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A B S T R A C T

This paper presents an optimization framework for steel trusses. The authors implemented a penalty-based
approach to optimise the size, shape, and topology based on a dynamic grouping strategy to address the con-
structability challenges. The main contribution of the paper is the use of damped exponential constructability
penalties. This approach ensures optimal designs by balancing structural complexity, through standardization in
design, and minimizing the total number of members and variety of sections, with the overall structural cost. The
paper also presents a detailed analysis that underscores the sensitivity of the optimization convergence to the
algorithmic hyperparameters, emphasizing the role of cross-section assignments and stabilization of truss piece
counts. The optimization framework is validated on a trussed roof structure based on the findings from the single
truss optimization. The best truss topology proved to be the Howe truss configuration, highlighting its efficiency
in meeting the defined objective function.

1. Introduction

Civil engineering design problems are inherently complex due to
many decision variables and regulatory constraints. Optimization al-
gorithms have emerged as highly effective tools for addressing these
challenges, directly or indirectly. Indirect applications of metaheuristics
involve their integration with other AI-based techniques, such as arti-
ficial neural networks [1–3], genetic programming [4], fuzzy logic
[5,6], support vector machines [7], random forests [8], hybrid [9], and
more. These combinations enhance their effectiveness in tackling com-
plex civil engineering design problems. Optimization algorithms [10]
and, specifically, population-based metaheuristic algorithms [11–17],
have also demonstrated their importance in handling challenging civil
engineering design problems without additional techniques [18–21].

A typical structural optimization problem in civil engineering in-
volves steel trusses [22]. Typically, the optimization problems fall into
three distinct categories: (i) size, (ii) shape, and (iii) topology
optimization.

There is extensive literature on steel truss optimization, with leading
research trends: (i) exploring novel optimization methods also dealing
with uncertainty estimation and for solving high-dimensional or large-

scale problems, (ii) considering advanced structural analyses, and (iii)
improving the optimization problem formulation (multi-objective opti-
mization, including new regulatory compliance, real-time design and
digital twins, prefabrication and additive manufacturing, incorporating
sustainability and environmental impact, e.g. [23,24]).

The first research path might be considered the most explored due to
several factors, such as the increased computational power, the range of
applications, the complex problem solving, the increasing trend towards
data-driven decision making, interdisciplinary research and machine
learning integration [25–28]. Specifically, high dimensional optimiza-
tion of trusses [29] (i.e. high number of elements and design variables)
represents a challenging scenario where researchers developed efficient
optimization strategies guaranteeing convergence towards global solu-
tions with limited computation effort [30–33]. Recently, new numerical
experiments, as well as benchmark tests, have been developed to address
this scope [34,35].

Moreover, regarding the first research path, the extensive literature
is also oriented on applying novel optimization approaches, mainly
population-based, to optimise steel structures [36–41].

Regarding the second research aspect, the optimal design of steel
truss structures, with a focus on accurately approximating inelastic
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structural responses such as load-carrying capacity, has gained signifi-
cant attention [42–45]. The design of steel structures inherently in-
volves the consideration of high-order nonlinear formulations that
originate from the inelastic material properties, resulting in nonconvex
feasible domains.

The third research path, related to problem formulation, is more
connected to design and engineering practice. This paper falls within
such third path to address constructability in the optimal design of steel
trusses, taking size, shape, and topology design variables into
consideration.

Constructability is a pivotal aspect of civil engineering structural
design, significantly influencing the success of construction projects
[46]. Broadly, it encompasses technical and practical considerations
such as transportability, joint connections [47], and efficient utilization
of materials and resources, all of which come into play during the
realization phase—comprising production, assembly, and erection [48].
In 1986, the Constructability Task Force of the Construction Industry
Institute (CII) at The University of Texas defined Constructability as “the
optimal integration of construction knowledge and experience in plan-
ning, design, procurement, and field operations to attain overall project
objectives.” In the United Kingdom, “buildability” was introduced as a
term defined as “the extent to which the design of the building facilitates
ease of construction while meeting overall building requirements.”
Anderson et al. [49] defined it as “the capability of being constructed.”

This study aims to integrate construction knowledge, resources,
technology, and experience into the engineering and design of steel
buildings [50–52]. As illustrated by several authors [53–55], the early
design phase presents the best opportunity to impact project costs.
Therefore, incorporating constructability during the initial design pha-
ses is crucial for cost control, e.g. [56].

One of the most adopted methods for addressing constructability is
standardising structural components. In general, using standardized
components and systems leads to an improvement in constructability by
reducing the need for custom fabrication and assembly. The idea of
standardization has been defined, by Pasquire et al. [57], as “the
extensive use of components, methods or processes with regularity,
repetition and a successful history”. Wong et al. in [58,59], also
explained how standardization can be translated as the repetition of
grids, sizes of components and connection details, stressing the benefits
in terms of faster construction, reduced number of mould changes and
enhanced productivity.

In this sense, numerous scientists focused on reducing the high va-
riety of profiles commonly suggested by optimized designs with optimal
grouping strategy [60–64]. Recently, this aspect has been faced with
clustering approaches via Neural network [65], fully stressed design
[66,67], adding cardinality constraints [68] and, as adopted in the
current paper, by directly adapting the objective function (OF) with
proper penalty functions [69,70]. In summary, standardization com-
prehends different meanings, from the use of standard elements in the
design of a structure [71] to avoiding particular and unique shapes or
sections, the repetition of members [72] and connections [73].

This paper expands the preliminary results obtained in a previous
work [74] and introduces an innovative optimization approach appli-
cable to a broad spectrum of steel structures, ranging from truss beams
to real-world industrial buildings. This approach, built upon a penalty-
based optimization framework employing three distinct penalty func-
tions (ϕ1, ϕ2, and ϕ3), tackles the structural design while encouraging
the standardization of steel members (i.e. the number of different sec-
tions and the total number of employed pieces) and reduction of con-
structability issues along the construction process. Specifically, the
method assigns cross-sections based on stress distributions within truss
beam optimization. It optimizes size, shape and topology, employing a
dynamic grouping strategy that effectively reduces overall weight while
preserving the structural feasibility of the engineering solutions (e.g.
realistic design) and robustness [75–78]. The scope of this investigation
extends to the domain of industrial building design, revealing how the

optimization of truss beams dynamically influences the larger-scale
structure.

The novelty of this research compared to existing literature lies in its
comprehensive approach to steel structure optimization achieved by an
innovative problem statement of the optimization process where penalty
functions have been calibrated for assuring competitive structural per-
formance by limiting troubles during the assembly phase and reducing
potential cost during the production phase of steel pieces. While prior
studies have predominantly focused on specific aspects of structural
optimization mainly related to computational efficiencies of the algo-
rithms, this paper integrates these facets into a unified framework in
which dynamic grouping strategy and constructability aspects are
considered to ensure ease during the operational procedures in situ and
a significant reduction of the overall structural complexity. This strategy
significantly reduces final weight while ensuring structural integrity,
offering an innovative solution to a long-standing optimization
challenge.

The research paper is organized into three main parts: the problem
formulation and the analysis of two case studies, a planar truss and a real
steel industrial building.

2. Problem formulation

This section introduces the problem formulation, beginning with the
mathematical background and then moving on to its practical imple-
mentation using commercial software tools: Grasshopper, Karamba3D,
and Octopus.

2.1. Mathematical background

The primary objective of this paper is to achieve an optimal design
that considers structural constraints and constructability issues to
streamline construction complexity.

The objective function can be computed as follows:

min : f = ρ
∑N

i=1
(Ai⋅li)⋅ϕ1⋅ϕ2⋅ϕ3 (1)

with design variables defined in the domain

xmin ≤ x ≤ xmax (2)

Where N is the total number of elements in the truss, with different
values based on the truss typology selected by the optimizer at each
iteration; ρ is the mass density of structural steel S235 (EN10025–2,
European Code), equal to 7850 kg/m3, Ai is the area of the i-th member,
li is the length of the i-th member. Vector x collects the problem's generic
design variable (DV) of the problem, categorized into three different
optimisation levels (Size, shape, and topology). According to the specific
case study, the DV's vector will be expanded with a detailed description
of each component and their influence in the OF will be described.

The penalty functions are ϕ1 and ϕj defined as:

ϕ1 =

{
1 if nun = 0

(1+ K1⋅nun) if nun ≥ 1 (3)

where K1 is a proportional constant and nun the number of unfeasible
individuals. Specifically, ϕ1 is the penalty function associated with the
structural safety of the structure. Eq. 3 displays a linear relationship that
is directly proportional to the number of unfeasible individuals (nun) at
each iteration. In this way, not only the level of violation but also the
cardinality of the unfeasible elements has been considered.

The number of unfeasible elements nun is estimated by evaluating the
following design inequalities based on European regulation. Specif-
ically, Eq.s 4 and 5, concerning the combined bending and axial force as
well as buckling verification under flexure and axial compression, has
been implemented according to EC3 6.3.3. [79], respectively. These

R. Cucuzza et al.
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verifications have been conducted with specific regard to columns and
roof beams (i.e. purlins) within case study No.2:

NEd
NRd

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
MEd
y

MRd
y

)2

+

(
MEd
z

MRd
z

)2
√
√
√
√ < 1 (4)

NEd
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+
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(

kay .
MEd
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χLT . MRd

y

)2

+

(

kaz .
MEd
z + NEd.eNz
MRd
z

)2
√
√
√
√ < 1

(5)

while, for truss elements only (i.e. case study No.1), structural checks
under pure compression and tension axial forces have been implemented
according to EC3 6.3.3. [79]:

NEd
Nt,Rd

≤ 1 (6)

NEd
Nc,Rd

≤ 1 (7)

NEd
Nb,Rd

≤ 1 (8)

uy,max ≤ uy,lim (9)

where NEd is the design axial force, Nt,Rd, Nc,Rd and Nb,Rd are the tensile,
compression and buckling capacity of the generic truss element,
respectively. Accordingly to the type of section (i.e. Circular hollow
section) and grade of steel, class of section equal to 3 and buckling curve
c have been adopted coherently with EC3 6.3.1.2 Table 6.2 [79]. In eq.
9, uy,max is the design deflection of the truss, while uy,lim is the limit
deflection value. The latter, in the case of steel civil building, is assumed
to be equal to L/200, with L being the total span of the truss beam
coherently to the suggestion provided by Italian standard regulation.

The remaining penalty function ϕj is defined as

ϕj =
(
1+ aj

)
− e

− bj ⋅

(

Pj −
lnaj
bj

)

(10)

where aj, and bj are constants while Pj represents the constructability
index and it is devoted to simulating the structural complexity during
the construction process.

In this work, Pj is expressed by two distinct parameters as Na and n
which represent the number of different cross-sections and the number
of subdivisions in the truss, respectively. Hence, the ϕj penalty can be
particularized as two distinct penalties ϕNa and ϕn.

In contrast to penalty ϕ1, ϕj (or ϕNa and ϕn penalties if explicitly
declared) takes on an exponential form with a damping effect governed
by negative exponential coefficients [80,81]. Eq. 3 guides the algorithm
to assign feasible sections for each class of elements that satisfy the
structural verification and serviceability conditions outlined in Eqs. 6–8
and Eq. 9, respectively. On the other hand, Eq. 10 primarily aims to
reduce the overall construction complexity by managing the number of
different sections, Na, and the total number of pieces, n, employed for
the truss layout definition.

Aiming to explore the benefits of adopting such a complex mathe-
matical form expressed by Eq. 10, Fig. 1 has been reported. In this plot, a
comparison between the standard linear penalty, ϕlinear, and the damped
exponential one, ϕexp., adopted by the authors, has been represented.
With specific regard to the latter, three different levels of penalization
have been depicted by varying the bj parameter: high, medium and low
penalty levels. If ϕlinear guarantees a proportional level of penalty when
the number of employed sections increases, ϕexp. reduces the “goodness”
of the solution as the structural complexity index, pj, increases. In other
words, how the penalty increases, represents a substantial difference

between the two penalty approaches. In this sense, the slope of the curve
represents a “decreasing speed” of the complexity cost which tends to an
asymptotic value. While by adopting the constant penalty the increase
between step i and step i+ 1 is always the same, in the exponential
penalty, it varies according to the bj value.

In conclusion, following the latter approach, the optimizer is guided
to appreciate better the variation of weight as a compromise between
the increase of mass and the increase of the structural complexity. Even
if, as in the graphical example shown in Fig. 1, the linear penalty could
assume values lower than the exponential one, it leads to optimal de-
signs characterized by low structural complexity (i.e. few employed
sections or total number of pieces) but with an unsustainable increase of
the total cost (i.e. weight) of the structure.

2.2. Design variables

The design variables are grouped after the optimization goals, size,
shape and topology. After establishing the general truss layout selected
by the optimizer randomly, the structure's sizing was determined by
allocating predefined sections to each group of elements following the
evolutionary criteria of SPEA-II. These sections were selected from a
European standard list based on Eurocode 3, containing almost 100
feasible Circular Hollow Sections (CHS) profiles. This choice aligns with
practical recommendations and facilitates assembly. The main shape
and topology variables are represented in Fig. 2 and the lower and upper
bounds are collected in Table 1 where practical recommendations
derived from the experience have been adopted.

The shape optimization variables include the number of subdivisions
of half the chords (n), as well as the heights at the edges (H1) and the
midpoint (H2) of the upper chord. To define the permissible range for n it
was constrained to values between 3 and 10. The upper bound was

Fig. 1. Comparison between standard linear penalty and the damped expo-
nential one adopted by the authors.

Fig. 2. Illustration of the size shape and topology optimization by expressing
the design variables.

R. Cucuzza et al.
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determined with aminimum distance of 1m between consecutive nodes.
The span length of the truss was assumed to be equal to 20 m. The se-
lection of the boundaries in Table 1 follows [82].

Topology optimization involves the selection of five truss typologies
through the discrete variable nt ∈ {0,1,2, 3,4}: (0) Vierendeel, (1)
Brown, (2) Pratt, (3) Howe, and (4) Warren, as depicted in Fig. 2. These
truss types are chosen based on their suitability for various engineering
challenges and applications, making them valuable options in structural
design.

The Vierendeel truss is characterized by the absence of diagonal
members and vertical struts in tension. As distinct from the other truss
typologies, it must be realized with fully-restrained joints for preserving
instability when horizontal actions only are considered. It is commonly
employed in civil engineering structures, offering an aesthetically
pleasing configuration. With its X-shaped diagonals, the Brown Truss
ensures that one member of each X-component is always in tension. It is
preferred for applications where actions may invert during the struc-
ture's service life, such as wind loads or seismic actions, even though it
results in heavier designs. The Howe truss, with symmetrical com-
pressed diagonals relative to the axis of symmetry, excels in situations
where uplift actions are predominant, such as open buildings like
aircraft hangars or factories. The Pratt truss, renowned for achieving
long spans typically ranging from 20 to 100 m, features compressed and
tensioned diagonal members, making it suitable for handling predomi-
nantly horizontal actions. The Warren truss, known for its versatility,
features an upper chord in compression and a lower chord in tension.
Diagonals switch from tension to compression at the midpoint. Alternate
vertical elements help distribute compression forces for long spans. This
truss type finds widespread use in civil engineering, especially for steel
railway bridges.

2.3. Grouping strategy

A two-level grouping strategy has been devised to highlight the en-
gineering solutions achieved through the optimization process, starting
from the preliminary design phase. The fundamental concept is to gather
elements with similar mechanical properties, such as compression or
tension and stress levels, as illustrated in Fig. 3. This approach guides the
algorithm towards minimizing structural complexity and overall cost.
Employing different sections for every member in practical structural
design is often impractical. Additionally, the assembly and erection
processes favour installing entire truss sections at once. Consequently,
organizing elements into groups with shared mechanical characteristics
results in more feasible engineering solutions.

As evidenced by several authors [75–78], the grouping strategy's
effectiveness is closely linked to the structure's level of symmetry. In this
study, leveraging the symmetry around the vertical axis, an initial
grouping stage has been conducted, resulting in the classification of five

distinct truss components: (i) Upper Chord and External Vertical Struts;
(ii) Lower Chord; (iii) Internal Vertical Struts; (iv) Upward-Downward
Diagonals; (v) Downward-Upward Diagonals, as shown in Fig. 3.

After obtaining the initial grouping of elements, a second-level
classification has been established, considering the actual stress levels
within each group of elements. To illustrate this second-level grouping
strategy, a visual representation in Fig. 4 has been adopted, focusing on
the lower chord (the same applies for the other truss components).
Within each selected truss component, every member has been catego-
rized into one of three primary classes based on the stress level experi-
enced by the structure. Fig. 4 offers insight into the stress distribution
along the lower chord, highlighting three distinct inflexion points in the
axial tension force diagram and explaining the rationale behind each
group's identification.

The optimiser is configured to dynamically categorise elements into
different sections to promote optimal design with cost savings and
discourage overly complex structural solutions. This categorization
changes at each iteration based on the specific transition point identi-
fied. In Fig. 4, three distinct groups are considered, with two cutting
indices positioned at nodes 3 and 5. More in detail, when dividing the
lower chord into three groups, two indexes need to be identified, I1 and
I2. To avoid overlapping between groups of sections, n1 may assume a
value ranging between 1 and n − 2 = 4, while n2 in between n1 + 1 and
n − 1 = 5 where n represents the number of subdivisions of the lower
chord. Following this scheme, the optimiser could investigate all the
possible numbers of section groups until Ngroups = Nsubdivisions⋅n.

2.4. Implementation

The software implementation of the proposed methodology includes
the interaction among (i) Rhinoceros [83], (ii) grasshopper [84], (iii)
Karamba [85] and (iv) Octopus [86].

Data from the geometric Rhinoceros model is transferred from the
Grasshopper parametric model to the Karamba FEM solver. Subse-
quently, the solver feeds the analysis results into the Octopus optimizer.
Initially, the elements created as basic geometry in Grasshopper are
transformed into FEM components. This transformation involves speci-
fying cross-sections, materials, joints, supports, and applied loads. The
“Utilization of elements” component is then used to examine the struc-
tural verification results, adhering to the guidelines of EN 1993-1-1
within Eurocode 3 [79].

The optimization process relies on the well-established Strength
Pareto Evolutionary Algorithm (SPEA), initially proposed by Zitzler
[87–89]. An enhanced iteration of this algorithm, known as SPEA-II and
also introduced by Zitzler [90], is integrated into the Octopus plugin.
This algorithm's effectiveness has been rigorously demonstrated across
various multi-objective design domains, as shown in [91,92]. In this
study, this metaheuristic technique has been adopted for solving single-
objective optimization problems [93]. Aiming to demonstrate the
feasibility of the proposed approach, SPEA-II has been tested on classic
numerical benchmarks and compared with other well-known algorithms
which are acknowledged to work well with discrete design of 2D and 3D
trusses. Its reliability in terms of convergence capability and robustness
has been demonstrated on a similar class of problems by validating the
results obtained in this work. All the details and the results of the
analysis have been reported in Appendix A.

Table 1
Main design variables considered for the truss optimization.

Design variable Minimum Maximum

H1 max [L/15,Dtan(30o) ] min [H1,Dtan(60o) ])
H2 max[L/10,Dtan(30o) ] min [L/8,Dtan(60o) ]
n 3 10
nt (0) Vierendeel, (1) Brown, (2) Pratt, (3) Howe, (4) Warren.

Fig. 3. First-level grouping strategy of a Brown truss. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

R. Cucuzza et al.
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Table 2 outlines the key parameters and settings used in the opti-
mization algorithm. It is worth noting that some of the parameters set
differ between case studies No.1 and No.2. Due to the different
computational efforts required and the total number of DVs involved by
the two case studies, the authors decided to increase the level of
exploration and exploitation by fixing higher value of maximum itera-
tions and population size for the optimization process of the real-world
inspired industrial building (Case No.2).

For case studies No.1 and No.2, the algorithm is allowed to run for a
maximum of 250 iterations, respectively, to search for optimal solutions
effectively. A population of 200 and 400 potential solutions is main-
tained in each iteration to explore various design possibilities for each
case study. The crossover probability is performed with a 70% proba-
bility in each iteration, allowing for the exchange of genetic material
between potential solutions. Additionally, the Elitism operator has been
selected and the percentage of new solutions that are bred out from the
entire pool has been fixed; if high, more local optimization is performed.
In this case study, this percentage was set to 20% in order to make sure
that the best individuals are not discarded, by transferring them directly
into the next generation. Moreover, it was set that the 2% of the best
unfeasible individuals survived to the next generation in order to
guarantee diversity inside the new population. The mutation probability
(0.05) controls the likelihood of introducing small random changes in
potential solutions, promoting diversity within the population. The
convergence threshold for the OF is set to 0.001. Basic Tournament se-
lection is employed to choose potential solutions for reproduction,
ensuring that fitter solutions are more likely to be selected [94,95].

Figure 5 overviews the flowchart showing the main steps of the
optimization process. Once the structural geometry has been para-
metrically modelled in Grasshopper, each element comprising the
structure is transformed into Finite Element Method (FEM) elements by
utilizing Karamba3D components. These elements are equipped with
assigned cross-sections, loads, and supports.

3. Case no.1: 2D steel truss

The first case study is a planar truss with a span length of 20 m. The
2D modelling of each truss typology has been conducted aiming to
reproduce the only axial (e.g. tension/compression) behaviour of bars

except the Vierendeel truss for which fully-restrained joints have been
considered. Simply-supported static scheme has been assumed for each
truss system.

3.1. Load definition and design variables

The gravitational loads are modelled following the Ultimate Limit
State (ULS) combinations specified by the European Standard Regula-
tion (EN 1993-1-1):

γG1⋅G1 + γG2⋅G2 + γP⋅P+ γQ1⋅Qk1 + γQ2⋅ψ02⋅Qk2 +… (11)

Here, G1, G2, and Qki represent the permanent structural loads,
permanent non-structural loads, and variable loads, respectively. The
coefficients γ are the partial safety factors determined based on the type
of loads involved. The authors opted for the most critical scenario. In
alignment with the practical application of this structure, an aluminium
corrugated sheet was employed for the roof covering. All these forces
were applied as concentrated loads at the upper nodes of each truss
under investigation.

The calculated load values, along with their respective amplification
factors, are summarized in Table 3:

Table 4 defined all the DVs involved in the optimization process,
with their lower and upper bounds, and each category is colour-coded to
assess its contribution to the final optimal design. Additionally, a
graphical representation in Fig. 6 assigns each DV to specific groups of
elements. For simplicity, the authors adopted a Brown truss typology as
the model type, with three different cross-section groups (i.e., three
cutting indices) adopted for each structure component, allowing the
same variable to be assigned to elements belonging to the same group.

3.2. Penalty functions

In an optimization process based on a penalty approach, the defini-
tion and calibration of penalty functions play a crucial role in achieving
successful and feasible solutions.

Following the mathematical definition of the constructability penalty
ϕj, expressed by Eq. 10, it can be particularized as follows:

ϕNa = (1+ a1) − e
− b1 ⋅

(

PNa −
lna1
b1

)

(12)

ϕn = (1+ a2) − e
− b2 ⋅

(

Pn −
lna2
b2

)

(13)

where a1 and b1 as well as a2 and b2 are the parameters that govern the
final shape of the penalty functions ϕNa and ϕn coherently with the final
constructability target represented by the number of different sections,
Na, and the total number of pieces, n, respectively.

Especially for these penalties, It is worth noting that their geometric
nature significantly affects the optimal design. In other words, the pa-
rameters tuning is not only vital to ensure convergence but it guides also
the algorithm towards preferring solutions with a higher or lower

Fig. 4. Second-level grouping strategy of the lower chord of a Brown truss based on the stress level. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 2
Optimization algorithm parameters and settings.

Parameter Value

Maximum Iterations (Case No.1/No.2) 250
Population Size (Case No.1/No.2) 200/400
Mutation Probability 0.05
Crossover Probability 0.7
Convergence Threshold 0.001
Selection Mechanism Tournament Selection
Penalty Functions ϕ1, ϕNa , ϕn
Optimization Approach Penalty-Based
Algorithm Integration SPEA-II (Octopus Plugin)
Dynamic Grouping Yes
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number of pieces and/or different sections, respectively [81]. In this
way, the parameters' tuning of penalties does not affect the searching
ability of the algorithm. On the other hand, it represents a crucial step to
assess the proper level of penalization achieving the preferable solution
as a balance between total weight and structural complexity. This bal-
ance can be achieved according to the sensibility of the designer or the
practical needs in the yard.

The parametric nature of this curve represents one of the novelties of
this paper. Depending on the final aim of the designer or based on cost
evaluations derived from production processes' considerations (e.g.
concerning the production of steel pieces in the factory), the penalties
change accordingly to the proper calibration of parameters a1 and b1, or
a2 and b2.

The optimal values of these parameters, as presented in Table 5, were

determined through a preliminary calibration procedure and suitable
parameters tuning aiming to strongly penalize solutions with a total
number of pieces and number of different pieces over 20 and 5,
respectively. It was an arbitrary choice based on the specific class of
problem and the final scope to encourage standardization by reducing
constructability issues.

Specifically, in the case of K1, the authors conducted size optimiza-
tion for a Brown truss with n = 6 elements. No significant variation in
the results has been observed, indicating that opting for an excessively
high value of K1 was unnecessary. Consequently, K1 = 10 has been
selected, as shown in Fig. 7(a).

For the penalty function ϕNa , a1 defines the asymptote beyond which
further penalization has limited impact, while b1 influences the curve's
steepness before reaching the asymptote. The calibration of a1 and b1
began with the latter to establish the desired trend. Subsequently, by
fixing the chosen b1 value and specifying a particularNa value to achieve
the desired penalty level, a1 was uniquely determined. The same
approach has been performed for the other penalty ϕn.

As anticipated, when optimizing for minimum weight using only the
penalty function ϕNa , the solution with the fewest cross-sections for a
Brown truss was obtained with b1 = 0.1. As expected, a heavier final
design, with respect to the traditional minimum weight approach, is the
real cost to reduce constructability issues. In other words, reducing the
structural complexity in terms of different cross-sections leads to an
increase in the total weight of the structure. In this case, in fact, the
optimizer is gradually guided along the assignment phase of the sections
according to the soft stiffness of the curve obtained for the selected b1
value. Furthermore, at higher values of b1, the optimizer consistently
selected the same number of different cross-sections, regardless of the
level of penalization, as it struggled to discern variations in the penalty.
In comparison to the prior scenario, there is a notable rise in the degree
of penalization starting from the initial Na values, aligning with the
conspicuous steepness observed in the b1 curve illustrated in Fig. 7. A
similar trend emerged when employing a higher level of penalty.

In summary, lower values of b1 shifted the asymptote towards higher
values, resulting in a higher a1. Lower b1 values also led to a more
gradual curve, resulting in more noticeable variations in the penalty
function as the asymptote was approached. Considering all these factors,
the authors determined that adopting b1 = 0.1 represented the optimal
trade-off aiming to find optimal designs with low structural complexity
while preserving the slenderness of the structure.

Regarding the final penalty function, ϕn, complexity reduction was
achieved by considering the number of truss subdivisions. An increase in
n resulted in a higher total number of elements, more connections be-
tween the truss components, and increased overall cost. a2 and b2 played
roles in setting the curve similar to a1 and b1, respectively. The authors
used the same calibration procedure and set b2 = 0.1. All values are
summarized in Table 5.

This approach's main feature is its parameter flexibility for governing
the penalty functions. This adaptability is an innovative facet of the
proposed methodology. Designers can customize these curves to suit the
building type or core design objectives, steering the final design towards
their preferred solution.

The calibration procedure of these parameters has been conducted
by following the graphical scheme reported in Fig. 8.

Fig. 5. Workflow of the algorithm implementation.

Table 3
Vertical loads applied to the truss structure.

Type of Load Load Value Coefficient γ

G1 Self-weight 1.3
G2 [kN/m2] 1.471 1.5
Q1 [kN/m2] 0.5 1.5

Table 4
Design variables where the colors of the cells represent the different cate-
gories: blue - Topology; red - Layout definition; green - Grouping division;
yellow - Cross-sections assignment.
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3.3. Results

This subsection will show the results obtained by performing a
simultaneous size, shape and topology optimization with all the
different penalties ϕ1, ϕ2 and ϕ3. The authors decided to focus mainly on
discussing the results derived from the most representative case study in
which the number of DVs (see Table 4) and the penalty approach
contribute to fulfilling the final goal of this research. The sizing and the
overall geometric layout are dynamically changed when the truss ty-
pology is selected parametrically. It should be remarked that topological
optimization does not imply complete freedom in organizing the struc-
tural topology by varying the number, inclination, and connectivity at
will [96–98]. On the contrary, due to the emphasized need to adhere to
constructability criteria, the authors have identified five truss configu-
rations: Vierendeel, Brown, Pratt, Howe, and Warren. Through a
discrete variable x1 (Table 4), the topological optimization is confined to
selecting the best option from the aforementioned five typologies. To
check the robustness of the optimization procedure conducted by the
optimizer Octopus and the feasibility of the entire penalty procedure, 20
runs have been performed, and the results have been reported in Table 6.

All the obtained solutions have been arranged from the lowest to the
highest OF. However, the lowest OF does not necessarily represent the

Fig. 6. Schematic representation of all the design variables.

Table 5
Penalties parameters.

Parameter Value

K1 10
a1 2.70
b1 0.1
a2 1.157
b2 0.1

Fig. 7. Penalty function ϕ1 changing k1 and (b)-(c) penalty function ϕ2 changing β and Δ.

Fig. 8. Flow chart of the adopted penalties calibration.

Table 6
Results of the best individual of each optimization for Size, Shape & Topology
optimization.
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lightest solution due to the nature of the penalty functions ϕ2 and ϕ3.
From this comprehensive overview, several preliminary observations

can be made to identify potential trends among the optimal solutions:
Initially, in most cases, the optimizer favours the Pratt configuration as
the most promising solution in terms of cost-effectiveness across the
entire solution set. The lowest weight, equal to 4.143 kN, was achieved
for a Pratt truss with five different sections (Na) and 5 number of sub-
divisions (n). Generally, the values of these two design variables range
from 4 to 6, independent of the optimal truss typology identified by the
optimizer. The best solution was obtained for values of H1 and H2 equal
to 1.53 and 1.96, respectively. It's worth noting that the most promising
solutions generally featured moderate values of H2. Reducing this var-
iable increased stress on the steel elements, but reducing bar length
contributed to an overall weight reduction. Although all the solutions
share the same number of cutting indices (i.e., n1, n2, and n3), the
effectiveness of the grouping strategy is demonstrated by the substantial
variability in the number of elements belonging to the third group (n3).
This variability results from the differences in the number of employed
sections, Na, and the total number of pieces, n.

In conclusion, the primary challenge lies in the high dispersion of
results. The large number of design variables, combined with the
complexity of the OF resulting from numerous combinations of struc-
tural parameters, leads to significant result dispersion. However, despite
the dispersion in OFs, the differences in corresponding structural
weights can be considered negligible. Specifically, when comparing the
total weight corresponding to the best OF with the average weight across
all OFs, the difference is only 0.023 tons. Statistical features obtained by
all the runs are reported in Table 7.

The cross-section assignment illustrates the algorithm's efficiency in
identifying the optimal grouping strategy based on the applied stress
levels. Fig. 9 showcases the optimal sizing of the best solution (Pratt
truss). At the same time, the specific Circular Hollow Section (CHS)
profiles assigned to each component are detailed in Table 8.

As also noted in [75], larger sections have been allocated from the
edges to the middle span of the truss, aligning with the increasing stress
levels along the tensioned bottom chord and the compressed upper one.
Conversely, the opposite trend can be observed for the diagonals and
vertical struts, where larger sections have been assigned to all Group 2
and Group 3 members.

The advantageous impact of the grouping strategy is evident from
the fact that the same cross-section has been assigned to different ele-
ments belonging to various truss components (e.g., identical sections for
the most stressed elements of the bottom chord, vertical struts, or di-
agonals). Consequently, a significant reduction in the number of
different cross-sections is observed.

For clarity purposes, the trend of the most representative structural
parameters of the best solution is depicted in Fig. 10. Specifically, due to
the nature of the penalties ϕ2 and ϕ3, OF including penalties contribu-
tion and the only weight have been depicted for clarity purposes.
Additionally, information about the unfeasibility proportion for each
iteration (i.e. ratio between the number of unfeasible individuals and
population size) has been reported to show the promising level of
exploration of the algorithm.

Finally, a summary of all the results obtained by performing several
optimization processes with different levels of penalties and groups of
DVs has been reported in Table 9 as result of the calibration procedure
described in the previous section.

Table 9 demonstrates that the inclusion of penalty functions (ϕ2 and
ϕ3) in addition to ϕ1 leads to higher structural weights. This is expected

since the penalty functions penalize deviations from constraints, making
achieving the same structural efficiency as in the ϕ1-only cases chal-
lenging. It emphasizes the importance of selecting appropriate penalty
functions based on the optimization objectives. Parameters that are kept
fixed (highlighted in red) significantly influence the optimization out-
comes. For example, fixing the number of subdivisions (n) and heights
(H1 and H2) leads to consistent values across cases with the same fixed
parameters. This suggests that these parameters play a determinant role
in the optimization process. Regarding the grouping Strategy, the values
of n1, n2, and n3 in the grouping strategy impact the number of different
cross-sections (Na) used in the truss. More cutting indices (n1, n2, and n3)
generally lead to more sections, affecting the structural weight.

4. Case no.2: 3D steel structure

A real-world case study has been considered to validate the proposed
approach, encompassing all the constructability aspects discussed in
previous sections.

The building under investigation is located in the industrial area of
“Mirafiori” in the South-West zone of Turin, Italy. The building repre-
sents a disused area that once housed activities of the famous FIAT
company which was built in the early 60's. It was built entirely by steel
trussed frames supported by steel coupled sections and a roof realized by
corrugated sheets. In Fig. 11-(a), a picture of the inner spaces of the
building is reported where the static scheme of the trussed frames can be
appreciated.

As in the previous case study, the optimization aims to minimize
structural complexity. This complexity is gauged by considering the
total number of components utilized in construction and the diversity of
cross-sectional profiles employed.

4.1. Parametric modelling and load definition

Much like the previous study on truss beams, this investigation in-
volves the creation of a parametric building model. This is achieved by
replicating predefined modules at a specified span distance, referred to
as variable s in the optimization problem.

The 3D modelling of the structure has been realized by following the
same strategy described in section 3 for trusses supporting the roof while
beam elements have been used for columns and purlins. Elastic hinges
have been adopted to connect trusses to columns as a common solution
for this type of structure. Roof and vertical bracings have been modelled
as tension-only elements. Generally, the number of nodes and elements
depends on the type of selected truss and number of modules.

The primary objective is to optimise the number of modules. Fig. 11
depicts the entire building. Each module comprises a truss beam with a

Table 7
Best, Worst, Mean and Standard deviation values of the OF for the considered
Size, Shape & Topology optimization.

Best Worst Mean Standard Deviation

12.429 14.565 13.072 0.509

Fig. 9. Configuration of the optimized truss, obtained from the considered size
shape and topology optimization.

Table 8
Cross-sections of the optimized truss.

Structural element CHS First group CHS Second group CHS Third group

Lower Chord 101.6 × 2 60.3 × 2 21.3 × 2
Upper Chord + 168.3 × 3 139.7 × 3 139.7 × 3
Ext. Vert. Structs
Int. Vert. Structs 60.3 × 2 101.6 × 2 101.6 × 2
Downward-Upward 21.3 × 2 60.3 × 2 101.6 × 2
Diagonals
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Howe layout, supported by two steel columns. Except for the columns,
which are securely anchored in the basement, and the vertical and
horizontal bracings, assumed to be rigidly connected to the trusses and
columns, respectively, all steel members, including purlins with the
main trusses and truss elements, are designed to withstand axial stress.
The column height is fixed at 5 m, and hinge-joints are strategically
placed at the upper chord nodes of the truss for added stability. Addi-
tionally, the final design of the columns has been obtained from an in-
ertial equivalence procedure performed due to the fact that Karamba3D
does not allow structural verifications of coupled sections. Therefore, an
equivalence in terms of total weight has been conducted in order to
obtain a faithful estimation of the structural mass (refers to Fig. 11-(b).

Therefore, by fixing the overall length of the structure to 60 m, the
distribution of modules can vary from being denser to more widely
spaced. The final model consists of the following components:

• Truss system, categorized into the five components (i.e., Lower
Chord, Upper Chord, Internal Vertical Struts, Upward-Downward
Diagonals, Downward-Upward Diagonals);

• Columns;
• Purlins or Secondary beams, providing support for the roof;
• Roof bracings, positioned at the roof level;
• Vertical bracings type 1, located between the upper and bottom
chords;

• Vertical bracings type 2, positioned between two consecutive frames.

In Fig. 12, each structure component is represented by a distinct
colour, as indicated in the legend. Consequently, the lower and upper
bounds for the parameter Nm are defined as follows:

3 < Nm < 8 (14)

Based on the symmetric condition derived from:

Fig. 10. Evolution of the (a) OF including penalties contributions, Objective function; (b) W, Weight of best individual excluding penalties contributions; (c) Na,
number of different class sections; (d) nt , order number assigned for topology optimization; (e) n, number of subdivisions of half truss; (f) nun, number of unfeasible
members for the Case Study No.1.

Table 9
Results of the cases tested; in red, the parameters fixed in the size analyses.

Optimization case Best OF W [kN] Na n H1[m] H2[m] n1 n2 n3

Size - case A: 4.162 4.162 12 6 1.33 2.5 2 2 2
ϕ1
Size - case B: 9.748 5.156 4 6 1.33 2.5 2 2 2
ϕ1+ϕ2
Size & Shape - Case A: 4.399 4.399 10 7 1.33 1.59 1 1 5
ϕ1
Size & Shape - Case B: 10.082 4.889 5 7 1.33 1.72 1 1 5
ϕ1+ϕ2
Size & Shape - Case C: 6.148 4.224 11 5 1.33 1.81 1 1 3
ϕ1+ϕ3
Size & Shape - Case D: 12.886 4.293 5 5 1.39 2.28 1 1 3
ϕ1+ϕ2+ϕ3
Size, Shape & Topology: 12.429 4.363 5 4 1.7 2.38 1 1 2
ϕ1+ϕ2+ϕ3
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L
2
−
s
2
= (Nm − 1)⋅s (15)

which leads to

Nm =
L+s
2
s
; s =

L
2

Nm − 1
2

(16)

For clarity purposes, the layout configuration related to the lower
bound has been reported in Fig. 13.

The structural analysis covers both vertical and lateral loads. Vertical
loads encompass the Permanent Structural or Dead Load (G1), repre-
senting the self-weight of all structural components, and the Permanent

Non-Structural Load (G2), which accounts for the weight of standard
corrugated sheets commonly used for industrial building roofs. A weight
of 0.05 kN/m2 is assumed for these sheets. Additionally, the Mainte-
nance Load (qk) is determined based on the roof category, following
Italian regulations, and is set at 0.4 kN/m2, in line with Eurocode rec-
ommendations for roofs accessible solely for maintenance. The Snow
Load (qs) is calculated considering various factors, including exposure
class, building location, shape coefficient, and thermal effects. This
calculation results in a snow load of 1.23 kN/m2. The effect of these
loads on the truss elements as well as vertical supports, purlins, and
vertical and horizontal bracings depends on the design variable n and
varies dynamically between iterations as determined by the value of Nm.

Fig. 11. (a) Internal view and (b) structural model of the considered industrial building.

Fig. 12. Structural components of the industrial building.
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Lateral loads primarily consist of the Wind Load (pw), which arises
from aerodynamic forces due to the fluctuating velocity field of wind
over time and space. It exerts lateral pressure on the external surfaces of
large-span buildings. The Eurocode 1 recommends consulting the Na-
tional Annex to determine wind pressure. The authors employed the
Italian Standard Regulation NTC2018 in this study to assess the refer-
ence wind load. This approach considers factors such as the exposure
coefficient, roughness class, and shape coefficient based on the build-
ing's location. It is important to note that each building facade experi-
ences both positive (upwind wall) and negative (downwind wall) wind
pressures, as well as ascending (upwind) and descending (downwind)
pressures on the roof. For detailed wind action values (pw) on each
horizontal (roof) or vertical (facade) surface and their respective influ-
ence areas, refer to Table 10.

It is important to note that our analysis accounts not only for external
pressures but also internal ones. The final combination has been chosen
consistently to the most critical combination derived by adopting an
envelope of all the possible load configurations. Referring to the ULS Eq.
11 and the corresponding amplification factor, γ, suggested by the
Italian regulations, an overview of the adopted actions for the evaluation
of the critical combination has been reported in Table 11:

4.2. Definition of the design variables

The optimization process applied to the industrial building follows
the same objective function (Eq. 1) employed for the truss beams.
Additionally, the same penalty approach utilizing three different pen-
alties, ϕ1, ϕ2, and ϕ3, has been implemented. In this adaptation, the
concept of the number of sections (Na) and the total number of pieces
(Ntot) to encompass the new Design Variables (DVs) has been extended.
Specifically, when calculating the value of Ntot , all elements comprising
the entire structure have been considered, including the number of truss
subdivisions (n) of the lower or upper chord halves (e.g. exploiting
symmetry) for each truss beam within every frame and the total number
of columns (Ncol).

As a result, an expanded set of DVs has been introduced, bringing the
total number of structural parameters to 27, as detailed in Table 12,
showing only the new variables in addition to those in Table 4. This table
also clearly indicates the chosen cross-section type for each structural
element, ensuring compatibility between different profiles and offering

feasible engineering solutions.
Moreover, six additional DVs have been integrated, encompassing

column, purlin, horizontal bracing (roof) cross-sections, and two vertical
bracings (facade) types. These new DVs complement the ones defined in
the previous case study, as shown in Table 4. Furthermore, a shape-
related DV has been introduced, the number of modules (Nm), which
pertains to half of the structure's spatial configuration.

It is important to emphasize that the size, shape, and topology
optimization conducted at the truss beam level work in tandem with the
optimization of size and shape at the larger scale of the industrial
building. While minimizing the cross-sections of the additional elements
to meet structural requirements, the spacing between modules is
dynamically adjusted during each iteration. In simpler terms, shape
optimization at the industrial building level involves solely manipu-
lating the number of modules, resulting in the removal or addition of
trussed frames to the entire structure.

Fig. 13. Longitudinal view of the industrial building showing the main variables affecting the number of modules (Nm).

Table 10
Wind pressure pw values for the different cpe.

Structural element cp pw [KN/m2]

Upwind wall 0.8 0.48
Downwind wall − 0.4 − 0.24
Upwind roof pitch − 0.4 − 0.24
Downwind roof pitch − 0.4 − 0.24

Table 11
Summary of loads applied to the building and their relative value and
coefficient.

Load Type Load Name Load Value [KN/m2] γ ψ

Dead Load G1 Structure weight 1.3 –
Perm. Non-struct. Load G2 0.05 1.5 –
Maintenance Load qk 0.5 1.5 –
Snow Load qs 1.23 1.5 0.5
Wind Load p Depends on cp 1.5 0.6

Table 12
Design variables where the colors of the cells represent the
different categories: purple - Global layout definition; orange -
Additional size design variables.
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4.3. Results

In this section, the authors summarise the optimization results for the
industrial building. The analysis has been conducted 20 times to facili-
tate a comprehensive statistical examination of the solution dataset.
Table 13 below showcases the results, organized in ascending order of
the best OF values.

It is manifest that the Howe truss configuration is the optimizer's
preferred choice in most runs. Furthermore, it consistently achieves the
lowest OF values and, simultaneously, the lowest weight. This prefer-
ence can be attributed to the Howe truss's suitability in handling the
uplift effect caused by wind action, both externally and internally.

The impact of the adopted penalty approach becomes apparent when
considering structural parameters related to complexity. The number of
cross-sections (Na) is often reduced to three for the best configurations
(primarily Howe trusses). Additionally, the number of chords' sub-
divisions (n) for these designs is always minimized to four, independent
of the configuration. This parameter indirectly influences the total
number of pieces (Ntot) andmodules (Nm). Especially for the last one, it is
usually set to four, aligning with the need to reduce construction ele-
ments for safety and feasibility.

There is a notable variability in the geometric layout of the truss
designs. The values of H1 and H2, representing truss beam heights at the
edge and middle, respectively, vary within the ranges of 1.44 to 2 and
1.67 to 2.5. This variability demonstrates the adaptability of the opti-
mization process in determining optimal geometries based on structural
requirements.

While the Howe truss is preferred, other truss typologies like Warren
and Pratt are occasionally selected but result in higher OF values and
total weights. This suggests that these configurations might be less
suitable for the given structural requirements and load conditions.

A visual representation of the optimal Howe truss, with each section
distinguished by a unique colour, is presented in Fig. 14. Furthermore,
Tables 14 and 15 provide a detailed breakdown of the cross-sections
assigned to all structural members. It has been observed that the
deflection limit always guided the cross-section assignments and con-
strained the overall layout of the building by reducing the longitudinal
spans as well as the number of modules. However, the Demand-capacity
ratio of the structural elements composing the truss is always over 65%
while vertical supports, bracings, and purlins achieve almost 90%. It
validates the optimized sizing achieved by the final design.

Table 16 displays the Best, Worst, Mean values, and the Standard
Deviation of the OF from all 20 optimization runs.

Aiming to discuss the algorithm's capability to find the optimal so-
lution and the goodness of the adopted penalty approach, the plot of the
OF and total weight curve of the best design versus the number of

iterations has been reported in Fig. 15.
Furthermore, valuable insights can be gained by examining the

evolution of structural parameters, specifically Na and n, during the
optimization process. It's worth highlighting that while the optimal
value for the number of different sections, Na, was reached after
approximately 200 iterations, the number of truss subdivisions, n, was
fixed at four from the outset of the optimization process.

5. Conclusions

This paper presented an optimization framework for steel structures,
ranging from truss beams to real-world inspired industrial buildings.
The study leveraged a penalty-based optimization method, incorpo-
rating three distinct penalty functions (ϕ1, ϕ2, and ϕ3) to address
structural complexity while concurrently optimizing size, shape, and
topology. The search for the optimal solution is conducted using an
SPEA-II algorithm.

This approach demonstrated its efficacy in efficiently assigning
cross-sections based on stress levels and refining structural sizing in truss
beam optimization. Extending the investigation to industrial building
design, the parallel influence of truss beam-level optimizations on a real-
world inspired industrial building has been observed. The optimization
process successfully minimized cross-sections for additional elements,
such as columns and bracings, while dynamically adjusting the number
of modules within the building. The results showcased a preference for

Table 13
Results of the best individual of each optimization for the Industrial building.

Fig. 14. Configuration of the Howe truss in the optimized Industrial building.

Table 14
Cross-sections of the optimized truss in the Industrial building.

Structural element CHS First
group

CHS Second
group

CHS Third
group

Lower Chord 88.9 × 2.5 88.9 × 2.5 88.9 × 2.5
Upper Chord 219.1 × 6 88.9 × 2.5 21.3 × 2
Int. Vert. Structs 21.3 × 2 88.9 × 2.5 21.3 × 2
Upward-Downward
Diagonals

88.9 × 2.5 88.9 × 2.5 88.9 × 2.5

Table 15
Cross-sections of the structural elements in the Industrial
building.

Structural Elements Cross Section Type

Columns HEA 100
Purlins IPE 120
Roof Bracings Circle 80
Vertical Bracings 1 Circle 65
Vertical Bracings 2 Circle 50

Table 16
Best, Worst, Mean and Standard deviation related to the OF values of the opti-
mized Industrial building with Howe truss.

Best Worst Mean Standard Deviation

775.427 1014.911 942.425 77.05
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the Howe truss configuration, which emerged as the most efficient
choice in terms of both overall function (OF) and weight. The paper also
provided insights into the dynamic evolution of key structural param-
eters during optimization. Notably, the number of different cross-
sections (Na) exhibited a steady convergence trend, while the number
of subdivisions of half truss (n) quickly stabilized.

In conclusion, the proposed optimization approach, driven by pen-
alty functions and adaptive cross-section assignments, offers a robust
and flexible framework for designing steel structures. The successful
application to truss beams and industrial buildings demonstrates its
versatility and efficiency in managing complexity, reducing weight, and
ensuring structural integrity. This research contributes to advancing
structural optimization methods, with practical implications for cost-
effective and sustainable construction practices in various engineering
applications. Further developments of the work will explore additional
complexities and real-world constraints to refine and expand the
applicability of this approach in structural engineering and design.
Specifically, structural complexity will be investigated at the level of the
connections of critical infrastructures (i.e. steel or steel-concrete com-
posite bridge) where the standardization of structural joints plays a
crucial role, leading to significant time and economic cost savings
because of the simplification at the design and construction processes.
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Appendix A

In this section, a comparison between the adopted optimisation algorithm SPEA-II and other well-knownmetaheuristic search techniques has been
pointed out. The effectiveness and robustness of SPEA-II as well as the goodness of the results obtained from the investigated case studies, in terms of

Fig. 15. Evolution of the (a) OF, Objective function; (b) W, Weight of best individual; (c) Na, number of different class sections; (d) nt , order number assigned for
topology optimization; (e) n, number of subdivisions of half truss; (f) nun, number of unfeasible members for the Case study No.2.
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numerical correctness, efficiency and validation, will be demonstrated. To achieve this goal, 10-bar cantilever truss and 25-bar space truss have been
selected as structures widely used in structural optimisation to verify design approaches and compare different numerical techniques. This structure
has been previously studied for discrete design variables by Rajeev and Krishnamoorthy [99] using Genetic Algorithm (GA), Kripka [100] using
Simulated Annealing (SA), Camp and Bichon [101] using Ant Colony Optimization (ACO), and Sonmez [102] using Artificial Bee Colony (ABC)
algorithm

For the truss layout definition of the conducted numerical tests as well as element numbers and DVs assignation, material properties, discrete cross-
section catalogue, and boundary and loading conditions, the authors referred to [102]. For both the examples presented in this appendix, the SPEA-II
algorithm parameters were set as reported in the Table A.17. In order to test the convergence capability of the algorithm, the authors coherently have
been adopted similar parameters' settings assumed for case studies No.1 and No.2. Additionally, only penalty ϕ1 for minimum weight has been
implemented making the results comparable with those obtained for the other algorithms.

Table A.17: Optimization algorithm parameters and settings.

Parameter Value

Maximum Iterations 100
Population Size 100
Mutation Probability 0.05
Crossover Probability 0.7
Convergence Threshold 0.001
Selection Mechanism Tournament Selection
Penalty Functions ϕ1
No. of independent runs 20
Algorithm Integration SPEA-II (Octopus Plugin)

Table A.18 and A.19 list the best design developed by SPEA-II in comparison with all the selected algorithms. Additionally, the main numerical
features like the best solution, the average among all the runs, the worst design, the total number of evaluations for each run, and the eventual
constraint violation have been pointed out. As expected, if for the 10-bar truss the SPEA-II performs better than GA algorithm either in terms of least
weight and standard deviation, the best design is achieved with a higher least weight with respect to SA, ACO and ABC algorithms. On the other hand,
the computational effort expressed by the number of evaluations is one of the lowest among the tested optimisation strategies. Moving on to the second
numerical benchmark, the SPEA-II and GA achieved the same best design providing the same optimal cross-section assignation. However, as in the
previous case, SA, ACO, and ABC algorithms performed better although less required computational effort.

Table A.18: Optimization results for the 10-bar truss.

Variables Optimal cross-section area (in.2)

No Des.Var. GA SA ACO ABC This study

1 A1 33.50 33.50 33.50 33.50 30.00
2 A2 1.62 1.62 1.62 1.62 1.8
3 A3 22.00 22.90 22.90 22.90 26.5
4 A4 15.50 14.20 14.20 14.20 16.00
5 A5 1.62 1.62 1.62 1.62 1.62
6 A6 1.62 1.62 1.62 1.62 1.62
7 A7 14.20 7.97 7.97 7.97 11.5
8 A8 19.90 22.90 22.90 22.90 18.8
9 A9 19.90 22.00 22.00 22.00 22.00
10 A10 2.62 1.62 1.62 1.62 1.8
Best (lb) 5613.84 5490.74 5490.74 5490.74 5545.76
Average (lb) N/A N/A N/A 5510.35 5515.76
Worst (lb) N/A N/A N/A 5536.97 5736.97
Evaluation (#) N/A N/A 10,000 25,800 10,000
Constraint violation None None None None None

Table A.19: Optimisation results for the 25-bar truss.

Variables Optimal cross-section area (in.2)

No Des.Var. GA SA ACO ABC This study

1 A1 0.1 0.1 0.1 0.1 0.1
2 A2 ∼ A5 1.8 0.4 0.3 0.3 1.8
3 A6 ∼ A9 2.3 3.4 3.4 3.4 2.3
4 A10 ∼ A11 0.2 0.1 0.1 0.1 0.2
5 A12 ∼ A13 0.1 2.2 2.1 2.1 0.1
6 A14 ∼ A17 0.8 1.0 1.0 1.0 0.8
7 A18 ∼ A21 1.8 0.4 0.5 0.5 1.8
8 A22 ∼ A25 3.0 3.4 3.4 3.4 3.0
Best (lb) 546.010 484.330 484.85 484.85 546.010
Average (lb) N/A N/A N/A 486.46 560.46
Worst (lb) N/A N/A N/A 486.46 586.010
Evaluation (#) 840 40,000 7700 25,250 10,000
Constraint violation None None None None None
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Finally, even if the SPEA-II algorithm does not represent the best strategy already developed in Literature, it assures a good level of efficiency and
robustness for this specific class of single-objective optimisation problem coherently with the computational effort and structural complexity required
by 2D and 3D truss systems employed, as case studies, in this research.
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