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Lampros Androutsos 1,7, Lorenzo Pallante 2,7, Agorakis Bompotas 3, Filip Stojceski4,
Gianvito Grasso4, Dario Piga4, Giacomo Di Benedetto5, Christos Alexakos 3, Athanasios Kalogeras3,
Konstantinos Theofilatos 1 , Marco A. Deriu2 & Seferina Mavroudi 1,6

Taste perception plays apivotal role in guiding nutrient intake and aiding in the avoidance of potentially
harmful substances through five basic tastes - sweet, bitter, umami, salty, and sour. Taste perception
originates from molecular interactions in the oral cavity between taste receptors and chemical
tastants. Hence, the recognition of taste receptors and the subsequent perception of taste heavily rely
on the physicochemical properties of food ingredients. In recent years, several advances have been
made towards the development of machine learning-based algorithms to classify chemical
compounds’ tastes using their molecular structures. Despite the great efforts, there remains
significant room for improvement in developing multi-class models to predict the entire spectrum of
basic tastes. Here, we present a multi-class predictor aimed at distinguishing bitter, sweet, and
umami, from other taste sensations. The development of a multi-class taste predictor paves the way
for a comprehensive understanding of the chemical attributes associated with each fundamental
taste. It also opens the potential for integration into the evolving realm of multi-sensory perception,
which encompasses visual, tactile, and olfactory sensations to holistically characterize flavour
perception. This concept holds promise for introducing innovative methodologies in the rational
design of foods, including pre-determining specific tastes and engineering complementary diets to
augment traditional pharmacological treatments.

Taste and smell play a pivotal role in the chemosensory perception of food
since they are fundamental determinants for the food selection and intake
process1. Biochemical compounds derived from food ingestion trigger the
taste perception process through the binding with specific proteins known
as taste receptors, located on the tongue’s taste buds and dedicated to the
recognition of the five basic tastes: sweet, bitter, sour, salty, and umami2,3.
Sweet taste is commonly associated with energy-rich food, to help identify
sources of sugars and carbohydrates4. Conversely, bitter taste is normally
recognized as anunpleasantflavour and acts as awarning against potentially
dangerous compounds5. Sour taste helps to detect spoiled food and identify
the presence of biologically relevant vitamins6. Salty taste is crucial to
monitor the uptake of essential electrolytes, which play a central role in
maintaining body osmosis7. Finally, umami taste relates to the protein
content in food, through the recognition of amino acids and oligopeptides8.
Therefore, each taste is associated with critical biological functions and

nutritional needs that are important to preserve health status. In this sense,
the taste of chemical compounds present in food stimulates an increase in
nutrient intake while helping to avoid potentially harmful substances9.
Indeed, nutritious foods usually have an appetitive taste, e.g., sweet, umami,
or a low concentration of salts and acids. Instead, toxic substances usually
present a repulsive flavour, such as bitter tastants, strong sour taste stimuli,
and high concentrations of salts10. In general, taste sensation relies on the
affinity of specific biochemical compounds and their target taste
receptors11,12. Small variations in tastants’ chemistry may result in a drastic
change in perceived taste. Therefore, shedding light on the physio-chemical
features of compounds in food is of primary importance to pinpoint the
molecular bases and mechanisms determining the food taste and sub-
sequent food consumption.

In recent years, several studies have developedmachine-learning (ML)
tools to predict the taste of specific compounds starting from their chemical
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structure13. In literature, there is a net prevalence of ML tools for predicting
sweet and bitter tastes e.g., BitterX14, BitterPredict15, e-Bitter16, iBitter-
SCM17, BERT4Bitter18, iBitter-Fuse19, a QSTR-based approach20, e-Sweet21,
Predisweet22, BoostSweet23, BitterSweetForest24, BitterSweet25, bitter-sweet
classifier by Bo et al26., VirtuousSweetBitter27. Five examples of umami taste
predictors are instead present in recent literature, namely, iUmami-SCM28,
UMPred-FRL29, VirtuousUmami30, Umami-MRNN31, and Umami-
BERT32. From a technical point of view, several ML algorithms are used
for taste prediction, among which Multiple Linear Regression (MLR) and
Support Vector Machine (SVM) were the first used models for binary
classification13,33. Thanks to recent scientific progress, these models were
outclassed by tree-based models, such as Random Forest (RF) or AdaBoost
(AB), and Neural Network (NN)34,35. Within this framework, the latter
algorithms also support multi-class classification and work well in the non-
linear classification domain, if the selected database is large enough. Multi-
class and multi-labelling techniques have been employed in several appli-
cations for the food and agricultural industries, but there are still limited
applications for classifying compounds by taste and predicting the relative
taste intensity36–39. Recently, a multi-class classification method based on
learning vector quantization NN to classify tea samples of five commercial
brands has been proposed40.Monforte et al. presented an orthogonal partial
least square discriminant analysis (OPLS-DA) and RF-combined multi-
class pipeline for the discrimination of white wine ageing based on target
oxidation markers41. Moreover, an SVM multiclass classification demon-
strated high efficiency in the classification of 7 different types of raw food42.
Given the aforementionedcontext, there is anotable lackof research focused
on the simultaneous prediction of multiple tastes, especially in real-world
scenarios where foods frequently exhibit a complex blend of tastes.

This lack of tools for predicting multiple tastes represents a significant
limitation in the field of food science and technology, specifically in the
formulation and optimization of food products. In this study, we address
these gaps by developing amachine learning-based tool that predicts not one,
but four different tastes, and by focusing on the underlying physicochemical
properties that contribute to these tastes. In the present work, we aimed at
developing a multi-class taste predictor, named VirtuousMultiTaste, able to
distinguish betweenbitter, sweet, and umami fromother taste sensations.We
employed a hybrid combination of heuristic optimization and nonlinear
machine learning classificationmethods. Building upon our previous work30,
this new four-taste predictor was trained and tested using similar ensemble
dimensionality reduction and classification techniques. This approach
effectively reduced thenumber of physicochemical features and identified the
important ones for predicting the four different tastes. The simplicity of the
model reduces the likelihood of overfitting and makes it more user-friendly
through a web interface (https://virtuous.isi.gr/#/virtuous-multitaste),
expanding the potential audience of users. VirtuousMultiTaste is a machine
learning-based web tool that predicts four different tastes and opens the
possibility of analysing different compounds and understanding the
chemical-physical factors that contribute to the overall taste perception.

Results
Dimensionality reduction
As outlined in the Methods section, the statistical analysis to reduce the
number of employed molecular descriptors was performed on the training
set with the Kruskal–Wallis test43 since not all features followed normal
distribution when tested with the Shapiro–Wilk test44. Moreover, the cor-
rection of p-values for multiple testing to get q-values was applied using the
Benjamini-Hochberg FDR adjustment method45. By setting the q-value
threshold to 0.05, we identified 1306 statistically significant differentiated
features.The entire set ofmolecular features and1306 statistically significant
differentiated ones were also analysed using the Principal Component
Analysis (PCA) and represented in reduced dimensional spaces according
to the first three principal components (see also Supplementary Fig. 1). The
lack of clear separation among tastes in the PCA plots underlined the
complexity of the multi-taste prediction problem and highlighted the lim-
itations of linear dimensionality reduction techniques in discriminating
between different tastes. This limitation pushes us towards more sophisti-
cated machine learning algorithms. Pairwise comparisons of each taste
versus the rest were further conducted using the Mann-Whitney test.
Supplementary Fig. 2 presents a heatmapof the top 5 features differentiating
each taste from the rest in our training dataset.

Model performance
The multi-objective evolutionary optimization algorithm employed in our
study indicated that the RF method achieved better performance across
multiple objectives compared to SVM. Therefore, we developed and eval-
uated 20 different RF models (see also Supplementary Table 1). Among
these models, we selected the best model (RF model #2 in Supplementary
Table 1) considering the balance between the achieved performance and the
relatively small number of features (15). A summary of the model perfor-
mance is reported in Table 1. During the training phase, we employed 10-
fold cross-validation (CV) on the training set, presenting mean values and
standard deviations for the performance metrics. The testing set comprises
the 3377 left-out samples not used for training, consisting of 1577 bitter,
1544 sweet and 289 other compounds. The relative ROC curves are
represented in Fig. 1A. In Table 2 and Table 3, a summary of the perfor-
mance of each taste class is presented for the training set and the testing set,
respectively. The relative ROC curves from the validation of the testing set
are represented in Fig. 1B.

Table 1 | Summary of model performance with the selected RF model in the 10-fold cross-validation (CV) and test sets

ACC F1 F2 Precision Recall AUC

CV 76.54%± 1.0 76.58%± 1.0 76.61% ± 1.01 76.92% ± 1.05 76.64% ± 1.0 0.92 ± 0.02

Test 71.76% 74.32% 73.10% 78.98% 71.76% 0.87

Table 2 | Summary of the 10-fold cross-validation training performance for each class

ACC F1 F2 Precision Recall AUC

Bitter 88.56% ± 0.81 79.09% ± 1.78 77.31%± 3.30 82.42%± 0.63 77.21% ± 4.19 0.92 ± 0.0.16

Sweet 83.43 ± 0.79 73.26% ± 0.85 75.59%± 2.23 70.03%± 1.30 75.65 ± 2.81 0.90 ± 0.01

Other 82.83% ± 0.43 66.62% ± 0.13 64.03%± 1.27 67%± 1.39 63.57% ± 1.71 0.86 ± 0.10

Umami 95.99% ± 0.16 88.49% ± 0.51 88.64%± 0.68 87.61%± 0.67 87.40% ± 1.17 0.98 ± 0.005

Table 3 | Summary of model performance using the final
trained model for each taste class in the test set

ACC F1 F2 Precision Recall AUC

Bitter 81.70% 79.01% 76.24% 84.10% 74.50% 0.89

Sweet 79.53% 75.38% 71.57% 82.73% 69.23% 0.86

Other 84.19% 42.96% 56.01% 30.94% 70.24% 0.86
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Feature Importance
Feature importance is a crucial aspect of MLmodels as it provides valuable
insights into the contribution and relevance of different input features for
making accurate predictions. The features selected during the model con-
struction on which the predictions rely are 15 and include the molecular
descriptors ATSC0c, ATSC0se, AATS0i, ATSC1p, AATSC2se, AATSC0m,
AATSC1Z, AATSC2are, AATSC1pe, SpDiam_A, ATSC1c, ATSC1se,
ATSC1Z, ATSC1m, and ATSC4s. The selected features are summarized in
Fig. 2 reporting the level of importance according to the SHAP values. The
distributions of the 15 features for the bitter, sweet, other and umami
samples are also represented in Supplementary Fig. 3.

In this connection, the correlation between the selected features holds
great importance in understanding the underlying relationships and
interactions within the taste prediction model. Figure 3 represents the
correlation between the 15 most important features selected by the model
during training.

External datasets
The developedmodel was tested to screen external datasets collecting food-
related and natural compounds:
1. FooDB (https://foodb.ca/) is the most extensive and comprehensive

resource worldwide concerning food constituents, chemistry and
biology, containing over 70000 compounds. After having removed
missing SMILES, duplicate compounds, andmolecules with structural
errors, we ended up with 69309 molecules: 14693 were predicted as
Bitter, 5375 as Sweet, 3149 as Umami and 46092 as Other.

2. FlavorDB (https://cosylab.iiitd.edu.in/flavordb/) collects information
regarding flavourmolecules. For the present work, we considered only
2599 molecules related to natural ligands from the dataset: 778 were
predicted as Bitter, 1661 as Sweet, 29 as Umami and 131 as Other.

3. PhenolExplorer (http://phenol-explorer.eu) is a comprehensive data-
base that compiles information on polyphenols found in foods. We
considered only compounds having composition data (SMILES),
resulting in489 compounds: 365werepredicted asBitter, 23 as Sweet, 9
as Umami and 92 as Other.

4. Natural Product Atlas (https://www.npatlas.org/) encompasses natu-
rally occurring compounds derived from microorganisms, as docu-
mented in peer-reviewed primary scientific literature. We preserved
32491 compounds after curating the dataset with the CHEMBL
structure pipeline: 26653 were predicted as Bitter, 2019 as Sweet, 1880
as Umami and 1939 as Other.

5. PhytoHub (https://phytohub.eu/) is an openly accessible electronic
database containing detailed information about dietary phytochem-
icals and theirmetabolites in humans and animals.We preserved 1746
compounds after having removed missing SMILES and compounds
with issues in their molecular structures: 1213 were predicted as Bitter,
228 as Sweet, 62 as umami and 243 as Other.

Thedistributions of predicted tastes for eachof the external datasets are
represented in Fig. 4 (see also Supplementary Table 2 for detailed numbers).

VirtuousMultiTaste platform
Themulti-taste predictor thatwas developedhas been integrated into aweb-
based interface (https://virtuous.isi.gr/#/virtuous-multitaste). This platform
serves as a user-friendly graphical interface for conducting analyses on
chemical compounds expressed in different notations such as SMILES,
FASTA, InChI, SMARTS, or PubChem compound names. When the user
provides a PubChem name, the system searches the PubChem database for
the corresponding compound and retrieves its SMILES representation to
perform the multi-taste prediction. The platform design follows the
separation of concerns principle between the presentation layer (front-end)
and the data access layer (back-end). The front end is the visible part of the
application that users interact with on their devices. It allows users to input
compounds directly into a text field or upload a file that consists of several
compounds, eachonewrittenona separate line. Furthermore, theusersmay
choose to specify the annotation format of their inputs or let the system
recognize it automatically. Once the analysis is completed, the results are
displayed in a table format, showing the queried compounds’ SMILES, their
2Dmolecular representation, and the taste prediction result presented both
in a textual format and as a spider chart. Moreover, next to each compound
there are two buttons for downloading the calculatedmolecular descriptors
or the best 15 descriptors on which the final model relies. The front-end
development utilizes the Ionic framework, chosen for its wide range of user
interface components suitable for both browsers and mobile devices. The
back-end component is a cloud-based web service implemented using the
Flask micro-framework, known for its lightweight yet robust nature. It
receives input from the front end, executes theVirtuousMultiTaste analyser,
and sends the results back to the front end. To facilitate this information
exchange, a RESTful API is provided, which accepts and transmits data in
the form of JavaScript Object Notation (JSON).

Discussion
Machine learning techniques have demonstrated their pivotal role in
advancing the development of prediction tools and digital support systems
across diverse fields, such as nutrition and agri-food research46–52. In our
previous works related to the prediction of taste, a bitter/sweet predictor,
named VirtuousBitterSweet27, and an umami predictor, named
VirtuousUmami30, were created. Herein, we developed amachine learning-
driven taste predictor capable of identifying bitter, sweet, and umami from
other taste sensations starting from the molecular structures of a query
compound.

Fig. 1 | Receiver operating characteristic (ROC) curves. ROCs of the four-taste
classification for (a) the cross-validation set and (b) the testing set.
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Fig. 3 | Correlation plot of the best 15 selected
features. Each square represents the correlation
between two features. The colour and value of each
square indicate the magnitude of the correlation
coefficient, with blue and red values indicating
negative and positive correlations, respectively.

Fig. 2 | Feature importance using SHAP. Feature importance of the selected features using the average of the absolute SHAP values of each taste class and ranking features in
order of importance.
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The data used to train the model was obtained from a variety of pre-
viously defined databases, including samples for each of the taste sensations
under investigation. Two-dimensionalMordredmolecular descriptorswere
used to extract features from the data. It is noteworthy that previous studies
have achievednotable outcomes in taste predictionwithin the domain of 2D
molecular descriptors alone22,25,27,30. This advancement marks a significant
stride, as 2Dmolecular descriptors are computationally less demanding and
remain unaffected by variations in three-dimensional molecular structures
compared to 3D molecular descriptors. The extremely high number of
molecular features (1613), especially in comparison to the number of
compounds in the training dataset, was reduced using the Mann-Whitney
statistical analysis, pinpointing 1307 statistically significant descriptors. The
PCA analysis showed that statistically significant features can discriminate
remarkably better between the four different tastes if compared to the
analysis considering all the descriptors (see also Supplementary Fig. 1). The
number of features used for the taste prediction has been further refined
during the model development: the employed heuristic multi-objective
Pareto-based evolutionary optimization algorithm was able to select the
Random Forest (RF) as the most appropriate classifier, to choose the

optimal parameters being 95 Decision Trees and the most important and
informative features on which the model relies. Ultimately, we ended up
with only 15 features: this allows us to not only achieve better performance
but also simplify themodel and improve its explainability. Interestingly, the
most frequent descriptor class among the 15 selected features utilizes the so-
called Autocorrelation of a Topological Structure (ATS) which quantifies
the spatial arrangement and distribution patterns of atoms or molecular
fragments within a molecule. It calculates the correlation between the
properties of a specific atom or fragment and the properties of other atoms
or fragments within a defined distance in the molecule. This approach
provides information about the local environment and structural features of
a molecule. In particular, the autocorrelation descriptors were computed
using the Moreau-Broto autocorrelation weighted by Sanderson electro-
negativity (ATSC0se, AATSC2se, ATSC1se), by mass (ATSC1m and
AATSC0m), by Gasteiger charge (ATSC0c, ATSC1c), by atomic number
(ATSC1Z, AATSC1Z), by ionization potential (AATS0i), by polarizability
(ATSC1p), by Allred-Rocow electronegativity (AATSC2are), by Pauling
electronegativity (AATSC1pe) and by intrinsic state (ATSC4s). Interest-
ingly, the selected features are mostly associated with charge distribution,

Fig. 4 | Distribution of predicted tastes for exter-
nal databases. The pie charts represent the dis-
tributions of bitter, sweet umami and other tastes in
the analysed external datasets, including (a) FooDB,
(b) FlavorDB, (c) PhenolExplorer, (d) Natural
Product Atlas, and (e) PhytoHub.
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electronegativity, and polarizability, which are fundamental characteristics
for the effective interaction of tastants with taste receptors capable of
recognizing sweet, bitter, and umami tastes. Although there has been a
significant reduction in the number of features, it remains challenging to
intuitively elucidate the chemical and physical properties of tastants solely
based on the 15 most important features. To enhance the model’s
explainability, future studies should prioritize the use of simpler descriptors
or the development of specific methodologies to intuitively correlate the
molecular descriptors to the relative structural features or functional groups.
This will enable a clearer understanding of the underlying factors con-
tributing to the prediction of multiple taste sensations.

The proposed machine learning model was benchmarked against
commonly used machine learning methods and pipelines. RFs, SVMs and
XGBoost were applied to the same dataset tuning their parameterswith grid
search and selecting their features using the minimum Redundancy Max-
imum Relevance (mRMR) method (see also Supplementary Table 3). Vir-
tuousMultiTaste outperforms the other three classifiers (RF, XGBoost and
SVM) across all performance metrics. Moreover, VirtuousMultiTaste has
been compared with previous tools dedicated to the prediction of only the
bitter and sweet taste, i.e., VirtuousSweetBitter27 and BitterSweet25. These
two tools were selected because they were the only ones readily accessible
and usable for a proper performance assessment.Tohave a fair comparison,
we selected compounds not included in any of the training sets of the three
taste predictors, resulting in a final external test of 869 compounds (409
bitter and 460 sweet). We evaluated the performance for predicting sepa-
rately the bitter and the sweet taste, thus accessing the ability of each clas-
sifier to effectively detect bitter/non-bitter (Supplementary Table 4) or
sweet/non-sweet (Supplementary Table 5) molecules. VirtuousMultiTaste
exhibited slightly superior performance in bitter taste prediction compared
to the other tools, with all performancemetrics (ACC, F1, F2, Precision, and
Recall) hovering around 83%. In comparison, VirtuousSweetBitter and
BitterSweet achieved performance levels of approximately 80% and 77%
across all metrics, respectively (Supplementary Table 4). Regarding the
prediction of sweet taste, VirtuousMultiTaste performed at intermediate
values between VirtuousSweetBitter and BitterSweet. However, Virtuous-
MultiTaste maintained a satisfactory level of performance and showed
commendable predictive capabilities (Supplementary Table 5). As for the
comparison with tools for umami taste prediction, we were limited to
comparing VirtuousMultiTaste with our previous tool, VirtuousUmami30,
as all other previously developed predictors, such as iUmami-SCM28 and
UMPred-FRL29, are based on the peptide sequence of the compound and
therefore cannot be applied to more general molecular annotations, such as
SMILES. It was not possible to create an independent test set for both
VirtuousMultiTaste and VirtuousUmami, due to the limited number of
proven umami compounds in the literature. Comparing the performance
metrics in the relative cross-validation sets, VirtuousMultiTaste and Vir-
tuousUmami achieved similar accuracy (around 96%) and AUC scores
(above 96%) in the cross-validation set, whereas slightly lower values for F1,
F2, Precision and Recall was achieved by the present tool (see also Sup-
plementary Table 6). Moreover, testing the two tools with non-umami
compounds not used for training, including sweet, bitter, and other com-
pounds, VirtuousMultiTaste and VirtuousUmami both achieved an accu-
racyof over 99%.Certainly, it is important to note that this comparison only
allows us to consider the accuracy in predicting the negative class, i.e., non-
umami, and therefore it represents a partial comparison. It is also worth
mentioning that the performance values for the umami taste (Supplemen-
tary Table 6) generally surpass those for bitter and sweet tastes (Supple-
mentary Table 4 and Supplementary Table 5). This can be attributed to two
main factors: (i) the limitednumber of confirmed umami compounds in the
literature led to obtaining umami comparisonmetrics on the relative cross-
validation set of the two compared tools, not on a dataset excluded from the
respective training sets, as done for bitter/sweet comparison; (ii) the che-
mical domain of experimentally-known umami compounds is notably
narrower than those for sweet and bitter chemicals, simplifying the model’s
training and resulting in better umami taste performance Furthermore, we

tested three recently proven umami peptides, i.e., FLNQDEEAR (FR-9),
FNKEE (FE-5), and EEFLK (EK-5)53, and all of themhave been predicted as
umami by VirtuousMultiTaste. Finally, the presence of 90 non-peptides
umami compounds coming from the ChemTastesDB in the training set
enabled the development of a tool capable of predicting umami compounds
not necessarily peptides, allowing the exploration of a wider chemical space
compared to previous umami predictors28–30. In summary, VirtuousMulti-
Taste has demonstrated remarkable performance compared to previous
taste-specific predictors, with the added advantage of being able to predict
multiple taste sensations at the same time.

Regarding the range of applicability for the proposed model, we con-
ducted an evaluation to assess whether the model’s performance exhibited
variations based on the similarity between the tested compounds and the
chemicals used during the training phase. Accordingly to our previous
works27,30, we evaluated the average similarity score between test and
training compounds: (i) theMorgan Fingerprints (1024 bits, radius 2) were
calculated using RDKit for all the compounds in the dataset; (ii) the Tani-
moto similarity index was computed between each molecule in the test set
and the previously-defined fingerprints; (iii) then the average similarity
score was calculated by averaging the similarity scores of the 5 most similar
couple of compounds. Compounds in the test set have been divided into 10
quartiles according to the average similarity score and the model perfor-
mance has been evaluated on each quartile separately (see also Supple-
mentary Fig. 4). Since the performance remained remarkably stable for each
similarity quartile, we concluded that the model was able to preserve its
performance regardless of the similarity of the query compounds with the
ones in the training set, thus ensuring a general applicability domain. This
fact can also be attributed to the composition of the training database used
for the model, which encompasses three of the five fundamental taste
sensations and includes a fourth category, i.e. “other taste”, including a wide
spectrum of compounds with distinct tastes. As a result, the curated dataset
might embrace a substantial portion of the chemical space that underlies the
taste sensations of tastants. It is important to underscore that a primary
limitation of the current study is the relatively limited number of umami
compounds in the training dataset, particularly in comparison to the
number of compounds representing other taste sensations. As previously
noted in existing literature28–30, augmenting the number of experimentally
identified umami samples would not only enhance the predictive perfor-
mance of the algorithm but also bolster its robustness.

VirtuousMultiTaste predictor also demonstrates its versatility by
accommodating various types of molecular structure notations, such as
SMILES, FASTA, InChI, SMARTS, or PubChem name. This capability
enables the screening of diverse compound types, thereby creating oppor-
tunities to explore extensive molecular databases for the identification of
tastes. In this context, we applied the VirtuousUmami predictor to five
distinct external databases associated with food or natural compounds,
namely FooDB, FlavorDB, PhenolExplorer, Natural Product Atlas, and
PhytoHub, to pinpoint the distributions of tastes. The representation of
umami taste is relatively lower compared to sweet or bitter tastes across the
screened databases. This outcome aligns reasonably with expectations, as
umami taste is closely associated with the protein content of food, which, in
turn, is underrepresented within the selected external databases and in
general if compared to sweet or bitter. In contrast, the bitter taste pre-
dominates in the PhenolExplorer, Natural Product Atlas, and PhytoHub
databases. This finding aligns with the outcomes of previous machine
learning-based classifiers, indicating that a remarkable proportionofnatural
compounds exhibit a bitter taste24,25,54. Concerning FlavorDB, a substantial
majority of the molecules were projected to possess sweet (63.9%) or bitter
(29.9%) characteristics. It is noteworthy that the screening of FlavorDB
yielded a distribution similar to that reported in previous literature, albeit
with a considerably larger number of processed compounds (approximately
400 more)25.

As a further example of applicability, this platform can be used also for
food screening, enabling the analysis of the chemical composition of desired
foods. Therefore, we examined coffee and chocolate using their relative
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composition as reported in FooDB. The taste analysis was conducted
directly from our platform in the Foods tab (https://virtuous.isi.gr/#/foods),
where we provided an interactive exploration of the FooDB and enabled the
direct execution of the multi-taste prediction for each of the compounds
present in the investigated foods. Regarding the screening of coffee, 130
compoundswere predicted as bitter, 44 as sweet, 4 as umami and 14 as other
tastes, thus pointing out that coffee is characterized by mainly bitter com-
pounds. Chocolate also presented a predominance of bitter compounds,
with a taste profile consisting of 96 bitter compounds, 33 sweet compounds,
4 umami compounds and 13 other taste compounds. Both food screenings
seem in accordance with the primary taste perceptions for these foods,
which are indeedbitter.However, it is crucial tomention that thismodel can
only predict the taste of individual chemical compounds and lacks the
capability to predict the overall taste of food, which is influenced by various
factors such as the specific concentrations of its ingredients, the food pro-
cessing techniques (e.g. baking, frying, dehydration, steam cooking, among
others), visual aspect (colour, shape, dimension), touch, taste, and odour.
This type of feature could be employed in future holistic models able to
consider not only the chemical structures of food ingredients but also other
crucial factors underlying the overall taste.

The creation of a user-friendly web interface (accessible at https://
virtuous.isi.gr/#/virtuous-multitaste)wasdrivenby theobjective of ensuring
the accessibility of the multi-taste prediction model to users who may lack
experience or familiarity with technical coding. Additionally, the web
interface is complemented by a corresponding GitHub repository (https://
github.com/lorenzopallante/VirtuousMultiTaste) that provides access to
the technical Python codes for those interested in further exploration and
customization.

In conclusion, a machine learning-based taste predictor, named Vir-
tuousMultiTaste, was developed for identifying bitter, sweet, and umami
from other taste sensations by combining heuristic optimization and non-
linear machine learning methods. VirtuousMultiTaste represents a para-
mount tool for rapidly screening compound databases to identify a diverse
array of potential candidate compoundswith anticipated taste properties. In
a broader sense, it is worth mentioning that the future perspectives beyond
the present work also include the possibility of effectively predicting the
remaining two taste sensations, i.e., sour and salty, to obtain a singular and
comprehensive taste predictor capable of predicting all five fundamental
tastes at once. This research lays the foundations for future works aimed at
developing specificmodels capable of predicting the sensory profile of foods
and engineering new products with desired tastes or properties, potentially
impacting various fields, such as nutrition, precision medicine, the food
market, and beyond.

Methods
Database and data curation
The starting dataset was built by gathering publicly available datasets
reporting chemicals with verified taste and divided into nine taste classes
(sweet, bitter, non-sweet, umami, tasteless, sour, salty, multitaste and other
tastes). In detail, we utilized the sweet/bitter database curated for our pre-
vious VirtuousSweetBitter classifier27, umami and non-umami samples
from the UMP442 database28 used for our VirtuousUmami classifier30, as
well as, compounds withmiscellaneous tastes from the ChemTastesDB55. A
summary of the collected compounds from these taste databases is reported
in the Supplementary Information (Supplementary Table 7). After
removing compounds labelled as Multitaste, since they were not enough to
justify a multi-labelling approach, we used only three classes (sweet, bitter
and umami) and all other classes were considered as Other because of
relatively low sample size. In this context, it is important to note that sour
and salty tastes have not been treated as specific taste classes due to the
scarcity of retrieved data, i.e. 38 and 12 compounds, respectively. Therefore,
this work is focused on the prediction of four classes i.e., Sweet, Bitter,
Umami and Other.

Regarding theBitter and Sweet compounds, a total of 5290 compounds
(2741 sweet and 2549 bitter)with their SMILES descriptionwere used as the

initial database. All the SMILES were checked using the RDKit library56,
searching for the relative correct SMILES in the PubChem database (if
necessary) and removing duplicates, as well as compounds with incorrect
SMILES.

Umami compounds were gathered from the UMP442 dataset and
the ChemTastesDB. The UMP442 dataset collects 140 umami mole-
cules from previous literature57,58 and the BIOPEP-UWM database59,
whereas the ChemTastesDB contains 98 umami compounds. These
peptides were collected using their amino acid sequences and converted
into their SMILES representation using the RDKit package, as done in
previous work30.

Concerning the samples categorized under the “Other” class, which
includes compounds not falling into the bitter, sweet, or umami categories, a
total of 208 tasteless compoundswere gathered fromprevious literature60–62,
and an additional 203 tasteless compounds were sourced from Chem-
TasteDB. Moreover, 370 compounds with other taste sensations from
ChemTasteDB were included. Consequently, the dataset comprises 781
compounds labelled as “Other.”

In summary, our initial database was composed of 6309 compounds -
2741 sweet, 2549 bitter, 238 umami, and 781 other - all with their SMILES
representation.

Following pre-processing protocols used in previous literature25,27,30, all
SMILES were processed with the ChEMBL Structure Pipeline63. This step is
aimed at identifying and addressing any potential issues in the molecular
structures, as well as standardising the SMILES representation across the
entire dataset. In detail, the protocol runs a molecule checker on the com-
pound structure, standardizes chemical structures and generates the parent
molecule representation based on a set of predefined rules. Incorrect
SMILES and duplicateswere then removed, obtaining afinal dataset of 4717
compounds (1904 sweet, 1937 bitter, 227 umami and 649 other). A sche-
matic summary of the refined database is reported in Supplementary
Table 8.

To train the model, a random subset was then extracted, selecting
360 sweet, 360 bitter, 227 umami and 360 other chemicals. Moreover, the
umami classwas oversampledwith additional 133 umami samples tomatch
the size of the other classes using the Adaptive Boosting (AdaBoost) algo-
rithm, which will be described in detail in the Model construction and
performance evaluation section. The remaining 1544 sweet, 1577 bitter and
289 other peptides were used for external testing to examine the general-
ization properties of the trained models. A table summarising the division
between the training and the test set is reported in the Supplementary
Information (Supplementary Table 9).

Molecular descriptors and dimensionality reduction
Following our previous works27,30, the molecular features calculation was
achieved using the 1613 2DMordred descriptors64 for each compound. The
comprehensive compilation of employed Mordred descriptors can be
accessed at https://mordred-descriptor.github.io/documentation/master/
descriptors.html. The 2D Mordred descriptors furnish valuable insights
into compounds, encompassing essential molecular information such as
molecular weight, the count of distinct atom types, bond types, hybridiza-
tion degree, spectral diameter, detour index, count of hydrogen donors and
acceptors, molecular distance edge between distinct atom types, the polar-
izability of atoms and bonds, as well as the topological polar surface. Fur-
thermore, these descriptors encompass additional features derived from
symbolic representations, including the Zagreb index, adjacency matrix
descriptors, Moreau–Mroto descriptors, Moran coefficients, Geary coeffi-
cients, and descriptors delineating the Burden matrix and Barysz matrix64.
Furthermore, the dataset underwent pre-processing steps to prepare it for
input into theMLmodel. Features with a high percentage of missing values
(>30%) were discarded, while the remaining missing values were imputed
using the kNN-impute method with k = 2065. Subsequently, the data were
arithmetically normalized in the range of [0-1]. Data pre-processing, sta-
tistical analysis, and the generation of additional plots, such as ROC curves
and bean plots, were performed using the InSyBio Biomarkers Tool66.
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Model construction and performance evaluation
Based on our previous work30, we used a hybrid approach of heuristic
optimization and nonlinear machine learning to develop classification
models. Specifically, we used an ensemble dimensionality reduction tech-
nique that employed a heuristic multi-objective Pareto-based evolutionary
optimization algorithm to (a) identify the optimal feature subset to use as
input to the classifiers, (b) select themost appropriate classifier among SVM
and RF, and (c) select the optimal parameters for the classifier (e.g., C and
gamma for SVM, the number of trees for RF). By utilizing the multi-
objective Pareto-based approach, we sought to optimize prediction per-
formance, minimize the selected features, and simplify the classification
model. The weights used for the optimization objectives were Selected
FeaturesNumberMinimization1,Accuracy (ACC)10, F1 score 10,F2 score
1, Precision (PRC) 1, Recall (REC) 10, ROC-AUC (AUC) 1,Number of SVs
or TreesMinimization 1, andManhattanDistance 1. Theseweights allowed
us to effectively address the imbalancednature of our classificationproblem.
To get a better handle on the unbalanced nature of the multi-class taste
prediction problem and improve the accuracy of the prediction models, we
additionally used the Adaptive Boosting (AdaBoost) algorithm as an
additional pre-processing step before the training67. This algorithm per-
forms boosting, assigning weights over the internal training set in the cross-
validation iterations. This algorithm assigns higher weights to the minority
class and then generates synthetic copies of the minority class samples until
all the classes are balanced.This is especially helpful for theunbalanced class,
i.e., the umami one. The outcome is the generation of multiple models that
exhibit similar performance concerning the user-defined objectives, which
correspond to the Pareto set of optimal solutions.

The evolutionary algorithm was applied to a population of 100 indi-
viduals, and the termination criterion was set to a maximum of 200 gen-
erations. Ten different runs were conducted to deal with the stochastic
nature of the algorithm, and the results presented are the average perfor-
mance of these runs. Convergence of the algorithm (average performance
differing less than 5% from that of the best-performing individual) was
found after 50 generations for each independent run. This finding affirmed
that the selected maximum number of generations was appropriate for this
problem. Additional parameters of the evolutionary algorithm were set to
their default values as suggestedby the InSyBioBiomarkers tool usermanual

(arithmetic crossover probability: 0, mutation probability: 0.01, two-point
crossover probability: 0.9). Stratified 10-fold cross-validation was used to
train and test the predictionmodels. Further details on the implementation
of the trained models and a summary of the performance metrics used are
available in the Supplementary Information.

The pipeline of the adopted methods is presented in Fig. 5.

Model explainability and applicability
Model explainability was performed using SHAP (SHapley Additive
exPlanations)68. SHAPvalues offer insights into the contribution of individual
features to the model’s final prediction, facilitating the interpretation of its
decision-making process. To compute the SHAP values, we employ the
TreeExplainermethod to generate an explainer object for the Random Forest
(RF) model, since RFs were selected over SVMS from the multi-objective
optimization framework deployed. The explainer object enables the compu-
tation of the SHAP values for each feature in the dataset. Considering the
nature of the classification problem,we obtain the SHAPvalues for each class,
providing insight into the contributionof each feature to theprobabilityof that
class. The SHAP values analysis of each taste reveals the features with the
highest importance for each taste and their contribution to thefinalprediction.

The developed model was also tested on external databases related to
foods or natural products, including FooDB,(https://foodb.ca/), FlavorDB
(https://cosylab.iiitd.edu.in/flavordb/), PhenolExplorer (http://phenol-
explorer.eu), Natural Product Atlas (https://www.npatlas.org/), and Phy-
toHub (https://phytohub.eu/). Coherently with the pre-processing of the
dataset used for training and testing, each external database was first
checked for missing SMILES or data, standardised with the ChEMBL
Structure Pipeline, and featurized using Mordred descriptors.

Data availability
All data needed to replicate the present work are available at https://github.
com/lorenzopallante/VirtuousMultiTaste.

Code availability
A public GitHub repository is available at https://github.com/
lorenzopallante/VirtuousMultiTaste containing all source code and
scripts used for the present work.

Fig. 5 | Flowchart of VirtuousMultiTaste. The flowchart represents the major stages in the workflow of the proposed taste prediction tool.
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