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High-Order Quasi-Helmholtz Projectors: Definition,
Analyses, Algorithms

Johann Bourhis , Graduate Student Member, IEEE, Adrien Merlini , Senior Member, IEEE,
and Francesco P. Andriulli , Fellow, IEEE

Abstract— The accuracy of the electric field integral equation
(EFIE) can be substantially improved using high-order dis-
cretizations. However, this equation suffers from ill-conditioning
and deleterious numerical effects in the low-frequency regime,
often jeopardizing its solution. This can be fixed using quasi-
Helmholtz decompositions, in which the source and testing
elements are separated into their solenoidal and nonsolenoidal
contributions, and then rescaled to avoid both the low-frequency
conditioning breakdown and the loss of numerical accuracy.
However, standard quasi-Helmholtz decompositions require han-
dling discretized differential operators that often worsen the
mesh refinement ill-conditioning and require the finding of the
topological cycles of the geometry, which can be expensive when
modeling complex scatterers, especially in high-order. This article
solves these drawbacks by presenting the first extension of
the quasi-Helmholtz projectors to high-order discretizations and
their application to the stabilization of the EFIE when discretized
with high-order basis functions. Our strategy will not require the
identification of the cycles and will provide constant condition
numbers for decreasing frequencies. Theoretical considerations
will be accompanied by numerical results showing the effective-
ness of our method in complex scenarios.

Index Terms— Boundary element method (BEM), electric field
integral equation (EFIE), high-order, low-frequency, precondi-
tioning, quasi-Helmholtz projectors.

I. INTRODUCTION

MODELING and simulation of electromagnetic scat-
tering from perfectly electrically conducting (PEC)

objects can be effectively performed using surface integral
equations [1], [2]. Among these formulations, the electric field
integral equation (EFIE) is one of the most widely used. This
equation is usually solved via the boundary element method
(BEM) [3] by approximating the current as a combination
of basis functions with a finite support defined on a surface
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mesh of the object. The accuracy of the method consequently
depends on the ability of the mesh and basis functions to,
respectively, describe the surface and the current’s functional
space. Very often, zeroth-order basis functions such as the
Rao–Wilton–Glisson (RWG) functions are used with flat tri-
angular cells [4]. Thus, mesh density and functional space
discretization are usually increased simultaneously by refining
the mesh, which leads to a higher number of cells and basis
functions.

Alternatively, high-order mesh and functional space dis-
cretizations [5], [6] can be used to improve the accuracy
without necessarily increasing the mesh density. High-order
basis functions also provide a faster convergence to the phys-
ical solution when refining the mesh [7], [8]. Nevertheless,
despite the use of a more accurate framework, the EFIE
suffers from ill-conditioning and loss of significant digits at
low frequency [9].

The stabilization of the EFIE using quasi-Helmholtz decom-
position [10], [11], [12], [13] is well-known, even in the
high-order case [14], [15]. It consists in a change in basis
that allows to reorganize the system into solenoidal and
nonsolenoidal contributions and to rescale them appropriately
to cure the problematic behavior of the EFIE at low frequency.
However, the construction of the solenoidal basis functions
can be burdensome because it requires the identification of
the global cycles, a task that might be challenging when
modeling complex geometries [9]. Other strategies leading to a
low-frequency stabilized system are also possible, such as the
generalized Debye-source-based EFIE [16], [17], where the
EFIE is directly discretized with solenoidal and irrotational
basis functions, or such as the augmented EFIE [18], where
the mixed potential form of the EFIE is used by including the
charge as an additional unknown.

More recently, the method of the quasi-Helmholtz projectors
has been developed for the stabilization of the EFIE discretized
with RWG functions [9]. The method generates orthogonal
projectors over the solenoidal and nonsolenoidal subspaces
from the computation of the Star matrix, without having to
explicitly identify the cycles. They are subsequently used
to separate and to rescale the different contributions of the
EFIE, without further degrading the condition number when
increasing the mesh density [9].

This work proposes for the first time the high-order coun-
terpart of the quasi-Helmholtz projectors for the stabilization
of the EFIE when using high-order basis functions. The
contribution will first present a general definition of the Star
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basis functions in high-order that encompasses several choices
in terms of basis elements and testing in the charge space. The
contribution will then show that the consequential definition
of the quasi-Helmholtz projectors is not dependent on any of
these specific choices. Finally, the new projectors will be used
to regularize the EFIE discretized with high-order elements.

This article is organized as follows. In Section II, we set
the background and the notations. In Section III, we extend
the definition of the quasi-Helmholtz projectors to the high-
order framework. We show their completeness to represent the
Graglia–Wilton–Peterson (GWP) basis [5] and their unique-
ness with respect to the choice of the Star basis, as well
as their application to solve the low-frequency breakdown.
In Section IV, we present the implementation details required
to achieve effective algorithms. Finally, Section V provides
numerical results which validate the preconditioning technique
on relevant scenarios. The results of this work were presented
in a conference contribution [19] that generalized the prelim-
inary investigations in [20].

II. BACKGROUND AND NOTATIONS

This section will introduce the necessary background mate-
rial and notations on integral equations and related high-order
discretizations. The treatment will be brief and with the
primary goal of setting the notations. The interested reader
is referred to the more extensive treatments in [5], [21], [22],
[23], and [7] and references therein.

Consider the scattering from a PEC object with boundary 0

residing in a homogeneous medium with wavenumber k and
characteristic impedance η. The current J induced on 0 by
an incident electric field Ei can be obtained by solving the
EFIE [2]

T J = −n̂ ×
1
η

Ei (1)

with

T = jk Ts −
1
jk
Th (2)

where the vector and scalar potentials are defined as

(Ts J)(r) = n̂ ×

∫
0

G
(
r, r ′

)
J
(
r ′

)
dS

(
r ′

)
(3)

(Th J)(r) = n̂ × ∇0

∫
0

G
(
r, r ′

)
∇0 · J

(
r ′

)
dS

(
r ′

)
(4)

and where n̂ is the outgoing normal vector from 0, ∇0 is the
surface nabla operator, and Green’s kernel is

G
(
r, r ′

)
=

e− jk|r−r ′
|

4π |r − r ′|
. (5)

The solution J of (1) lives in the functional space H−1/2
div (0),

for which a well-suited arbitrary order discretization approach
is given by Nédélec’s mixed-order div-conforming spaces [22],
[23]. These spaces can be generated by different sets of basis
functions [5], [21], [24]. In the following, for fixing ideas,
we will focus on the GWP basis function set, but our consid-
erations and findings will also apply to several other bases.
The pth order GWPs are defined as the product of the RWGs

(zeroth-order GWPs) with order p shifted Silvester–Lagrange
functions [5]. In what follows, we denote by {ψ (p)

n }
Np

n=1 the set
of GWP basis functions, where the total number of functions
is

Np = (p + 1)Eint + p(p + 1)C (6)

with Eint and C the numbers of internal edges and cells of
the mesh, respectively. A detailed definition of these basis
functions is omitted here for space limitation, but we refer
the reader to [5] and [21].

Define by P(0, p) the space of divergence of GWP func-
tions which is of dimension Mp = C(p + 1)(p + 2)/2 [14].
Let us consider a basis for the space by σ

(p)
m /J with J the

Jacobian determinant of the mesh parametrization and

σ (p)
m (r) =

{
σ̂

(p)

i(m) ◦ F−1
Km

(r), if r ∈ Km

0, elsewhere
(7)

where Km is the single cell on which σ
(p)
m is not zero, i(m)

is its local index on the cell Km , FKm is the local-to-global
mapping of the cell Km , and σ̂

(p)

i(m) is a polynomial of degree
p in the local coordinates. One possible choice for {̂σ

(p)

i }, i =

1, . . . , (p + 1)(p + 2)/2, is an interpolatory polynomial basis,
so that we have (p + 1)(p + 2)/2 interpolatory points r̂ j in
the local coordinates and the same number of interpolatory
polynomials such that

σ̂
(p)

i

(̂
r j

)
= δi j (8)

where δi j is the Kronecker symbol.
Because of charge neutrality, the total number of degrees

of freedoms (DoFs) for the divergence space (charge DoFs)
is Mp − Nbodies [14], where Nbodies is the number of sep-
arate connected bodies of the mesh. The GWP space can
be decomposed as a combination of nonsolenoidal functions,
corresponding to the charge DoFs, and a combination of
solenoidal (divergence free) functions that complement the
charge DoFs.

The GWP functions {ψ (p)
n } can be used within a BEM

strategy, by approximating the current in (1) as

J(r) ≈

Np∑
n=1

jnψ (p)
n (r) (9)

and, after testing (1) with the rotated GWP elements {̂n ×

ψ (p)
n }, the EFIE yields a matrix system

T j = e (10)

with

T = jk Ts +
1
jk

Th (11)

where

[Ts]mn =

∫
0×0

G
(
r, r ′

)
ψ (p)

n

(
r ′

)
· ψ (p)

m (r)dS
(
r ′

)
dS(r) (12)

[Th]mn =

∫
0×0

G
(
r, r ′

)
∇0 · ψ (p)

n

(
r ′

)
∇0 · ψ (p)

m (r) dS
(
r ′

)
dS(r) (13)

[e]m = −
1
η

∫
0

Ei(r) · ψ (p)
m (r) dS(r). (14)
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At low frequency, the EFIE faces several numerical chal-
lenges. First, the EFIE linear system becomes increasingly
ill-conditioned for decreasing frequencies due to frequency
ill-scaling of vector and scalar potentials [9]. In particular

lim
k→0

cond(T) = O
(
k−2). (15)

This ill-conditioning impacts the accuracy of the solution
and increases the number of iterations required by iterative
solvers. A second numerical challenge is related to the loss of
significant digits in the context of finite precision computations
when evaluating the right-hand side e, the solution j , and the
radiated field [9].

Both effects are related to the quasi-Helmholtz decompo-
sition of the current, because solenoidal and nonsolenoidal
contributions in the EFIE system have different frequency
behaviors. By decomposing the source and testing elements
into their solenoidal and nonsolenoidal components, it is pos-
sible to properly rescale these contributions to cure both these
issues. In the zeroth-order case, this strategy can be applied
in a particularly effective way by leveraging quasi-Helmholtz
projectors [9]. Differently from other quasi-Helmholtz decom-
positions such as Loop–Star/Tree and related approaches, this
mathematical tool allows for the rescaling of scalar and vector
potential without perturbing the other conditioning proper-
ties of the equation. The generalization of quasi-Helmholtz
projector strategies to the high-order case, however, is far
from trivial because of the need for a proper extension of
the graph Laplacian matrices [9] to the high-order case. Such
a generalization will be the subject of Section III.

III. HIGH-ORDER QUASI-HELMHOLTz PROJECTORS

In this section, we will define high-order quasi-Helmholtz
projectors to address the above-described low-frequency lim-
itations of the EFIE in the high-order case. From the
zeroth-order case [9], we learn that primal projectors can be
obtained from a properly chosen Star matrix. The problem
is that a unique definition of a Star matrix in high-order can
be challenging [14]. In this contribution, we will propose one
approach to define a Star matrix that, indeed, does not lead
to a unique definition. We will equally show in this article,
however, that the corresponding Star (nonsolenoidal) projector
will be invariant, regardless of the nonuniqueness of the Star
definition we will adopt.

A. Construction of the High-Order Quasi-Helmholtz
Projectors

Given the coefficients j of a function expressed as a linear
combination of GWP functions, one could think of building a
high-order Loop–Star decomposition in the form

j = 6 p s +3p l + Hp h. (16)

Similar to the zeroth-order case, 3p and Hp express the local-
Loops-to-GWP and global-cycles-to-GWP change in bases,
respectively [9]. In the following, we will not need an explicit
definition of these two matrices and we will not discuss them
further. We will only be using the fact that both 3p and
Hp contain coefficient representations of solenoidal functions.

For such a definition, however, the interested reader can refer
to [14] and [15], where, unlike in our approach, explicit Loops
coefficients are required. As pertains to 6 p, we will refer to
this matrix as the high-order Star matrix, with an abuse of
terminology stemming from the zeroth-order case. Consider
now the injective linear function L

L : P(0, p) −→ RMp

q(r) 7−→ Lq (17)

with Lmq := [Lq]m . It should be noted that injectivity and
linearity imply

Lq = 0 ⇐⇒ q(r) = 0 ∀r ∈ 0. (18)

Now we can propose the following general definition for 6 p:[
6 p

]
i, j =

[
L∇0 · ψ

(p)

i

]
j
. (19)

By the construction of 6 p and because 3p and Hp describe
solenoidal functions, we get

6T
p3p = 0 (20)

and

6T
p Hp = 0. (21)

The above conditions result in that all the coefficients of
solenoidal functions are in the null space of 6T

p . In addition,
the converse statement, all the elements of the null space of
6T

p are coefficients of solenoidal functions, is true following
from (18) and (19). Since the solenoidal subspace of the GWPs
has a dimension Np − Mp + Nbodies [14], the null space of
6T

p has dimension Np − Mp + Nbodies. As a consequence, the
dimension of the range of 6T

p , which is also the dimension
of the range of 6 p, equals to Np − (Np − Mp + Nbodies) =

Mp −Nbodies. This fact proves that [6 p,3p, Hp], a rectangular
matrix, has a rank equal to the number of basis functions Np

in (6). This shows that our definition of the high-order Stars
produces a valid complement of the solenoidal subspaces as
the columns of [6 p,3p, Hp] are coefficient representations of
functions that generate the entire GWP space.

We are now ready to define the quasi-Helmoltz projectors.
In particular, mimicking the zeroth-order case, define

P6
p = 6 p

(
6T

p6 p
)+
6T

p (22)

and

P3H
p = I − P6

p (23)

in which “+” is used to denote the Moore–Penrose pseudoin-
verse [25]. It should be noted that because of the orthogonality
of the projectors, i.e.,

P6
p P3H

p = P6
p

(
I − P6

p

)
= P3H

p P6
p = P6

p − P6
p = 0 (24)

and because of completeness of the decomposition, P3H
p is

the projector onto the solenoidal (local and global Loops)
subspace.

From the generality of our definition of 6 p in (19), one
could think of obtaining a different set of projectors for
each specific choice 6 p. We will now prove instead that the
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high-order quasi-Helmholtz projectors, with our definition, are
invariant under any particular choice of the high-order Star
matrix. In particular

Proposition 1: Consider two different operators L and L̃
both satisfying definition and properties in (17) with associated
matrices 6 p and 6̃ p, respectively, defined via (19), then there
exists an invertible matrix M so that 6̃ p = 6 pM.

Proof: Consider an arbitrary basis {bk}
Mp

k=1 of P(0, p).
We can then express the divergence of each ψ (p)

i (r) as

∇ · ψ
(p)

i (r) =

Mp∑
k=1

aikbk(r) (25)

with a proper set of coefficients {aik}
Mp

k=1 for each ψ
(p)

i (r).
Since both 6 p and 6̃ p are defined on the same GWP set
ψ

(p)

i (r) and assuming the same ordering of the basis functions
in both cases, from (25) we have

6 p = AL and 6̃ p = AL̃ (26)

with [A]ik = aik , [L]k j = L j bk , and [L̃]k j = L̃ j bk .
Using the definition, linearity, and injectivity of L, together

with the completeness of the basis {bk}
Mp

k=1, we obtain

LT x = 0 ⇒

Mp∑
k=1

(Lmbk)xk = 0 ∀m

⇒ Lm

 Mp∑
k=1

xkbk

 = 0 ∀m (27)

⇒

Mp∑
k=1

xkbk = 0 ⇒ x = 0

which, with linearity, establishes the invertibility of L. The
same strategy shows the invertibility of L̃. We now have

A = A ⇒ AL̃L̃−1
= ALL−1

⇒ 6̃ pL̃−1
= 6 pL−1 (28)

from which we obtain the looked for relationship

6̃ p = 6 pM (29)

with M = L−1L̃, an invertible matrix.
The well-posedness of the definition of the projectors in (22)

and (23) now follows. In particular
Corollary 1: The quasi-Helmholtz projectors are invariant

on any specific choice of a high-order Star matrix satisfy-
ing (19).

Proof: Given two matrices as above, we have from the
previous proposition that 6̃ p = 6 pM with M unique and
invertible. First note that, letting

6 p = USVT (30)

be the reduced singular value decomposition (SVD) of 6 (i.e.,
the SVD where U and V both are vertically rectangular and
column full rank), then

MT6T
p6 pM =

(
MT VST )(

SVT M
)

(31)

where the left matrix in parenthesis is a full column rank
matrix and the right matrix in parenthesis is a full row rank
matrix. Using the properties of pseudoinverses [25], we get(

MT6T
p6 pM

)+
=

(
SVT M

)+(
MT VST )+

(32)

from which it follows that

P6̃
p = 6̃ p

(
6̃

T
p 6̃ p

)+

6̃
T
p

= 6 pM
(
MT6T

p6 pM
)+MT6T

p

= USVT M
(
SVT M

)+(
MT VST )+MT VST UT

= UUT
= 6 p

(
6T

p6 p
)+
6T

p = P6
p . (33)

The uniqueness of P6
p combined with (23) directly implies

that of P3H
p .

B. Projector-Based Solution to the Low-Frequency
Breakdown

To fix ideas and obtain an algorithm for the projectors,
we propose to choose the following explicit definition of the
Star matrix 6 p [20]:[

6T
p

]
mn

=

∫
0

σ (p)
m (r)∇0 · ψ (p)

n (r) dS(r) (34)

where the functions σ
(p)
m are defined in (7) and (8). The

reader should note that the rationale behind this choice is that
this definition results in a standard Star matrix in the zeroth-
order (p = 0) case and generalizes the concept for higher
orders. Other choices, however, could have been made without
modifying the final results, as proved above. Now, from (24),
the high-order quasi-Helmholtz projectors satisfy

P3H
p Th = 0 and ThP3H

p = 0 (35)

which generalizes the analogous property valid in the zeroth-
order case [9]. This allows to proceed with the same formal
strategy developed for zeroth-order projectors that here will
work for the high-order EFIE. Define the preconditioning
matrix

P = j
√

k/C P6
p +

√
C/k P3H

p (36)

with the scaling factor

C =

√
∥Th∥∥∥P3H

p TsP3H
p

∥∥ . (37)

The preconditioned system reads

PTP y = Pe (38)

with

j = P y. (39)

The proof of low-frequency well-conditioning and stability
of (38) is formally identical to the one for the zeroth-order
case [9] and we omit it here for the sake of conciseness.
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Fig. 1. Condition number of the system matrices in function of the frequency
for order zero to three.

Fig. 2. Condition number of the system matrices in function of the inverse
of the average cell diameter h and frequency of 1 Hz.

IV. IMPLEMENTATION-RELATED DETAILS

In this section, we deal with implementation-related details
that could be useful to the reader while implementing all the
new techniques described here.

We assume that all the matrix–vector products are done
in a quasi-linear number of operations, using a compression
approach [26], [27] for the integral operators and a sparse
algorithm for the Star matrices. Note that to match the compu-
tational complexity of fast matrix–vector product algorithms,
the naive computation of the norms in (37) should be avoided
and iterative approaches, such as power iterations [28], should
be used instead. Moreover, the numerical (pseudo-)inversion
of 6T

p6 p in (22) has to be done iteratively whenever a
product with the projectors is involved. As in the zeroth-
order case, this matrix is similar to the one we get by
discretizing the Laplacian equation with finite elements of
order p. We can thus rely on algorithms tailored to solve such
systems from other fields of applications [29]. In particular,
multigrid algorithms have proven to be quite effective. Because
there exists several variants of multigrids, one could use the
p-multigrid versions [29], [30], [31] (tailored for high-order

Fig. 3. RCS in dBsm at 100 Hz.

Fig. 4. RCS in dBsm at 3 × 108 Hz.

finite elements) but there are also robust implementations of
the standard algebraic multigrid [32] generalized to different
scenarios that are often easier to use in a black-box fashion.

Finally, to maximize the effect of our regularization to all
the frequencies, the computation of the projected EFIE has
to be done carefully. For numerical purposes, the cancella-
tions (35) have to be enforced explicitly in the computation
of the preconditioned matrix [9], which reads

PTP = jC P3H
p TsP3H

p + j/C Th−k P3H
p TsP6

p

− k P6
p TsP3H

p − jk2/C P6
p TsP6

p . (40)

The loss of significant digits in the computation of the
right-hand side also has to be avoided, as is well-known when
dealing with very low-frequency numerical strategies [9].
In particular, the solenoidal and nonsolenoidal contributions of
the right-hand side must be computed separately, and the static
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Fig. 5. Absolute value of the surface density current (in dBA/m) for the interlocked Möbius ring irradiated by a plane wave at 10 Hz, with preconditioning
(left) and without (right).

part of the excitation source is subtracted when tested with the
solenoidal functions [9], [11]. More explicitly, we write

Pe = j
√

k/C P6
p e +

√
C/k P3H

p esub (41)

where esub is the subtracted right-hand side [9]. Finally, the
postprocessing computation of the electric field requires a
similar treatment, using separately the solenoidal and non-
solenoidal contributions of the solution

j sol =
√

C/k P3H
p y and jnsol = j

√
k/C P6

p y (42)

and subtracting the static part of Green’s kernel when inte-
grating with the solenoidal contribution [9].

V. NUMERICAL VALIDATION

In this section, we give the numerical results that validate
the use of the quasi-Helmholtz projectors by compar-
ing it against the standard EFIE and against a standard
quasi-Helmholtz decomposition. The quasi-Helmholtz decom-
position we adopted for comparison is a generalization of the
Loop/Star technique (L/S-EFIE) from the zeroth-order: the
matrix 6 p is used for generating the Stars and the Loops
are computed as described in [14]. The meshes are generated
from the software Gmsh that provides quadratic (curvilinear)
triangles [33]. The singular integrals are computed using
the singularity cancellation scheme described in [3] while
near-singular and far interactions are computed with Gaussian
quadratures. Moreover, because we are interested in studying
the condition number of the underlying systems, the projectors
need to be explicitly computed, which prevents the use of a
fast strategy as described in Section IV. To this extent, we rely
on a direct pseudoinversion of 6T6 based on the computation
of its reduced SVD.

Our first validation is done over the unitary sphere for
different frequencies. Fig. 1 shows the condition number of
the system matrix for each different method as a function
of frequency and for different orders. We observe that the
condition number of the standard EFIE increases dramati-
cally, as expected, while it remains constant for the standard
Loop/Star technique and for the approach proposed here based
on high-order quasi-Helmholtz projectors. For the latter case,

however, the condition number is lower. This effect can be
better understood from the test in Fig. 2 where the condition
number is shown in function of the inverse mesh size. It is
clear that differently from standard Loop/Star, the new projec-
tors do not worsen the spectral behavior of the original EFIE
generalizing what happens in the zeroth-order case [9]. The
radar cross sections (RCSs) at 100 Hz and at 3 × 108 Hz are
obtained in Figs. 3 and 4, respectively. This shows that the low-
frequency breakdown, absent at higher frequencies, is instead
corrupting the results at low frequency when no low-frequency
treatment is used. At the same time, these results validate the
stability of our scheme in a wide frequency range.

To test the performance of our scheme on a nonsimply
connected geometry, we used the “two interlocked Möbius
ring” structures, which form two separate objects with inter-
laced holes and handles. The rings are of radius 1 m and are
discretized with 3780 cells and 5670 edges. In total, there
are 72 global Loops associated with this topology. Fig. 5
shows the surface density current obtained by solving the
EFIE with and without preconditioning at 10 Hz using basis
functions of order two (39 690 unknowns). We get, without
the need of detecting the global Loops, the same results with
the quasi-Helmholtz projectors and the Loop/Star EFIE for
which, however, the global Loops must be explicitly detected.
It should also be noted that the accuracy is completely lost
without preconditioning.

Our final validation test scenario is on the model of an
airliner with 2-D apertures corresponding to the windows and
the shell of the jet engine. The mesh contains 3942 cells
and 5750 internal edges, and we use basis functions of order
two (42 900 unknowns). In addition to show the relevance of
our method to solve industrial scenarios, this example com-
pletes the numerical study with problems containing global
Loops around apertures, which are of different kind than the
harmonic Loops of the previous example. Fig. 6 shows the
surface density current obtained by solving the EFIE with
and without preconditioning at 1 Hz. As for the previous
case, the quasi-Helmholtz projectors give an identical solution
as the one obtained with Loop–Star decompositions (which
however requires Loop detection), while the solution without
preconditioning is completely jeopardized.
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Fig. 6. Absolute value of the surface density current (in dBA/m) for the airliner irradiated by a plane wave at 1 Hz, with preconditioning (left) and without
(right).

VI. CONCLUSION

In this work, we have extended the use of the
quasi-Helmholtz projectors for stabilizing the EFIE when
discretized with high-order basis functions. The new scheme
is based on a generalized definition of Star matrix that is wide
enough to encompass numerous relevant scenarios, including
the use of GWP basis elements. The contribution has shown
that this results into unique quasi-Helmholtz projectors irre-
spectively of the specific choice of Star matrix. The numerical
results have shown the effectiveness of the new approach.
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