge with deep learning lies in its interpretability, primarily stem-

ming from the black-box nature of DNNs. This could hinder the deployment of

DNN-based solutions in real-world safety-critical systems such as UAVs, since

practitioners may lack trust in these models [29]. A further challenging issue is

related to the generalizability of the trained model to unseen data, particularly for

offline-trained models, as their performance may degrade when confronted with

OOD data samples.

An intuitive solution for achieving generalizable and interpretable learning-

based models is to combine model-based and data-driven approaches, trading

off between the best features of both worlds [10]. A viable strategy may be, for

example, to use domain knowledge to construct a nominal system model and

employ learning to understand the residual dynamics, i.e., the part of system

behavior that the model is not able to reproduce. Yet, the integration of knowledge

and data remains challenging, particularly as the learning module for the residuals

lacks transparency and requires interpretation. A recent promising paradigm,

PIML [30], emphasizes the alignment of learning models with physical principles

through the incorporation of knowledge via inductive and learning bias. Research

in UAV modeling and control using PIML is recently gaining momentum, see

e.g. [31, 111, 112]. Another approach to enhance the interpretability of learning

models is through post-hoc analysis [29]. For example, in [113], decision trees were

adopted as human-readable reasoning modules derived from neuron activation

of small-sized Liquid Time Constant (LTC) networks for quadrotor goal reaching

and obstacle avoidance. However, there is a lack of exploration into efficient

algorithms for extracting these decision trees for more complex tasks and network

models. Additionally, clustering methods such as t-SNE serve as valuable tools for

interpreting network parameters or predictions [28]. It is crucial to highlight that

5.2 Problem Formulation 75

among these methods, offline-trained ANNs may exhibit limited generalizability

to unseen scenarios.

In this chapter, we propose an online learning module for learning the un-

known residual dynamics of quadrotors on the fly. Specifically, we employ an

ESN[48] due to its powerful learning capabilities for temporal patterns from time-

series data and its efficient online training through the RC paradigm [114]. This

ensures broader applicability of our approach to unseen scenarios by not relying

on a set of fixed offline-trained model parameters. Moreover, we present post-hoc

interpretation techniques tailored for ESNs, aimed at demystifying the “black box”

and enhancing trustworthiness. Our analysis delves into reservoir layers from a

dynamical systems perspective, followed by an elucidation of network predictions

through visualization. The main outcomes from this chapter are summarized as

follows:

• We designed an online residual learning module based on ESN to actively

compensate for unknown quadrotor dynamics or disturbances in real time.

• We enhanced the trustworthiness of the model by leveraging reservoir dy-

namics and the interpretations for ESN predictions.

5.2 Problem Formulation

We aim to address the tracking control problem of given reference trajecto-

ries ξref(t) = [p⊤
ref(t)ψref(t)]⊤ ∈ R4 (i.e., position and yaw angle) for a quadrotor

governed by (2.1), subject to unknown uncertainties, represented by fa and τa .

Our control objective is to achieve asymptotic tracking performance even in the

presence of uncertainties. For the controller design discussed in Section 5.4, we

make the following assumption that is widely adopted and practically valid.

Assumption 5.2.1. The desired trajectories satisfy ξref(t) ∈C 3 (i.e., the derivatives

up to ξ(3)
ref (t) exist and are continuous) and these derivatives are bounded.

Assumption 5.2.2. The uncertainties are continuous and bounded.

76 Learning-based Controller Design for Non-Parametric Uncertainties

5.3 Reservoir Computing Paradigm

Before delving into the controller design, it is essential to lay the foundation

for the RC paradigm. This paradigm facilitates in-flight online learning of un-

known residual dynamics in quadrotors with the use of an ESN, thereby enabling

adaptability to unforeseen scenarios. In this section, we present the mathematical

model of ESNs, discuss their training methods, and underscore the significance of

the Echo State Property (ESP) for post-training analysis of their dynamics.

5.3.1 Mathematical Model of Echo State Networks

The functioning of the simplest of ESN (i.e., a shallow ESN with feedback

connections and leaky integration) can be formulated in terms of a dynamical

system, whose state transition and output equations can be described as

x[k] = (1−α)x[k −1]+α tanh(Winu[k]+Wstatex[k −1]+Wfby[k −1]), (5.1a)

y[k] = Wout(x[k];u[k]), (5.1b)

where u ∈ RNu denotes the input sequence, x ∈ RNr denotes the reservoir state,

y ∈ RNy denotes the output sequence, α ∈ [0,1] denotes the leaking rate, Win ∈
RNr ×Nu ,Wstate ∈RNr ×Nr ,Wfb ∈RNr ×Ny ,Wout ∈RNy×(Nr +Nu) denote input-to-reservoir,

reservoir, readout-to-reservoir, and readout weight matrix, respectively. For better

learning capability, one can further enhance the reservoir layer by stacking multi-

ple layers, akin to the architecture used for deep learning. To this aim, in this work

we consider the following deep ESN1 with Nl reservoir layers (see Fig. 5.2):

x(l)[k] =
tanh(Winu[k]+W(l)

statex(l)[k −1]) if l = 1,

tanh(W(l)
il x(l−1)[k]+W(l)

statex(l)[k −1]) if l = 2, · · · , Nl ,
(5.2a)

y(l)[k] = W(l)
outx

(l)[k], (5.2b)

where the superscript (l) is used to represent the network parameters at the l-

th layer, and Wil ∈ RNr ×Nr denotes the inter-layer reservoir weight matrix. Note

1The mathematical expression of each layer in the deep ESN can be obtained from (5.1a)
and (5.1b) by setting α= 1, omitting readout-to-reservoir connections, and removing the connec-
tions from input to readout.

5.3 Reservoir Computing Paradigm 77

that reservoir states (depicted as blue circles in Fig. 5.2), in dynamical systems,

are synonymous with the system’s state, while a reservoir (shown by blue-shaded

ellipses in Fig. 5.2) comprises a collection of such states, with possibly feedforward

or recurrent connections.

5.3.2 Training Methods

Unlike other ANNs, for which back-propagation is commonly the standard

training technique, training process of an ESN follows the RC paradigm, which

only involves the update of the readout weight matrix, whereas the rest of the

weight matrices are initialized at random [114]. Training the readouts of an ESN

without feedback connections can be generally addressed by means of linear

regression, i.e., solving the following optimization problem:

W(l)
out = argmin∥W(l)

outX
(l) −Ylabel∥2

2, (5.3)

where X(l) = [x(l)(1), · · · ,x(l)(N)], Ylabel = [ylabel(1), · · · ,ylabel(N)] are the collection

of reservoir states and target values over the time span k = 1, · · · , N . Hence, Moore-

Penrose pseudo-inversion Wout = YlabelX+ or ridge regression Wout = YlabelX⊤(XX⊤+
λr I)−1 (λr ∈R>0 is the regularization coefficient) can be used for offline or semi-

online training.

5.3.3 Echo State Property

Since all the reservoir weight matrices are initialized at random, ESP [48]

was shown to be a critical property for ESNs to guarantee valid dynamics. From

a dynamical system perspective, it guarantees that the reservoir states should

asymptotically depend only on the driving input signal, regardless of their initial

conditions [115]. Assuming the Euclidean distance metric in the reservoir space

and tanh as the activation function, meeting the following condition practically

ensures ESP:

ρ(Wstate) < 1, (5.4)

where ρ(·) denotes the spectral radius (i.e., the largest absolute eigenvalue) of the

given square matrix. In the context of dynamical systems, (5.4) also implies that

Wstate is contractive.

78 Learning-based Controller Design for Non-Parametric Uncertainties

5.4 Learning-based Tracking Controller

The control scheme of the proposed learning-based tracking controller is il-

lustrated in Fig. 5.1. It consists of a nominal controller2 and an online residual

learning module based on ESN, conceived to address non-parametric uncertain-

ties. In the sequel, we elaborate on the working principles of the online residual

learning module (Section 5.4.1) and the formulation of the learning-based control

laws (Section 5.4.2).

Fig. 5.1 Control scheme of the proposed learning-based tracking controller. The online
learning module for non-parametric uncertainty estimation (framed by an orange dashed
box) takes as inputs the online measurements of quadrotor states x = [p⊤,v⊤,η⊤,ω⊤]⊤

and control inputs u = [f⊤u ,τ⊤u]⊤, and generates uncertainty estimates ∆̂= [f̂⊤a , τ̂⊤a]⊤.

5.4.1 Online Learning Module for Residual Dynamics

To estimate the unknown and possibly dynamic uncertainties, an online resid-

ual learning module is designed with an ESN at its core. Endowed with online

learning capability thanks to the efficient training of RC paradigm, such mod-

ule is expected to “generalize” (or more precisely, actively adapt) better than the

networks trained offline when facing unseen scenarios. Meanwhile, the online

2The nominal controller can be either model-based or learning-based; in our paper, we utilize a
model-based approach.

5.4 Learning-based Tracking Controller 79

residual learning module, as a standalone uncertainty estimator offers greater

flexibility, compared to end-to-end data-driven control solutions such as [15],

enabling seamless integration with existing controllers such as nominal ones.

The proposed online residual learning module is illustrated in Fig. 5.2. As

depicted, the module comprises a deep ESN, described by (5.2), for learning and

inferring uncertainties, and a circular data buffer, which stores the feature and

label data from flight history in a sliding window fashion, facilitating efficient

online training. The algorithm for online residual learning is outlined as follows:

(i) Initializing ESN: We consider an ESN that takes system state3 as network

input u = [pz ,v⊤,η⊤,ω⊤]⊤ ∈ R10 and predicted forces and torques as net-

work output y = [f̂⊤a , τ̂⊤a]⊤ ∈R6. Besides configuring the ESN with designated

numbers of input units (Nu), readout units (Ny), reservoir units (Nr), and

reservoir layers (Nl), this step includes random initialization of all weight

matrices (i.e., Win, Wil, Wstate), adhering to the ESP.

(ii) Collecting flight data and computing label data: For implementation pur-

poses, the continuous-time dynamical model of the quadrotor (2.1) needs

to be converted into its discrete-time counterpart with sampling time Ts

as given in (5.5). Through the latter, we can calculate the label data at the

previous time step from the current and previous state.

v[k +1] = v[k]+ Ts

m
(mg e3 + fu[k]+ fa[k]), (5.5a)

ω[k +1] =ω[k]+TsJ−1(−ω[k]∧Jω[k]+τu[k]+τa[k]). (5.5b)

(iii) Updating data buffer: The buffer retains the training data pair within the

specified time span (denoted by Nb). Upon the arrival of a new data pair

that exceeds the buffer size, the earliest stored data in the buffer is replaced.

In other words, the buffer maintains data in a sliding window fashion, where

the window size corresponds to the buffer size.

(iv) Training ESN and inferring from the latest flight data: We use ridge re-

gression for training the ESN. The training data pairs are drawn from the

data buffer, and training initiates once the buffer is fully populated (hence,

3The altitude pz is chosen as a network feature owing to its contribution to certain aerodynamic
phenomena such as ground effect.

80 Learning-based Controller Design for Non-Parametric Uncertainties

requiring an initial data collection period). The RC paradigm enables online

training, specifically within our sampling time, as demonstrated empirically

in Section 5.6.2. Upon completion of training, the ESN takes the latest flight

data for inference.

Note that except for Step (i), which will be executed only once, Steps (ii) to (iv)

will be iteratively performed during the flight. The pseudo-code of our imple-

mentation of online residual learning is provided as Algorithm 2. We leave the

discussion of technical details on network architecture, ESP, and online running

time to Section 5.6.

5.4.2 Tracking Control Laws

The decoupled nature of our architecture (as depicted in Fig. 5.1) allows to

select any nominal controller, independently from the rest of the control structure.

Here, we adopt the nominal controller in [105] as a starting point, whereby the

tracking control laws for thrust and torque determination of (5.5) under nominal

conditions are given by

f̄u[k] =−Kp p̃[k]−Kv ṽ[k]−mg e3 +mv̇ref[k], (5.6)

τ̄u[k] =−Kr r̃[k]−Kωω̃[k], (5.7)

where the tracking errors of position, velocity, attitude, and angular rate are de-

fined as

p̃[k] = p[k]−pref[k], (5.8a)

ṽ[k] = v[k]−vref[k], (5.8b)

r̃[k] = 1

2
(R⊤

ref[k]R[k]−R⊤[k]Rref[k])∨, (5.8c)

ω̃[k] =ω[k]−ωref[k], (5.8d)

with (·)∨ : so(3) → R3 denoting the vee operator and subscript “ref” denoting

the desired reference. Moreover, the desired body z-axis can be computed from

kb,d =−f̄u/∥f̄u∥ ∈S2, and hence the desired rotation matrix Rref can be derived

5.4 Learning-based Tracking Controller 81

Fig. 5.2 Structure of online residual learning module: Deep ESN and data buffer. The
data buffer of length Nb stores the feature and label data from flight history in a column-
wise fashion (shown by green blocks), which are subsequently used for online training of
readout weights of ESN (depicted in orange arrows). The ESN model adopts a hierarchical
architecture for reservoir layers (shaded in blue) between which inter-layer connections
exist (depicted in yellow arrows).

82 Learning-based Controller Design for Non-Parametric Uncertainties

Algorithm 2: Online residual learning using ESN
Parameter: Nb , E = (Nr , Nl , Nu , Ny)
Input: X [k] = (v[k]⊤,ω[k]⊤, fu[k]⊤,τu[k]⊤)⊤, P = (m,J,Ts)
Output: Y [k] = (f̂a[k]⊤, τ̂a[k]⊤)⊤

Data: Dfeat, Dlabel (from flight data)
1 Function CalculateLabel(X [k], X [k −1], P):
2 Calculate fa[k −1] from (5.5a)
3 Calculate τa[k −1] from (5.5b)
4 return fa[k −1], τa[k −1]

5 Function UpdateBuffer(X [k], Nb):
6 if Dfeat,Dlabel are undefined then
7 Dfeat =Dlabel = [] // initialization

8 if Dfeat has more than one column then
9 fa[k −1], τa[k −1] = CalculateLabel(X [k], X [k −1], P)

10 Dlabel.append(fa[k −1], τa[k −1])

11 if Dfeat,Dlabel have more than Nb columns then
12 Delete the first column (i.e., the earliest data)

13 Dfeat.append(X [k]) // append column
14 return Dfeat,Dlabel

15 Function InitESN(E):
16 Instantiate and initialize an ESN using E

17 return net

18 Function TrainESN(net, Dfeat,Dlabel):
19 Train net on Dfeat,Dlabel by solving (5.3)
20 return 0

21 Function Main:
22 Specify Nb and E

23 net = InitESN(E)
24 k ← 1
25 while non-stop do
26 Get data X [k]
27 Dfeat,Dlabel = UpdateBuffer(X [k], Nb)
28 if Dlabel has Nb columns then
29 TrainESN(net, Dfeat(:,1 : Nb),Dlabel)

30 k ← k +1

31 return 0

5.5 Post-hoc Analysis of Model Dynamics and Interpretability 83

using the differential flatness property of quadrotors as

jc = [−sin(ψref), cos(ψref), 0]⊤, (5.9a)

ib,ref = j∧c kb,ref /∥j∧c kb,ref∥, (5.9b)

jb,ref = k∧
b,ref ib,ref, (5.9c)

Rref = [ib,ref, jb,ref, kb,ref]. (5.9d)

This nominal controller ensures the faithful tracking of given reference trajectories

with proper selections of controller gains KΞ (Ξ ∈ {p, v,r,ω}) (see [105] for proofs).

Our proposed controller augments the nominal controller with the online

residual learning module. Hence, the learning-based control laws for thrust and

torque determination are given as

fu[k] = f̄u[k]− f̂a[k], (5.10)

τu[k] = τ̄u[k]− τ̂a[k], (5.11)

where f̂a and τ̂a are the estimates of the uncertainties predicted by the ESN. The

latter are derived as

y[k] = ESN(u[k] |Wout[k]), where (5.12a)

y[k] = [f̂⊤a [k],τ̂⊤a [k]]⊤, u[k] = [pz[k],v⊤[k],η⊤[k],ω⊤[k]]⊤, (5.12b)

upon completion of network training (through Algorithm 2) within each sampling

interval. The desired body z-axis for constructing the desired rotation matrix is

modified to kb,ref =−fu/∥fu∥, taking into account the compensation of unknown

forces predicted by the ESN.

5.5 Post-hoc Analysis of Model Dynamics and Inter-

pretability

Interpreting the outcome of ANNs, particularly deep networks, is crucial for

establishing trustworthiness in their deployment in safety-critical systems. In

pursuit of this goal, we aim to demystify the ESN from two perspectives. We first

84 Learning-based Controller Design for Non-Parametric Uncertainties

analyze reservoir layers through the lens of dynamical systems. Then, we seek to

elucidate the interpretations behind network predictions.

Goodness of reservoir dynamics: “Random” is nearly by definition an antonym

to “optimal”, as perceptively pointed out in [114]. Hence, it is necessary to under-

stand if the network with randomly initialized weights is good or not. In the ESN

literature, various metrics assess the goodness of reservoir dynamics (i.e., (5.2a)),

including ESP Index (ESPI), Linearly Uncoupled Dynamics (LUD) indicator, and

condition number [116]. Here, we focus solely on ESPI, as the condition number

pertains to network training with stochastic gradient descent, and LUD lacks a

benchmark reference for determining the richness of reservoir dynamics. Mo-

tivated by ESP, the ESPI was introduced to gauge the robustness of reservoir

layers to perturbations in initial conditions. Given Ni c randomly selected initial

conditions, we can compute the ESPI of the l -th reservoir layer as

ESPI(l) = 1

Ni c

Ni c∑
j=1

(
1

N −Nw

N∑
k=Nw+1

∥x(l)
0 (t)−x(l)

j (t)∥2

)
, (5.13)

where x(l)
0 denotes the reservoir states obtained by initiating the reservoir from 0,

x(l)
j denotes the achieved reservoir states starting from randomly chosen initial

conditions but driven by the same input, and N denotes the total time duration.

ESPI quantifies the average deviation among reservoir state trajectories starting

from different initial conditions under the same input signal. As illustrated in

Fig. 5.3, regardless of initial conditions, reservoir layers that satisfy ESP shall

exhibit asymptotic stable behavior after a washout period.

Fig. 5.3 Asymptotic stable behavior of reservoir layers ensured by ESP reflects the goodness
of reservoir dynamics.

5.6 Results and Discussion 85

Interpretations for network predictions: Interpreting the predictions of a

neural network often involves extracting information from its weights and internal

states if available. Visualization serves as a direct and intuitive technique for

exploratory data analysis. For example, when handling time-series data, the

analysis of activations can be visualized using heat maps [113], while network

weights can be analyzed through clustering methods such as k-means clustering

and Gaussian Mixture Model (GMM). In our experiments, various visualization

methods were explored, but not all proved effective. For example, plotting the

heat maps of neuron activities is limited to small-size networks, which is not

suitable for our deep ESN. Consequently, we adopt the t-SNE method with the

Euclidean distance metric, as it allows for automatic determination of the number

of clusters without a priori information. In this approach, all reservoir layers

are considered as feature extraction for basis functions shared by uncertainties.

The only trainable parameters are the readout weights, serving as a set of linear

coefficients in (5.2b) updated for each specific condition. By applying t-SNE to

visualize the readout weights over the time span k = 1, · · · , N , i.e.,

Wout =


W(1)

out[1] W(1)
out[2] · · · W(1)

out[N]

W(2)
out[1] W(2)

out[2] · · · W(2)
out[N]

...
...

. . .
...

W(Nl)
out [1] W(Nl)

out [2] · · · W(Nl)
out [N]

 ∈RNy×(Nr Nl), (5.14)

distinct clusters can be observed as shown in Section 5.6.4.

5.6 Results and Discussion

In this section, we present the simulation results of our proposed controller for

quadrotor tracking tasks. We begin with elaborating on the design considerations

behind the ESN structure and training, demonstrating its powerful approximation

and real-time learning capability through experimentation with two synthetic

datasets. Then, we conduct a comparative analysis between our learning-based

controller and its nominal counterpart, emphasizing the effectiveness of the

online residual learning module. Lastly, we compare our proposed controller

with an offline learning-based approach, commonly employed in prior studies,

86 Learning-based Controller Design for Non-Parametric Uncertainties

highlighting the superior performance of our online learning-based approach in

addressing OOD uncertainty data.

5.6.1 Simulator

We constructed the simulation environment for evaluating our proposed con-

troller using MATLAB scripts. This environment incorporates various components,

including quadrotor forward dynamics, synthetic aerodynamics such as quadrotor

ground effect [117], reference trajectory generator, training and inference modules

of neural networks, control algorithms, auxiliary functions, and more.

5.6.2 Network Selection and Training

We considered an ESN with the parameters given in Table 5.1 to study its

online learning capability. Specifically, all the weights were initialized randomly

from a uniform distribution over [−1,1], and reservoir state weight matrix satisfied

ESP by having the spectral radius ρ = 0.94.

Model parameter Selected value

Number of input/readout/reservoir units (Nu , Ny , Nr) = (10,6,20)
Number of reservoir layers Nl = 5
Input-to-reservoir weight Win ∼U[−1,1]

Inter-layer reservoir weight Wil ∼U[−1,1]

Reservoir weight Wstate ∼U with ρ = 0.9
Leaking rate α= 0
Washout Nw = 5
Regularization coefficient λr = 0.1

Table 5.1 ESN parameters.

4For practitioners, here is a brief summary of “rule of thumbs” [116] for selecting proper network
parameters: (i) Higher values of the leaking rate α result in reservoirs that respond more rapidly to
the input, and higher values of the spectral radius ρ (< 1) lead to richer dynamics; (ii) The number
of reservoir layers Nl is one of the most critical parameters, as choosing a large value may induce
instability in higher reservoir layers, compromising the adherence to ESP; (iii) In deeper ESN
structure, the inter-layer scaling on Wil (i.e., the connectivity strength) has a more pronounced
impact on reservoir quality than input scaling.

5.6 Results and Discussion 87

To evaluate real-time training performance, we trained the ESN using Algo-

rithm 2 on two simulated data sets collected at the sampling time Ts = 0.02sec

– one under periodic wind, and the other under quadrotor ground effect [117] –

in MATLAB using the DeepESN class [118]. For each data set, we ran the training

over 50 random seeds on a laptop with AMD Ryzen 7 5800h (no GPU involved).

Consistent and accurate predictions on quadrotor ground effect and periodic

wind were observed in Fig. 5.4(a) and Fig. 5.4(b), respectively. Note that there

was an initial period in both cases where the ESN did not make any predictions,

waiting for the data buffer to be filled with Nb samples. We further report the

training time of ESN in Fig. 5.4(c). Notably, the average network training time

for both cases is considerably less than our chosen sampling time Ts = 0.02sec,

demonstrating the feasibility of real-time training.

5.6.3 Flight Control with Online Learning

Next, we evaluated our proposed controller with online residual learning

(i.e., (5.10) and (5.11)) by commanding the quadrotor to track a figure-8 trajec-

tory: pd (t) = [cos(0.5t),sin(t),−5]⊤, with disturbances fa(t) = [5,3,0]⊤, τa(t) =
[2sin(2πt),−2sin(2πt),0]⊤. We considered m = 2.95kg, J = diag([0.5,0.5,0.5])kgm2

and p(0) = [0,0,−5]⊤, v(0) =η(0) =ω(0) = 03×1 as initial conditions. Same param-

eters in Table 5.1 were used for the ESN with all reservoir states initialized from

zeros. Simulation and sampling time were chosen as 20sec and 0.02sec, respec-

tively. Buffer size was selected as Nb = 20.

Our proposed controller demonstrated satisfactory tracking performance, as

observed in Fig. 5.5(c). A comparison with the nominal controller [105] (i.e., (5.6)

and (5.7), without online residual learning) is illustrated in Fig. 5.5(a). It can be

seen that the nominal controller failed in asymptotic tracking of the reference

trajectory under disturbances, exhibiting a large deviation due to the wind gust as

depicted in blue arrows. Our proposed controller, however, deviated slightly at the

beginning of the simulation, yet rapidly converged to the desired trajectory thanks

to its online learning capability. The comparison of commanded control inputs

shown in Fig. 5.5(b) further demonstrates the vital role that ESN played in our

proposed controller on the fly, compensating for uncertainties and guaranteeing

asymptotic tracking performance. The small oscillations observed in τx and τy

are attributed to the presence of uncertainties in torque.

88 Learning-based Controller Design for Non-Parametric Uncertainties

Fig. 5.4 Online learning performance over 50 simulation campaigns. (a) Predictions of
quadrotor ground effect. (b) Predictions of periodic wind. (c) Training time of ESN for
learning ground effect and periodic wind.

5.6 Results and Discussion 89

Fig. 5.5 Comparison of control behavior between our proposed learning-based con-
troller and a nominal controller. (a) Tracking performance for executing a figure-8
maneuver (viewed in 2D). (b) Control input. (c) Position and velocity.

90 Learning-based Controller Design for Non-Parametric Uncertainties

Furthermore, we assessed ESPI to verify the proper initialization of all reser-

voirs, ensuring adherence to ESP. This can also be evaluated by the performance

of our proposed controller under different initial conditions of the ESN through a

simulation campaign with 20 rounds initialized with random seeds. The results

are reported in Table 5.2 where bold font highlights the best performance. It is

straightforward to see that our proposed controller outperforms the nominal one,

especially in x- and y-axis, since the wind gust considered in this case is merely

horizontal. Moreover, our method demonstrates a comparable standard deviation,

affirming consistent performance regardless of network initialization5.

5.6.4 Comparison with an Offline Learning-based Controller

Lastly, we demonstrate the superiority of online learning by comparing our

proposed controller with an offline-trained FNN controller. To this end, we con-

sidered a more intricate wind profile, comprising the summation of two Gaussian

functions, given as

fwind(a,µ,σ) = a exp

(
− (t −µ)2

2σ2

)
, (5.15)

fa(t) = [fwind(35,3,10)+ fwind(20,5,5)︸ ︷︷ ︸
(∗)

,∗,0]. (5.16)

The quadrotor was commanded to execute the same figure-8 maneuver as in

Section 5.6.3.

We implemented a cascaded feedforward network with 5 layers, each contain-

ing 20 hidden neurons, to be consistent with our ESN’s parameters for making

fair comparisons. The training of this FNN was conducted completely offline

using the Levenberg–Marquardt (LM) algorithm, and early stopping was used

to prevent overfitting. We utilized the data from 0-28sec as training data, keep-

ing the rest until 50sec for testing. Notably, from Fig. 5.6(a)-(b), it can be seen

that test data consist of both In-Distribution (ID) data, spanning 28-31sec and

39-50sec (shaded in blue), and OOD data, spanning 31-39sec (shaded in red).

The distribution shift lies in both network inputs (see Euler angles in Fig. 5.6(a))

5Standard deviation is excluded for the nominal case due to the absence of randomness.

5.6 Results and Discussion 91

and predictions (see the aerodynamic forces over the horizontal dotted line in

Fig. 5.6(b)).

As a result, FNN demonstrated poor generalization capability for OOD data,

leading to high prediction errors. Incorrect predictions further affected the effec-

tiveness of the controller, yielding unacceptable tracking performance in OOD

regime; see Fig. 5.6(c) for 3-D illustration and Fig. 5.6(d) for position and velocity.

In contrast, our proposed learning-based controller, leveraging the online learning

capability of ESN, showed promising tracking results. Consistent control behavior

was also observed across different reservoir state initialization, as reported in

Table 5.2.

Controller
p̃x [m] p̃y [m] p̃z [m]

MAE Std. MAE Std. MAE Std.

Nominal ([105]) 0.4951 n/a 0.2969 n/a 0.0342 n/a
Learning-based (ESN) 0.0387 0.0056 0.0277 0.0032 0.0096 0.0018

Learning-based (FNN) 0.0905 n/a 0.0842 n/a 0.0060 n/a
Learning-based (ESN) 0.0036 0.0011 0.0167 0.0015 0.0028 0.0008

Table 5.2 Tracking errors of three different controllers over 20 simulation campaigns.
Controllers include: (i) A nominal controller, (ii) a learning-based controller with offline-
trained FNN, and (iii) our proposed learning-based controller with online residual learning
using ESN.

Furthermore, we analyzed the information extracted from the readout weights

(Wout as defined in (5.14)) and reservoir states (X(l) as defined in (5.3)) of the ESN

using the t-SNE method. Notably, distinct clusters for different wind magnitudes

(indicated in the legend with the unit m/sec) are evident for readout weights (see

Fig. 5.7(a)). Additionally, the coarser the division in wind magnitude, the more dis-

tinct the clusters. In contrast, no clear clusters were observed for reservoir states,

regardless of the layer (see Fig. 5.7(b)-(f) for the first to the fifth layer). This aligns

with our hypothesis that reservoir layers learn shared features of uncertainties,

while the last readout layer represents each specific condition. Hence, analyzing

the readout weight matrix allows us to infer information about wind magnitude.

92 Learning-based Controller Design for Non-Parametric Uncertainties

Fig.5.6
C

om
p

arison
ofcon

trolb
eh

avior
b

etw
een

ou
r

p
rop

osed
learn

in
g-b

ased
con

troller
(E

SN
)an

d
an

offl
in

e
learn

in
g-b

ased
con

troller
(FN

N
).(a)D

istrib
u

tion
sh

iftin
E

u
ler

an
gles

(i.e.,n
etw

ork
in

p
u

ts).(b
)D

istrib
u

tion
sh

iftin
n

etw
ork

p
red

iction
s

an
d

th
e

learn
in

g
p

erform
an

ce
o

fF
N

N
.(c)

Trackin
g

p
erfo

rm
an

ce
fo

r
execu

tin
g

a
fi

gu
re-8

m
an

eu
ver.(d

)
P

o
sitio

n
an

d
velo

city.

5.7 Conclusions 93

Fig. 5.7 Post-hoc visualization using t-SNE. (a) Clustering of readout weight matrix. (b)-(f)
Clustering of reservoir states.

5.7 Conclusions

In this chapter, we proposed a novel control architecture, comprising a nomi-

nal controller with an online residual learning module based on the RC paradigm

for quadrotor tracking control under non-parametric uncertainties. Our approach

excels in dynamically learning the unknowns on the fly, thereby extending its

applicability to a broader operating range. Moreover, we addressed the chal-

lenge of enhancing trustworthiness inherent in most of the learning-based ap-

proaches through tailored post-hoc interpretation techniques designed for ESN.

This involves analyzing reservoir dynamics and seeking interpretations for net-

work predictions. Our simulations demonstrate the feasibility of online learning,

showcasing superior performance over both a nominal and an offline-trained

learning-based controller.

94 Learning-based Controller Design for Non-Parametric Uncertainties

As for future work, we aim to extend the current results to handle noisy mea-

surement data, which could pose difficulties for network interpretation. To ad-

dress this, we will explore alternative clustering methods that, ideally, do not ne-

cessitate a specified number of clusters, support arbitrarily shaped clusters, prove

effective for outlier detection, and provide deterministic results. Furthermore, we

aim to devise novel control algorithms that utilize interpretable information to

expedite adaptation and enhance context-awareness of the robot operating in

unknown scenarios.

Chapter 6

Concluding Remarks and Future Work

The growing recognition of trustworthiness as a crucial factor for deploying

deep learning and other learning-based approaches in safety-critical systems has

led to a demand for revolutionary advancements in modern black-box solutions.

While a systematic framework is currently lacking, transparent models and post-

hoc analysis have emerged as two promising avenues to address this challenge.

Transparent models offer the potential to unveil the inner workings of black-

box systems by integrating data with prior knowledge. These models exhibit

enhanced learning capabilities, requiring less data, while achieving improved

generalizability and interpretability compared to their black-box counterparts.

Conversely, post-hoc analysis provides alternative means for gaining insights into

models that are inherently opaque. Techniques included within this category

can be found such as model simplification, feature relevance assessment, and

visualization.

In the specific domain of UAV modeling and control, numerous open problems

persist, which are outlined as follows:

(i) The need of online learning or adaptation: While the majority of existing

efforts in the field of UAVs focus on offline solutions, there is a pressing need

to develop algorithms that enable UAVs to continuously learn and adapt

in real-time. This capability is essential for effectively navigating dynamic

environments and tackling evolving tasks. However, several challenges must

be addressed to achieve this goal, including the paucity of representative

96 Concluding Remarks and Future Work

data and the limited computational resources available onboard for training

purposes.

(ii) Addressing the "chicken or egg" problem: In the context of PINN model-

ing or control, a challenging issue arises, which we call the “chicken and

egg problem.” This problem arises when we aim to utilize PINNs to model

unknown and complex dynamics by leveraging their data-driven charac-

teristics, i.e., their strong approximation capabilities. However, in order

to incorporate physics into the data-driven model, additional prior knowl-

edge needs to be embedded through appropriate means, e.g., either by

introducing an inductive bias or a learning bias. This challenge stems from

the difficulty of finding suitable knowledge for the unknowns we intend to

model using PINNs. The key concern is that we require known information

that cannot be explicitly expressed using mathematical expressions, as is

typically done with MBC techniques. This creates a dilemma in finding the

necessary prior knowledge that can enhance the physics-informed aspect

of the PINN solutions.

(iii) Development of a systematic framework for post-hoc analysis: While

several post-hoc analysis techniques are available, there is still a lack of

a systematic framework to perform effective and insightful analysis. For

example, a specific challenge in this regard is determining which parameters

of a DNN should be subjected to analysis. Given the complex structure with

numerous layers and parameters in a DNN, selecting representative features

becomes challenging due to the opacity of these models. To address this

issue, there is a crucial need for both theoretical and empirical studies to

explore this topic and provide guidance for conducting meaningful post-

hoc analysis. In terms of UAV applications, it is highly desirable to extract

relevant information that offers insights into the behavior and performance

of the system, e.g., the system’s state or high-level situation awareness. By

achieving this, transparency and interpretability of learning-based UAV

systems can be significantly enhanced.

(iv) Leveraging post-hoc information effectively: In addition to enhancing

transparency and interpretability, one of the most intriguing benefits of post-

hoc analysis is the potential for informing the design process by leveraging

the obtained insights. This raises the important question of how we can

97

effectively exploit these insights to improve controllers and overall system

performance in UAV applications. For example, by analyzing the results

of post-hoc analysis, we can identify areas that require improvement and

make informed decisions to enhance various aspects of UAV systems. This

may involve refining controller designs, optimizing control strategies, and

fine-tuning parameters based on the patterns and behaviors identified

through post-hoc analysis. By leveraging these insights, we can fully harness

the potential of post-hoc analysis and achieve tangible benefits such as

improved system performance, more effective decision-making processes,

and a deeper understanding of the underlying dynamics and behaviors of

UAVs.

(v) Real-world algorithm validation for complex tasks: Real-world validation

plays a crucial role in the development and deployment of UAV systems.

While simulators are valuable tools for initial testing and validation, they

have inherent limitations in accurately representing the complexities of

real-world environments, especially for complex tasks. These limitations

give rise to the sim-to-real gap, where algorithms and designs that perform

well in simulation may not perform as expected in real-world scenarios.

Along with the development of trustworthy data-driven modeling and con-

trol algorithms, allocating resources and efforts to real-world validation is

essential for building trustworthy UAV systems.

By addressing these open problems, significant advancements can be achieved,

leading to the development of safer, more reliable, and more interpretable UAV

control systems. In particular, enhancing the interpretability of data-driven mod-

eling and control algorithms is crucial for building trust and facilitating human

understanding. Interpretable systems allow operators and stakeholders to com-

prehend the decision-making processes and reasoning behind system actions.

This transparency is extremely important in safety-critical systems.

References

[1] Mostafa Hassanalian and Abdessattar Abdelkefi. Classifications, applica-
tions, and design challenges of drones: A review. Progress in Aerospace
Sciences, 91:99–131, 2017.

[2] Chenyao Wang, Su Wang, Guido de Croon, and Salua Hamaza. Embodied
airflow sensing for improved in-gust flight of flapping wing MAVs. Frontiers
in Robotics and AI, 9, 2022.

[3] Zhiwei Zhang, Yuhang Zhong, Junlong Guo, Qianhao Wang, Chao Xu, and
Fei Gao. Auto Filmer: Autonomous aerial videography under human inter-
action. IEEE Robotics and Automation Letters, 8(2):784–791, 2023.

[4] Jun Zeng, Prasanth Kotaru, and Koushil Sreenath. Geometric control and
differential flatness of a quadrotor UAV with load suspended from a pulley.
2019 American Control Conference (ACC), pages 2420–2427, 2019.

[5] Weibin Gu, Dewen Hu, Liang Cheng, Yabing Cao, Alessandro Rizzo, and
Kimon P. Valavanis. Autonomous wind turbine inspection using a quadro-
tor. 2020 International Conference on Unmanned Aircraft Systems (ICUAS),
pages 709–715, 2020.

[6] Jacob R. Goodman, Juan S. Cely, Thomas Beckers, and Leonardo Jesus
Colombo. Geometric control for load transportation with quadrotor UAVs
by elastic cables. ArXiv, abs/2111.00777, 2021.

[7] Kenta Takaya, Hiroshi Ohta, Keishi Shibayama, and Valeri Kroumov. Track-
ing control of unmanned aerial vehicle for power line inspection. Motion
Planning [Working Title], 2021.

[8] Chao Huang, Zhenxing Ming, and Hailong Huang. Drone stations-aided
beyond-battery-lifetime flight planning for parcel delivery. IEEE Transac-
tions on Automation Science and Engineering, 20(4):2294–2304, 2023.

[9] Nihal Dalwadi, Dipankar Deb, and S. M. Muyeen. Adaptive backstepping
controller design of quadrotor biplane for payload delivery. IET Intelligent
Transport Systems, 2022.

References 99

[10] Weibin Gu, Kimon P. Valavanis, Matthew J. Rutherford, and Alessandro
Rizzo. UAV model-based flight control with artificial neural networks: A
survey. Journal of Intelligent & Robotic Systems, 100:1469 – 1491, 2020.

[11] Dario Brescianini, Markus Hehn, and Raffaello D’Andrea. Quadrocopter
pole acrobatics. 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3472–3479, 2013.

[12] Elia Kaufmann, Antonio Loquercio, René Ranftl, Matthias Müller, Vladlen
Koltun, and Davide Scaramuzza. Deep drone acrobatics. ArXiv,
abs/2006.05768, 2020.

[13] Simone Martini, Margareta Stefanovic, Alessandro Rizzo, Matthew J. Ruther-
ford, Patrizia Livreri, and Kimon P. Valavanis. A benchmark framework
for testing, evaluation, and comparison of quadrotor linear and nonlinear
controllers. 2023 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 471–478, 2023.

[14] Jessica Alvarenga, Nikolaos I Vitzilaios, Kimon P Valavanis, and Matthew J
Rutherford. Survey of unmanned helicopter model-based navigation and
control techniques. Journal of Intelligent & Robotic Systems, 80(1):87–138,
2015.

[15] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Mueller,
Vladlen Koltun, and Davide Scaramuzza. Champion-level drone racing
using deep reinforcement learning. Nature, 620:982–987, 08 2023.

[16] Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, and Davide
Scaramuzza. NeuroBEM: Hybrid aerodynamic quadrotor model. ArXiv,
abs/2106.08015, 2021.

[17] G.M. Hoffmann, Haomiao Huang, Steven L. Waslander, and Claire J. Tomlin.
Precision flight control for a multi-vehicle quadrotor helicopter testbed.
Control Engineering Practice, 19:1023–1036, 2011.

[18] Petros A. Ioannou and Jing Sun. Robust adaptive control. 2012.

[19] Tsung-Wei Ou and Yen-Chen Liu. Adaptive backstepping tracking control
for quadrotor aerial robots subject to uncertain dynamics. 2019 American
Control Conference (ACC), pages 1–6, 2019.

[20] Tinashe Chingozha and Otis T. Nyandoro. Adaptive sliding backstepping
control of quadrotor UAV attitude. IFAC Proceedings Volumes, 47:11043–
11048, 2014.

[21] Jingqing Han. From PID to active disturbance rejection control. IEEE Trans.
Ind. Electron., 56:900–906, 2009.

[22] Julian Berberich, Johannes Köhler, Matthias A. Müller, and Frank Allgöwer.
Linear tracking MPC for nonlinear systems—part II: The data-driven case.
IEEE Transactions on Automatic Control, 67(9):4406–4421, 2022.

100 References

[23] KM Hornik, M Stinchcomb, and H White. Multilayer feedforward networks
are universal approximator. IEEE Transactions on Neural Networks, 2, 01
1989.

[24] Franco Scarselli and Ah Chung Tsoi. Universal approximation using feedfor-
ward neural networks: A survey of some existing methods, and some new
results. Neural Networks, 11(1):15–37, 1998.

[25] Anton Maximilian Schäfer and Hans Georg Zimmermann. Recurrent neural
networks are universal approximators. In Artificial Neural Networks–ICANN
2006: 16th International Conference, Athens, Greece, September 10-14, 2006.
Proceedings, Part I 16, pages 632–640. Springer, 2006.

[26] Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzade-
nesheli, Anima Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural
Lander: Stable drone landing control using learned dynamics. 2019 Inter-
national Conference on Robotics and Automation (ICRA), pages 9784–9790,
2019.

[27] Guanya Shi, Wolfgang Honig, Xichen Shi, Yisong Yue, and Soon-Jo Chung.
Neural-Swarm2: Planning and control of heterogeneous multirotor swarms
using learned interactions. ArXiv, abs/2012.05457, 2020.

[28] Michael O’Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, An-
ima Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural-Fly enables rapid
learning for agile flight in strong winds. Science Robotics, 7, 2022.

[29] Alejandro Barredo Arrieta, Natalia Díaz Rodríguez, Javier Del Ser, Adrien
Bennetot, Siham Tabik, A. Barbado, Salvador García, Sergio Gil-Lopez,
Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera.
Explainable artificial intelligence (XAI): Concepts, taxonomies, opportuni-
ties and challenges toward responsible AI. ArXiv, abs/1910.10045, 2019.

[30] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan
Wang, and Liu Yang. Physics-informed machine learning. 2021.

[31] Weibin Gu, Stefano Primatesta, and Alessandro Rizzo. Physics-informed
neural network for quadrotor dynamical modeling. Robotics and Au-
tonomous Systems, 2023.

[32] Weibin Gu, Stefano Primatesta, and Alessandro Rizzo. Robust adaptive
tracking control on SE(3) for quadrotor aggressive maneuvers. IEEE Trans-
actions on Automation Science and Engineering, 2024 (Under Review).

[33] Weibin Gu, , and Alessandro Rizzo. Online residual learning using inter-
pretable reservoir computing for quadrotor control. 2024 International
Conference on Unmanned Aircraft Systems (ICUAS), 2024 (In Press).

[34] Johan Ernest Mebius. Derivation of the Euler-Rodrigues formula for three-
dimensional rotations from the general formula for four-dimensional rota-
tions. arXiv: General Mathematics, 2007.

References 101

[35] T.D. Barfoot. State Estimation for Robotics. Cambridge University Press,
2017.

[36] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas im-
manent in nervous activity. 1943. Bulletin of mathematical biology, 52
1-2:99–115; discussion 73–97, 1990.

[37] Frank F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65 6:386–408,
1958.

[38] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323:533–536, 1986.

[39] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the dimension-
ality of data with neural networks. Science, 313 5786:504–7, 2006.

[40] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neu-
ral networks : the official journal of the International Neural Network Society,
61:85–117, 2015.

[41] Mark Hudson Beale, Martin T Hagan, and Howard B Demuth. Neural
network toolbox™ user’s guide. The Mathworks Inc, 1992.

[42] David S. Broomhead and David Lowe. Multivariable functional interpola-
tion and adaptive networks. Complex Systems, 2, 1988.

[43] Qinghua Zhang and Albert Benveniste. Wavelet networks. IEEE transactions
on neural networks, 3 6:889–98, 1992.

[44] Richard H. R. Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney J.
Douglas, and H. Sebastian Seung. Digital selection and analogue ampli-
fication coexist in a cortex-inspired silicon circuit. Nature, 405:947–951,
2000.

[45] James S. Albus. New approach to manipulator control: The cerebellar model
articulation controller (CMAC). 1975.

[46] John Joseph Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of
Sciences of the United States of America, 79 8:2554–8, 1982.

[47] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211,
1990.

[48] Herbert Jaeger. The echo state approach to analysing and training recurrent
neural networks. 2001.

[49] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral Computation, 9:1735–1780, 1997.

102 References

[50] Sepp Hochreiter and Yoshua Bengio. Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies. 2001.

[51] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: Encoder-decoder
approaches. ArXiv, abs/1409.1259, 2014.

[52] Alan Lloyd Hodgkin and Andrew Fielding Huxley. A quantitative description
of membrane current and its application to conduction and excitation in
nerve. The Journal of physiology, 117 4:500–44, 1952.

[53] Wulfram Gerstner and Werner M. Kistler. Spiking neuron models: Single
neurons, populations, plasticity. 2002.

[54] Paul J. Werbos. Backpropagation through time: What it does and how to do
it. 1990.

[55] Ronald J. Williams and David Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural Computation, 1:270–280,
1989.

[56] Hazim Shakhatreh, Ahmad H. Sawalmeh, Ala Al-Fuqaha, Zuochao Dou,
Eyad K. Almaita, Issa M. Khalil, Noor Shamsiah Othman, Abdallah
Khreishah, and Mohsen Guizani. Unmanned aerial vehicles (UAVs): A sur-
vey on civil applications and key research challenges. IEEE Access, 7:48572–
48634, 2019.

[57] Ali Punjani and Pieter Abbeel. Deep learning helicopter dynamics models.
2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 3223–3230, 2015.

[58] Somil Bansal, Anayo K. Akametalu, Frank J. Jiang, Forrest Laine, and Claire J.
Tomlin. Learning quadrotor dynamics using neural network for flight con-
trol. 2016 IEEE 55th Conference on Decision and Control (CDC), pages
4653–4660, 2016.

[59] Jesse Callanan, Rayhaan Iqbal, Revant Adlakha, Amir Behjat, Souma Chowd-
hury, and Mostafa Nouh. Large-aperture experimental characterization of
the acoustic field generated by a hovering unmanned aerial vehicle. The
Journal of the Acoustical Society of America, 150 3:2046, 2021.

[60] Rayhaan Iqbal, Amir Behjat, Revant Adlakha, Jesse Callanan, Mostafa
Nouh, and Souma Chowdhury. Efficient training of transfer mapping in
physics-infused machine learning models of UAV acoustic field. ArXiv,
abs/2201.06090, 2022.

[61] Rayhaan Iqbal, Amir Behjat, Revant Adlakha, Jesse Callanan, Mostafa Nouh,
and Souma Chowdhury. Auto-differentiable transfer mapping architecture
for physics-infused learning of acoustic field. IEEE Transactions on Artificial
Intelligence, 2023.

References 103

[62] Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks:
Using physics as model prior for deep learning. ArXiv, abs/1907.04490,
2019.

[63] Jayesh K. Gupta, Kunal Menda, Zachary Manchester, and Mykel J. Kochen-
derfer. A general framework for structured learning of mechanical systems.
ArXiv, abs/1902.08705, 2019.

[64] Michael Lutter and Jan Peters. Combining physics and deep learning to
learn continuous-time dynamics models. ArXiv, abs/2110.01894, 2021.

[65] Anuj Karpatne, William Watkins, Jordan S. Read, and Vipin Kumar. Physics-
guided neural networks (PGNN): An application in lake temperature model-
ing. ArXiv, abs/1710.11431, 2017.

[66] Sagi Shaier, Maziar Raissi, and Padmanabhan Seshaiyer. Data-driven ap-
proaches for predicting spread of infectious diseases through DINNs: Dis-
ease informed neural networks. 2021.

[67] S. Shah, Debadeepta Dey, C. Lovett, and Ashish Kapoor. AirSim: High-
fidelity visual and physical simulation for autonomous vehicles. In FSR,
2017.

[68] Carsten Schelp. An alternative way to plot the covariance el-
lipse. https://carstenschelp.github.io/2018/09/14/Plot_Confidence_
Ellipse_001.html, 2018.

[69] J. Enrique Sierra and Matilde Santos Peñas. Modelling engineering systems
using analytical and neural techniques: Hybridization. Neurocomputing,
271:70–83, 2018.

[70] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-
informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J.
Comput. Phys., 378:686–707, 2019.

[71] Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural
networks. ArXiv, abs/1906.01563, 2019.

[72] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Sym-
plectic ODE-Net: Learning Hamiltonian dynamics with control. ArXiv,
abs/1909.12077, 2020.

[73] Anuj Karpatne, Gowtham Atluri, James H. Faghmous, Michael S. Steinbach,
Arindam Banerjee, Auroop Ratan Ganguly, Shashi Shekhar, Nagiza F. Sama-
tova, and Vipin Kumar. Theory-guided data science: A new paradigm for
scientific discovery from data. IEEE Transactions on Knowledge and Data
Engineering, 29:2318–2331, 2017.

https://carstenschelp.github.io/2018/09/14/Plot_Confidence_Ellipse_001.html
https://carstenschelp.github.io/2018/09/14/Plot_Confidence_Ellipse_001.html

104 References

[74] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and
Lawrence Carin. Cyclical annealing schedule: A simple approach to mitigat-
ing KL vanishing. In NAACL, 2019.

[75] Lorenz Meier, Dominik Honegger, and M. Pollefeys. PX4: A node-based
multithreaded open source robotics framework for deeply embedded plat-
forms. 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 6235–6240, 2015.

[76] Nathan P. Koenig and Andrew Howard. Design and use paradigms for
Gazebo, an open-source multi-robot simulator. 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), 3:2149–2154 vol.3, 2004.

[77] I. C. Cheeseman, Ph. D, W. E. Bennett, Ph. D, and W. E. Bennett. The effect
of ground on a helicopter rotor in forward flight, 1955.

[78] Stephen A. Conyers, Matthew J. Rutherford, and Kimon P. Valavanis. An
empirical evaluation of ground effect for small-scale rotorcraft. 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 1244–
1250, 2018.

[79] Girish Joshi, Jasvir Virdi, and Girish V. Chowdhary. Asynchronous deep
model reference adaptive control. ArXiv, abs/2011.02920, 2020.

[80] Xinyue Kan, Justin R. Thomas, Hanzhe Teng, Herbert G. Tanner, Vijay R.
Kumar, and Konstantinos Karydis. Analysis of ground effect for small-scale
UAVs in forward flight. IEEE Robotics and Automation Letters, 4:3860–3867,
2019.

[81] Yuhong Hou, Dengkai Chen, and Shuming Yang. Adaptive robust trajectory
tracking controller for a quadrotor UAV with uncertain environment param-
eters based on backstepping sliding mode method. IEEE Transactions on
Automation Science and Engineering, 2023.

[82] Xiangyu Shao, Guanghui Sun, Weiran Yao, Jianxing Liu, and Ligang Wu.
Adaptive sliding mode control for quadrotor UAVs with input saturation.
IEEE/ASME Transactions on Mechatronics, 27(3):1498–1509, 2022.

[83] A. R. P. Andriën, Demy Kremers, Dave Kooijman, and Duarte J. Antunes.
Model predictive tracking controller for quadcopters with setpoint conver-
gence guarantees. 2020 American Control Conference (ACC), pages 3205–
3210, 2020.

[84] Xuetao Zhang, Yan Zhuang, Xuebo Zhang, and Yongchun Fang. A novel
asymptotic robust tracking control strategy for rotorcraft UAVs. IEEE Trans-
actions on Automation Science and Engineering, 20(4):2338–2349, 2023.

[85] John Stuelpnagel. On the parametrization of the three-dimensional rotation
group. Siam Review, 6:422–430, 1964.

References 105

[86] Sanjay P. Bhat and Dennis S. Bernstein. A topological obstruction to con-
tinuous global stabilization of rotational motion and the unwinding phe-
nomenon. Systems & Control Letters, 39:63–70, 2000.

[87] Evan G. Hemingway and Oliver M. O’Reilly. Perspectives on Euler angle sin-
gularities, gimbal lock, and the orthogonality of applied forces and applied
moments. Multibody System Dynamics, 44:31–56, 2018.

[88] Christopher G. Mayhew, Ricardo G. Sanfelice, and Andrew R. Teel. On
quaternion-based attitude control and the unwinding phenomenon. Pro-
ceedings of the 2011 American Control Conference, pages 299–304, 2011.

[89] Taeyoung Lee, Melvin Leok, and N. Harris McClamroch. Geometric tracking
control of a quadrotor UAV on SE(3). 49th IEEE Conference on Decision and
Control (CDC), pages 5420–5425, 2010.

[90] Taeyoung Lee. Geometric tracking control of the attitude dynamics of a
rigid body on SO(3). Proceedings of the 2011 American Control Conference,
pages 1200–1205, 2010.

[91] Farhad A. Goodarzi, Daewon Lee, and Taeyoung Lee. Geometric nonlinear
PID control of a quadrotor UAV on SE(3). 2013 European Control Conference
(ECC), pages 3845–3850, 2013.

[92] Taeyoung Lee. Robust adaptive attitude tracking on SO(3) with an applica-
tion to a quadrotor UAV. IEEE Transactions on Control Systems Technology,
21:1924–1930, 2013.

[93] Farhad A. Goodarzi, Daewon Lee, and Taeyoung Lee. Geometric adap-
tive tracking control of a quadrotor unmanned aerial vehicle on SE(3) for
agile maneuvers. Journal of Dynamic Systems Measurement and Control-
transactions of The Asme, 137:091007, 2014.

[94] Yun Yu, Shuo Yang, Mingxi Wang, Cheng Li, and Zexiang Li. High perfor-
mance full attitude control of a quadrotor on SO(3). 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 1698–1703, 2015.

[95] Jacob Johnson and Randal W. Beard. Globally-attractive logarithmic geo-
metric control of a quadrotor for aggressive trajectory tracking. IEEE Control
Systems Letters, 6:2216–2221, 2021.

[96] Taeyoung Lee. Geometric control of quadrotor UAVs transporting a cable-
suspended rigid body. IEEE Transactions on Control Systems Technology,
26(1):255–264, 2018.

[97] Sangli Teng, William Clark, Anthony M. Bloch, Ram Vasudevan, and Maani
Ghaffari. Lie algebraic cost function design for control on Lie groups. 2022
IEEE 61st Conference on Decision and Control (CDC), pages 1867–1874, 2022.

[98] Francesco Bullo and Richard M. Murray. Proportional derivative (PD) con-
trol on the Euclidean group. 1995.

106 References

[99] Eugene Lavretsky and Kevin A. Wise. Robust and adaptive control. 2013.

[100] Manmohan Sharma and Indra Narayan Kar. Adaptive geometric control of
quadrotors with dynamic offset between center of gravity and geometric
center. Asian Journal of Control, 23:1923 – 1935, 2020.

[101] Davide Invernizzi and Marco Lovera. Geometric tracking control of a quad-
copter tiltrotor UAV. IFAC-PapersOnLine, 50:11565–11570, 2017.

[102] Xiao-Ning Shi, Yong-An Zhang, and Di Zhou. Almost-global finite-time
trajectory tracking control for quadrotors in the exponential coordinates.
IEEE Transactions on Aerospace and Electronic Systems, 53:91–100, 2017.

[103] Yushu Yu and Xilun Ding. A global tracking controller for underactuated
aerial vehicles: Design, analysis, and experimental tests on quadrotor.
IEEE/ASME Transactions on Mechatronics, 21:2499–2511, 2016.

[104] Jennifer S Yeom, Guanrui Li, and Giuseppe Loianno. Geometric fault-
tolerant control of quadrotors in case of rotor failures: An attitude based
comparative study. ArXiv, abs/2306.13522, 2023.

[105] Daniel Mellinger and Vijay R. Kumar. Minimum snap trajectory generation
and control for quadrotors. 2011 IEEE International Conference on Robotics
and Automation, pages 2520–2525, 2011.

[106] Petar V. Kokotovic. The joy of feedback: nonlinear and adaptive. IEEE
Control Systems, 12:7–17, 1992.

[107] Eugene Lavretsky and Travis E. Gibson. Projection operator in adaptive
systems. ArXiv, abs/1112.4232, 2011.

[108] Fabian Riether. Agile quadrotor maneuvering using tensor-decomposition-
based globally optimal control and onboard visual-inertial estimation. 2016.

[109] Girish Joshi and Girish V. Chowdhary. Adaptive control using Gaussian-
process with model reference generative network. 2018 IEEE Conference on
Decision and Control (CDC), pages 237–243, 2018.

[110] Geesara Kulathunga, Hany Hamed, and Alexandr Klimchik. Residual dy-
namics learning for trajectory tracking for multi-rotor aerial vehicles. ArXiv,
abs/2305.15791, 2023.

[111] Alessandro Saviolo, Guanrui Li, and Giuseppe Loianno. Physics-inspired
temporal learning of quadrotor dynamics for accurate model predictive
trajectory tracking. IEEE Robotics and Automation Letters, 7:10256–10263,
2022.

[112] Bennett Breese, Manish Kumar, Michael A. Bolender, and David W. Casbeer.
Physics-based neural networks for modeling & control of aerial vehicles.
2022 American Control Conference (ACC), pages 3218–3223, 2022.

References 107

[113] Paul Tylkin, Tsun-Hsuan Wang, Kyle Palko, R. Allen, Ho Chit Siu, Daniel
Wrafter, Tim Seyde, Alexander Amini, and Daniela Rus. Interpretable au-
tonomous flight via compact visualizable neural circuit policies. IEEE
Robotics and Automation Letters, 7:3265–3272, 2022.

[114] Mantas Lukosevicius and Herbert Jaeger. Reservoir computing approaches
to recurrent neural network training. Comput. Sci. Rev., 3:127–149, 2009.

[115] Claudio Gallicchio and Alessio Micheli. Echo state property of deep reservoir
computing networks. Cognitive Computation, 9:337–350, 2017.

[116] Claudio Gallicchio and Alessio Micheli. Architectural richness in deep
reservoir computing. Neural Computing and Applications, 35:24525 – 24542,
2022.

[117] Stephen A Conyers, Matthew J Rutherford, and Kimon P Valavanis. An
empirical evaluation of ground effect for small-scale rotorcraft. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages
1244–1250. IEEE, 2018.

[118] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Deep reservoir com-
puting: A critical experimental analysis. Neurocomputing, 268:87–99, 2017.

[119] Stephen A. Conyers. Empirical evaluation of ground, ceiling, and wall effect
for small-scale rotorcraft. 2019.

[120] P. J. Sánchez-Cuevas, G. Heredia, and A. Ollero. Characterization of the aero-
dynamic ground effect and its influence in multirotor control. International
Journal of Aerospace Engineering, 2017:1–17, 2017.

[121] Elizabeth Bondi, Debadeepta Dey, Ashish Kapoor, Jim Piavis, S. Shah, Fei
Fang, B. Dilkina, R. Hannaford, Arvind Iyer, L. Joppa, and Milind Tambe.
AirSim-W: A simulation environment for wildlife conservation with UAVs.
Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustain-
able Societies, 2018.

[122] Ratnesh Madaan, N. Gyde, Sai Vemprala, Matthew Brown, K. Nagami, Tim
Taubner, E. Cristofalo, D. Scaramuzza, M. Schwager, and Ashish Kapoor.
AirSim drone racing lab. In NeurIPS, 2019.

Appendix A

Multirotor Ground Effect Plugin

Introduction

Ground effect is a well-known phenomenon for UAVs in both research and

practice, which normally refers to an increase lift when UAVs fly close to the

ground. For helicopters, Cheeseman-Bennett equation [77] is one of the most

acknowledged models to describe such thrust increment due to ground effect.

However, this model was proposed based on assumptions only valid for large

rotors with uniform blades and variable pitch spinning at a constant speed, which

no longer hold for multirotors.

Drawn by the imperative need for a mathematical foundation in controller

design, a number of studies have emerged in recent years, focusing on the em-

pirical modeling and evaluation of multirotor ground effect. For example, [119]

showed that Cheeseman-Bennett model cannot be applied to today’s multirotors

and hence constructed a parametric model based on the collected empirical data

using a quadrotor test frame; [120] analyzed the partial ground effect of multirotor

which appears when some of the rotors experience the ground effect but not all.

Besides model-based approaches, learning-based techniques have also been in-

vestigated to learn the ground effect model directly from data, such as [26] where

a DNN was employed to predict unknown ground effect force and then was used

in the controller synthesis to improve the landing precision for quadrotor.

Despite the success of previous studies on multirotor ground effect, all the

efforts were exclusively directed towards real UAV platforms, introducing inherent

109

risks during near-ground flight operations. Additionally, it could be laborious

and require extensive efforts for both data collection and performance evaluation.

These challenges underscore the pressing need for alternative methodologies that

can expedite research and development processes while minimizing associated

risks.

As a matter of fact, medium-to-high-fidelity simulators have played a pivotal

role in developing advanced algorithms for UAVs in the last decades. Among them,

AirSim is one of the most powerful simulators thanks to the visual and physics

engine at its core. Compared to other alternatives such as Gazebo [76], AirSim

is built on top of physics engine with more advanced render techniques made

by UE4, thereby enabling complex and rich environments that are close to the

real world. Moreover, it is extensible to accommodate new types of hardware

platforms and software protocols, and allows users to create custom APIs in dif-

ferent programming languages including C++ and Python. As a result, a range

of research has been carried out on AirSim expansions for UAV applications. For

example, AirSim-W [121] presented a simulation environment that was designed

specifically for wildlife conservation, while [122] proposed a simulation frame-

work to facilitate fast prototyping of drone racing algorithms. In a similar vein,

our work exploits AirSim as the core to build the simulation environment that can

emulate quadrotor ground effect.

We introduce AirSim-GE (“GE” stands for Ground Effect), a recently released

quadrotor ground effect plugin designed to seamlessly integrate with Microsoft

AirSim [67] ecosystem. Two ground effect models, comprising the widely recog-

nized Cheeseman-Bennett model and a parametric model derived from empirical

data, were implemented and assessed with high-level APIs provided, opening av-

enues for future research within the UAV community. AirSim-GE is now available

on GitLab at https://gitlab.com/PoliToComplexSystemLab/AirSim-GE.

In the following sections, we begin by introducing two ground effect models,

namely the Cheeseman-Bennett and parametric models, both of which have been

integrated into the AirSim libraries. Then, we provide a detailed explanation of the

simulator architecture along with implementation specifics. Lastly, we present an

illustrative example of utilizing AirSim-GE to simulate quadrotor ground effect

within the simulator.

https://gitlab.com/PoliToComplexSystemLab/AirSim-GE

110 Multirotor Ground Effect Plugin

Mathematical Model of Ground Effect

Cheeseman-Bennett model [77] is one of the most widely accepted mathemat-

ical models for describing helicopter ground effect, given as

TIGE

TOGE
= 1

1− (R
4Z)2

iff
Z

R
> 0.25, (A.1)

where Z denotes the altitude above the ground, R denotes propeller radius, and

TIGE ,TOGE denote the lift experienced while hovering In-Ground Effect (IGE) and

Out-of-Ground Effect (OGE), respectively. Nonetheless, this model is based on

assumptions that are only valid for helicopters which use large rotors with uniform

blades and variable pitch spinning at a constant speed. Hence, it fails to correctly

predict the ground effect for multirotors with fixed-pitch propellers spinning at

variable speeds.

To substantiate this claim, experimental findings in [119] showed the discrep-

ancy of Cheeseman-Bennett model with real-world flight data of a quadrotor.

Furthermore, a parametric model was derived through MATLAB Curve Fitting

Toolbox using empirical data collected from quadrotor test frame, given as

TIGE

TOGE
= p1x4 +p2x3 +p3x2 +p4x +p5

x3 +q1x2 +q2x +q3
, (A.2)

where x := Z /R, p1, p2, p3, p4, p5, q1, q2, q3 are polynomial functions of propeller

spacing (i.e., two times of the moment arm) and propeller radius, as given therein.

Following this, the aerodynamic force induced by the ground effect along body

z-axis can thereby be calculated as TIGE −TOGE . Note that (A.2) is computationally

efficient since all of the coefficients can be calculated a priori, given the geometry

information of the quadrotor. Once the coefficients are known, the model only re-

quires altitude measurement to calculate the thrust ratio through basic arithmetic

operations.

111

AirSim-GE

Simulator Architecture

Fig. A.1 Architecture and components of our custom simulation environment. (a)
Microsoft AirSim and UE4, (b) PX4 firmware, (c) Ground control station, QGroundControl,
and (d) Overall architecture of the simulation environment enhanced with our ground
effect implementation.

The overall architecture of our custom simulation environment is depicted in

Fig. A.1, which consists of three major components (see Fig. A.1(a)-(c)):

(i) Visual and physical simulator

AirSim, an open-source simulator, is designed for drones, cars, and other

vehicles. Supporting cross-platform compatibility, it facilitates Software-

In-The-Loop (SITL) simulation with baseline flight controllers such as PX4

and ArduPilot, and Hardware-In-The-Loop (HITL) with PX4 for realistic

simulation. Aimed at fostering AI research, AirSim serves as a platform,

leveraging the UE4 for advanced rendering, for experimenting with deep

learning, computer vision, and reinforcement learning algorithms for au-

tonomous vehicles. Furthermore, AirSim provides APIs for data retrieval

and vehicle control in a platform-independent manner, enhancing its utility

for research purposes.

112 Multirotor Ground Effect Plugin

(ii) Flight controller firmware

The PX4 flight stack provides a range of flight modes and safety features that

enable various capabilities, including autonomous navigation, waypoint

following, altitude hold, and manual control. Additionally, it offers fail-safe

mechanisms such as return-to-home, geofencing, and battery monitoring

to enhance safety and reliability during flight operations.

(iii) Ground control station

QGroundControl serves as a comprehensive ground control station software

for managing and monitoring UAVs. It facilitates mission planning, way-

point navigation, real-time telemetry monitoring, and firmware updates.

Additionally, it provides features for configuring vehicle parameters, man-

aging flight modes, and conducting pre-flight checks to ensure safe and

efficient UAV operations.

Implementation Details

Setting up distance sensors

For computing either Cheeseman-Bennett (A.1) or parametric model (A.2),

altitude above the ground (Z) is necessary information. To get this data, we used

the distance sensor (i.e., a 1-D LiDAR mounted at the bottom of the quadro-

tor pointing downwards) through AirSim APIs. The distance sensor was spec-

ified in the AirSim configuration file settings.json located the directory of

Documents/AirSim, as shown in Code Listing A.1. Note that the position of the

sensor was set to be 0.85m below the center of mass of the multirotor (Z: 0.85).

This is for sensor calibration from simulation trials, taking the average of subtrac-

tion between distance sensor measurement and ground truth when Z = 0.

1 "DistanceCustom": {

2 "SensorType": 5,

3 "Enabled": true,

4 "MinDistance": 0.1,

5 "MaxDistance": 40,

6 "X": 0, "Y": 0, "Z": 0.85,

7 "Yaw": 0, "Pitch": −90, "Roll": 0,

8 "DrawDebugPoints": true

113

9 },

Listing A.1 Sensor specification

Calculating thrust difference

In our implementation, it is assumed that the ground effect only affects thrust

in the vertical axis of the multirotor, with negligible horizontal variation, which is

consistent with the setting used in the previous research [26, 119]. Therefore, the

change in thrust resulting from the ground effect is determined by the difference

TIGE −TOGE, where TIGE and TOGE are computed from (A.1) or (A.2).

Interacting with physics engine

The main part of our ground effect implementation can be found in a source

file, namely MultiRotorGroundEffect.cpp. To interface with the physics en-

gine in AirSim, we established and initialized the ground effect pointer within

MultiRotorPhysicsBody.hpp as

1 #include "MultiRotorGroundEffect.hpp"

2 MultiRotorGroundEffect* multirotor_ge_;

3 multirotor_ge_ = new MultiRotorGroundEffect;

and defined the ground effect function that overrides the virtual one defined in

the base class PhysicsBody.hpp as

1 virtual real_T getGroundEffect() const override

Lastly, we integrated our custom function of ground effect getGroundEffect()
into the getNextKinematicsNoCollision() within FastPhysicsEngine.hpp.

This integration ensures that the total wrench, comprising the body wrench, drag

wrench, and ground effect, is computed for each time step. Subsequently, the

linear acceleration for the subsequent time step is derived from this aggregated

wrench. It is important to note that the outlined procedures provide a basic

understanding of the ground effect implementation within the physics engine,

acknowledging the existence of additional code modifications beyond the scope

of this appendix.

114 Multirotor Ground Effect Plugin

C++/Python APIs

To streamline the utilization of AirSim-GE, we have created high-level APIs,

namely simSetGroundEffect(), in both C++ and Python. The prefix sim denotes

that the functionality is exclusively applicable within simulation mode. These

APIs enable users to activate the ground effect feature and select a specific model

(Cheeseman-Bennett or parametric) tailored to their needs.

The creation of these APIs started with the definition of the ground effect API

as a vehicle-based API within VehicleApiBase.hpp:

1 virtual void simSetGroundEffect(int model) = 0;

followed by its implementation in MavLinkMultirotorApi.hpp. Then, an RPC

handler was added in the server to invoke our implemented method within

RpcLibServerBase.cpp as

1 pimpl_−>server.bind("simSetGroundEffect", [&](int model, const std::string& vehicle_name)

−> void {

2 getVehicleApi(vehicle_name)−>simSetGroundEffect(model);

3 }) ;

Afterward, C++ and Python client API methods were added to RpcLibClientBase.cpp
and client.py with the following code snippets, respectively:

1 void RpcLibClientBase::setGroundEffect(int model, const std::string& vehicle_name)

2 {

3 pimpl_−>client.call("simSetGroundEffect", model,

4 vehicle_name);

5 }

1 def simSetGroundEffect(self, model, vehicle_name = ’’):

2 """

3 Set ground effect characterised by model for multirotor corresponding to

4 vehicle_name

5

6 Args:

7 model (int): 0 to no ground effect, 1 to Cheeseman−Bennett model,

8 2 to Parametric model by Stephen Conyers

9 vehicle_name (str, optional): Name of the vehicle to send this command to

10 """

11 self .client. call (’simSetGroundEffect’, model, vehicle_name)

115

Miscellaneous

The specifications of the quadrotor considered for ground effect modeling

within the simulator are detailed in Table 3.1.

Minor adjustments to the model output have also been implemented to ad-

dress numerical stability issues, specifically setting the output ratio to 1 when
Z
R > 10 and Z

R < 0.25. A comparison between theoretical models and final im-

plementations is presented in Fig. A.2, with dotted lines indicating the collected

simulation data.

Fig. A.2 Comparison of two ground effect models: Cheeseman-Bennett model vs. para-
metric model.

Sample Code

The provided code snippet in Code Listing A.2 serves to demonstrate the

usage of the AirSim Python API for triggering the ground effect in the simulation

environment.

116 Multirotor Ground Effect Plugin

Initially, the code establishes a connection with the AirSim client and enables

API control for the multirotor. Subsequently, within a continuous loop, the script

waits for user input before switching to different ground effect models: no ground

effect (0), the Cheeseman-Bennett model (1), and the parametric model (2). The

selected ground effect model will be applied, along with a printed message con-

firming the type of the model. This example showcases the flexibility of our AirSim

API for dynamically adjusting simulation conditions.

1 import pprint

2 import setup_path

3 import airsim

4

5 client = airsim.MultirotorClient()

6 client.confirmConnection()

7 client.enableApiControl(True)

8

9 """

10 Model type

11 0: no ground effect; 1: Cheeseman−Bennett model; 2: Parametric model

12 """

13 GND_EFFECT_MODEL = 0

14 while(True):

15 airsim.wait_key(’Press any key to change ground effect model’)

16 client.simSetGroundEffect(GND_EFFECT_MODEL)

17 print(f"Python API: Current ground effect model is {GND_EFFECT_MODEL}")

18 GND_EFFECT_MODEL += 1

19 if GND_EFFECT_MODEL > 2:

20 GND_EFFECT_MODEL = 0

Listing A.2 Sample code in Python

Concluding Remarks

We hope that AirSim-GE will serve as a valuable resource for both the UAV and

AI research communities, offering a versatile tool and a practical test bed for re-

search endeavors that necessitate the consideration of ground effect phenomena.

It is important to note, however, that Microsoft is poised to launch a new simula-

tion as a successor to the original 2017 AirSim – namely, Microsoft Project AirSim.

Designed to meet the escalating demands of the aerospace industry, Project Air-

117

Sim will offer an end-to-end platform for safe development and testing of aerial

autonomy through simulation. This platform will incorporate safety measures,

code review capabilities, testing procedures, advanced simulation techniques,

and AI functionalities, all uniquely bundled within a commercial product. In light

of these developments, we endeavor to integrate our ground effect plugin into

Project AirSim upon its release and warmly invite constructive feedback to refine

our contributions in the interim.

	Contents
	List of Figures
	List of Tables
	1 Background and Motivation
	1.1 Overview of Unmanned Aerial Vehicles
	1.2 The Synergy of Modeling and Control
	1.2.1 The Past: Model-based Methods
	1.2.2 The Present: Data-driven Methods
	1.2.3 The Future: Forging a Path to Trust

	1.3 Building Trust in Algorithms: Trustworthy Machine Learning
	1.3.1 Transparent Models
	1.3.2 Post-hoc Interpretability Techniques

	1.4 Thesis Outline and Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Mathematical Model of Quadrotors
	2.3 Exponential and Logarithm Map
	2.4 Artificial Neural Networks
	2.4.1 Historical Perspective
	2.4.2 Mathematical Model of Artificial Neurons
	2.4.3 Classifications of Neural Networks
	2.4.4 Training Methods

	3 Physics-informed Neural Modeling
	3.1 Introduction
	3.2 Related Work
	3.3 Physics-informed Neural Network
	3.3.1 Network Structure
	3.3.2 Incorporation of Physics as Learning Bias
	3.3.3 Cyclical Annealing Scheduler
	3.3.4 Post-hoc Model Interpretability Visualization

	3.4 Results and Discussion
	3.4.1 Simulator
	3.4.2 Network Training
	3.4.3 Model Comparison and Ablation Study
	3.4.4 Computational Complexity

	3.5 Conclusions

	4 Robust Adaptive Controller Design for Parametric Uncertainties
	4.1 Introduction
	4.2 Related Work
	4.3 Problem Formulation
	4.4 Control Synthesis for Position Tracking
	4.5 Control Synthesis for Attitude Tracking
	4.6 Results and Discussion
	4.6.1 Simulator
	4.6.2 Maneuver #1: Doing a 360 Flip
	4.6.3 Maneuver #2: Tracking an Elliptical Helix Trajectory
	4.6.4 Maneuver #3: Tracking a Figure-8 Trajectory

	4.7 Conclusions

	5 Learning-based Controller Design for Non-Parametric Uncertainties
	5.1 Introduction
	5.2 Problem Formulation
	5.3 Reservoir Computing Paradigm
	5.3.1 Mathematical Model of Echo State Networks
	5.3.2 Training Methods
	5.3.3 Echo State Property

	5.4 Learning-based Tracking Controller
	5.4.1 Online Learning Module for Residual Dynamics
	5.4.2 Tracking Control Laws

	5.5 Post-hoc Analysis of Model Dynamics and Interpretability
	5.6 Results and Discussion
	5.6.1 Simulator
	5.6.2 Network Selection and Training
	5.6.3 Flight Control with Online Learning
	5.6.4 Comparison with an Offline Learning-based Controller

	5.7 Conclusions

	6 Concluding Remarks and Future Work
	References
	Appendix A Multirotor Ground Effect Plugin

