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CONTINUED FRACTIONS IN THE FIELD OF P-ADIC
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Abstract. Continued fractions have a long history in number theory, especially
in the area of Diophantine approximation. The aim of this expository paper is to
survey the main results on the theory of p–adic continued fractions, i.e. continued
fractions defined over the field of p–adic numbers Qp, which in the last years has
recorded a considerable increase of interest and research activity. We start from
the very first definitions up to the most recent developments and open problems.
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1. Introduction

Continued fractions are objects of the form

a0 +
b1

a1 +
b2

a2 +
.. .

, (1)

and they have a long history in number theory, especially in the area of Diophantine
approximation. They have been extensively explored over the real numbers, where
they provide finite representations for rational numbers and periodic representations
for quadratic irrationals by means of integer sequences (Lagrange’s Theorem). More-
over, the classical algorithm for continued fractions in R provides the best rational
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2 GIULIANO ROMEO

approximations to a given irrational number. Because of their optimal properties,
they have been employed in various areas of mathematics and there exist several
generalizations of the classical theory of continued fractions. In 1940, Mahler [55]
raised the problem of defining a continued fraction algorithm working in the field
of p–adic numbers Qp. The field of p–adic numbers is largely studied in algebraic
number theory and it is obtained as the completion of the field of rational numbers
Q with respect to the p–adic absolute value. The completion is the smallest field
containing Q in which all Cauchy sequences with respect to the p–adic absolute value
are convergent. The problem of defining a p–adic continued fraction algorithm shar-
ing all the optimal properties enjoyed by classical continued fractions is still open.
In particular, an algorithm providing periodic representations for every p–adic qua-
dratic irrational is not known, i.e. a p–adic analogue of Lagrange’s Theorem does
not exist yet. The main problem is that there is not an intuitive satisfying definition
for the integer part of a p–adic number. There are at least two very natural defini-
tions, due to Schneider [82] and Ruban [75], both around 1970. The two algorithms
try to replicate the standard algorithm for real continued fractions in two different
senses, that we examine in Section 3. Historically, another of the main algorithms
for p–adic continued fractions is due to Browkin [20]. His algorithm is very similar
to Ruban’s one, but it has the important property of producing finite continued
fractions for all rational numbers. In fact, Ruban’s and Schneider’s continued frac-
tions are not always finite over Q. Moreover, Schneider’s and Ruban’s algorithms
have been proved to be not always periodic for every quadratic irrational [85, 31].
Although a proof has not been provided yet, Lagrange’s Theorem seems to fail also
for Browkin’s algorithm (see the numerical simulations in [57]). For these reasons,
the research of new definitions for expressing a p–adic number as a continued frac-
tion has been widely developed, particularly in the last few years. Together with the
design of new algorithms, the analysis of the properties of the existent algorithms
has been developed in several directions, inspired by the numerous fields in which
classical continued fractions have been employed throughout the centuries.

The purpose of this survey is to give a concise overview of the main results,
developments and open problems in the theory of p–adic continued fractions. In
Section 2, we recall some notation for the classical theory of continued fractions and
p–adic numbers. In Section 3, we describe the various algorithms that have been
defined over the years, underlining their motivations and their main properties. In
Section 4, we discuss the p–adic convergence of a continued fraction, which is the
very first requirement for the definition of an algorithm. In Section 5, we present
the properties of the expansions of rational numbers that, as already mentioned, are
not always finite. Section 6 contains all the main results related to the periodicity
of p–adic continued fractions and the main developments towards a p–adic analogue
of Lagrange’s Theorem. In Section 7, we analyze the properties of approximation of
continued fractions with respect to the p–adic absolute value. In Section 8, we collect
some recent results on the transcendence of p–adic continued fractions, inspired by
many famous transcendence criteria for classical continued fractions. Finally, in
Section 9 we introduce the generalization of p–adic continued fractions to higher
dimensions, in analogy with the Jacobi-Perron algorithm for real multidimensional
continued fractions.
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2. Some notation

In this section we recall some useful results from the theory of continued fractions
and the field of p–adic numbers and we fix some notation that we are going to use
throughout the survey. For more background on continued fractions and p–adic
numbers we refer the reader, respectively, to [63, 86] and [36].

We call continued fraction an object of the form

a0 +
b1

a1 +
b2

a2 +
.. .

, (2)

and we denote it by [
b1 b2 . . .
a0 a1 a2 . . .

]
,

where the coefficients an and bn are elements in a field and the expansion can be
either finite or infinite. If bn = 1 for all n ∈ N, the continued fraction is called
simple, that is

a0 +
1

a1 +
1

a2 +
.. .

,

and we denote it by [a0, a1, a2, . . .]. The coefficients a0, a1, a2 . . . are called partial
quotients. For all n ∈ N, the rational number

An

Bn

=

[
b1 . . . bn−1 bn
a0 a1 . . . an−1 an

]
= a0 +

b1

a1 +
.. . +

bn−1

an−1 +
bn

an

,

corresponding to the continued fraction stopped at the n-th term, is called n-th
convergent of the continued fraction. The An’s are called partial numerators and
the Bn’s are called partial denominators. The sequences {An}n∈N and {Bn}n∈N
satisfy the recursions

A0 = a0,

A1 = a1a0 + b1,

An = anAn−1 + bnAn−2, n ≥ 2,


B0 = 1,

B1 = a1,

Bn = anBn−1 + bnBn−2, n ≥ 2.

(3)

The partial numerators and denominators of the convergents can be represented also
using the following matrix form. For all n ∈ N,(

An An−1

Bn Bn−1

)
=

(
a0 1
1 0

)(
1 0
0 b1

)(
a1 1
1 0

)
. . .

(
1 0
0 bn

)(
an 1
1 0

)
. (4)

Furthermore, for an infinite continued fraction representing an element α, we
introduce the sequence of complete quotients {αn}n∈N defined, for all n ∈ N, as

αn+1 =
bn+1

αn − an
,
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starting from α0 = α. In this way, in fact,

αn = an +
bn+1

αn+1

.

We say that an infinite continued fraction is periodic (or eventually periodic) if and
only if there exists h ∈ N and k ≥ 1 such that an+k = an and bn+k = bn for all n ≥ h.
In this case we call period length and pre-period length, respectively, the least k and
h for which this happens (or just period and pre-period where there is no risk of
ambiguity). If h = 0, the continued fraction is said purely periodic and the period
starts from the first partial quotient, without a pre-period. Moreover, we denote
a periodic continued fraction by [a0, . . . , ah−1, ah, . . . , ah+k−1], where a0, . . . , ah−1 is
the pre-periodic part and ah, . . . , ah+k−1 is the periodic part.

The standard algorithm to express a real number α through a simple continued
fraction [a0, a1, . . .] is the following, with α0 = α:{

an = ⌊αn⌋
αn+1 =

1
αn−an

,
(5)

where ⌊αn⌋ denotes the integer part of α, that is the greatest integer an ≤ αn. If
αn = an for some n ∈ N, then the algorithm terminates and the continued fraction
is finite. A finite continued fraction [a0, . . . , an], with an ≥ 2, can be equivalently
represented as [a0, . . . , an − 1, 1].

In the following, let p be an odd prime number and let us denote by vp(·) the
p–adic valuation and by | · | and | · |p, respectively, the Euclidean absolute value
and the p–adic absolute value. The field of p–adic numbers Qp is the completion
of Q with respect to the p–adic absolute value, i.e. the smallest field containing
Q in which all the Cauchy sequences are convergent. The field of p–adic numbers
contains all the power series in p with finite tail, i.e. the Hensel expansions:

Qp =

{
+∞∑
i=−r

cip
i
∣∣∣ r ∈ Z, ci ∈ Z/pZ

}
. (6)

By construction Q ⊂ Qp and it is a known fact that rational numbers correspond
exactly to the set of the finite and the eventually periodic series. Moreover, we call
Zp the set of p–adic integers,

Zp =

{
+∞∑
i=0

cip
i
∣∣∣ ci ∈ Z/pZ

}
,

that is the set of all p–adic numbers with non-negative valuation.

3. Algorithms for p–adic continued fractions

In this section we present the main definitions for continued fractions in the field
of p–adic numbers that have appeared in literature. The first attempt is to emulate
the standard algorithm (5) for real continued fractions. However, the definition of
integer part of a p–adic number α ∈ Qp is not uniquely determined. In R, the
integer part of a real number α is defined as the unique integer a less than α for
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which |α − a| < 1. However, for example, in Zp there are infinitely many integers
such that this happens, since there are infinitely many a ∈ Z such that p divides
α − a. One of the first definitions of p-adic continued fractions is due to Schneider
[82]. Let us observe that, for a p–adic integer α ∈ Zp, all the integers a satisfying
0 ≤ |α − a|p < 1 are congruent modulo p. Therefore, it is meaningful to define
the partial quotients as the unique representatives of a modulo p that lie inside
{0, . . . , p− 1}. Schneider followed this approach to provide a non-simple continued
fraction expansion

a0 +
b1

a1 +
b2

a2 +
.. .

, (7)

for all p-adic integers. For α0 ∈ Zp, with expansion

α0 =
+∞∑
i=0

cip
i, ci ∈ {0, . . . , p− 1},

Schneider’s algorithm works as follows. The first partial quotient is a0 = c0. Then,
for all n ∈ N, 

en+1 = vp(αn − an)

bn+1 = pen+1

αn+1 =
bn+1

αn − an
an+1 = c

(n+1)
0 ,

(8)

where c
(n+1)
0 denotes the first term of the expansion of

αn+1 =
+∞∑
i=0

c
(n+1)
i pi,

which by construction has zero valuation, i.e. it is a unit in Zp. Some generalizations
of Schneider’s algorithm have been proposed in [80].

Example 1. Let us give an idea of how Schneider’s algorithm (8) works to provide
the 5–adic continued fraction of 2

7
. In Q5,

2

7
= 1 + 2 · 5 + 52 + . . . ,

hence a0 = 1 and e1 = vp(α0 − a0) = vp(2 · 5 + 52 + . . .) = 1. The next complete
quotient is then

α1 =
pe1

α0 − a0
=

5

2 · 5 + 52 + . . .
=

1

2 + 5 + . . .
= 3 + 3 · 5 + 4 · 52 + . . . .

Hence, a1 = 3 and the algorithm goes on as before. The expansion becomes eventually
periodic with bn = 5 for all n ∈ N and [a0, a1, . . .] = [1, 3, 2, 3, 4].

Ruban’s [75] and Browkin’s [20, 21] approach is to construct a simple continued
fraction by defining an intuitive p–adic analogue of the integer part in R. For any
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p-adic number α =
+∞∑
i=−r

cip
i ∈ Qp, ci ∈ {0, . . . , p − 1}, the floor function used by

Ruban is

⌊α⌋p =
0∑

i=−r

cip
i,

and ⌊α⌋p = 0 if r < 0. Notice that in this case ⌊α⌋p is, in general, a rational number.
Ruban’s continued fractions are simple and the coefficients of the expansion can be
computed iteratively by the following algorithm, starting with α0 = α.{

an = ⌊αn⌋p
αn+1 =

1
αn−an

.
(9)

If at some point αn = an, then the algorithm stops and α = [a0, . . . , an], i.e. α
has finite Ruban’s continued fraction. The choice of this floor function is, somehow,

natural. In fact, in the series
+∞∑
i=−r

cip
i, the positive powers of p have fractional p–adic

absolute value and the floor function ⌊·⌋p takes the part that has integral absolute
value.

Example 2. Let us compute Ruban’s expansion of α0 = −2
5
in Q7. The 7–adic

expansion of α0 is

α0 = 1 + 4 · 7 + 5 · 72 + . . . ,

so that a0 = ⌊α0⌋p = 1 and

α1 =
1

α0 − a0
=

1

−2
5
− 1

= −5

7
= 2 · 7−1 + 6 + 6 · 7 + . . . .

The second partial quotient is then

a1 = ⌊α1⌋p =
2

7
+ 6 =

44

7
,

and we compute the third complete quotient as

α2 =
1

α1 − a1
=

1

−5
7
− 44

7

= −1

7
= 6 · 7−1 + 6 + 6 · 7 + . . . .

Then

a2 = ⌊α2⌋p =
48

7
,

and we find

α3 =
1

α2 − a2
=

1

−1
7
− 48

7

= −1

7
= α2.

We have found a repetition on the complete quotients, α3 = α2, therefore the con-
tinued fraction repeats from this point onward. It means that

−2

5
=

[
1,

44

7
,
48

7

]
,

hence −2
5
has a periodic Ruban’s continued fraction in Q7.
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Browkin’s first algorithm [20] is very similar to Ruban’s algorithm, with the ex-
ception that the representatives of Z/pZ are chosen in {−p−1

2
, . . . , p−1

2
} instead of

{0, . . . , p−1}. This small variation is fundamental because Browkin’s algorithm pro-
duces a finite continued fraction for each rational number, while Ruban’s algorithm
can also be periodic over the rationals (more details are given in Section 5). Given

α =
+∞∑
i=−r

cip
i ∈ Qp, with ci ∈ {−p−1

2
, . . . , p−1

2
}, Browkin defines the floor function

s : Qp → Q as

s(α) =
0∑

i=−r

cip
i, (10)

and s(α) = 0 if r < 0. Browkin’s first algorithm, that we call Browkin I, work as
follows. At the first step α0 = α and, for all n ≥ 0,{

an = s(αn)

αn+1 =
1

αn−an
.

(11)

If at some point αn = an, then the algorithm stops and α = [a0, . . . , an], i.e. α has
finite Browkin I continued fraction.

Example 3. Let us compute Browkin I continued fraction of α0 = −2
5
in Q7 and let

us compare with Ruban’s expansion obtained in Example 2. For Browkin’s algorithm,
we have to consider the 7–adic expansion with representatives in {−3, . . . , 3}, hence:

α0 = 1− 3 · 7− 72 + . . . .

Also in this case the first partial quotient is a0 = s(α0) = 1 and then

α1 =
1

α0 − a0
=

1

−2
5
− 1

= −5

7
= 2 · 7−1 − 1 . . . .

The second partial quotient is then

a1 = s(α1) =
2

7
− 1 = −5

7
= α1.

Therefore,

−2

5
=

[
1,−5

7

]
,

hence −2
5
has a finite Browkin I continued fraction. The difference with Ruban’s

expansion of Example 2, which is periodic, relies only on the choice of the represen-
tatives in {−3, . . . , 3} instead of {0, . . . , 6}.

In 2000, more than 20 years after the first algorithm, Browkin [21] defined another
floor function, that is similar to the first function s, but excluding the constant term.

For α =
+∞∑
i=−r

cip
i ∈ Qp, with ci ∈ {−p−1

2
, . . . , p−1

2
}, the second floor function is the

function t : Qp → Q, such that

t(α) =
−1∑

i=−r

cip
i,
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and t(α) = 0 if r ≤ 0. The second algorithm, that we call Browkin II, works on an
input α as follows. At the first step α0 = α and, for all n ≥ 0,

an = s(αn) if n even

an = t(αn) if n odd and vp(αn − t(αn)) = 0

an = t(αn)− sign(t(αn)) if n odd and vp(αn − t(αn)) ̸= 0

αn+1 =
1

αn−an
.

(12)

If at some point αn = an, then the algorithm stops and α = [a0, . . . , an], i.e. α has
finite Browkin II continued fraction. The result of the alternation is that in Browkin
II all the even partial quotients are integers by construction and all the odd partial
quotients are rationals (see Example 4 below). The use of the sign function is due
to the convergence condition of Proposition 8 proved by Browkin in [21].

Example 4. Let us consider α0 = 22
7

∈ Q5 and let us compute its Browkin II
expansion. The 5–adic expansion of α0 is

α0 = 1− 1 · 5 + 1 · 52 + . . . ,

so that a0 = s(α0) = 1 and

α1 =
1

α0 − a0
=

1
22
7
− 1

=
7

15
= −1 · 5−1 − 1 + 2 · 5 + . . . .

Now we apply the function t, thus obtaining b1 = t(α1) = −1
5
and

α2 =
1

α1 − a1
=

3

2
= −1− 2 · 5− 2 · 52 + . . . .

At the next step we have a2 = s(α2) = −1 and α3 = 2
5
. At this point, since

vp(α3 − t(α3)) > 0, then we use the sign function, obtaining:

a3 = t(α3)− sign(t(α3)) =
2

5
− 1 = −3

5
.

Therefore α4 = s(α4) = b4 = 1 and the expansion of is 22
7
=

[
1,−1

5
,−1,−3

5
, 1
]
.

It has been experimentally observed that Browkin II produces more periodic
expansions for quadratic irrationals than Browkin I, hence getting closer to a p–adic
analogue of Lagrange’s theorem (see, for example, [57]). For this reason, Browkin
II has been taken as a starting point for the definition of some new algorithms with
the aim of improving furthermore its properties of periodicity. In [11], it is studied a
variant of Browkin II in which the representatives are taken in {0, . . . , p−1} instead
of {−p−1

2
, . . . , p−1

2
}. This choice improves the properties of approximation of Browkin

II and, unexpectedly, does not compromise the finiteness of the continued fraction
expansions of rational numbers. In [59], it is proposed a 3-steps generalization of
Browkin II relying on the convergence condition of Theorem 10 in Section 4. In
order to satisfy that convergence condition, a new integer part is defined, which acts

on elements of Zp. For α =
+∞∑
i=0

cip
i ∈ Zp, with ci ∈ {−p−1

2
, . . . , p−1

2
}, the new integer
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part is

u(α) =


+1 if c0 ∈

{
+ 2, . . . ,

p− 1

2

}
∪ {−1}

−1 if c0 ∈
{
− p− 1

2
, . . . ,−2

}
∪ {+1}

0 if c0 = 0.

(13)

In the same paper, two new algorithms have been defined by exploiting the three
integer parts s, t, u in three different steps. For one of them, the authors proved
that all rational numbers have a finite continued fraction, hence becoming more
interesting than the other one. On input α0 ∈ Q the algorithm works as follows, for
all n ∈ N:



an = s(αn) if n ≡ 0 mod 3

an = t(αn) if n ≡ 1 mod 3 and vp(αn − t(αn)) = 0

an = t(αn)− sign(t(αn)) if n ≡ 1 mod 3 and vp(αn − t(αn)) ̸= 0

an = s(αn)− u(αn) if n ≡ 2 mod 3

αn+1 =
1

αn−an
.

(14)

If at some point αn = an, then the algorithm stops and α = [a0, . . . , an], i.e. α
has a finite continued fraction. Notice that, by construction of Algorithm (14), the
function u applies only to p–adic units, hence it is never zero. Finally, in [57], the
authors proposed a variant of Browkin II without the use of the sign function. For
all α0 ∈ Qp, the algorithm works as follows:

an = s(αn) if n even

an = t(αn) if n odd

αn+1 =
1

αn−an
.

(15)

If at some point αn = an, then the algorithm stops and α = [a0, . . . , an], i.e. α has a
finite continued fraction. This choice turns out to improve the periodicity properties
of Browkin’s second algorithm (more details are given in Section 6).

However, although all these algorithms improve on several aspects the known
methods to generate p–adic continued fractions, they experimentally seem still far
from an analogue of Lagrange’s Theorem and, in general, from a satisfactory algo-
rithm reproducing the same properties of classical continued fractions in R.

Very recently, in [30], the definition of p–adic continued fractions has been gen-
eralized also to number fields, addressing some questions similar to Rosen [72, 73]
in the archimedean setting. The authors gave a general definition of P–adic contin-
ued fractions for a prime ideal P of the ring of integers OK of a number field K.
Moreover, they investigated their finiteness and periodicity properties, focusing on a
general number field K and obtaining some more effective results for the quadratic
case. In [28], the construction of [30] has been generalized to quaternion algebras
over Q ramified at p, hence including all the classical p–adic framework.
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4. Convergence in Qp

In the field of real numbers, every continued fraction with positive partial quo-
tients converges to an α ∈ R. This is not always the case in Qp. The field of p–adic
numbers is complete with respect to the p–adic absolute value | · |p. Therefore, a se-
quence is convergent in Qp if and only if it is a Cauchy sequence. Then, a continued
fraction

a0 +
b1

a1 +
b2

a2 +
.. .

,

converges to a p–adic number if and only if the sequence of the convergents {An

Bn
}n∈N

is a Cauchy sequence with respect to | · |p. For a non-archimedean absolute value
this is equivalent to require that

lim
n→+∞

∣∣∣∣An+1

Bn+1

− An

Bn

∣∣∣∣
p

= 0.

The latter quantity can be written as∣∣∣∣An+1

Bn+1

− An

Bn

∣∣∣∣
p

=

∣∣∣∣ (−1)n

BnBn+1

∣∣∣∣
p

= pvp(BnBn+1), (16)

so that the continued fraction [a0, a1, . . .] converges to an element of Qp if and only
if

lim
n→+∞

vp(BnBn+1) = −∞.

This is the minimum requirement in order to define meaningful continued fractions in
the field of p–adic numbers, since otherwise a continued fraction would not represent
any element of Qp. A proof of the convergence of Schneider’s continued fractions
can be found in [68] and it exploits the matrix relations (4).

Remark 5. In [20], Browkin proved that, for Browkin I,

vp(An) = vp(a0) + vp(a1) + . . .+ vp(an),

vp(Bn) = vp(a1) + vp(a2) + . . .+ vp(an),
(17)

or, equivalently,

|An|p = |a0|p|a1|p . . . |an|p,
|Bn|p = |a1|p|a2|p . . . |an|p.

(18)

The proof is done by induction on n. Using a similar argument, it is not hard to
see that a sufficient condition for these equations to hold is having vp(an+1Bn) <
vp(Bn−1) for all n ∈ N.

The p–adic convergence strictly depends on the valuation of the partial quotients,
regardless of the representative of Z/pZ that are used. Therefore, the next proposi-
tion proves the convergence for both Ruban’s and Browkin’s continued fractions.

Proposition 6 ([20]). Let an infinite sequence a0, a1, . . . ∈ Z[1
p
] such that for all

n ∈ N, vp(an) < 0. Then the continued fraction [a0, a1, . . .] is convergent to a p-adic
number.
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Remark 7. Proposition 6 and all the convergence results in this section contain
conditions that hold for all n. However, the results do not change if these conditions
hold for all n ≥ n0 ∈ N.

The proof of Proposition 6 is a simple induction which shows that, assuming
vp(an) < 0 for all n ∈ N, then {vp(Bn)}n∈N is a strictly decreasing sequence. There-
fore, {vp(BnBn+1)}n∈N diverges to −∞ and by the relation (16) the continued frac-
tion converges in Qp. However, requiring the sequence {vp(BnBn+1)}n∈N strictly
decreasing is equivalent to ask that vp(Bn+1) < vp(Bn−1) for all n ≥ 1. Therefore,
the condition of Proposition 6 can be lightened by allowing partial quotients to have
null valuation at half steps. In fact, the convergence of Browkin II relies on the
following proposition.

Proposition 8 ([21]). Let an infinite sequence a0, a1, . . . ∈ Z[1
p
] such that for all

n ∈ N: {
vp(a2n) = 0

vp(a2n+1) < 0.
(19)

Then the continued fraction [a0, a1, . . .] is convergent to a p-adic number.

In both the proofs of Proposition 6 and Proposition 8, the sequence {vp(BnBn+1)}n∈N
diverges to −∞ because it is a strictly decreasing sequence of integers. In [59], the
strict decrease of this sequence has been effectively characterized in terms of valua-
tions of the partial quotients.

Theorem 9 ([59]). Let a0, a1, . . . ∈ Z[1
p
]. Then the sequence {vp(BnBn+1)}n∈N is

strictly decreasing if and only if vp(anan+1) < 0 for all n ∈ N. Therefore, the
latter condition is sufficient for the p–adic convergence of the continued fraction
[a0, a1, . . .].

In the same paper, the authors explored some other convergence conditions, with
partial quotients not satisfying the hypothesis of Theorem 9. They proved the
following generalization of Proposition 8, by applying a restriction on the partial
quotients with zero valuation.

Theorem 10 ([59]). Let a0, a1, . . . ∈ Qp such that, for all n ∈ N:
vp(a3n+1) < 0

vp(a3n+2) = 0

vp(a3n+3) = 0.

If vp(a3n+3a3n+2 + 1) = 0 for all n ∈ N, then the continued fraction [a0, a1, . . .] is
convergent to a p-adic number.

Theorem 10 allows to define Algorithm (14), which satisfies both the convergence
condition and the additional restriction on partial quotients. In [59], Theorem 10
has been also generalized to an arbitrary number of steps by adding more hypotheses
on the valuation of partial quotients.
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5. Continued fractions of rational numbers

In the field of real numbers, the rational numbers are characterized by finite
continued fractions. This is a natural consequence of the finiteness of the Euclidean
division algorithm. In fact, for all a, b ∈ Z, b ̸= 0, the simple continued fraction of
a
b
is obtained by iterating

a

b
=

bq + r

b
= q +

r

b
= q +

1
b
r

, (20)

where q = ⌊a
b
⌋ and |r| < |b|. For p–adic versions of the Euclidean algorithm, see

[34, 47].

In [27], Bundschuh proved that Schneider’s continued fractions of rational num-
bers are not always finite, but they can also be periodic. In [40], the authors gave a
combinatorial characterization of some non-terminating expansions. Very recently,
Pejkovic [65] proved the following effective criterion for determining whether Schnei-
der’s continued fraction of a rational number terminates.

Theorem 11 ([65]). Let α = a
b
∈ Q. Schneider’s continued fraction of α either

terminates or a period is detected within O(log2max{|a|, |b|}) steps.
For Ruban’s continued fractions, Laohakosol [49] proved the following, which is

the analogue of Bundschuh’s result.

Theorem 12 ([49]). A p–adic number is rational if and only if either its Ruban’s
continued fraction terminates or it is eventually periodic with all partial quotients
equal to p− 1

p
from a certain point onward.

Remark 13. A p–adic number that has a finite Ruban’s continued fraction is, by
construction, rational and positive. Therefore, negative numbers can not have a
finite Ruban’s continued fraction. For example,

−p = (p− 1)p+ (p− 1)p2 + . . . =
1

p−1
p

+ (p− 1) +
1

p−1
p

+ (p− 1) +
. . .

,

that is, −p =
[
p− 1

p

]
. In the proof of Theorem 12, Laohakosol showed that all the

continued fractions of rational numbers that are not finite, eventually have −p as
complete quotient.

A proof of the characterization of rational numbers through this algorithm can be
found also in [87]. Ruban’s continued fractions have been deepened in more details
by Capuano, Veneziano and Zannier [31]. In particular, they provided an effective
algorithm that determines in a finite number of steps whether the continued fraction
of a rational number terminates or not. In the non-terminating case, a negative
complete quotient appears in the expansion of α = a

b
in at most max{2, log b

log p
} steps.

Finally, they proved the following result that, giving a rational number α, establishes
how its Ruban’s continued fraction changes when varying the prime p.

Proposition 14 ([31]). Let α ∈ Q. Then:
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i) If α < 0, then for every prime number p, Ruban’s continued fraction of α
does not terminate;

ii) If α ≥ 0 and α ∈ Z, there are only finitely many prime numbers p such that
Ruban’s continued fraction of α does not terminate;

iii) If α ≥ 0 and α ̸∈ Z, there are only finitely many prime numbers p such that
Ruban’s continued fraction of α terminates.

The first definition of p–adic continued fractions that terminate for every rational
number is Browkin’s first algorithm (11). This is due to the choice of the repre-
sentatives in {−p−1

2
, . . . , p−1

2
} instead of {0, . . . , p − 1}. In this case, in fact, the

Euclidean absolute value of the partial quotients satisfies the following inequality:

|s(α)| =

∣∣∣∣∣
0∑

n=−r

cnp
n

∣∣∣∣∣ ≤ p− 1

2

∣∣∣∣∣
0∑

n=−r

pn

∣∣∣∣∣ < p

2
. (21)

In order to give an idea of the proof of finiteness for Browkin I, let us write the
complete quotients of two consecutive steps as

αn =
An

pjBn

, αn+1 =
An+1

pkBn+1

, (22)

with j, k ≥ 1, (An, Bn) = (An+1, Bn+1) = 1 and p ̸ |AnBnAn+1Bn+1. Then, by (22)
and the recursion

αn+1 =
1

αn − an
,

we obtain

An+1(An − unBn) = pj+kBnBn+1, (23)

where we have denoted un = anp
j.

Since (An+1, Bn+1p
j+k) = 1, then |An+1| = |Bn| and |An − unBn| = |Bn+1p

j+k|, so
that

|Bn+1| <
|An|
2

+
|Bn|
2

. (24)

It follows that, for all n ∈ N,

|An+1|+ 2|Bn+1| < |An+1|+ |An|+ |Bn| = |An|+ 2|Bn|. (25)

Therefore, the sequence {|An|+2|Bn|}n∈N is strictly decreasing. Since it is a sequence
of natural numbers, then it is finite. This means that there is only a finite number
of complete quotients in Browkin’s continued fraction of a rational number and,
hence, the expansion must be finite. Some results about the complexity of Browkin
I continued fractions for rational numbers can be found in [17]. The finiteness of
Browkin’s second algorithm (12) over Q is less straightforward, hence Browkin left it
open in [21] as a conjecture. Most recently, Barbero, Cerruti and Murru [10] proved
this conjecture by providing an inequality similar to (21) also for the second floor

function t: for any p–adic number α =
+∞∑
n=−r

cnp
n,

|t(α)| =

∣∣∣∣∣
−1∑

n=−r

cnp
n

∣∣∣∣∣ < 1

2
. (26)
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For the odd partial quotients a2n+1, resulting from the use of the function t eventually
adjusted with the sign function,

|a2n+1| ≤ 1− 1

pl
, (27)

where l = −vp(α2n+1). Using (21) and (27), the authors provided two inequalities
similar to (24), one for the odd steps and one for the even steps of the algorithm.
This led to a strictly decreasing sequence of natural numbers similar to (25) for
Browkin I. Also the p–adic continued fractions algorithms defined in [57] and [59]
terminate on rational inputs and the ideas for the proofs are similar. The proof of
finiteness for the algorithm proposed in [11] is slightly different and it requires some
further remarks on the absolute values of the denominators of the convergents. In
fact, it has to handle with standard representatives in {0, . . . , p − 1} and it is not
possible to use inequalities (21) and (26).

6. Periodicity properties

The continued fraction expansion of a real number is eventually periodic if and
only it is a quadratic irrational number, by Lagrange’s Theorem [48]. Also for p–adic
continued fractions, periodicity is often related to quadratic irrationals. In fact, a
periodic continued fraction can be regarded as the root of a quadratic polynomial.
However, we have seen in Sectione 5 that periodic p–adic continued fractions can
correspond also to rational numbers. On the other hand, none of the existent algo-
rithms has been proved to produce a periodic continued fractions for all quadratic
irrationals in Qp. Therefore, none of the two implications of Lagrange’s Theorem is
true in general for p–adic continued fractions. The latter is one of the most chal-
lenging open problems in this research field. This section is devoted to the main
results regarding the periodicity of p–adic continued fractions up to the most recent
developments.

Remark 15. Periodic continued fractions, when not representing a rational number,
converge to some irrational number α ∈ Qp that is quadratic over Q, i.e. it is a root
of an irreducible polynomial f(x) ∈ Q[x] of degree 2. We denote by α the conjugate

of α, that is the other root of f(x) over Q. Moreover, when we write
√
D as a root of

x2−D over Qp, it must be clear which of the two roots we are meaning. In the case
of standard representatives in {0, . . . , p − 1}, we choose the root that in its p–adic
expansion has the smaller first representative, while in the case of representatives in
{−p−1

2
, . . . , p−1

2
} we take the one with positive first representative. We denote the

other root by −
√
D.

Let α0 =
P0+

√
D

Q0
∈ Qp, where D is a non-square integer that is a quadratic residue

modulo p and P0, Q0 ∈ Q. For all n ∈ N, the complete quotients of the continued
fraction expansion of α can be written as

αn =
Pn +

√
D

Qn

, (28)
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where Pn, Qn ∈ Q. Similarly as in the real framework, the sequences Pn and Qn, for
all n ∈ N can be computed recursively, starting from P0 and Q0, by

Pn+1 = anQn − Pn, Qn+1 =
D − P 2

n+1

Qn

,

where an is the n-th partial quotient of α0.

Remark 16. A famous result of Galois [35] states that the continued fraction ex-
pansion of a quadratic irrational α ∈ R is purely periodic if and only if it is reduced,
that is α > 1 and its conjugate −1 < α < 0. One of the techniques to prove
Lagrange’s Theorem in R consists in showing that the expansion of any quadratic
irrational eventually reaches a reduced complete quotients, hence it starts to be pe-
riodic. Equivalently, it is possible to prove that there are only finitely many choices
for the values of Pn and Qn in (28) for the expansions of a quadratic irrational.
Therefore there is a finite number of complete quotients and the continued fraction
must become periodic at some point.

One of the first works on the periodicity of p–adic continued fractions is due to
Bundschuh [27]. Bundschuh studied Schneider’s continued fractions and suggested
that Lagrange’s Theorem fails for this algorithm through some numerical computa-
tions, although did not prove it. Some years later, de Weger [89] proved the following
condition for the non-periodicity of Schneider’s continued fractions.

Proposition 17 ([89]). Let Pn and Qn as in (28). Then, if for some n ∈ N the
signs of Pn and Qn are different and P 2

n+1 > D, Schneider’s continued fraction of√
D ∈ Zp is not periodic. In particular,

√
D ∈ Zp is never periodic for D < 0.

In [88], the same author approached the periodicity of p–adic continued fractions
from another point of view, i.e. by associating a sequence of approximation lattices
to every p–adic number. In the spirit of Lagrange’s Theorem, de Weger proved
that the sequence of approximation lattices attached to α ∈ Zp becomes periodic
if and only if α is a quadratic irrational. However, this method is not effective
for the construction of a periodic continued fraction for a given p–adic quadratic
irrational. Few years later, Tilborghs [85] determined an algorithm to detect the
non-periodicity of Schneider’s continued fraction in a finite number of steps. Becker
[12] then showed the following result on the length of the pre-periods.

Proposition 18 ([12]). Let α ∈ Zp be quadratic over Q with periodic Schneider’s
continued fraction. Then, if p does not divide the discriminant of α, the pre-period
length is at most 1.

A fairly complete survey on the periodicity of Schneider’s continued fractions is
contained in [68]. More recently, this algorithm has been studied also from other
points of view and in more generality in [37, 38, 41].

For Ruban’s algorithm, using an argument similar to de Weger, Ooto [64] showed
that not all quadratic irrationals in Qp have a periodic Ruban’s continued fraction.
In particular, Ooto proved the following result, giving some sufficient conditions to
have a non-periodic p–adic continued fraction.
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Proposition 19 ([64]). Let α =
√
D ∈ Qp and the sequences Pn, Qn as in (28) for

some n ∈ N, PnQn ≤ 0 and P 2
n+1 > D, then the Ruban’s continued fraction of α is

not periodic.

In the proof of Proposition 19, the author showed that, in these hypotheses, the
sequence Pn has strictly increasing absolute value from some point onward, hence
it can not be periodic. From Proposition 19 it easily follows that, for example,

√
D

can not have a periodic continued fraction if D < 0. In fact, in this case, P0Q0 = 0
and P1 ≥ 0 > D (in analogy to Proposition 17 for Schneider’s algorithm).
In [31], Capuano, Veneziano and Zannier made a more extensive analysis of Ruban’s
algorithm. In particular, they provided an effective criterion for determining in
a finite number of step whether the expansion of a quadratic irrational becomes
periodic. They proved the following result.

Theorem 20 ([31]). Let α ∈ Qp be a quadratic irrational over Q. Then, Ruban’s
continued fraction of α is periodic if and only if there exists a unique real embedding
j : Q(α) → R such that the image of each complete quotient αn under the map
j is positive. Moreover, there exists an effectively computable constant Nα with
the property that, either exists n ≤ Nα such that αn does not have a positive real
embedding, therefore the expansion is not periodic, or αn1 = αn2 for n1 < n2 ≤ Nα,
hence the expansion is periodic.

The idea behind the proof of Theorem 20 is similar to the proof of Lagrange’s
Theorem pointed out in Remark 16. First of all, they proved an analogue of Galois’
Theorem for classical continued fractions, finding a necessary condition for purely
periodic continued fractions. This result is similar to Theorem 21 for Browkin I, since
it is not affected by a different choice of representatives. Then, the authors used this
necessary condition on the p–adic norm to prove that there are only finitely many
quadratic irrational αn of the form (28) such that αn has a purely periodic Ruban’s
continued fractions. Moreover, they showed that having two negative embeddings
for some complete quotient αn, is a sufficient condition for the non-periodicity of the
expansion. Finally, they effectively computed a constant Nα such that, for n ≤ Nα,
either one of the αn has a purely periodic Ruban’s continued fractions or it has two
negative embeddings.

The situation is more complicated for Browkin’s algorithms (11) and (12), where
the problem of deciding whether the p–adic continued fraction of a quadratic ir-
rational is eventually periodic is still open. However, some numerical simulations
suggest that this is not always the case (see, for example, [10, 11, 20, 21, 29, 57]). As
we have seen in Section 5, for these two algorithms finite continued fractions char-
acterize rational numbers. Therefore, all periodic continued fractions correspond
to irrational elements that are quadratic over Q. The first systematic study of the
periodicity of Browkin I has been performed by Bedocchi in [13, 14, 15, 16]. The
first result concerns purely periodic continued fractions.

Theorem 21 ([13]). Let α ∈ Qp having a periodic Browkin I continued fraction
expansion. Then the expansion is purely periodic if and only if

|α|p > 1, |α|p < 1.
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This result is the analogue of Galois’ Theorem for classical continued fractions
and it is similar both in the statement and in the proof. Moreover, Bedocchi char-
acterized the possible lengths of the pre-periods for periodic Browkin I continued
fractions.

Proposition 22 ([13]). Let D ∈ Z not a perfect square, such that
√
D ∈ Qp. If the

Browkin I expansion of
√
D is periodic, then the pre-period length is{
2 D ̸≡ 4 mod 8 when p = 2

3 otherwise.

Then, in [14, 15, 16], Bedocchi focused on the possible lengths of the periods for
square roots of integers. We collect all the results in the next proposition.

Proposition 23 ([14, 15, 16]). For Browkin I, the following statements are true.

i) There are no periodic square roots of integers with period of length 1;
ii) For every odd integer d, there are only finitely many square roots of integers

that are periodic with period of length d;
iii) There exist infinitely many square roots of integers that are periodic with

period of length 2, 4 and 6.

In view of the results of Proposition 23, Bedocchi left the following conjecture.

Conjecture 24 (Bedocchi’s Conjecture). For all even h ∈ N, there exist infinitely
many square roots of integers that are periodic with Browkin I and have period of
length h.

This conjecture is still open. However, for all the lengths that are powers of 2,
Bedocchi’s Conjecture has been proved by Capuano, Murru and Terracini in [29].

Theorem 25 ([29]). For every n, k ≥ 1, there are infinitely many D ∈ Z, with

p ̸ |D, such that the Browkin I expansion of pk
√
D is periodic with period of length

2n.

The proof of Theorem 25 exploits a new definition of a particular class of Browkin’s
continued fractions, that we introduce in the next definition.

Definition 26 ([29]). Let [a0, . . . , at−1] be a finite Browkin I continued fraction and
let us denote by ñ = n

pvp(n) the part of n that is coprime to p.

Then, [a0, . . . , at−1] is nice if:

i) |a0|p > 1 and |a0| < p
4
;

ii)
∣∣∣At−1

At−2

∣∣∣ > 4
p
;

iii) there exists an integer q such that B̃t−1|q|B̃2
t−1 and the class of q modulo Ã2

t−1

belongs to the multiplicative subgroup generated by the class of p.

The authors proved the following result for nice Browkin’s continued fractions.

Theorem 27 ([29]). Let [a0, . . . , at−1] be a nice Browkin’s continued fraction. Then
there are infinitely many Browkin’s partial quotients at such that the continued frac-
tion

[a0, a1, . . . , at−1, at, at−1, . . . , a1, 2a0]
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converges to a quadratic irrational number of the form 1
pe

√
D
, for some D ∈ Z not a

perfect square.

Basically, using Theorem 27, starting with a nice sequence [a0, a1, . . . , at−1] it is
possible to provide an infinite family of integersD such that the Browkin’s continued
fraction of pe

√
D is periodic with period 2t. They left the following conjecture,

together with other problems about nice continued fractions.

Conjecture 28 ([29]). For every t ≥ 1 there exist a nice Browkin’s continued frac-
tion of length t, except when t = 1 and p = 3.

By Theorem 27, solving the latter conjecture implies the existence of infinitely
many square roots of integers that have periodic Browkin I expansion with period
2t, for any t. Thus, it would give a positive answer to Bedocchi’s Conjecture. More-
over, in the same paper, the authors deepened other aspects of the periodicity of
Browkin I. The aim was to use some arguments similar to those of [31] in order
to prove an effective criterion to predict the periodicity and the non-periodicity of
Browkin I expansions. Unfortunately, Theorem 20 strongly depends on the fact that
a periodic Ruban’s continued fraction can always be embedded in the real numbers.
This is not always true for Browkin’s continued fractions, hence it is not a neces-
sary condition for periodicity. On the other hand, having two negative embeddings
is not a sufficient condition for non-periodicity. This important difference between
Ruban’s and Browkin’s continued fractions is again due to the choice of the (possibly
negative) representatives in Browkin I. For these reasons, there is not an “easy” way
to prove non-periodicity in Browkin I up to now. In particular, no quadratic irra-
tional has been proved to have non-periodic Browkin I continued fraction, although
it is largely believed to fail Lagrange’s Theorem (see, for example, the experimental
computations in [57]). The SageMath code developed for [57] is publicly available1

and contains the implementation of the main algorithms presented in Section 3.

In [1], the authors followed another approach to find periodic p–adic continued
fractions for all the square roots of integers in Qp, without focusing on a specific
algorithm. They used Rédei rational functions [71] to construct a periodic continued

fraction converging to
√
D simultaneously in the real and the p–adic field. It is

possible to notice that, for any integer z,
√
D = z + (

√
D − z) = z +

1
1√
D−z

= z +
1

√
D+z

D−z2

=

= z +
1

2z
D−z2

+
√
D−z

D−z2

= z +
1

2z
D−z2

+ 1
z+

√
D

,

hence
√
D =

[
z,

2z

d− z2
, 2z

]
, (29)

even if it does not coincide with its expansion with the standard algorithm (see [66]).

Rédei rational functions are known to converge to
√
D in R (see, for example, [52]).

In [1], the authors proved that Rédei functions converge to
√
D also in Qp, so that

1https://github.com/giulianoromeont/p-adic-continued-fractions

https://github.com/giulianoromeont/p-adic-continued-fractions
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(29) is true also for p–adic numbers. This construction has been generalized in [10]
in order to manage any quadratic irrational, not only square roots of integers. The
authors proposed a generalization of Rédei rational functions to provide a periodic
continued fraction for α root of the polynomial x2 + hx − d, where h, d ∈ Z. The
expansion is

α =

[
z,− h+ 2z

z2 + hz − d
, h+ 2z

]
, (30)

that yields a periodic representation for α both in R and Qp. This result solves
the problem of expressing every p–adic quadratic irrational number as a periodic
continued fraction, i.e. through a periodic sequence of rational numbers. However,
it is not equivalent to Lagrange’s Theorem, since the expansion is not obtained by
a specific algorithm. In fact, in order to find the expansion (30) for α, we need from
the begin the knowledge that it is a quadratic irrational number and, in addition, of
its characteristic polynomial over Q. In the same paper, the authors characterized
the cases when Browkin II provides a periodic expansion of the form (30).

Theorem 29 ([10]). Given α ̸∈ Q root of the polynomial x2+hx−d, with h, d ∈ Z,
Browkin II produces the p–adic continued fraction

α =

[
z,−h+ 2z

p
, h+ 2z

]
, (31)

if and only if

1 ≤ |z| ≤ p− 1

2
, 1 ≤ |h+ 2z| ≤ p− 1

2
,

for z such that z2 + hz − d = p.

The authors left open the problem of finding an actual algorithm that, for all
quadratic irrationals in Qp, provides periodic representations of the form (30). Re-
cently, in [58], an approach similar to Bedocchi [13, 14, 15, 16] has been employed
to characterize purely periodic continued fractions with Browkin II and to study
the lengths of pre-periods and periods for periodic expansions. The situation is
more complicated than Browkin I, because of the presence of the sign function in
(12), hence it is possible to obtain only some partial results. In fact, following an
argument similar to the proof of Theorem 21, the condition on the p–adic absolute
values of α and its conjugate are only necessary.

Theorem 30 ([13]). If α ∈ Qp has a purely periodic continued fraction expansion

α = [a0, . . . , ak−1],

with Browkin II, then
|α|p = 1, |α|p < 1.

Conversely, if α has a periodic Browkin II expansion

α = [a0, a1, . . . , ah−1, ah, . . . , ah+k−1],

and |α|p = 1, |α|p < 1, then the pre-period length can not be odd.

Theorem 30 can not be improved, since there are many counterexamples of non-
purely periodic continued fractions for elements that satisfy the hypotheses. More-
over, in the spirit of Bedocchi’s Proposition 23, some results have been obtained on
the possible pre-periods and periods of Browkin II expansions.
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Proposition 31 ([58]). The following results hold for Browkin II:

i) If
√
D ∈ Qp has a periodic continued fraction, then the pre-period has length

either 1 or even;
ii) There are infinitely many

√
D ∈ Qp having a periodic expansion with period

of length 4.

Supported by experimental computations, the authors left the following conjec-
ture, which is the exact analogue of Bedocchi’s Conjecture for Browkin’s second
algorithm.

Conjecture 32 ([58]). For all even h ∈ Z, there exist infinitely many
√
D, D ∈ Z

not perfect square, such that Browkin II continued fraction of
√
D is periodic with

period of length h.

In [57], the authors proved some further results on the periodicity of Browkin
II, underlining the issues that arise from the unpredictability of the appearance of
the sign function in the algorithm. In this sense, Algorithm (15) introduced in [57]
improves Browkin II from both a theoretical and an experimental point of view.

Theorem 33 ([57]). The following results hold for Algorithm (15):

i) If α ∈ Qp has a periodic continued fraction, then it is purely periodic if and
only if |α|p ≥ 1 and |α|p < 1;

ii) If
√
D has a periodic continued fraction, then the pre-period is 1 for vp(

√
D) ≤

0 and 2 for vp(
√
D) > 0.

Theorem 33 establishes that an analogue of Galois’ Theorem is true for Algorithm
(15), unlike Theorem 30 for Browkin II. Moreover, the second part is very similar
to what happens in R, where the pre-periods of square roots of integers is always
1. The problem of proving or disproving an analogue of Lagrange’s Theorem is still
open also for Algorithm (15).

7. Quality of the approximation

Classical continued fractions are one of the most powerful tools to produce rational
approximations for real numbers. In fact, the convergents provide at each step the
best approximation of a real number, in the sense of the following proposition.

Proposition 34. Let α ∈ R and {An

Bn
}n∈N the sequence of convergents of α. Then

|Bnα− An| ≤ |Bα− A|,
for all n ∈ N and A,B integers such that 0 < B ≤ Bn.

Remark 35. In other words, Proposition 34 says that there is no rational number
with denominator less than Bn that approximates α better than An

Bn
and, fixing Bn as

denominator, the numerator An is the best possible. Therefore, the approximations
provided by the convergents of a continued fraction are the best approximations with-
out increasing the denominator (of course, with a bigger denominator, it is possible
to obtain better approximations).

In this section we analyze the quality of the approximations provided by continued
fractions in Qp. First of all, let us give a more precise shape to the approximations
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given by the convergents of a p–adic continued fraction. Let α ∈ Qp such that
α = [a0, a1, . . .]. We can write α = [a0, a1, . . . , an, αn+1], so that, by (3),

α =
αn+1An + An−1

αn+1Bn +Bn−1

.

Therefore, the difference between α and its n-th convergent is

α− An

Bn

=
αn+1An + An−1

αn+1Bn +Bn−1

− An

Bn

=
(−1)n

(αn+1Bn +Bn−1)Bn

.

Since vp(αn+1) = vp(an+1), then vp(αn+1Bn) < vp(Bn−1), hence

vp(αn+1Bn +Bn−1) = vp(αn+1Bn) = vp(an+1Bn) = vp(Bn+1).

The valuation of the difference is then

vp

(
α− An

Bn

)
= −vp(BnBn+1), (32)

that is, ∣∣∣∣α− An

Bn

∣∣∣∣
p

= pvp(BnBn+1). (33)

By Remark 5, we know that, for all n ∈ N,
vp(Bn) = vp(a0) + vp(a1) + . . .+ vp(an).

Therefore, by (32) and (33), the quality of approximation of α depends on the size
of the valuation of the denominators vp(Bn). In fact, the algorithm that better
approximates a p–adic number α is the one where vp(Bn) becomes “very negative”
rapidly.

Remark 36. By Proposition 6 and Proposition 8, we know that Browkin I decreases
the valuation of Bn at each step, while Browkin II only at odd steps. Therefore, at
each step n ∈ N, we expect Browkin I to produce better approximations than Browkin
II.

Some computational results on the quality of approximations for square roots of
integers by means of Algorithms (11), (12) and (15) can be found in [57] and they
confirm the insight of Remark 36.

In [55], Mahler attempted to obtain a sequence of best approximations for a p–
adic number α, similarly to the sequence of convergents for real continued fractions.
Let Φ(X, Y ) be a reduced positive definite quadratic form of determinant −1 (this
is in analogy with the determinant of the matrices appearing in (4)). Mahler defined
an algorithm to provide a sequence of pairs of integers {(An, Bn)}n∈N, such that, for
all n ∈ N,

|An −Bnα|p ≤
1

pn
, (34)

and
|An −Bnα|p < |A−Bα|p,

for all the other pairs (A,B) with 0 < Φ(A,B) < Φ(An, Bn). Notice that this
result is very similar to Proposition 34 for real continued fractions, i.e. it tries to
reproduce the idea of best approximations also in the p–adic framework. In [32],
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Deanin focused on Mahler’s approach and studied the periodicity of the sequence
(An, Bn) by varying the function Φ. As already mentioned in Section 6, de Weger
[88] studied rational approximations in Qp by associating to each p–adic number a
sequence of approximation lattices. For all n ∈ N, the n-th approximation lattice of
α ∈ Qp is

Γn = {(A,B) ∈ Z2 : |Bα− A|p ≤ p−n},
i.e. it is the lattice containing all the pairs of integers satisfying (34). In this context,
de Weger was able to prove a form of Hurwitz’s Theorem [42], together with other
known results of Diophantine approximation, over Qp. In [8, 24, 25, 26], Schneider’s
p–adic continued fractions are employed for the study of simultaneous uniform ap-
proximations for a p–adic number and its powers. These problems are similar to
those addressed in the real framework in [23, 51] (see also [22] for a survey on the
topic). Simultaneous approximations of two p–adic numbers have been studied also
in [62] using multidimensional continued fractions. In fact, by definition, continued
fractions in two dimensions provide simultaneous approximations by means of two
sequences of partial quotients (more details are given in Section 9, which is devoted
to the study of multidimensional p-adic continued fractions).

8. Transcendental p–adic continued fractions

Continued fractions have been proved to be very efficient for the construction of
transcendental numbers. Over the real numbers, Khinchin [46] addressed the prob-
lem of continued fraction expansions of algebraic irrational numbers which are not
quadratic over Q. Liouville [53] was the first to construct transcendental numbers by
using continued fractions with unbounded partial quotients. Transcendental contin-
ued fractions with bounded partial quotients have been defined by Maillet [56] and
Baker [9]. An extensive analysis has been lately performed in [2, 3, 4, 5], where the
authors showed several transcendence criteria and provided many examples of fami-
lies of transcendental continued fractions. One of the most powerful tool is the use of
Roth’s Theorem [74] and its subsequent improvements, in particular the Schmidt’s
Subspace Theorem [83]. Let us recall Roth’s Theorem in one of its simplest forms.

Theorem 37 (Roth’s Theorem). Let α be an algebraic irrational over Q and let
ϵ > 0. Then there exist only finitely many (a, b) ∈ Z2, b > 0, such that∣∣∣α− a

b

∣∣∣ < 1

b2+ϵ
.

Roth’s Theorem tells us that an algebraic irrational number admits only finitely
many “good” approximations. Therefore, it is possible to prove the transcendence
of a real number by constructing infinitely many “good enough” rational approxi-
mations. In [81], Schlickewei proved the following p–adic version of the Subspace
Theorem.

Theorem 38 ([81]). Let x = (x1, . . . , xn) ∈ Zn and let us define

∥x∥∞ = max{|xi|, i = 1, . . . , n}.

Let L1,∞(x), . . . , Ln,∞(x) and L1,p(x), . . . , Ln,p(x) be, respectively, real and p–adic
linearly independent linear forms with algebraic coefficients and let ϵ > 0. Then, the
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non-zero solutions x ∈ Zn of
n∏

i=1

(|Li,∞(x)| · |Li,p(x)|p) <
1

∥x∥ϵ∞
,

lie in finitely many proper subspaces of Qn.

Theorem 38 has been employed in [18] to prove a transcendence result for the
p–adic Thue-Morse continued fractions, inspired by Queffélec’s result over the real
numbers [69]. In [64], Ooto studied transcendental Ruban’s p–adic continued frac-
tions, performing an analysis similar to Baker [9]. Baker’s result for continued frac-
tions in R relies on the definition of quasi-periodic continued fractions, i.e. continued
fractions where blocks of partial quotients repeat several times.

Definition 39. Let {ni}i∈N, {λi}i∈N and {ki}i∈N be sequences of positive integers,
with {ni}i∈N increasing. If, for all i ∈ N, ni+1 ≥ ni + λiki and am+ki = am for
all m = ni, . . . , ni + (λi − 1)ki − 1, then the continued fraction [a0, a1, . . .] is called
quasi-periodic.

The main result of [64] is the following transcendence criterion for quasi-periodic
Ruban’s continued fractions.

Theorem 40 ([64]). Let [a0, a1, . . .] be a quasi-periodic Ruban’s continued fraction,
the sequences {ni}i∈N, {λi}i∈N and {ki}i∈N as in Definition 39 and let A ≥ p. Let
us assume that [a0, a1, . . .] is not periodic and such that |an|p ≤ A for all n ∈ N. If
ani

= . . . = ani+ki−1 = p− p−1 for infinitely many i, and

lim inf
i→+∞

λi

ni

>
2 logA

log p
− 1,

then Ruban’s continued fraction [a0, a1, . . .] is transcendental.

Other results on the transcendence of Ruban’s continued fractions are obtained in
[6, 7], using a method similar to [5] for the real case. A study of the transcendence of
the Ruban’s continued fraction has been performed also in [33, 50, 87, 89], using un-
bounded partial quotients. Finally, very recently, a transcendence criterion has been
proved in [54] for Browkin I. The main results of [54] are the p–adic analogues for
Browkin I of the transcendence criteria proved by Baker in [9] and by Adamczewski
and Bugeaud in [4].

9. Multidimensional p–adic continued fractions

The theory of continued fractions has been extended in several directions. One
of the most famous generalizations is given by multidimensional continued frac-
tions. Motivated by a question of Hermite [39], Jacobi [43] introduced a continued
fraction algorithm with the purpose of providing periodic representations for cubic
irrationals, in the spirit of Lagrange’s Theorem for quadratic irrationals. Perron
[67] generalized Jacobi’s approach in order to handle algebraic irrationalities of any
degree. Hermite’s problem for multidimensional continued fractions is still open.
We refer the interested readers to [19, 84] for the general theory of multidimensional
continued fractions and to [44, 45] for some of the most recent developments on the
Hermite’s problem. One of the first work on multidimensional continued fractions
in the field of p–adic numbers is due to Ruban [76, 77, 78], who studied some of
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the ergodic properties of Jacobi-Perron algorithm in Qp. In the very last years,
other multidimensional continued fractions algorithms have been defined in Qp. In
particular, in [60] and [79] the authors introduced two different algorithms trying
to generalize, respectively, Browkin’s and Schneider’s approach (see also [70]). In
[61], the authors deepened the study of the algorithm defined in [60], by exploring
its properties of finiteness.

The classical Jacobi-Perron algorithm for multidimensional continued fractions

works on a m-tuple of real numbers (α
(1)
0 , . . . , α

(m)
0 ) and provides their representa-

tions through an m-tuple of integer sequences ({a(1)n }n∈N, . . . , {a(m)
n }n∈N), generated

by the following algorithm, for all n ∈ N:
a
(i)
n = ⌊α(i)

n ⌋, i = 1, . . . ,m

α
(i)
n+1 =

1

α
(m)
n −a

(m)
n

α
(i)
n+1 =

α
(i−1)
n −a

(i−1)
n

α
(m)
n −a

(m)
n

, i = 2, . . . ,m.

Therefore, the Jacobi-Perron algorithm expresses every real number of the m-tuple

(α
(1)
0 , . . . , α

(m)
0 ) as a continued fraction byα

(i−1)
n = a

(i−1)
n +

α
(i)
n+1

α
(1)
n+1

α
(m)
n = a

(m)
n + 1

α
(1)
n+1

.

Also for multidimensional continued fractions it is possible to introduce the sequence

of convergents A
(i)
n

A
(m+1)
n

, where the quantities A
(i)
n are defined as follows, for all n ∈ N

and for all i = 1, . . . ,m: 
A

(i)
−j = δij

A0 = a
(i)
0

A
(i)
n =

m+1∑
j=1

a
(j)
n Ai

n−j,

with the convention that a
(m+1)
n = 1 for all n ∈ N. The p–adic Jacobi-Perron

algorithm presented in [60] uses Browkin’s s function (10) in place of the floor
function of the classical algorithm. Hence, it works as follows, on an input m-tuple

of p–adic numbers (α
(1)
0 , . . . , α

(m)
0 ):


a
(i)
n = s(α

(i)
n ), i = 1, . . . ,m

α
(i)
n+1 =

1

α
(m)
n −a

(m)
n

,

α
(i)
n+1 =

α
(i−1)
n −a

(i−1)
n

α
(m)
n −a

(m)
n

, i = 2, . . . ,m.

(35)

The first results in [60] concern the p–adic convergence of a generic multidimen-
sional continued fractions. Some conditions on the p–adic absolute value similar to
those seen in Section 4 are necessary in order to guarantee convergence.
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Proposition 41 ([60]). Let ({a(1)n }n∈N, . . . , {a(m)
n }n∈N) be the sequences of partial

quotients of a multidimensional p–adic continued fraction with, for all n ∈ N,{
vp(a

(1)
n ) ≤ 0

vp(a
(1)
n ) < vp(a

(i)
n ), i = 2, . . . ,m+ 1.

Then, for all i = 1, . . . ,m, each of the sequences
{

A
(i)
n

A
(m+1)
n

}
n∈N

converges to a p–adic

number.

When the p–adic Jacobi-Perron converges to an m-tuple of p–adic numbers

(α
(1)
0 , . . . , α

(m)
0 ),

then it is also strong convergent, that is,

lim
n→+∞

|A(i)
n − α

(i)
0 A(m+1)

n |p = 0,

for all i = 1, . . . ,m. This is not the case in R where strong convergence is not
guaranteed in general. Unlike classical continued fractions in one dimension, finite
multidimensional continued fractions do not characterize rational numbers.

Proposition 42 ([60]). If the p–adic Jacobi-Perron algorithm (35) stops in a finite

number of steps on input (α
(1)
0 , . . . , α

(m)
0 ) ∈ Qm

p , then 1, α
(1)
0 , . . . , α

(m)
0 are Q-linearly

dependent.

Theorem 43 ([60]). If (α
(1)
0 , . . . , α

(m)
0 ) ∈ Qm, then the p–adic Jacobi-Perron algo-

rithm (35) stops in a finite number of steps.

The conditions of both the previous results are only sufficient and not necessary.
In fact, there are Q-linearly dependent inputs for which the algorithm is not finite
but periodic, and also Q-linearly dependent inputs having finite continued fraction
although they are not all rationals (see [60] for some of these examples). Moreover,
in [61] the same authors characterized some classes of Q-linearly dependent inputs
giving rise to finite continued fractions.

Theorem 44 ([61]). Let 1, α
(1)
0 , . . . , α

(m)
0 be Q-linearly dependent p–adic numbers,

with
vp(a

(j)
n )− vp(a

(1)
n ) ≥ j − 1,

for j = 3, . . . ,m + 1 and n sufficiently large. Then the p–adic Jacobi-Perron algo-

rithm stops in finitely many steps on input (α
(1)
0 , . . . , α

(m)
0 ).

Therefore, the study of the expansion of Q-linearly dependent p–adic numbers by
means of the p–adic Jacobi-Perron algorithm is not complete. However, it has not
been observed an m-tuple of Q-linearly dependent p–adic numbers for which the
continued fraction is infinite and not periodic. Therefore, in [60] the authors left the
following (still open) conjecture.

Conjecture 45. Let 1, α
(1)
0 , . . . , α

(m)
0 be Q-linearly dependent p–adic numbers. Then

the Jacobi-Perron algorithm on input (α
(1)
0 , . . . , α

(m)
0 ) is either finite or periodic.

For the periodicity of the p–adic Jacobi-Perron algorithm, the following result
holds, similarly to multidimensional continued fractions in R.
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Theorem 46 ([61]). A periodic m-dimensional continued fractions, obtained by the
p–adic Jacobi-Perron algorithm (35), converges to an m-tuple of algebraic irrational-
ities of degree less or equal than m+ 1.

In [62], the same authors explored the properties of approximation of Algorithm
(35) in two dimensions, i.e. for the simultaneous approximation of two p–adic num-
bers. They studied the rate of convergence and gave some precise results for length
of finite continued fractions of two rational numbers, following the technique of The-
orem 43. Moreover, they focused on the study of the algebraic dependence of two
p–adic numbers. In particular, they proved the following sufficient condition to en-
sure the finiteness of the p–adic Jacobi-Perron algorithm on Q-linearly dependent
inputs.

Theorem 47 ([62]). Let α, β ∈ Qp and let
(

An

Cn
, Bn

Cn

)
be, for all n ∈ N, the conver-

gents of the multidimensional continued fraction representing (α, β). Moreover, let
us define

Mn = max{|An|, |Bn|, |Cn|}, Un = max

{∣∣∣∣α− An

Cn

∣∣∣∣
p

,

∣∣∣∣α− Bn

Cn

∣∣∣∣
p

}
.

Then, if
lim

n→+∞
Un ·Mn = 0,

either 1, α, β are Q-linearly independent or the expansion of (α, β) is finite.

Finally, they found some conditions to define a p–adic multidimensional continued
fraction converging to algebraically independent numbers.
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[71] L. Rédei, Über eindeutig umkehrbare Polynome in endlichen Körpern, Acta Sci. Math. 11
(1946), 85-92.

[72] D. Rosen, A class of continued fractions associated with certain properly discontinuous groups,
Duke Math. J. 21 (1954), 549–564.

[73] D. Rosen, Research problems: Continued fractions in algebraic number fields, Amer. Math.
Monthly 84(1) (1977), 37–39.

[74] K. F. Roth, Rational approximations to algebraic numbers, Mathematika, 2(1) (1955), 1-20.
[75] A. A. Ruban, Certain metric properties of the p–adic numbers, Sibirsk Math. Z., 11 (1970),
222-227, English translation: Siberian Math. J 11, 176-180.

[76] A. A. Ruban, The Perron algorithm for p–adic numbers and some of its ergodic properties,
Dokl. Akad. Nauk SSR, 204(1) (1972), 45-48, English translation: Soviet Math. Dokl. 13, 606-
609.

[77] A. A. Ruban, An invariant measure for a transformation related to Perron’s algorithm for p–
adic numbers, Dokl. Akad. Nauk SSR, 213(3) (1973), 536-537, English translation: Soviet Math.
Dokl. 14, 1752-1754.

[78] A. A. Ruban, The entropy of a transformation connected with Perron’s algorithm for p–adic
numbers, Dokl. Akad. Nauk SSR, 227(3) (1976), 571-573, English translation: Soviet Math. Dokl.
17, 475-477.

[79] A. Saito, J. Tamura, S. Yasutomi, Multidimensional p–adic continued fraction algorithms,
Math. Comp. 89(321) (2019), 351-372.

[80] A. Saito, J. Tamura, S. Yasutomi, Continued fraction algorithms and Lagrange’s Theorem in
Qp, Comment. Math. Univ. St. Pauli 1 (2019), 27-48.

[81] H. Schlickewei, On products of special linear forms with algebraic coefficients, Acta Arithm.,
31(4) (1976), 389-398.

[82] T. Schneider, Uber p-adische Kettenbruche, Symp. Math. , 4 (1969), 181-189.
[83] W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals, Acta
Math., 119 (1967), 27-50.

[84] F. Schweiger, Multidimensional continued fractions, Oxford Science Publications, Oxford Uni-
versity Press, Oxford, (2000).

[85] F. Tilborghs, Periodic p–adic continued fractions, Simon Stevin, 64 (1990), no. 3-4, 383–390.
[86] H. S. Wall, Analytic theory of continued fractions, Courier Dover Publications, (2018).
[87] L. Wang, p–adic continued fractions, I, II, Scientia Sinica, Ser. A 28 (1985), 1009-1023.
[88] B. M. M. de Weger, Approximation lattices of p–adic numbers, J. Number Theory, 24(1)
(1986), 70-88.

[89] B. M. M. de Weger, Periodicity of p–adic continued fractions, Elemente der Math., 43 (1988),
112-116.


	1. Introduction
	2. Some notation
	3. Algorithms for p–adic continued fractions
	4. Convergence in Qp
	5. Continued fractions of rational numbers
	6. Periodicity properties
	7. Quality of the approximation
	8. Transcendental p–adic continued fractions
	9. Multidimensional p–adic continued fractions
	Acknowledgments
	References

