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Abstract

The purpose of this study is to introduce a new approach to feature ranking for classification tasks,
called in what follows greedy feature selection. In statistical learning, feature selection is usually
realized by means of methods that are independent of the classifier applied to perform the prediction
using that reduced number of features. Instead, greedy feature selection identifies the most important
feature at each step and according to the selected classifier. In the paper, the benefits of such scheme
are investigated theoretically in terms of model capacity indicators, such as the Vapnik-Chervonenkis
(VC) dimension or the kernel alignment, and tested numerically by considering its application to the
problem of predicting geo-effective manifestations of the active Sun.

Keywords: statistical learning, machine learning, classification, feature selection, greedy methods

1 Introduction

Greedy algorithms are currently mainly used to
iteratively select a reduced and appropriate num-
ber of examples according to some error indica-
tors, and hence to produce surrogate and sparse
models [1–6]. The ambition of this paper is to
analyze and extend greedy methods to work in

the significantly more challenging case of fea-
ture reduction, i.e., as the computational core
for feature-ranking schemes in the framework of
classification issues.

The importance of this application follows
from the fact that sparsity enhancement is a cru-
cial issue for statistical learning procedures, which
might be performed, e.g., via Fisher score [7],
methods based on mutual information [8], Relief
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and its variants [9]. Indeed, supervised learning
models are usually trained on a reduced number
of features, which are typically obtained by means
of either Lasso regression [10] or variations of the
classical Lasso (Group Lasso [11], Adaptive Lasso
[12], Adaptive Poisson re-weighted Lasso [13] to
mention a few) or linear Support Vector Machine
(SVM) feature ranking [14]. However, at the state
of the art, for a given classifier, these algorithms
are often not able to actually capture all the corre-
sponding most relevant features for that classifier.
More specifically, in the case of Lasso and its gen-
eralizations [15], drawbacks in feature selection
ability are shown when there exists dependence
structures among covariates. Therefore, here we
designed feature-based greedy methods that iter-
atively select the most important feature at each
step in a classifier-dependent fashion. We point
out that any classifier can be used in this scheme,
which allows a totally model-dependent feature
ranking process.

At a more theoretical level, this study inves-
tigated the effectiveness of the greedy scheme in
terms of the Vapnik-Chervonenkis (VC) dimen-
sion [16], which is a complexity indicator common
to any classifier, such as Feed-forward Neural Net-
works (FNNs), and it is related to the empirical
risk [17]. As a particular instance, we further inves-
tigated how greedy methods behave for kernel-
based classifiers, such as SVMs [18], and in doing
so we considered a particular complexity score,
known as kernel alignment. These theoretical find-
ings have been used for a case study concerning
the classification and prediction of severe geomag-
netic events triggered by solar flares.

Solar flares [19] are the most explosive mani-
festations of the active Sun and the main trigger
of space weather [20]. They may be followed by
coronal mass ejections (CMEs) [21], which, in
turn, may generate geomagnetic storms poten-
tially impacting both space and on-earth techno-
logical assets [22]. Data-driven approaches fore-
casting these events leverage machine learning
algorithms trained against historical archives con-
taining physical features extracted from remote-
sensing data such as solar images or time series of
physical parameters acquired from in-situ instru-
ments [23–27]. These archives systematically pro-
vide a huge amount of descriptors and it is
currently well-established that this redundancy

of information significantly hampers the predic-
tion performances of the forecasters [28]. Our
feature-based greedy scheme was applied in this
context, in order to identify among the features
the redundant ones and consequently to improve
the classification performances.

The paper is organized as follows. Section 2
introduces our greedy feature selection scheme,
which will be motivated thanks to the theoreti-
cal analysis in Subsections 2.1 and 2.2. Section 3
describes the application of greedy feature selec-
tion to both simulated and real datasets. Our
conclusions are offered in Section 4.

2 Greedy feature ranking
schemes

Feature reduction (or feature subset selection)
techniques can be classified into filter, wrapper,
and embedded methods: filter methods identify
an optimal subset based on general patterns in
data [29]; wrapper methods use a machine learn-
ing algorithm to search for the optimal subset by
considering all possible feature combinations [30];
in embedded methods feature selection is inte-
grated or built into the classifier algorithm [31].
This proposed greedy scheme falls in the class
of wrapper feature subset selection methods, but
unlike the classical approaches, such as recur-
sive feature elimination (RFE) or recursive feature
augmentation (RFA) [14] and forward step-wise
selection [32], the proposed greedy method is fully
model-dependent.

Given a set of examples depending on sev-
eral features, greedy methods are frequently used
to find an optimal subset of examples and, for
such task, since they might be target-dependent,
they have already been proved to be effective
(see e.g. [4, 5, 33]). Here, instead of focusing
on the examples, we drive our attention towards
the problem of feature selection. To this aim, we
considered a binary classification problem with
training examples

Ξ = X × Y = {(x1, y1), . . . , (xn, yn)}, (1)

where xi ∈ Ω ⊆ R
d and yi ∈ R. For the particular

case of the binary classification setting, we fix yi ∈
{−1,+1}.
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In the machine learning framework, feature
reduction is typically performed by means of linear
models, and once the features are identified, non-
linear methods like neural networks are applied to
predict the given task. However, the fact that some
specific feature could be useful for some classifier
does not imply that the same feature is relevant
for any classification model, and this is probably
the main weakness of current feature reduction
methods in this context. Conversely, our feature-
based greedy method (see e.g. [34] for a general
overview of greedy methods) will consist in iter-
atively selecting the most important feature at
each step and in agreement with the considered
classifier.

To reach this objective, as usually done, we
split the initial datasetX into a training set, which
consists of {(X(t), Y (t))}, and a validation set
made of {(X(v), Y (v))}. Then, at the k-th greedy
step, k − 1 features have already been selected
(without loosing generalities the first k−1) and we
then train d−k models Mp with x1, . . . , xk−1, xp,
p = k, . . . , d. Then, given an accuracy score µ (the
largest the better), we select the k-th feature as

xk = arg max
p=k,...,d

µ(Mp(X
(v)), Y (v)). (2)

We point out that any model can be used in
(2), and this implies a totally target-dependent
feature selection, which also accounts for the
model used to predict a given task.

In the following we investigate the effects of the
proposed scheme in terms of VC dimension and
for particular instances of kernel learning theory,
while a stopping criterion for the algorithm is dis-
cussed later in view of the incoming analysis and
trade-off remarks.

2.1 The VC dimension in the

greedy framework

We consider the dataset (1), where we now sup-

pose that Ω =
⊗d

k=1 Ω
k with Ωk = [ak, bk] ⊂ R.

Given a classifying function f : Ω −→ Y we
consider the zero-one loss function

c(x, y, f) =
1

2
|f(x)− y|,

which is 0 if f(x) = y and 1 otherwise. From this
loss, we can define the empirical risk

ê(Ξ, f) =
1

n

n
∑

i=1

c(xi, yi, f).

Assuming that Ξ is sampled from some fixed
unknown probability distribution p(x, y) on Ω×Y ,
we note that the empirical risk is the empirical
mean value of so-called generalization risk, i.e.:

e(f) =

∫

Ω×Y

c(x, y, f) dp(x, y),

i.e., it is the mean value of c averaged over all
possible test samples generated by p(x, y), and
hence it represents the misclassification probabil-
ity. However, minimizing the empirical risk does
not necessarily correspond to a low generalization
risk (refer, e.g., to [35, §5] or [36, §5 & §6]). Indeed,
this might lead to poor generalization capability in
the sense that statistical learning theory already
proved that the generalization capacity of a given
model is somehow inversely related to the empir-
ical risk. Such general idea can be formalized in
different ways, such as via the VC dimension. In
order to define it, we need to introduce the concept
of shattering in this context. Let Ξ1, . . . ,Ξ2n be all
the different datasets obtainable taking all possi-
ble configurations of labels assigned to the data. A
class F shatters the set X if for every dataset Ξi,
i = 1, . . . , 2n, there exists a function f : Ω −→ Y ,
f ∈ F , such that ê(Ξi, f) = 0.

Definition 1 The VC dimension of a class F of clas-
sifying functions is the largest natural number s such
that there exists a set X of s examples that can be
shattered by F . If such s does not exist, then the VC
dimension is ∞.

Let us consider a class F of classifying func-
tions on Ω whose VC dimension is s < n. Then, if
f ∈ F and δ > 0, the bound

e(f) ≤ ê(Ξ, f) + C(s, n, δ),
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holds with probability 1 − δ, where the so-called
capacity term is

C(s, n, δ) =

√

1

n

(

s

(

log
2n

s
+ 1

)

+ log
4

δ

)

.

The generalization risk (and thus the test error)
is bounded by the sum between the empirical
risk (that is the training error) and the capacity
term of the class, which is monotonically increas-
ing with the VC dimension. If we choose a poor

class, we get a low VC dimension but a possibly
high empirical risk; this situation is usually called
underfitting. On the other hand, by choosing a rich
class we can obtain a very small empirical risk, but
the VC dimension, and thus the capacity term, is
likely to be large; this condition is called overfit-

ting. In the following, our purpose is to study how
the VC dimension evolves during the greedy steps.
It is natural to guess that the capacity of a clas-
sifier increases if the information contained in an
added feature is considered.

Definition 2 Let F be a class of binary classifying
functions f : Ω −→ Y . Letting ek be the k-th car-
dinal basis vector, we define the k-blind class F(k),
k ∈ {1, . . . , d}, F(k) ⊆ F as the class of functions

f (k) : Ω −→ Y such that

f
(k)(x) = f

(k)(x+ δek),

for any δ ∈ R such that x+ δek ∈ Ω.

For example, consider the class of functions

FW,b := {f : Ω −→ Y | f(x) = f̃(Wx+ b)}, (3)

where W is a r × d matrix and b is a r × 1
vector, r ≥ 1. Many well-known classifiers are
included in FW,b, such as, neural networks and

linear models. In this setting, classifiers in F
(k)
W,b

can be constructed by restricting to W and b such
that W:,k = 0, where W:,k is the k-th column of
W , and bk = 0.

Remark 1 As F(k) ⊆ F , the fact that that
VC(F(k)) ≤ VC(F), trivially follows.

In order to formally prove that by adding a
feature in the greedy step the obtained classifier

cannnot be less expressive (in terms of VC dimen-
sion) than the previous one, we introduce two
maps:

• πk : Ω −→
⊗d

i=1
i6=k

Ωi, so that πk(x) =

(x1, . . . , xk−1, xk+1, . . . , xd), which is a projec-
tion.

• ια : πk(Ω) −→ Ω, α ∈ Ωk, so that ια(x) =
(x1, . . . , xk−1, α, xk+1, . . . , xd), which is injec-
tive.

Note that applying ια ◦ πk to X has the effect of
setting to α the k-th feature for all the examples.

Proposition 1 X is shattered by F(k) if and only if

ια(πk(X)) is shattered by F(k).

Proof Any classifier in F(k) cannot rely on the k-th
feature. Precisely, for each xi ∈ X we can find δi ∈ R

so that xi+δie ∈ ια(πk(X)). Hence, it is equivalent for

any function in F(k) to shatter X and ια(πk(X)). �

For any function f (k) ∈ F (k) and α ∈ Ωk, we
can define a classifier g : πk(Ω) −→ Y such that
g(x) = f (k)(ια(x)). Denoting by G the class con-
sisting of such functions g, we achieve the following
result.

Proposition 2 ια(πk(X)) is shattered by F(k) if and

only if πk(X) is shattered by G.

Proof Assume that there exists f (k) ∈ F(k) that shat-
ters ια(πk(X)). Note that the shattering does not rely
on the k-th feature, which is constant, and therefore
this is equivalent to shatter πk(ια(πk(X))) = πk(X) in
a lower-dimensional space by means of a classifier g so
that f (k) = g ◦ πk. Finally, by defining x

(k) = πk(x),

x ∈ ια(πk(X)), we further obtain x = ια(x
(k)), and

therefore g(x(k)) = f (k)(ια(x
(k))) for x

(k) ∈ πk(X),
which completes the proof. �

Corollary 1 We have that VC(G) ≤ VC(F).

Proof By putting together Propositions 1 and 2 we
can affirm that X is shattered by F(k) if and only
if πk(X) is shattered by G. Note that X and πk(X)
have the same cardinality, and therefore VC(G) =

VC(F(k)). We conclude the proof by virtue of Remark
1. �
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The results in Corollary 1 formalizes the idea
that by adding a feature in the greedy step the
obtained classifier cannot be less expressive than
the previous one. Nevertheless, in this greedy con-
text we consider a sort of trade-off that deals with
the VC dimension: precisely, a high VC-dimension
allows the model to fit more complex patterns
but may lead to overfitting. Hence, we will dis-
cuss later a robust stopping criteria for the greedy
iterative rule. Now, as a particular case study, we
consider SVM classifiers, which are probably the
most frequently used ones. Further, being they
based on kernels, other capability measures con-
cerning such classifiers can be straightforwardly
studied.

2.2 SVM in the greedy framework

Following the SVM literature, we drive our atten-
tion towards (strictly) positive definite kernels κ :
Ω× Ω −→ R that satisfy

∫

Ω

κ(x, z)v(x)v(z)dxdz ≥ 0, ∀v ∈ L2(Ω),

for x, z ∈ Ω. Then, those kernels can be decom-
posed via the Mercer’s Theorem as (see e.g.
Theorem 2.2. [37] p. 107 or [38]):

κ(x, z) =
∑

k≥0

λkρk(x)ρk(z), x, z ∈ Ω,

where {λk}k≥0 are the (non-negative) eigenvalues
and {ρk}k≥0 are the (L2-orthonormal) eigenfunc-
tions of the operator T : L2(Ω) −→ L2(Ω), given
by

T [v](x) =

∫

Ω

κ(x, z)v(z)dz.

Mercer’s theorem provides an easy background
for introducing feature maps and spaces. Indeed,
for Mercer kernels we can interpret the series rep-
resentation in terms of an inner product in the
so-called feature space F , which is a Hilbert space.
Indeed, we have that

κ(x, z) = 〈Φ(x),Φ(z)〉F , x, z ∈ Ω, (4)

where Φ : Ω −→ F is a feature map. For a given
kernel, the feature map and space are not unique.
A possible solution is the one of taking the map
Φ(x) = κ(·,x), which is linked to the characteri-
zation of F as a reproducing kernel Hilbert space;

see [18, 39] for further details. Both in machine
learning literature and in approximation theory,
radial kernels are truly common. They are ker-
nels for whom there exists a Radial Basis Function
(RBF) ϕ : R+ −→ R, where R+ = [0,∞), and
(possibly) a shape parameter γ > 0 such that, for
all x, z ∈ Ω,

κ(x, z) = κγ(x, z) = ϕγ(||x− z||2) = ϕ(r),

where r = ||x− z||2. Among all radial kernels, we
remark that the Gaussian one is given by

κ(x, z) = κγ(x, z) = e−γ‖x−z‖2

2 = e−γr2 . (5)

In the following, for simplicity, we omit the depen-
dence on γ, which is also known as scale parameter
in machine learning literature.

With radial kernel as well, SVMs can be used
for classification purposes and several complexity
indicators, such as the kernel alignment, can be
studied in order to have a better understanding
of the greedy strategy based on SVM, i.e., when
the generic classifier in Equation (2) is an SVM
function. The notion of kernel alignment was first
introduced by [40] and later investigated in e.g.
[41]. Other common complexity indicators related
to the alignment can be found in [42]. Given two
kernels κ1 and κ2 : Ω × Ω −→ R

d, the empiri-
cal alignment evaluates the similarity between the
corresponding kernel matrices. It is given by

A(X,K1,K2) =
(K1,K2)F

√

||K1||F||K2||F
,

where K1 := K1(X) and K2 := K2(X) denote
the Gram matrices for the kernels κ1 and κ2 on
X , respectively and

(K1,K2)F =

n
∑

i,j=1

κ1(xi,xj)κ2(xi,xj).

The alignment can be seen as a similarity score
based on the cosine of the angle. For arbitrary
matrices, this score ranges between −1 and 1.

For classification purposes we can define an
ideal target matrix as Y = yy⊺, where y =
(y1, . . . , yn)

⊺ is the vector of labels. Then the
empirical alignment between the kernel matrix K
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and the target matrix Y can be written as:

A(X,K,Y) =
(K,Y)

F
√

||K||F||Y||F
=

(K,Y)
F

n
√

||K||F
.

Such alignment with the target matrix is an indi-
cator of the classification accuracy of a classifier.
Indeed, to higher alignment scores correspond a
separation of the data with a low bound on the
generalization error [41].

We now prove the following result which will
be helpful in understanding our greedy approach.

Theorem 3 Given two kernels κ1 and κ2 : Ω ×
Ω −→ R

d, if ||K2||F ≥ ||K1||F then A(X,K1,Y) ≤
A(X,K2,Y).

Proof By hypothesis we have that:

A(X,K1,Y) =
(K1,Y)F
n
√

||K1||F
≤

(K1,Y)
F

n
√

||K2||F
.

Then, by adding and subtracting (K2,Y)F at the
numerator, and thanks to the linearity of the norm,
we obtain:

A(X,K1,Y) ≤
(K1,Y)

F

n
√

||K2||F

=
(K1− K2,Y − Y)

F

n
√

||K2||F
+

(K2,Y)F
n
√

||K2||F

= A(X,K2,Y).

�

Considering again Equation (2), let us denote
by X(k−1) the dataset at the (k − 1) greedy step
which already contains k− 1 features and by X(k)

the one that is constructed at the k-th step accord-
ingly to our greedy rule. Then, as a corollary of the
previous theorem, we have the following result.

Corollary 2 If κ is a non-increasing radial kernel,

then

A(X(k)
,K(X(k)),Y) ≥ A(X(k−1)

,K(X(k−1)),Y).

Proof Being ϕ : R+ −→ R non-increasing, for

x,z ∈ R
d
,

we obtain

ϕ (‖x− z‖2) =

= ϕ(‖(x1, x2, . . . , xk)− (z1, z2, . . . , zk)‖2) ≤

≤ ϕ(‖(x1, x2, . . . , xk−1)− (z1, z2, . . . , zk−1)‖2),

which in particular implies that

Kij(X
(k−1)) ≥ Kij(X

(k)) ≥ 0, i, j = 1, . . . , n.

Thus, we get

‖K(X(k−1))‖F ≥ ‖K(X(k))‖F,

and hence

A(X(k)
,K(X(k)),Y) ≥ A(X(k−1)

,K(X(k−1)),Y).

�

Note that this kind of feature augmentation
strategy via greedy schemes shows some simi-
larities with the so-called Variably Scaled Ker-
nels (VSKs), first introduced in [43] and recently
applied in the framework of inverse problems, see
e.g. [44, 45]. Indeed, both approaches are based on
adding features and both are again characterized
by a trade-off between the model capacity, which
can be characterized by the kernel alignment, and
the model accuracy. To achieve a good trade-off
between these two factors we need a stopping
criteria for the iterative rule shown in (2).

2.3 Stopping criterion

In actual applications, the greedy iterative algo-
rithm should select, at first, the most relevant
features, and then, if no relevant features are avail-
able, any accuracy score should saturate. Among
several scores µ, a robust one is the so-called True
Skill Statistic (TSS) for its characteristic of being
insensitive to class imbalance [46]. Precisely, let-
ting TN, FP, FN, TP respectively the number of
true negatives, false positives, false negatives and
true positives, the TSS is defined by:

TSS(TN,FP,FN,TP) = recall(TN,FP,FN,TP)

+ specificity(TN,FP,FN,TP)− 1,

where

recall(TN,FP,FN,TP) =
TP

FN + TP
, (6)

and

specificity(TN,FP,FN,TP) =
TN

FP + TN
. (7)

6



In order to introduce a stopping criteria, we
need to point out that we construct a greedy fea-
ture ranking by considering, at each step, q splits
of the dataset into training and validation sets.
Specifically, at the k-th step of the greedy algo-
rithm, each one of the d − k datasets, composed
by the k−1 selected features x1, . . . , xk−1 and the
added one xp (p = k, . . . , d), is divided into train-

ing and validation sets, namely {(X
(t)
p,h, Y

(t)
p,h)} and

{(X
(v)
p,h, Y

(v)
p,h )} respectively, for h = 1, . . . , q, and

fixed p. Hence, once the models Mp (p = k, . . . , d)
have been trained the k-th feature is chosen so
that:

xk = arg max
p=k,...,d

1

q

q
∑

h=1

µ(Mp(X
(v)
p,h), Y

(v)
p,h ), (8)

where µ is the TSS score. Then, letting mk be the
average of the TSS scores computed on different
splits at the k-th step and σk the associated stan-
dard deviation, we stop the greedy iteration at the
k-th step if:

|mk+1 −mk|
√

(σ2
k+1 + σ2

k)
< τ, (9)

and τ is a given threshold. By doing so, we stop the
greedy algorithm when the added feature does not
contribute to the accuracy score. In order to better
understand this fact, we provide in the follow-
ing a numerical experiment with synthetic data.
Dealing with real data, we might stop the greedy
iteration as shown in (9), but then select only the
first k∗ features, where k∗ is

k∗ = arg max
j=1,...,k

mj . (10)

3 Numerical experiments

The first numerical experiment wants to numeri-
cally show the convergence of the greedy algorithm
and the efficacy of the stopping rule. Then, we
will show an application in the context of space
weather, which aims to show how this general
method is able to infer on the physical aspects of
the problem.

3.1 Applications to a toy dataset

We first focused on the application of the non-
linear SVM greedy technique to a balanced simu-
lated dataset constructed as follows: we considered
the set X = {xi}

n
i=1 of n = 1000 random points

in dimension d = 15 sampled from a uniform
distribution over [0, 1) and the set of correspond-
ing function values {fα,i = fα(xi)}

n
i=1, where

fα : [0, 1)d −→ R is defined as

fα(x) = ex
2

1 + ex2 + 3x3 + 2 cos (x4x5)

+4x2
6 + 10α

d
∑

j=7

xj .
(11)

and α ∈ {−8,−6,−4,−2}. Each fα,i was then
labeled according to a threshold value to obtain
the set of outputs Y = {yi}, i.e., yi = 1 if fα,i is
greater than the mean value attained by fα, and
yi = −1 otherwise. From (11) we note that the
first 6 features (i.e., xj for j = 1, . . . , 6) are mean-
ingful for classification purposes when α is lower
than −4, while the contribution of the remain-
ing ones is negligible. The classifier used in the
following was an SVM model for which both the
scale parameter of the Gaussian kernel and the
bounding box are optimized via standard cross-
validation. The results of using such a classifier
into the greedy scheme are reported in Table 1.
Such table contains the greedy ranking of the fea-
tures xj , j = 1, . . . , d, and the TSS values obtained
at each step by averaging over 7 different valida-
tion sets. Letting τ = 9e− 2 be the threshold for
the stopping criteria in (9), the greedy algorithm
selected the features reported in Table 1, which are
above the black solid line. As expected, the algo-
rithm selected only the first six features (the most
relevant ones) when α is small enough (α ≤ −6).
Then, as soon as the remaining features become
more meaningful the greedy selection takes into
account more features. In this didactic example we
report all the TSS values until the end, to empha-
sise the robustness of our procedure that correctly
identified the most relevant features.
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Table 1 Feature ranking for the greedy scheme on the dataset generated as in (11). The selected features are identified
by the bold line in the table.

α = −8 α = −6 α = −4 α = −2

xj TSS xj TSS xj TSS xj TSS

x1 0.204 ± 0.050 x1 0.204 ± 0.050 x1 0.198 ± 0.048 x1 0.197 ± 0.034

x6 0.550 ± 0.049 x6 0.553 ± 0.050 x6 0.558 ± 0.048 x6 0.553 ± 0.044

x3 0.798 ± 0.049 x3 0.798 ± 0.049 x3 0.800 ± 0.051 x3 0.787 ± 0.041

x2 0.930 ± 0.030 x2 0.930 ± 0.030 x2 0.933 ± 0.031 x2 0.888 ± 0.017

x4 0.939 ± 0.021 x4 0.939 ± 0.021 x4 0.939 ± 0.024 x4 0.895 ± 0.025

x5 0.954 ± 0.015 x5 0.954 ± 0.015 x5 0.961 ± 0.017 x13 0.899 ± 0.024

x12 0.953 ± 0.014 x12 0.953 ± 0.014 x12 0.953 ± 0.014 x8 0.888 ± 0.034

x13 0.953 ± 0.022 x13 0.953 ± 0.022 x9 0.948 ± 0.022 x5 0.895 ± 0.036

x9 0.946 ± 0.028 x9 0.946 ± 0.028 x13 0.948 ± 0.025 x14 0.900 ± 0.035

x11 0.928 ± 0.039 x11 0.928 ± 0.039 x14 0.929 ± 0.026 x7 0.896 ± 0.039

x14 0.932 ± 0.021 x14 0.932 ± 0.021 x11 0.920 ± 0.027 x10 0.895 ± 0.039

x7 0.914 ± 0.023 x7 0.914 ± 0.023 x7 0.911 ± 0.031 x12 0.881 ± 0.036

x10 0.889 ± 0.024 x10 0.889 ± 0.024 x8 0.890 ± 0.043 x11 0.881 ± 0.046

x8 0.883 ± 0.025 x8 0.873 ± 0.041 x10 0.878 ± 0.027 x9 0.871 ± 0.028

3.2 Applications to solar physics:

geo-effectiveness prediction

We now focus on a significant space weather
application, i.e., the prediction of severe geo-
effectiveness events based on the use of both
remote sensing and in-situ data. More specifically,
data-driven methods addressing this task typically
utilizes features acquired by in-situ instruments at
Lagrangian point L1 (i.e., the Lagrangian point
between the Sun and the Earth) to forecast a
significant increase of the SYM-H index, i.e.,
the expression of the geomagnetic disturbance at
Earth [47].

3.2.1 The dataset and the models

The dataset we used consisted of a collection of
solar wind, geomagnetic and energetic indices. In
particular, it was composed by N = 7888320
examples and d = 15 features sampled at each
minute starting from (1-st January 2005) to (31-st
December 2019). Below we summarize the features
we used:

1. B [nT], the magnetic field intensity, and Bx, By

and Bz [nT], its three coordinates.
2. V [Km/s], the velocity of the solar wind, and

Vx, Vy and Vz [Km/s], its three coordinates.

3. T, the proton temperature, and ρ, the proton
density number [cm−3].

4. Ek, Em, Et the kinetic, magnetic and total
energies.

5. Hm, the magnetic helicity.
6. SYM-H [nT], a geomagnetic activity index that

quantifies the level of geomagnetic disturbance.

The first ten features were acquired at the
Lagrangian point L1 by in-situ instruments, the
energies and the magnetic helicity being adimen-
sional derived quantities, and the SYM-H being
measured at Earth. The task considered in what
follows consisted in identifying the most relevant
features used to predict whereas a geo-effective
event occurred, i.e., when the SYM-H was less
than −50 nT (label 1), or not (label -1). The
dataset at our disposal was highly unbalanced: the
rate of positive events was about 2.5%. In order
exploit our data analysis, we first need to fix the
notation. We denote by X̃ = {x̃i}

N
i=1 ⊆ Ω, where

Ω ⊆ R
d, the set of input samples an by Ỹ =

{ỹi}
N
i=1, with ỹi ∈ {−1, 1}, the set of associated

labels. The features denoted by x̃j , j = 1, . . . , d,
represent respectively B, Bx, By, Bz, V, Vx, Vy,
Vz, T, ρ, Ek, Em, Et, Hm and the SYM-H.

The analysis was performed with data aggre-
gated by hours, i.e., letting m = 60, n = N/m
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and

xi =
(
∑i+m

k=i x̃k)

m
,

we focused on X = {xi}
n
i=1 ⊆ Ω. Similarly, we

defined the set of aggregated labels Y = {yi}
n
i=1.

Given X and Y , the first step of our study
consisted in using different feature selection
approaches to rank the features accordingly to
their relevance (see Subsection 3.2.2). After this
step, we investigated how these results can be
exploited to improve the prediction task (see Sub-
section 3.2.3). In doing so, we used both SVM
and a Feed-forward Neural Network (FNN) in
order to predict whether a geo-effective event
occurred or not in the next hour. Specifically,
the SVM algorithm was trained by performing a
randomized and cross-validated search over the
hyper-parameters of the model (the regularization
parameter C and the kernel coefficient γ) taken
from uniform distributions on IC = [0.1, 1000] and
Iγ = [0.001, 0.1] respectively. Instead, the FNN
architecture was characterized by 7 hidden lay-
ers. The Rectified Linear Unit (ReLU) function
was used to activate the hidden layers, the sig-
moid activation function was applied to activate
the output, and the binary cross-entropy was used
as loss function. The model was trained over 200
epochs using the Adam optimizer with learning
rate equal to 0.001, with a mini-batch size of 64.
In order to prevent overfitting, an L2 regulariza-
tion constraint was set as 0.01 in the first two
layers. Further, we used an early stopping strat-
egy to select the best epoch with respect to the
validation loss.

3.2.2 Greedy feature selection

approaches

In order to apply efficiently our greedy strategy to
both SVM and FNN, we first considered a subset
Xp of the original dataset X with a reduced num-
ber of examples: we took p = 3333 examples. The
so-constructed ranking was compared to a state-
of-the-art method, i.e., the Lasso feature selection.
Precisely, the active set of features returned by
Lasso was composed by: Bx, By, Bz, Vy, Vz, T, ρ,
Ek, Em, Et, Hm and the SYM-H. Note that neither
V and B, which are physically meaningful for the
considered task, were selected by cross-validated
Lasso.

In Table 2 we report the results of the greedy
feature ranking scheme by using SVM and FNN.
In this table, the features are ordered accordingly
to the greedy selection. In particular, the greedy
iteration stopped with all the features reported
in the table accordingly to (9), but the selected
features were only the ones above the bold line,
as in (10). We can note that, the features selected
for both SVM and FNN are only a few, and this
is due to the fact that greedy schemes are model-
dependent and hence are able to truly capture the
most significant ones. We further point out that
in order to extract such features, we made use of a
validation set and we did not considered any test
set, since it was not at our disposal. Therefore, the
greedy feature extraction is coherently based on
the TSS computed on the validation set, and not
on the test set. Nevertheless, we are now interested
in understanding how the selected features work
in the prediction (on tests sets) of the original task
and with all examples.

Table 2 Feature rankings for the greedy schemes on
the dataset used for the prediction of geo-effective solar
storms.

Greedy ranking (SVM) Greedy ranking (FNN)

xj TSS xj TSS

SYM-H 0.703 ± 0.179 SYM-H 0.936 ± 0.052

Bz 0.823 ± 0.121 B 0.943 ± 0.034

V 0.804 ± 0.115 Et 0.958 ± 0.039

Et 0.825 ± 0.176 Vx 0.934 ± 0.078

Vx 0.853 ± 0.147

Em 0.804 ± 0.184

B 0.835 ± 0.115

Interestingly, the features extracted as the
most prominent ones are indeed those associated
with physical processes involved in the transfer
of energy from the CMEs to the Earth’s magne-
tosphere and, thus, with the CME likelihood for
inducing geomagnetic storms. Bz, i.e., a south-
ward directed interplanetary magnetic field, is
indeed required for magnetic reconnection with
the Earth’s magnetic field to occur, and thus
for the energy carried by the solar wind and/or
CMEs to be transferred to the Earth system.
In addition, the bulk speed V, or equivalently
the radial component of the flow velocity vec-
tor Vx, is directly related to the kinetic energy
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of the solar wind. On the one hand, it is well
known that particularly fast particle streams or
solar transients can compress the magnetosphere
on the sunward side. On the other hand, high
levels of magnetic energy (quadratically propor-
tional to the magnetic field intensity) can be
converted into thermal energy that heats the
Earth’s atmosphere, expanding it. In both cases, it
appears evident that the transfer of energy, either
kinetic or magnetic or total, enabled by the mag-
netic reconnection between the interplanetary and
terrestrial magnetic fields, disrupts the magneto-
sphere current system, thus causing geomagnetic
disturbances. As a conclusion, the extracted fea-
tures are the physical quantities with the higher
expected predictive capability.

3.2.3 Prediction of geo-effective solar

events with greedy-selected

features

In order to numerically validate our greedy pro-
cedure we compared the performances of SVM
and FNN trained with respectively: all features,
the features returned by Lasso, and the greedily
selected features. The comparison was performed
by computing several scores (reported in Tables
3 and 4) and by averaging on different splits of
the test set: in particular, we computed the TSS
as reference score, the Heidke Skill Score (HSS)
[48], precision, recall (see equation (6)), specificity
(see equation (7)), F1 score (which is the har-
monic mean of precision and recall), and balanced
accuracy (which is the arithmetic mean between
recall and specificity). We can observe that for the
SVM-based prediction, when using the features
extracted with the greedy procedure, we have a
remarkable improvement of all accuracy scores.
Further, although the performances of the FNN
are essentially the same, independently of the fea-
ture selection scheme, we note that we were able
to achieve the same accuracy scores with only a
few features selected ad hoc (3 in this case). This
points out again the fact that features extracted
by methods, such as Lasso, might be redundant
for the considered classifiers. This is even more
evident when using the FNN algorithm, which
achieved the same accuracy with only 3 greedily
selected features. The improvement in terms of
accuracy was remarkable only for SVM classifiers,

which is known to be less robust then neural net-
works to noise, i.e., redundant information stored
in redundant features.

4 Conclusions and future work

We introduced a novel class of feature reduction
schemes, namely greedy feature selection algo-
rithms. Their main advantage consists in the fact
that they are able to identify the most rele-
vant features for any given classifier. We studied
their behaviour both analytically and numerically.
Analytically, we could conclude that the models
constructed in such a way cannot be less expres-
sive than the standard ones (in terms of VC
dimension or kernel alignment). Numerically, we
showed their efficacy on a problem associated to
the prediction of geo-effective events of the active
Sun. As the activity of the Sun is cyclic, work
in progress consists in using greedy schemes to
study which features are relevant on either high
or low activity periods. Finally, as there is a grow-
ing interest in physics-informed neural networks
(PINN), we should investigate, both theoretically
and numerically, which are the challenges that
greedy methods could achieve in this context.
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