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ARTICLE INFO ABSTRACT

Keywords: Background: Parkinson’s Disease (PD) demands early diagnosis and frequent assessment of symptoms. In

Hand tracking particular, analysing hand movements is pivotal to understand disease progression. Advancements in hand

Dee? leaming' tracking using Deep Learning (DL) allow for the automatic and objective disease evaluation from video

i;;;“[‘]sgg;:slsease recordings of standardised motor tasks, which are the foundation of neurological examinations. In view of

Computer vision this scenario, this narrative review aims to describe the state of the art and the future perspective of DL

Bradykinesia frameworks for hand tracking in video-based PD assessment.

Tremor Methods: A rigorous search of PubMed, Web of Science, IEEE Explorer, and Scopus until October 2023 using

primary keywords such as parkinson, hand tracking, and deep learning was performed to select eligible by
focusing on video-based PD assessment through DL-driven hand tracking frameworks
Results: After accurate screening, 23 publications met the selection criteria. These studies used various
solutions, from well-established pose estimation frameworks, like OpenPose and MediaPipe, to custom deep
architectures designed to accurately track hand and finger movements and extract relevant disease features.
Estimated hand tracking data were then used to differentiate PD patients from healthy individuals, characterise
symptoms such as tremors and bradykinesia, or regress the Movement Disorder Society-Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS) by automatically assessing clinical tasks such as finger tapping, hand
movements, and pronation-supination.
Conclusions: DL-driven hand tracking holds promise for PD assessment, offering precise, objective mea-
surements for early diagnosis and monitoring, especially in a telemedicine scenario. However, to ensure
clinical acceptance, standardisation and validation are crucial. Future research should prioritise large open
datasets, rigorous validation on patients, and the investigation of new frontiers such as tracking hand-hand
and hand-object interactions for daily-life tasks assessment.
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1. Introduction

Parkinson’s Disease (PD) is one of the most investigated neurode-
generative diseases in the literature, with more than 4404 scientific
papers published in the last 20 years (source: PubMed, keyword in title:
‘Parkinson’). With its etiology being unclear [1], and the current lack
of a definitive medical treatment [2], various research works have
focused both on identifying early markers of the disease [3,4], and
novel methodologies for assessment and monitoring [5-7]. Indeed, PD
consists in the progressive degeneration of the neural circuits devoted
to motor control [8], leading to an irreversible escalation of symptoms
such as tremor, bradykinesia, and akinesia [2]. These may arise in-
between the infrequent outpatient visits, thus leading to a delayed
identification of the disease aggravation [9]. Moreover, the current
gold standard for the assessment of PD severity relies on subjective
neurological examinations performed according to the standardised
motor tasks coded in the Movement Disorder Society- Unified Parkin-
son’s disease Rating Scale (MDS-UPDRS) [10]. Hence, the need for an
objective assessment is a widely investigated topic in the literature,
with numerous solutions encompassing wearable [7,11-20] and non-
wearable [21-34] technologies to estimate the measurable features of
motion. Wearable set-ups include Inertial Measurement Unit (IMU) [13,
14,20], surface electromiography (EMG) sensors [15,18,19], and smart-
textiles [16,17], embedding several types of integrated sensing devices.
Mixed approaches also exist, leveraging the combination of computer
vision and passive or active wearable devices [35-38]. Data collected
through these devices are then analysed with data-driven models to
automatically infer the motor condition of the subject [12,39]. While
minimally invasive, these technologies have a limited perspective or
require several sensors to reconstruct complex movements. On the
other hand, non-wearable technologies span from radio sensors [23,24]
to depth sensors [25,26,31,34], traditional RGB cameras [27,28,32,33],
and mixed RGB-Depth cameras [29,30], either in monocular or multi-
camera set-ups. Indeed, current advances in Deep Learning (DL) have
paved the way for new computer vision methods for Human Pose
Estimation (HPE). Microsoft Kinect, for example, showed a movement
reconstruction accuracy comparable to gold standard motion capture
systems [40,41]. A recent and prominent trend in DL research for
computer vision focuses on deriving complex three-dimensional (3D)
poses by exploiting a single RGB camera [42,43]. In the context of
objective PD assessment, the reconstruction of the body pose through
these methods constitutes a relevant asset, that may be employed
in training automatic disease staging models, as previously done for
wearable technologies [44,45].

A relevant aspect of PD progression involves hand movements: as
PD progresses, the once-fluid and effortless movements of the hand
and fingers, fundamental for carrying out several daily-life activities,
become compromised. Hence, periodic monitoring of motor alterations
involving the hands is pivotal for tailoring interventions to enhance
the patient’s quality of life. For instance, this would allow for more
effective coping with symptoms such as bradykinesia and tremor, which
mainly manifest in this body district [46,47]. However, while whole-
body HPE has achieved a remarkable accuracy, the specific case of
hand tracking presents with more complex challenges, still unsolved.
Indeed, the human hand is an instrument of high dexterity and preci-
sion, thanks to its numerous degrees of freedom. Fingers can assume
many configurations in the 3D space, and possibly rapidly shifting
across them [48,49]. Complex poses and their evolution over time
make hand tracking a cumbersome task, especially in real-time ap-
plications [49,50]. As for HPE, several approaches attempted hand
pose estimation both through wearable set-ups (such as IMUs [51]
or sensorised gloves [52]) and through traditional computer vision
methods [53,54]. However, the former may imply interference with
natural movements, discomfort, and system bulkiness. The latter ap-
proach suffers from several limitations, such as a drastic reduction in
performance due to the self-occlusion of hand joints, computational
cost, or domain-specific issues (e.g., skin colour segmentation). As for
whole-body HPE, the introduction of DL frameworks for video-based
hand tracking in-the-wild seeks to overcome these issues by allowing
marker-less and occlusions-robust tracking [55-57]. However, while
several DL architectures and frameworks exist in the literature, there
is not a large consensus about the optimal technique for hand tracking
in-the-wild, especially in the specific case of automatic assessment of
PD.

This narrative review investigates the DL-driven hand tracking ar-
chitectures and frameworks currently employed for video-based PD
assessment. In further detail, it focuses on the solutions proposed since
2017, when the first DL approach for 3D hand joints regression from
a single RGB video was published and became freely available [55].
Compared to other reviews broadly investigating marker-less pose es-
timation in medicine [21,58,59], this review favours a narrower scope
to better delineate and discuss in detail the current architectures and
trends for hand tracking in the clinical practice of PD. Specifically, the
paper addresses the following research questions:

+ What are the most popular hand tracking frameworks and archi-
tectures employed in automatic, video-based PD assessment?

» Were these architectures validated as a measurement system for
objectively characterising hand and finger motion? Are the data
employed in these studies openly available to the scientific com-
munity?
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+ Which are the most assessed symptoms, and through the tracking
of which clinical tasks?

Therefore, this work aims to help future researchers select or construct
innovative DL-driven frameworks for hand tracking in video-based
PD assessment. Moreover, future assessment scenarios and promising
research directions are also evaluated and discussed.

This review is organised as follows: Section 2 provides a background
on the typical assessment tasks administered in the clinical practice of
PD, objective assessment approaches through wearable sensors, and DL-
driven hand tracking using video input. Section 3 reports the search
method adopted to identify the works suitable for answering the main
research questions of this review. Section 4 illustrates the results of the
revision process on the selected articles. Finally, Section 5 provides a
commentary on the identified trends and the future research directions,
and Section 6 highlights the relevant, concluding remarks.

2. Background

This section provides an overview of how PD is assessed by probing
hands and their functionalities during neurological examination. More-
over, for the sake of completeness, it reports a summary of established
methods based on wearables. Finally, it presents a concise summary of
current DL methods for video-based hand tracking. Indeed, the inter-
section between such DL frameworks and the assessment of PD-related
hand impairment will be explored through the selected articles.

2.1. Hand impairment as a proxy for Parkinson’s

During the neurological examination of PD patients, hand assess-
ment is crucial to evaluate motor functions, thus monitoring the disease
onset, severity, and progression. Part III of MDS-UPDRS [10], which is
devoted to the motor examination, includes several components related
to the assessment of the hands and the upper extremities. In particular,
the following items are worth mentioning:

+ Finger Tapping (MDS-UPDRS Part III - Section 4): This item
assesses motor speed and coordination in repetitive finger tapping
movements (i.e., index-to-thumb taps or consecutive thumb-to-
any-finger taps). The examiner assigns a score based on the
number of taps, amplitude, speed, and regularity (i.e., presence
of hesitation, halts, or variations in task execution over time).
Hand Movements (MDS-UPDRS Part III - Section 5): This item
evaluates the amplitude and speed of repetitive opening and
closing hand movements. The examiner assigns a score based
on the number of repetitions, amplitude, speed, and regularity
(i.e., presence of hesitation, halts, or variations in task execution
over time).

Pronation-supination (MDS-UPDRS Part III - Section 6): This
section evaluates the amplitude and speed of repetitive turns up
and down of the palm. The score is assigned based on the number
of repetitions, amplitude, speed, and regularity (i.e., presence of
hesitation, halts, or variations in task execution over time).
Postural Tremor (MDS-UPDRS Part III - Section 15): This task
evaluates the presence and severity of tremor in hands-
outstretched holding by assigning a score based on tremor am-
plitude and frequency of tremor occurrences.

Kinetic Tremor (MDS-UPDRS Part III - Section 16): This item
assesses tremor during the finger-to-nose reaching action. The
examiner considers the amplitude and frequency of tremor to
score the task.

Rest Tremor (MDS-UPDRS Part III - Section 17-18): These two
items assess the tremor of limbs (including upper limbs and
hands) at rest during the whole neurological administration of
Part III. The examiner considers the number of occurrences, the
amplitude, and the frequency of rest tremor to assess severity.

Artificial Intelligence In Medicine 154 (2024) 102914

The MDS-UPDRS scores assigned to each task range from 0 (no
impairment) to 4 (severe impairment). In unilateral tasks (e.g., fin-
ger tapping, hand movements), clinicians evaluate the left and the
right sides independently to highlight asymmetries. The sum of all
the MDS-UPDRS Part III scores guides the clinicians through treat-
ment decisions and provides valuable insights into the patient’s health
condition. Alternative evaluation scales exist, such as the Modified
Bradykinesia Rating Scale (MBRS) [60], that focuses specifically on
highlighting the presence of bradykinesia using a 5-level scoring, or
the Bain & Findley Tremor Clinical Rating Scale [61], that, instead,
is designed to assess tremor, on a score from O to 10. However, a
significant subjective bias exists in all these scoring methods, resulting
in high inter- and intra-rater variability due to the lack of objective
measurements in the assessment process [62]. This scenario justifies the
growing interest in the research community for automatic, objective,
and explainable tools for estimating clinical scores.

2.2. Objective hand assessment using wearables

Wearables represent an established approach for objective hand
impairment evaluation in PD [63-67], often outperforming traditional
computer vision approaches [53,54,68,69]. Most of the wearable solu-
tions in the literature rely either on IMUs [20,63-65,70,71] to detect
hand movements or surface EMG sensors [18,66,72] for muscular activ-
ity measurements. These sensors may be integrated into smart gloves or
simple exoskeletons, alongside additional components such as pressure
and force measurements systems and microcontrollers [67,73,74].

While finger tapping and hand movements, as further discussed in
the following sections, are intrinsically suited to be investigated by
video approaches, wearables still represent an accurate means to estab-
lish the occurrence of tremor [64,71,75,76] and to evaluate complex 3D
movements such as pronation-supination [65,70,77]. Indeed, especially
for tremor and bradykinesia, IMUs are often employed as the gold
standard to validate purely video-based approaches [78-80]. Although
wearables have proved accurate for these tasks, the advent of DL-based
hand tracking has reinvigorated the interest in developing similarly
accurate contactless approaches, exploiting solely video-based inputs.
Such interest mainly stems from the low-cost hardware employed and
the easiness of acquiring video recordings even in large clinical studies,
such as that in [81].

2.3. Video-based hand tracking and deep learning

Video-based hand tracking, sometimes known as hand pose esti-
mation, is commonly formulated in the literature as the problem of
deriving a pre-defined set of hand joint positions from the frames con-
stituting an RGB, depth, or RGB-Depth video. The most popular set of
joints, used in frameworks such as OpenPose [82] and MediaPipe [83],
is the COCO Hand model [84], which consists of 21 virtual points
modelling the main skeletal joints of the hand, as reported in Fig. 1.
This schematic representation is intrinsically a non-fully-connected,
undirected graph, where the joints and their connections represent,
respectively, the nodes and the sides of the graph. A representation
based only on joint angles (i.e., roll, pitch, and yaw angles) exists, but
is less frequently considered [50]. Recently, much attention has grown
around the estimation of hand poses in terms of meshes or geometric
primitives, due to its possible applications in Virtual Reality (VR) and
Augmented Reality (AR) scenarios [50,85-87]. However, these types
of representation are less straightforward and interpretable for clinical
examinations, thus neglected in applications for PD assessment. More-
over, mesh reconstruction is still particularly challenging and often
requires high computing performance for its calculation.

Hand tracking requires first solving a hand localisation problem.
Several methods employ a top-down approach and start by identifying
the bounding boxes containing the hands on the video scene, then
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Fig. 1. The 21-joints COCO hand skeletal model, the typical joint configuration in frameworks such as OpenPose and MediaPipe. The evolution over time of joint positions and

of their relative distances are used to assess motor symptoms in PD.

use this information to derive the associated hand graph models. Al-
ternative solutions exploit a bottom-up strategy. Indeed, they directly
estimate a set of heatmaps modelling the probability distribution of
the position of each joint inside the video frame [50]. The model then
infers the most likely connections between these joints to reconstruct
the hands in the scene. The top-down approach is more straightforward
and can achieve high accuracy given an accurate hand detector. Com-
putational performance, however, may be lower when simultaneously
tracking several hands. The bottom-up approach is theoretically more
complex to formulate and may produce less accurate tracking results,
but it can scale up to tracking several hands without a significant
performance decrease [50].

These considerations apply mainly to hand tracking in video record-
ings from in-the-wild contexts, while videos for clinical assessment are
often standardised, easing the hand localisation. Moreover, they usually
require tracking a maximum of two hands simultaneously. Therefore,
the hand detection problem is generally trivial, while most of the effort
is devoted to achieving high accuracy in the hand pose reconstruction.

Focusing on skeletal representation, two possible pose spaces can
be considered. In the two-dimensional (2D) pose space, each joint
K is expressed as a tuple (xg,yx) € N? that corresponds to the
location measured in image pixels. In the 3D pose space, each joint K
is associated with a triplet (xg,yg,zg) € R’ representing coordinates
in metres with respect to a reference system which can be centred in
the tracked hand itself or the centre of the recording camera. A less
popular option derives 2.5D poses, in which the joint K corresponds to
a triplet (x g, yg, zx) with (xg, yx) € N? that is the 2D position in pixels,
plus zx € R which represents a dimensionless parameter expressing a
relative depth concept, as it happens, for instance, in MediaPipe [88].

Another possible taxonomy for DL frameworks for video-based hand
tracking takes into account modality of the input video: RGB, depth
map, or mixed RGB-Depth [49]. Researchers first investigated depth-
based approaches to enable 3D hand tracking due to the increase in
market availability of low-cost depth sensors. In the prevalent archi-
tecture, a Convolutional Neural Network (CNN) processes depth data
and extracts hand tracking information [89-92], often incorporating
kinematic-based rules to enhance estimation [93]. Despite their ac-
curacy, depth-based methods bear limitations, such as high energy
consumption, unfavourable form factors, limited near-distance cover-
age, and challenges in outdoor usage due to the interference between
light and Time of Flight (TOF) technology [50].

In multi-modal methods (RGB-Depth), two approaches are possible.
In the first one, the 2D hand localisation exploits the RGB stream
only, while 3D hand pose estimation includes the associated depth
stream [94]. In the second approach, both modalities are fused to

achieve a single-shot estimation [95,96]. The mixed modality RGB-
Depth is also frequently employed to enhance the training of DL models
that perform inference from RGB-only data [49].

RGB-only methods have gradually gained interest in the Computer
Vision (CV) research community due to the significant reduction in
the complexity and the cost of the required acquisition system. Ear-
lier solutions were limited to 2D hand landmark extraction, which is
typically integrated into many state-of-the-art 2D-HPE methods, such
as OpenPose [82], DeepLabCut [97], and AlphaPose [98]. However,
only few approaches focus exclusively on tracking the 2D hand using
specialised architectures [99,100]. Indeed, this pose space confines the
analysis to simple movements that can be approximated by a planar
projection. To address more complex hand motions with these meth-
ods, multiple-camera set-ups and geometric triangulation or camera
calibration techniques are needed, to uplift 2D coordinates into the
3D space [101,102]. Nevertheless, this type of set-up increases the
complexity and the cost of the overall acquisition system.

Many recent works on hand tracking focus on addressing the chal-
lenging task of directly estimating 3D coordinates of the skeletal model
from depth cues in monocular RGB videos. Starting with the pio-
neering work of Zimmerman et al. [55], many architectures have
been explored [103-105]. However, these works often lack detailed
information about the efficiency [106,107] or claim real-time per-
formance (i.e., processing more than 30 frames per second) without
providing the source code for replicating their results [108]. Further-
more, achieving top-tier accuracy on benchmark datasets typically
requires high-performance GPUs, making these solutions impractical
for applications beyond research laboratories.

3. Method
3.1. Search strategy

One of the authors (GA) conducted a computerised literature search
across several electronic databases, including PubMed, Web Of Sci-
ence, Scopus, and IEEE Explorer, to answer the research questions
highlighted in Section 1. The eligible articles were only those peer-
reviewed, and published between January 2017 and October 2023.
The starting date of the search interval corresponds to the release
year of the first solution for 3D hand-tracking from monocular RGB
videos, by Zimmerman et al. [55]. Moreover, two popular frameworks
applied for automatic assessment in the clinical domain, namely Open-
Pose [82] and DeepLabCut [97], were openly released after that date.
The query to identify eligible works was: “(HAND TRACKING OR
HAND POSE ESTIMATION) AND (PARKINSON OR FINGER TAPPING
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[ Identification of studies via databases and citation searching ]

Records identified from:
Web of Science (n=31)
PubMed (n = 24)
IEEE (n=16)
Scopus (n =9)
Citation Searching (n = 21)

Records removed before
screening:

\4

)

Title and Abstract Screening
(n=78)

Duplicate records removed
(n=23)

A

Full-text analysis
(n=34)

!

Studies included in review
(n=23)

Records excluded using selected
criteria (n = 44)

A 4

Records removed:
Not involving PD (n = 8)
No skeletal hand tracking
(n=3)

Fig. 2. PRISMA flowchart of the literature search: 101 studies were found from databases and citation searching; after duplicate removal (discarded=23), title and abstract screening
(discarded=44) and full-text analysis (discarded=11), a final set of 23 research papers was obtained.

OR BRADYKINESIA OR UPDRS OR TREMOR OR PRONO SUPINATION
OR AKINESIA) AND (DEEP LEARNING OR CONVOLUTIONAL NEURAL
NETWORK OR NEURAL NETWORK OR ARTIFICIAL INTELLIGENCE OR
MACHINE LEARNING)”. In addition, a second-level reference screening
from the retrieved publications highlighted other relevant studies, thus
included.

3.2. Inclusion criteria

Additional, pre-defined inclusion criteria further filtered the iden-
tified works. Specifically, the included studies had to: (1) be peer-
reviewed (i.e., no pre-prints); (2) apply a DL architecture for deriving
the hand skeletal model from any video input modalities (i.e., RGB,
RGB-Depth, depth), either by using COCO hand model or by tracking a
specific subset of joints of interest; (3) propose a pipeline for assessing
subjects with PD or specific symptoms of the disease from hand tracking
data; and, (4) be written in English.

3.3. Exclusion criteria

The works were excluded if they: (1) focused on hand localisation,
though without deriving the COCO skeletal model or a subset of its
joints (e.g., fingertips) to perform assessment; (2) focused only on
preliminary testing on healthy controls (HC); (3) assessed other diseases
than PD; (4) exploited hand tracking for purposes different than the
assessment of PD, its severity or its motor symptoms; (5) consisted in
a review of other research works.

3.4. Data extraction

Relevant information retrieved during article screening included:
year and type of publication; DL framework or architecture employed
for hand tracking; whether the authors validated the accuracy of their
DL-based hand tracking method with respect to some reference mea-
surement system (e.g., motion capture systems, manual measurements
or IMUs); type of assessment tasks tracked; the goal of the work
(e.g., PD diagnosis, MDS-UPDRS score regression, specific symptoms
assessment) and main findings; data availability.

4. Results

For the sake of clarity, the literature screening performed for this
narrative review is summarised using the template defined by the
PRISMA consortium [109], as reported in Fig. 2. A total of 101 ar-
ticles were identified through database and citation searching, 34 of
which were considered for full-text analysis after removing duplicates
and irrelevancies, according to titles and abstracts. During full-text
analysis, the subset was reduced to 23 selected articles. Indeed, eight
works tested their methodology only on HC, while the other three
excluded studies performed hand detection only, but not skeletal model
estimation.

The automatic search of the most comprehensive and relevant
scientific electronic databases produced a small subset of studies. This
outcome demonstrates that DL approaches for hand tracking are highly
innovative and, currently, still under-explored for applications in PD
assessment. However, there is evidence of a rising trend in recent years,
denoting a growing interest in the topic, as supported by the distribu-
tion of the found publications over time (Fig. 3) . In particular, 2023
was characterised by the issuance of several conference proceedings,
with preliminary works to investigate the domain. Furthermore, as
mentioned previously, other preliminary works, testing the feasibility
of their solutions only on HC, had to be excluded [110,111] but still
support the relevance of this research domain.

The pie chart displayed in Fig. 4 summarises the DL frameworks
employed in the selected studies. As appreciable, the most popular
approach is OpenPose (6 works), followed by DeepLabCut (5 works),
MediaPipe (5 works), and MMPose (3 works). The label Others (6
works) includes DL architectures for which only one application was
found (i.e., VitPose, HandGraphCNN) and works with a custom hand
tracking architecture, specifically designed for the investigated task.
For the sake of clarity, a work [112] that employed and compared 2D
tracking of DeepLabCut with 2D and 3D tracking of HandGraphCNN
was counted once for the DeepLabCut label and once for the Others
label. The same happened for [113], which compared MediaPipe and
MMPose, resulting in a total of 25 applications starting from 23 studies
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Fig. 3. Research works included in the review, divided by year and type of publication
(conferences in yellow, journal papers in purple). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. DL-driven hand tracking frameworks employed for PD assessment from video,
according to selected articles and applications.

analysed. A more detailed analysis of these approaches will be the focus
of Section 4.1.

Regarding the input modality, only two works out of 23 employed
a modality different than RGB (8.70%, 1 RGB-Depth, 1 depth). This
reflects the growing focus on advancing the automatic assessment
by leveraging the most accessible video format for data collection
(i.e., RGB), to make this kind of applications low-cost and thus, widely
deployable. This outcome is consistent with the results on pose space
representation: only 8 works out of 23 (34.78%) derived 3D poses,
while the remaining (65.22%) exploited 2D poses. Indeed, deriving
accurate 3D poses from RGB-only is still a widely investigated and
challenging task, as mentioned in Section 2. In addition, the prevalence
of 2D methods likely relates with the predominant type of investigated
assessment tasks and clinical goals, as further discussed in Section 4.2.

4.1. Deep learning frameworks and architectures

The 23 found works were grouped according to their hand tracking
framework or architecture, following the categorisation reported in
Fig. 4. Works applying, or comparing, two methods are counted and
appear twice, in each corresponding group (i.e., 25 hand tracking appli-
cations are considered from 23 found studies, as previously described).
In the following paragraphs each approach is described in detail; for
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each, the main finding is summarised in a table along with the fol-
lowing information: data, goals, assessment tasks, type of validation (if
any), and type of tracking (HT column, either 2D or 3D).

4.1.1. OpenPose

OpenPose [82] is an open-source computer vision framework de-
signed for multi-person 2D body keypoints detection, including face
and hands, in RGB images and videos. The core DL architecture is based
primarily on CNN modules for feature extraction, which are organised
in a multi-stage architecture to enhance the accuracy of keypoint
prediction. In fact, the model generates a coarse heatmap of body part
locations, which gets iteratively refined in the subsequent estimation
stages. The main novelty relies on the concept of Part Affinity Fields
(PAFs), that is applied to establish the connections between body parts
and enables tracking across frames through a bottom-up strategy. The
hand tracking module of OpenPose, inspired by [102], can also be
employed as a stand-alone module, provided that a hand detector is
run first on the image. Indeed, when using whole-body pose estimation,
the other body joints are used as a reference to localise the hands
before COCO model regression. The library is optimised for real-time
performance (22 fps), but only if a GPU acceleration is available (CPU
only runs at 0.5 fps) [114]. Being open-source and compatible with
various platforms, OpenPose is accessible to researchers and developers
for diverse computer vision projects, reflecting its popularity among the
identified solutions. Indeed, 6 out of the 25 applications selected in this
review (24%) exploit OpenPose for hand tracking. Table 1 reports their
summary.

Among these works, only Pang-20 [115] exploits a multiple camera
set-up (2 RGB cameras) to uplift coordinates from 2D to 3D. In partic-
ular, this study aims at developing a system able to characterise two
cardinal symptoms in PD: bradykinesia and tremor at rest. Moreover,
even though a rigorous validation with respect to gold standard sys-
tems is not provided, the architecture of OpenPose employed in this
work is fine-tuned on a portion of the considered clinical assessment
videos, improving the accuracy of the tracking during all the four
investigated tasks (i.e., finger tapping, hand movements, pronation-
supination, and rest tremor). All the remaining works exploit the native
2D pose representation of OpenPose, four to regress MDS-UPDRS scores
using Machine Learning (ML) or DL [81,116-118] and one [78] to
distinguish PD and HC by employing a set of derived features and
statistical testing. The latter, Monje-21 [78], is also the only work that
validates the extracted metrics with respect to a standard approach,
i.e., an IMU device, finding a significant correlation with its measures.
On the contrary, the applications for MDS-UPDRS regression do not
validate OpenPose tracking or derived kinetic features, but only the
coherence between the regressed clinical value and the scores assigned
by human evaluators, finding overall good agreement.

4.1.2. DeepLabCut

DeepLabCut [97] is a versatile and open-source toolbox designed
for markerless 2D pose estimation in images and videos, for tracking
both animals and humans. Its main advantage relies on the user-
defined marker configuration of the body parts of interest, making it
a valuable asset for researchers in behavioural neuroscience, biome-
chanics, and related fields. Exploiting Transfer Learning [119], popular
pre-trained CNN models, such as MobileNet [120], ResNet [121], Ef-
ficientNet [122], can be fine-tuned in the desired pose estimation
task using a subset of frames from the video recordings to analyse,
that have to be manually annotated by researchers. For instance, in
the case of hand tracking, the whole COCO skeletal model or only
a subpart of it (e.g., index and thumb fingertips for finger tapping)
can be annotated and studied. The framework requires just a limited
subset of annotated training data (50-200 frames on average) to achieve
satisfactory accuracy. According to developers, the average duration
of the complete fine-tuning procedure is around one hour [97]. After
video annotation and fine-tuning, the tracking can run in real-time or
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Studies employing OpenPose for hand tracking. Studies marked with * in the Study column have open data or data available on request. Studies marked with ¢ provide, additionally,
a validation of their presented framework with respect to gold standard systems, such as accelerometers or motion capture.

Study Data Goal Task HT Type Summary
Pang- 216 videos Bradykinesia FT, HM, PS, RGB, 3D A system based on two RGB cameras is
20, [115] (Sbj: 5 PD, and Tremor TR proposed. The system is able to characterise
22 HC) assessment the two symptoms with respect to the
benchmark of HC. A derived metric expressing
the Average Separability between the two
groups appears well correlated with
MDS-UPDRS (0.9, p-value 0.0312).
Li-21, [116] 744 videos MDS-UPDRS FT RGB, 2D Employing the skeletal data derived by
(Sbj: 154 PD) score OpenPose, a subsequent three-stream network
regression exploiting spatio-temporal attention achieves an
accuracy of 72.4% and an acceptable accuracy
of 98.3% in the regression task.
Morinan- 2312 videos MDS-UPDRS FT, HM, PS RGB, 2D A large population, multi-centric study was
23, [81] (Sbj: 628 PD) score carried out. Employing the skeletal data
regression derived by OpenPose on collected clinical
videos, a set of features is extracted to regress
MDS-UPDRS scores, with a classifier achieving
balanced accuracy of 45% and acceptable
accuracy of 81%. A binary classification, low vs
high severity ratings, results in 75% accuracy.
Lu-21, [117] 68 videos MDS-UPDRS FT RGB, 2D A DL architecture modelling scorers’
(Sbj: 34 PD) score uncertainty in assessing gait, is tested on the FT
regression task as well, achieving a macro-average AUC of
0.69, Fl-score of 47%, precision of 47%, and
balanced accuracy (average recall) of 48%.
Park- 110 videos MDS-UPDRS FT, TR RGB, 2D Features from OpenPose tracking combined
21, [118] (Sbj: 55 PD) score with an SVM model to assess TR show a good
regression to excellent reliability range (Cohen’s K: 0.791;
ICC 0.927) with respect to clinical scoring.
Very good reliability range are found also for
FT (Cohen’s K: 0.700; ICC 0.793).
Monje- 1146 videos PD diagnosis FT, HM, PS RGB, 2D A method combining webcam with OpenPose
21%0, [78] (Sbj: 22 PD, tracking is designed. Features from FT, HM,
20 HC) and PS correlate well with IMU validation and

clinical scores. However, features combined
with shallow learning achieve varying accuracy
values in a 4-fold cross-validation, depending
on the assessment task (from low to very
good).

PD: Parkinson Disease; HC: Healthy Controls; FT: Finger Tapping, HM: Hand Movements; PS: Pronation-Supination; TR: Tremor; 2D: Two-Dimensional; 3D: Three-Dimensional;
MDS-UPDRS: Motor Disorder Society-Unified Parkinson’s Disease Rating Scale; AUC: Area Under the Curve; SVM: Support Vector Machine; ICC: Intra-class Correlation Coefficient;

IMU: Inertial Measurement Unit.

even faster, given the GPU acceleration. On the CPU alone, real-time
performance is solely available for extremely low-quality input (77x33
pixels videos) employing MobileNet [123].

DeeplabCut appears in 5 out of 25 (20%) of the reviewed applica-
tions. Its popularity stems from its high level of customisation and ease
of use, since a graphical user interface simplifies the interaction with
the framework. However, its accuracy highly depends on the quality
of the data labelling performed by the user, which requires careful
consideration.

The core information regarding the selected studies employing
DeepLabCut is shown in Table 2. Two works do not describe the
underlying DL architecture [112,124]. Other two works exploit a con-
volutional residual network as a backbone, Baker-22 with 50 residual
layers (ResNet-50) and Nunes-21 with 152 layers (ResNet-152), the
deepest configuration. These diverse choices are coherent with the
size of the two datasets available (i.e., larger dataset, deeper structure
trainable). Only Shin-20 [79] employs MobileNetV2, a more lightweight
inverted-residual architecture, with residual blocks operating as bottle-
neck layers [120]. This choice appears again coherent with the size of
the dataset available for the study.

All methods exploit simple 2D tracking from RGB videos, even
though DeepLabCut can also perform 3D estimation, provided that
the user inputs two calibrated video streams. Vignoud-22 [112] also
compares its performance to an alternative, more complex architecture

for 3D tracking (i.e., HandGraphCNN). Regarding the aim of meth-
ods employing DeepLabCut, Williams-20 [124] focuses on bradykinesia
assessment, whereas the others are mainly devoted to MDS-UPDRS
regression [79,112,125,126], with Nunes-21 [125] also performing PD
detection with respect to subjects with Ataxia and HC. As concerns
the validation approach, only Shin-20 [79] performs validation of the
estimated parameters from the finger tapping task with respect to a
reference system (i.e., an accelerometer).

4.1.3. MediaPipe

MediaPipe [83] is the solution for lightweight and portable ML
pipelines, developed by Google LLC. It contains a module, defined
Google MediaPipe Hand (GMH) [88], which relies on a DL approach
based on monocular RGB input for 2.5D or 3D hand tracking. The
latter is obtained by fitting on the 2D estimations the GHUM mesh
model [127]. This mesh model was used to generate the synthetic
images employed together with real data, to train GMH (around 30k
single images). The GMH framework is composed of two sub-modules:
a Palm Detection Module (PDM), which performs hand localisation,
and a Hand Landmarks Detection Module (HLDM). First, the PDM
identifies the region of interest corresponding to the hand. Then, the
HLDM detects the 21 key points of the COCO skeletal model. PDM
employs an encoder—-decoder convolutional structure similar to Feature
Pyramid Network (FPN) [128], whereas HLDM is a regression module,
whose internal architecture has not been disclosed in details. This
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Studies using DeepLabCut for hand tracking. Studies marked with * in Study column have open data or data available on request. Studies marked with ¢ provide, additionally, a
validation with respect to gold standard systems such as accelerometers or motion capture.

Study Data Goal Task HT type Architecture Summary
Williams- 133 videos Bradykinesia FT RGB, 2D - Measures of bradykinesia from DeepLabCut
20, [124] (Sbj: 39 PD, assessment tracking correlate well with the clinical ratings
30 HC) of bradykinesia (Spearman coefficients): —0.74
speed, 0.66 amplitude, —0.65 rhythm for
MBRS; —0.56 speed, 0.61 amplitude, —0.50
rhythm for MDS-UPDRS; —0.69 combined for
MDS-UPDRS, with all p-values < .001.
Shin-20¢, [79] 54 videos MDS-UPDRS FT RGB, 2D MobileNetV2 FT tracking of DeepLabCut is validated with an
(Sbj: 29 PD) score accelerometer. Moreover, several parameters
regression (e.g., amplitude and inter-peak interval) appear
correlated (|R| ranging between 0.34 to 0.66
for different parameters) with the clinical
scores.
Nunes-21%, [125] 305 videos MDS-UPDRS FT RGB, 2D ResNet-152 Employing the tracking data derived by
(Sbj: 78 PD, score DeepLabCut, a set of features is extracted to
169 Ataxia, regression, PD distinguish subjects with Ataxia, PD and HC
58 HC) diagnosis and to regress MDS-UPDRS scores. The first
task for PD achieves variable AUC, (PD vs HC:
0.68, PD vs ataxia: 0.91). In the regression task,
low scores are obtained (R=0.21, R? = 0.04).
Baker-22, [126] 68 videos HM assessment HM RGB, 2D ResNet-50 Using DeepLabCut, an automatic recognition of
(Sbj: 5 PD) during DBS arm chain pulls and hand clenches is
surgery performed during DBS surgery. The derived
features of motion, then input to the SVM,
reach respectively 92.30% and 76.20%
accuracy in the detection task.
Vignoud- 272 videos MDS-UPDRS FT,HM,PS RGB, 2D - The work compares DeepLabCut 2D tracking
22, [112] (Sbj: 36 PD, score with HandGraphCNN 2D and 3D tracking for
11 HC) regression estimating parameters relevant to MDS-UPDRS

regression. A maximum R? =0.701 is reached
using a decision tree regressor with features
derived from DeepLabCut 2D tracking of HM
task.

PD: Parkinson Disease; HC: Healthy Controls; FT: Finger Tapping, HM: Hand Movements; PS: Pronation-Supination; MDS-UPDRS: Motor Disorder Society-Unified Parkinson’s Disease
Rating Scale; 2D: Two-Dimensional; 3D: Three-Dimensional; MBRS: Modified Bradykinesia Rating Scale; AUC: Area Under the Curve; SVM: Support Vector Machine; DBS: Deep

Brain Stimulation.

framework represents an interesting approach, balancing accuracy and
time efficiency. Indeed, it supports a frame rate over 50 fps on a Google
Pixel 6 phone using CPU only, or even faster (> 80 fps) exploiting GPU
acceleration, as reported by the official web page of the pipeline [129].

Moreover, enhancements of the basic framework were proposed in
the literature, such as GMH-D [130], which exploits an RGB-Depth
camera (i.e., Microsoft Azure Kinect (MAK)) as input. According to
the authors, GMH-D has comparable computational performance to
GMH but enhanced 3D tracking accuracy, by leveraging both the depth
estimation performed by the DL network and the depth map provided
by the RGB-Depth camera.

MediaPipe has seen an increase in popularity over time. Indeed, this
review identified 5 applications exploiting this framework, out of 25
(20%): one study in 2021 [131], two studies in 2022 [132,133], and
two studies in 2023 [113,134]. The time efficiency and the reduced
computational complexity provided by this solution could be the reason
for this finding. The works employing this framework are summarised
in Table 3. Among them, two exploit MediaPipe for 3D tracking: Li-
22 [132] using native 3D coordinates on RGB input, Amprimo-23 using
GMH-D [134], therefore, leveraging an RGB-Depth modality. All the
remaining applications limit their analysis to 2D estimation [113,131,
133].

MediaPipe is transversely employed for different purposes, covering
MDS-UPDRS regression [132] as well as PD recognition [134], and
the assessment of tremor at rest [131,133]. Besides, it appears to
be the most validated approach: Li-22 [132] validates its measures
using an accelerometer, whereas two works [113,134] perform manual
validation on videos (Amprimo-23 [134] reported validation from a
previous work on HC).

4.1.4. MMPose

MMPose [135] is an open-source pose estimation toolkit developed
in PyTorch as a part of the OpenMMLab Project [136]. This comprehen-
sive framework encompasses an array of advanced algorithms tailored
for different applications, including 2D and 3D multi-person HPE, hand
tracking, face landmark detection, fashion landmark detection, and ani-
mal pose estimation. MMPose includes popular DL architectures such as
HRNet [137], MobileNet and DeepPose [138], and several techniques
to improve pose estimation results such as DarkPose [139] and Residual
Log-Likelihood Estimation [140]. All models require GPU acceleration
for real or almost real-time performance. In the reviewed works, 3 out
of 25 applications (12%) exploit MMPose by combining different archi-
tectures. The selected works are concisely described in Table 4. Among
them, Yang-22 [141] and Xie-23 [142] exploit architectures for 3D
tracking on RGB videos, while one leverages only 2D on the same input
modality. Regarding the underlying architectures, Yang-22 [141] ex-
ploits DeepPose [138], a simple convolutional and fully connected deep
network. Xie-23 [142], instead, employs a combination of HRNetV2,
a deep convolutional network designed to maintain high-resolution
representation throughout the architecture [137], and DarkPose [139],
a model-agnostic plugin, to improve pose estimation. Finally, Trebbau-
23 [113], as already mentioned in Section 4.1.3, compares MediaPipe
to several architectures from MMPose, including HRNet, MobileNet,
and ResNet. This work also validates tracking results with respect to
manual evaluation from videos. MMPose is used both for MDS-UPDRS
score regression [141,142] and bradykinesia assessment [113].

4.1.5. Others
Works classified as Others are described in Table 5, specifying
their architectural details. Three of them [112,143,144] exploit three
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Table 3
Selected studies employing MediaPipe. Studies marked with * in Study column have open data or data available on request. Studies marked with ¢ provide, additionally, a validation
with respect to gold standard systems (accelerometers, motion capture systems, manual evaluation).

Study Data Goal Task HT type Summary

Li-22*, [132] 252 videos MDS-UPDRS FT RGB, 3D The evolution over time of the distance
(Sbj: 93 PD, score between index finger and thumb tips in the FT
30 HC) regression task is obtained from MediaPipe tracking. This,

along with its first and second derivatives are
used to train a CNN model to regress
MDS-UPDRS. Overall 79.2% accuracy in 5-fold
cross-validation is achieved.

Giiney- 11 videos Tremor TR RGB, 2D The performance of the video-tracking is in

220, [133] (Sbj: 11 PD) Assessment good agreement with the accelerometer-based
tracking, resulting in a tremor frequency
estimation with a small error rate (MAE: 0.229
+0.174 Hz) and a high correlation between
amplitude of movements detected. Moreover, a
reduction in tremor before and after
medication is found.

Amprimo- 130 videos PD diagnosis FT RGB-Depth, 3D The work employs GMH-D, a depth-enhanced
239, [134] (Sbj: 35 PD, version of MediaPipe, to characterise FT. The
60 HC) extracted fatures are used to train several

shallow learning models. Results in a
Leave-One-Subject-Out cross-validation achieve
accuracy and Fl-score above 95%.

Wang- 272 videos Tremor TR RGB, 2D Starting from the TIM-Tremor dataset,

21%, [131] (Sbj: 55 PD) Assessment MediaPipe is used to extract features for
automatic identification of PD tremor from
videos using a binary classification. SVM,
LSTM, and CNN-LSTM models trained on such
features achieve respectively, 59%, 79%, and
80% F1-score in the task.

Trebbau- 88 videos Bradykinesia FT RGB, 2D A comparison between MediaPipe and MMPose
230, [113] (Sbj: 6 PD, Assessment is performed, considering the assessment of
10 HC) bradykinesia from videoconference recordings

and high quality videos. MediaPipe achieves
best tracking accuracy in both scenarios in
terms of R?. Moreover, good correlation is
found between the extracted FT parameters and
the clinical scores (ICC> 0.90).

HT: Hand Tracking; PD: Parkinson Disease; HC: Healthy Controls; MDS-UPDRS: Motor Disorder Society-Unified Parkinson’s Disease Rating Scale; FT: Finger Tapping, TR: Tremor;
2D: Two-Dimensional; 3D: Three-Dimensional CNN: Convolutional Neural Network; MAE: Mean Absolute Error; SVM: Support Vector Machine; LSTM: Long-Short Term memory;
ICC: Intra-class Correlation Coefficient.

Table 4
Selected studies employing MMPose. Studies marked with * in Data column have open data or data available on request. Studies marked with ¢ provide, additionally, a validation
with respect to gold standard systems (accelerometers, motion capture systems, manual evaluation).

Study Data Goal Task HT Type Architecture Summary

Yang- 611 videos MDS-UPDRS FT RGB, 3D DeepPose A dataset containing clinically-scored FT and

22%, [141] (Sbj: - PD) score Postural Stability videos is released. MMPose is
regression used to track the hand and extract FT

parameters. Classification using a
fully-connected NN achieves an average
accuracy and Fl-score above 80% for both
hands, separately assessed.

Xie-23, [142] 490 videos MDS-UPDRS PS RGB, 3D HRNetv2 Tracking data from MMPose of PS are fed to a
(Sbj: - PD) score with multi-scale framework with two graph
regression DarkPose convolutional networks for score regression. An

averaged-across-scores accuracy of 61.11%, an
acceptable accuracy of 91.85%, and an
Fl1-score of 56.31% are obtained in a 5-fold
cross-validation.

Trebbau- 88 videos Bradykinesia FT RGB, 2D HRNet, A comparison between MediaPipe and MMPose
230, [113] (Sbj: 6 PD, Assessment MobileNet, is performed, considering the assessment of
10 HC) ResNet bradykinesia from videoconference recordings

and high quality videos. MediaPipe achieves
the best tracking accuracy in both scenarios.
MMPose models pre-trained on OneHand10K
dataset appear to track better in both scenarios,
especially with HRNet backbone network.

HT: Hand Tracking; PD: Parkinson Disease; HC: Healthy Controls; MDS-UPDRS: Motor Disorder Society-Unified Parkinson’s Disease Rating Scale; FT: Finger Tapping, PS:
Pronation-Supination; 2D: Two-Dimensional; 3D: Three-Dimensional; NN:Neural Network.
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Selected studies employing VitPose, HandGraphCNN or custom architectures. Studies marked with * in the Study column have open data or data available on request. Studies
marked with o provide, additionally, a validation with respect to gold standard systems, such as accelerometers or motion capture systems.

Study Data Goal Task

HT type

Architecture Summary

917 videos
(Sbj: 55 PD)

Tremor TR

Assessment

Zhang-
23%, [143]

272 videos
(Sbj: 36 PD,
11 HC)

MDS-UPDRS
score
regression

Vignoud-
22, [112]

FT,HM,PS

360 videos
(Sbj: 60 PD)

Liu-19, [146] MDS-UPDRS
score

regression

FT, HM, PS

177 videos
(Sbj: 121 PD)

Lin-20, [144] Bradykinesia HM

assessment

112 videos
(Sbj: 48 PD,
11 HC)

MDS-UPDRS
regression

Guo- FT

22, [105]

894 videos
(Sbj: 149 PD)

Chen-
21, [147]

MDS-UPDRS
regression

FT, HM, PS

RGB, 2D

RGB, 2D-3D

RGB, 2D

RGB, 3D

Depth, 3D

RGB, 2D

VitPose A pipeline for PD tremor detection in the
TIM-Tremor dataset is designed by combining
hand tracking by VitPose and a transformer
network (SimpleHandFomer). 93% accuracy and

92.6% F1-score are achieved.

Hand-
GraphCNN

The work compares DeepLabCut 2D tracking
with HandGraphCNN 2D and 3D tracking for
estimating parameters relevant to MDS-UPDRS
regression. PS is evaluated using
HandGraphCNN 3D only; however, according
to the authors, the score regression for this
task fails.

MobileNetv2
with DUC
and DSNT

A combination of MobileNet, Dense
Upsampling Convolution, and Differentiable
Spatial-to-Numerical Transform module is used
to perform hand-tracking. The parameters
extracted for each task allow an average
accuracy across task and MDS-UPDRS scores of
89.7% using a SVM.

Exploiting the architecture from Zimmerman et
al. for 3D tracking from RGB video, the hand
movements are analysed. An encode-decoder
model called PM-Net achieves a 77.78%
accuracy in binary detection of bradykinesia,
using a single-split testing on the extracted
kinetic features.

Zimmer-
man3D

An enhanced version of the A2J architecture
for hand tracking on depth images is
implemented and used to evaluate FT depth
videos. The extracted kinematic features from
tracking together with shallow learning achieve
a 81.20% mean accuracy in a 5-fold
cross-validation, and 76.79% in a
Leave-One-Subject-Out cross-validation.

After finding the ROIs using OpenPose, a SHG
model infers 21-joints. The derived features of
motion, combined with shallow learning,
achieve an average accuracy across-score and
across-fold of 87.62%.

ST-A2J

OpenPose
with SHG
model

HT: Hand Tracking; PD: Parkinson Disease; HC: Healthy Controls; MDS-UPDRS: Motor Disorder Society-Unified Parkinson’s Disease Rating Scale; FT: Finger Tapping; HM: Hand
Movements ;PS: Pronation-Supination; 2D: Two-Dimensional; 3D: Three-Dimensional; CNN: Convolutional Neural Network; SHG: StackedHourglass; ROI: Region Of Interest; SVM:

Support Vector Machine.

state-of-the-art, general-purpose hand tracking architectures, namely
VitPose, HandGraphCNN and Zimmerman3D.

VitPose [145] is a state-of-the-art transformer model for human and
hand pose estimation. The model achieves remarkable tracking ac-
curacy by leveraging plain and non-hierarchical vision transformers
as backbones to extract features for a given person instance and a
lightweight decoder for pose estimation. However, to exploit the com-
plete capabilities of VitPose, potential users necessitate robust hard-
ware set-ups, including GPUs and extensive memory capacity, to deal
with the computational demand typical of vision transformers. This
aspect, together with the novelty of the method, justifies why currently
only a single work [143] was found exploiting this kind of architecture.
In particular, Zhang-23 [143] adopts VitPose to estimate 2D hand poses
and assess PD tremor in RGB videos. The authors do not validate its
tracking accuracy, but PD tremor was identified with good accuracy
and F1-score values (above 90%).

HandGraphCNN [148] is a hand tracking architecture exploiting a
combination of stacked hourglass, residual and graph-convolutional
layers. The model was designed mainly for hand mesh recovery, but
can also derive the corresponding COCO skeletal model. The complete
network was trained using both supervised and unsupervised 3D data,
thanks to a weakly supervised schema during fine-tuning on real-world
datasets lacking depth information. This architecture is compared with

10

DeepLabCut in Vignoud-22 [112] to derive both 2D and 3D poses
for MDS-UPDRS regression, especially in the case of the pronation-
supination movements, which is tracked using HandGraphCNN-3D
only. However, the authors do not validate its tracking accuracy in this
specific task with respect to any standard reference for measurements.

Zimmerman 3D [55] is the first solution that was developed for 3D
hand tracking in monocular RGB videos. The architecture is composed
of three sub-components: the HandSegNet module, which performs the
hand localisation task; the PoseNet module, which localises the hand
joints using heatmaps; and the PosePrior network, which estimates
the most likely 3D structure according to the PoseNet output. The
first two modules are CNNs, whereas PosePrior is based on a mix of
convolutional and feed-forward layers. In [144] this architecture is
used for bradykinesia assessment from RGB videos, but no validation
of the hand tracking quality for this specific task is reported.

Custom models The remaining three applications (12%) developed a
custom hand tracking solution to address their needs. Overall, the
rationale of all these solutions consists in combining popular architec-
tures for hand or whole-body pose estimation, generating new hybrid
approaches. For instance, the model in Liu-19 [146] first performs
preliminary hand detection based on whole-body key points, exploiting
the same procedure of [102]. Then, a novel architecture is introduced
to derive accurate 2D hand poses from RGB videos. This architecture
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combines high-quality heatmaps for joint regression obtained through
MobileNetV2 with two custom modules, a Dense Upsampling Con-
volution (DUC), and a Differentiable Spatial-to-Numerical Transform
(DSNT). The model is trained on a non-PD-specific hand tracking
dataset (i.e., MPII Human Pose Dataset [149]) and then used for
MDS-UPDRS estimation on a private PD dataset. No validation of the
quality of the tracking alone is provided in the paper. Guo-22 [105]
employs an enhanced version of their A2J architecture [91] for hand
tracking on depth video streams, after hand detection using YOLO
V3 [150]. In particular, a temporal encoding module is added to the
original model to incorporate temporal contextual information, as well
as a non-DL-based pose refinement procedure that applies physical
constraints to hand movements. The approach, not validated against
any gold standard system, is first trained on a non-PD-specific hand
tracking dataset (i.e., HANDS-2017 [151]), and then applied on a
PD-videos dataset for MDS-UPDRS regression. Finally, Chen-21 [147]
utilises OpenPose-predicted body key points to perform hand detection
and then to infer 2D hand key points exploiting a Stacked Hourglass
(SHG) model [152], with each stage containing a U-Net [153] alike
architecture performing multi-scale feature fusion. The optimal model
is trained on a mix of hand tracking data coming from publicly avail-
able datasets for hand pose estimation (i.e., Panoptic Hand [102],
FreiHand [154]) as well as a sub-portion of the PD videos to analyse.
The obtained hand poses were then used to regress MDS-UPDRS scores.
Also, this custom hand tracking method was not compared to any other
measurement system.

4.2 Assessment tasks and goals

In this section, the perspective moves to the type of assessment
tasks and clinical goals that emerged from the analysis of the selected
studies. The results of these observations are summarised in Figs. 5
and 6, respectively. In the former, the bar chart highlights finger
tapping as the most investigated task (19 studies) [78,79,81,105,
112,113,115-118,124,125,132,134,141,146,147], followed by hand
movements (8 studies) [78,81,112,115,126,144,146,147], pronation-
supination (7 studies) [78,81,112,115,142,146,147], and tremor (5
studies) [115,118,131,133,155]. The first three tasks are also often
studied together [78,81,112,115,146,147], as a proxy for the whole
MDS-UPDRS-section III assessment (6 works out of 23). The popularity
of the finger tapping task is likely related to two aspects: firstly, the
evident connection between this fine-motor task and the disease sever-
ity; secondly, given the correct positioning of the recording camera,
the feasibility of accurately evaluating the movement using a simpler
2D framework (14 out of 19 cases). Instead, the scarcity of applications
regarding tremor is likely justified by the complexity of identifying this
symptom by employing a non-contact-based solution.

Regarding the clinical goals pursued by the reviewed works, the
results have been summarised in four main groups:

1. Staging (i.e., MDS-UPDRS automatic regression);

2. Diagnosis (i.e., automatic recognition of PD vs HC or other
pathological conditions);

3. Specific symptoms assessment;

4. Other.

As can be seen in Fig. 6, the first group is the largest (14 works) and
includes works employing several different types of pipelines, ranging
from those deriving first handcrafted features from hand tracking data
and then inputting these into shallow [78,79,81,105,112,118,125,146,
147] or deep [132,141] models, to solutions exploiting directly (or
after minimal pre-processing) tracking data as input to DL regression
networks [116,117,142]. The works in the second group (3 studies)
all apply handcrafted feature extraction and shallow learning to per-
form PD detection [78,125,134]. This application usually serves as a
preliminary investigation before advancing on a deeper analysis of the
pathological subjects. The third group (7 works) involves mainly the
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Fig. 5. Assessment tasks evaluated using DL-based hand tracking in the reviewed

studies: most of the works involve the automatic characterisation of finger tapping,
followed by hand movements, pronation-supination, and finally tremor.
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Fig. 6. Aims of the reviewed works: staging according to MDS-UPDRS score is the most
common task (14), followed by the assessment of a specific symptom (i.e., bradykinesia,
tremor) (7), PD diagnosis with respect to HC (3), and other goals (1).

assessment of tremor [131,133,143], bradykinesia [113,124,144] or
both [115]. This goal is achieved in these studies either by investigating
the correlation between relevant handcrafted features extracted from
tracking data and the clinical scores [113,115,124,133], or by looking
at how these features performed in the automatic detection of the
symptom [131,143,144]. The group Other contains a single work [126]
which sought to automatically assess the type of hand movements
performed by PD patients during Deep Brain Stimulation (DBS) surgery.

Regarding the performances achieved by the works across all the
four groups, the lack of publicly available benchmarks, except for
tremor, and the lack of a systematic validation (see Section 4.3), as
well as diverse strategies in reporting results (i.e., different evalua-
tion metrics and testing or cross-validation strategies), do not allow
a systematic comparison (more in Section 5). Overall, regarding di-
agnosis, all three identified works [78,125,134] reported very high
accuracy, especially when assessing PD from finger tapping, whereas
the pronation-supination task appeared more challenging [78]. When
considering disease staging, instead, the finer distinction between the
five levels of severity of the MDS-UPDRS appears complex, especially
between adjacent scores. Indeed, many works reported very low aver-
aged across-task and across-cross-validation-stage accuracy, but good to
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the excellent value of acceptable accuracy (i.e., accuracy considering as
correct the predictions within +1 score) [81,116,147].

4.3 Validation and data availability

As regards the validation of the hand tracking methodology with
respect to standard measurement systems, only 5 works out of 23
(21.73%) performed it or mentioned previous works addressing the
issue [78,79,113,133,134]. Among these, three studies conducted the
validation using an accelerometer [78,79,133], and two employed
manual evaluation from video analysis [113,134].

With respect to data availability, just 6 works out of 23 (26%)
were based on open data or reported a data available on request
statement [78,125,131,132,141,143]. Out of these, two studies on
tremor [131,143] exploited the publicly available TIM-TREMOR
dataset [80], while Yang-22 [141] proposed a new open database
containing RGB videos of both the finger tapping and the whole-body
postural stability tasks.

5 Discussion

The selected works provide a comprehensive analysis of the state
of the art in DL-driven hand tracking frameworks and architectures
applied to video-based assessment of PD. In particular, they allow
answering the research questions in Section 1 and gathering insight
into potential further investigations in the domain, as summarised in
the following subsections.

5.1 The current perspective and its limitations

The inspection of the most popular architectures and methods re-
veals an evident unbalance towards easily deployable models. Indeed,
most studies employ off the shelf hand tracking frameworks (i.e., Open-
Pose, DeepLabCut, MediaPipe), while focusing their efforts on the auto-
matic assessment stage of their pipeline. Specifically, only three works
proposed novel or custom-made architectures to solve the hand track-
ing problem and more complex frameworks such as HandGraphNet,
Vitpose, and MMPose were less considered.

As concerns the computational complexity, most studies still heavily
rely on GPU acceleration, whereas only those employing MediaPipe
provided real-time computing through the use of the CPU alone. While
the burden of computational complexity generally tends to be over-
looked by the necessity of higher accuracy, in the perspective of in-
tegrating these solutions in real-world telemedicine scenarios for PD
assessment, researchers will likely shift towards more computationally
efficient approaches. Indeed, MediaPipe is the second most popular
method, exhibiting a stable increase over time (1 paper in 2021, 2 in
2022, and 2 in 2023). Also, DeepLabCut represents an appealing and
widely investigated approach. However, the need for two calibrated
cameras to retrieve 3D poses, together with the initial manual labelling
and fine-tuning stage, limits its applicability outside the theoretical
research field.

The predominance of 2D over 3D tracking methods and the choice
of RGB-videos as the most popular input modality confirm the interest
in low-cost but accurate methods. This result is reasonable, considering
that 3D tracking from an RGB input still exhibits limited accuracy and
that RGB-Depth or depth modalities require dedicated and generally
more expensive instrumentation. However, as depth sensors are gradu-
ally becoming more pervasive (e.g., in smartphones and VR headsets), it
is likely that future solutions will begin to leverage anew this modality,
as in earlier research studies.

Another relevant aspect is the validation of such hand tracking
frameworks. As reported in [156-158], the clinical acceptability of
objective measurement tools for PD requires accuracy validation and
explainability of the reported measures, to provide a trustworthy esti-
mation of impairment. However, when observing the studies found, an
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evident lack of rigorous validation appears. Indeed, several works rely
solely on the coherence of their prediction with ground-truth clinical
scores to indirectly validate the hand tracking framework at the source
of their application pipeline. However, this approach presents with two
main drawbacks: first, the clinical scores themselves do not represent
an objective evaluation and thus cannot be employed for assessing
the quality of the tracking methodology. As remarked in [156], it
is reasonable to expect that a more complex quantitative interaction
exists between tracking measures and clinical scores, considering that
a clinical rater combines many sources of information to assign a
subjective score, including prior experience and expectations. Second,
for the MDS-UPDRS regression pipelines without validation, it may
be hard to determine whether the poor performance depends on a
wrongly designed MDS-UPDRS scoring module or on the low-quality
features obtained by an inaccurate hand tracking framework. For in-
stance, two independent works observed that by fine-tuning the generic
OpenPose architecture specifically on PD assessment data, the tracking
quality was significantly improved, with inherent effects on the overall
performances of their application [115,147].

Trebbau-23 [113] also reported a higher accuracy when training
MMPose models on a dataset of hand movements instead of a generic
whole-body pose dataset. Additional works performing validation on
HC with motion capture systems were found for OpenPose [110],
MediaPipe [159], and DeeplabCut [111]when further inspecting the ex-
cluded papers. However, while validation on HC represents a first step,
performing the same procedure with PD subjects should be preferred.
Indeed, an evident difference exists between these two populations,
which may have relevant effects on tracking quality, thus reducing the
applicability in real clinical scenarios.

The need for a robust validation inherently reconnects with the data
availability issue. As highlighted in [160], the lack of large-population
studies is among the limitations hampering the translation of most
of the research outcomes in this field into deployed technologies.
Especially for video-based solutions, due to the privacy constraints in
sharing the patients’ RGB videos, there is a lack of a unified benchmark
over which the different hand tracking frameworks could be validated
and compared. The largest datasets reported in the reviewed papers
are not open-access. The only exceptions are the dataset published in
Yang-22 [141], containing only finger tapping RGB videos, and the
TIM-TREMOR dataset [80], which focuses mainly on tremor. The lack
of larger datasets also hinders the development of more complex and
deeper automatic assessment models, which might better investigate
the finer distinction between adjacent MDS-UPDRS severity levels.
Moreover, most solutions still do not address the problem of the quality
of the input data: indeed, only Trebbau-23 [113] partially addressed
the issue by comparing in-presence high quality recordings versus
recordings collected during Zoom videoconferencing examinations.

Regarding the type of assessment, finger tapping is the most studied
and the most promising task for video-based tracking. This outcome
suggests that the alterations from its correct execution are quite evident
to detect, even for simple 2D tracking architectures. At the same time,
the lower frequency of pronation-supination and tremor video-based as-
sessments is likely due to the complexity of evaluating these tasks using
simple hand tracking methods, rather than their clinical significance.
In particular, almost all the reviewed applications struggled to attain
good results for the pronation-supination task [78,81,112,142]. This
outcome suggests that wearable methods, such as those in [65,70,77]
still represent the state of the art to track this task quantitatively.

Finally, considering the research goals of the reviewed works, the
predominant target is the finer classification of impairment by regress-
ing the MDS-UPDRS scores, which represents a challenging goal even
for clinicians. Indeed, also the study of specific symptoms, such as
tremor and bradykinesia, eventually aims at this outcome. Currently,
the problem remains far from being solved, and even though several
works claimed good-to-excellent accuracy on their custom, private
datasets, the validity and generalisability of such approaches still need
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to be proved, as discussed above. The outcomes of the multi-centric,
large-population study in Morinan-23 [81] support the claim that a
simple but effective evaluation system based on consumer RGB cameras
may be possible. However, its results in the MDS-UPDRS regression task
(Table 4 in Morinan-23 [81]) still offer wide margins for improvement.

5.2 The future perspective

The growing interest for PD video-based assessment using hand
tracking promoted the advent of numerous applications and promising
research directions, as shown through the identified works. However,
several challenges persist.

The first, and most evident issue to overcome in future research
trajectories is the need for open and large datasets, possibly encom-
passing several types of assessment tasks and including not only the
video modality but also additional information for a rigorous validation
(e.g., motion capture tracking, IMUs recordings, manually annotated
measurements). Future and current hand tracking frameworks could
benefit from an enlarged data availability, and enhance their accuracy,
being fine-tuned on the peculiarities of Parkinsonian hand movements.
Moreover, larger, open datasets could become benchmarks for a system-
atic comparison between hand tracking solutions for PD assessment,
as commonly done in other computer vision tasks, such as object
recognition. Achieving a standardised comparison among frameworks
would also require a systematic investigation of the currently employed
metrics (e.g., correlation, AUC, accuracy, acceptable accuracy) and
ML validation methodologies (e.g., k-fold cross-validation, leave-one-
subject-out cross-validation, single training/testing split). This specific
aspect is left for future literature reviews.

One other main challenge is the translation of this technological
approach to real applications, where the main hindrance is the cur-
rent predominance of computationally-expensive methods (i.e., GPU-
accelerated architectures). Indeed, from the selected studies, a need
for straightforward and user-friendly approaches for hand tracking
emerged. Forthcoming methodologies should strive to develop or ex-
ploit hand tracking techniques that balance complexity and accuracy.
This aspect is deemed essential to facilitate the integration of such
frameworks into the routine clinical examinations. Indeed, as pointed
out in [158], among the facilitators for acceptance both by patients
and neurologists, is the maintenance of the human factor within the
solution. Most of the reviewed works were preliminary investigations,
aiming at minimal clinical supervision in the prospective usage in
at-home assessment scenarios. However, for those solutions aiming
also at in-clinic assessment, the participation of neurologists should be
attributed a more central role. For example, the frameworks could in-
tegrate user-friendly graphical interfaces to allow clinicians to perform
manual correction during hand tracking in challenging scenarios

(e.g., pronation-supination) or to fine-tune models on their patient-
specific data. Moreover, frameworks allowing clinicians to track only
specific hand joints of interest for each clinical task could be a promis-
ing research direction. Indeed, the popularity of the DeepLabCut frame-
work, which partially allows these options, with the drawback of
an initial data labelling stage, suggests that simple interaction and
flexibility in the tracking model may be significant aspects to consider
along with accuracy in real-world, deployable applications.

Regarding the investigated clinical tasks, the lower number of stud-
ies focusing on tremor and the limited results on pronation-supination
suggests that wearables may still represent the best tracking method-
ology for the quantitative assessment of complex 3D movements. Nev-
ertheless, those methods combining DL video-based hand tracking and
wearables, such as those in [161,162] could be used to improve the
tracking accuracy, at least in the near future.

Moreover, all the identified studies focused on the automatic as-
sessment of MDS-UPDRS-Section III tasks, usually involving only one
hand at a time. While this outcome may be biased by the original
search query, when observing the in-the-wild hand tracking domain, the
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simultaneous tracking of multiple hands interacting, and the tracking
of the hand interacting with other objects remain complex tasks to
solve technically [163-166]. This remark may give explanation for
the yet scanty application of such methodologies in the assessment of
PD. Nevertheless, the introduction of robust and easy-to-deploy hand-
hand and hand-object tracking frameworks could guarantee a more
comprehensive evaluation of the subject’s motor impairment. For in-
stance, the MDS-UPDRS-Section II [10] includes the assessment, based
on the patient or caregiver’s reports, of some issues in daily life, such
as handling cutlery during meals (task 4), dressing (task 5), personal
hygiene (task 6), and handwriting (task 7). Hand-object tracking could
quantitatively assess impairment during real-life tasks, in contrast to
the movements coded in the MDS-UPDRS Section 3. Indeed, such
movements precisely probe symptoms such as bradykinesia, but fail
to reflect other daily aspects of impairment. This scenario promotes
encouraging research directions to provide an exhaustive picture of the
actual motor conditions of patients, in ecological contexts.

6 Conclusions

This narrative review investigated the applications of Deep-
Learning-driven hand tracking for the quantitative video-based assess-
ment of Parkinson’s Disease. Alterations in hand functionality due to
symptoms such as bradykinesia and tremor are closely associated with
the identification and staging of the disease. The automatic analysis
of clinical videos involving hand tasks by marker-less tracking may
be pivotal for shifting the disease diagnosis and severity staging to an
objective perspective. Moreover, these approaches may be central for
developing accurate and easy-to-use novel telemedicine applications.

In particular, this review focused on identifying and describing
the most popular frameworks and architectures for video-based hand
tracking currently employed in this domain. Validation with respect
to gold standard measurement systems and the availability of the
data on which the models were trained and tested were considered
relevant information. The results were also discussed by highlighting
and considering the type of assessment tasks and the clinical goals in-
vestigated by the examined works. The results reveal a clear preference
towards user-friendly and well-established methods such as OpenPose,
DeepLabCut, and MediaPipe, exploiting coded clinical tasks such as the
finger tapping test, and mainly focusing on the use of hand tracking
data to regress MDS-UPDRS scores. For this goal, high accuracy is
reached on several assessment tasks, thus proving the efficacy of hand
tracking through the examined methodologies.

Future research efforts should address the current limitations, such
as the lack of open benchmarks for the systematic validation of mea-
sures generated by hand tracking frameworks in the context of Parkin-
son’s Disease. Additionally, the creation of such benchmarks could
allow for systematically comparing different assessment pipelines, to
ensure their generalisability to larger cohorts of patients. Finally, new
hand-hand and hand-object tracking architectures could pave the way
for innovative applications, assessing the hand impairment throughout
daily-life tasks, rather than during traditional clinical examination
solely.
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