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A B S T R A C T

In this paper, a horizontal rotor with passive anisotropic asymmetric magnetic bearings nonlinear model is
developed. The model is based on the experimental evidence of an educational demonstrator, a powerful
benchmark which highlights features of rotordynamics systems. An experimental setup is developed using
laser sensors to track the displacements of the rotor and tachometer to record the rotor angular speed. Several
test campaigns are performed with different initial conditions to characterise the educational demonstrator.
The first test campaign is oriented to identify the system structural properties, while the second one is focused
on the nonlinearity identification. The rotor modelling is divided into three stages with progressive increase
in complexity, starting from the overall linear structural behaviour to the nonlinear subharmonic resonance
phenomenon. The model is developed with a generalised approach suitable for a wide range of operating
conditions and rotor configurations. Progressively, the developed rotor models are compared to highlight
their limitations and advantages. Finally, rotor trajectory analysis and time–frequency analysis are used in
the numerical-to-experimental comparison.
1. Introduction

In the last 20 years there has been a growing interest in the study
of the magnetic interaction. The magnetic interaction is successfully
exploited in mechanical power transmission devices. The magnetic
gears [1] provide an alternative to conventional gears and increase
transmission efficiency [2].

The magnetic interaction is adopted for the realisation of Active
Magnetic Bearings (AMB) and Passive Magnetic Bearings (PMB) to
eliminate the contact friction losses of the rotating components. In
AMBs the magnetic force is generated by feedback control of electro-
magnetic coils [3], while PMBs use permanent magnets which do not
require any control [4].

AMBs are employed in industrial applications for turbomachinery
and flywheels, and their use in nuclear and submarine environments
is currently subject of scientific research. Additionally, the following
problems concerning AMBs are investigated: high-speed applications,
control of elastic rotors, touch-down dynamics, and their use as ele-
ments for the realisation of smart rotating machinery with features such
as self-calibration, self-diagnostics, self-tuning and self-corrections [3].

On the other side, PMBs are not used in stand-alone configuration
in industrial applications as much as AMBs, and they find use in hybrid
solutions for rotating machines together with the latter [5,6]. PMBs
are often used in combination with AMBs in flywheels for kinetic
energy storage [7], to reduce the AMBs control energy consumption
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requirements. Recently, there has been a growing interest in kinetic
energy storage, also in the automotive field [8–12]. The growing in-
terest in studying typical dynamic problems of rotor industrial systems
lets the researchers propose practical solutions as the ones described
in [13–15].

In education, PMBs find wide usage in magnetic interaction demon-
strators, such as:

• the Levitron®, a levitating vertical-axis magnetic spinning top,
is stable within a precise operating range due to the gyroscopic
effect [16].

• the levitation toy, a horizontal-axis magnetically supported struc-
ture which is stable due to the presence of a further constraint. It
is possible to spin the toy as a spinning top, highlighting typical
rotordynamics characteristics.

This study is focused on the levitation toy dynamics. The levitation
toy is a significant benchmark for nonlinear rotor behaviour modelling
due to the magnetic support asymmetry and anisotropy [17]. Since this
demonstrator shows typical features of rotor systems, an experimen-
tal analysis on the horizontal magnetic spinning top is performed to
propose a possible investigation and modelling methodology.

This study is organised in the following sections, proposing the
analysis from an experimental perspective up to the modelling phase
and successive model updating:
vailable online 1 June 2024
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Fig. 1. SolidWorks model of horizontal magnetic rotor.
• Section 2 illustrates the demonstrator geometry and its material
properties. Also, a critical review of the device, preliminary to the
rotordynamics modelling, is performed.

• In Section 3, the experimental setup is described, and the exper-
imental campaigns are performed. The acquisitions are discussed
illustrating the main outcomes useful to develop the rotor models.
Time–frequency analyses and time histories are investigated.

• In Section 4, the magnetic support modelling process is defined.
Also, the generalised magnetic interaction maps and the analyti-
cal formulation are developed.

• In Section 5, the rotor models are developed. The models are
compared with the experimental angular speed sweep down tests.

• Finally, in Section 6 the outcomes of the experimental and mod-
elling activities are discussed, focusing also on future develop-
ments.

2. Device characteristics

The magnetic levitation toy under analysis in Fig. 1 is composed of
two bodies under magnetic interaction:

• a fixed plastic base with prismatic triangular magnets placed
inside.

• a floating axisymmetric plastic rotor, with annular disc magnets
placed inside.

The magnets are placed in two axial regions, named sections, of
the structure and together they compose the rotor magnetic supports.
Fig. 1 highlights the rotor sections #1 and #2, which correspond to the
middle planes of the floating magnets of the two respective supports.
The interaction between the rotor and the base magnets makes the rotor
levitate.

When the rotor is not rotating, one of the two rotor ends is always
in contact with the base glass plate. In fact, Earnshaw theorem [18]
demonstrated that a system subject to passive magnetic forces only
does not have a stable static equilibrium. In this application, the
levitation toy stable static equilibrium condition is guaranteed by the
axial constraint at one rotor end. In fact, the floating and fixed magnet
axial locations are designed to generate axial force pushing against the
2

base glass plate. Fig. 1 shows in detail the floating and fixed magnets
configuration allowing the rotor to reach a stable static equilibrium
condition.

When the rotor is spun, it rotates with limited air drag losses, and re-
duced friction losses by the only base-rotor contact point. The stability
of horizontal rotors has already been theoretically demonstrated by L.A.
Romero [19] on a more generic non-axially constrained configurations.
As can be seen in Fig. 1, the magnets inside the base are only under and
on the sides of the floating rotor. Therefore, the base-rotor magnetic
interaction is horizontally symmetric and vertically asymmetric.

In the experimental activity, five points of the rotor axis are identi-
fied and highlighted by yellow markers in Fig. 1:

• rotor magnetic support section centres 𝑆1 and 𝑆2 with rotor
horizontal and vertical displacements 𝑥1, 𝑦1, 𝑥2, and 𝑦2;

• rotor barycentre 𝐺 with horizontal and vertical displacements 𝑥𝑔 ,
𝑦𝑔 ;

• rotor contact point 𝐶 with horizontal and vertical displacements
𝑥𝑐 , 𝑦𝑐 ;

• rotor free end 𝑃 with horizontal and vertical displacements 𝑥𝑝,
𝑦𝑝.

The details about the levitation toy geometry used in Section 5, are
shown in Table 1.

Since the investigated device does not include any datasheet, com-
mon low performance ferrite magnet residual magnetic induction 𝐵𝑟 is
considered. In Table 1, the mean value between Y10T (𝐵𝑟 = 0.200 ÷
0.235 T) and Y22H (𝐵𝑟 = 0.310 ÷ 0.360 T) is chosen.

3. Experimental activity

The experimental setup shown in Fig. 2 is developed to perform
experimental activity.

The experimental setup is composed of a gantry structure which
supports Laser sensors around the levitation device. The levitation
device is positioned at the centre of the gantry structure, and the base
is secured by adhesive material to prevent it from moving during the
experimental activity.
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Fig. 2. Experimental setup.
Table 1
Material properties and geometric characteristics.

Type Parameter Value

Rotor

𝑚, mass 44.5 g
𝑙, length 135 mm
𝑟, maximum radius 18.35 mm
𝑑, floating magnet – barycentre distance 35 mm
𝐼𝑑 , diametrical mass moment of inertia 5.85 ⋅ 10−5 kg m2

𝐼𝑝, polar mass moment of inertia 7.48 ⋅ 10−6 kg m2

Fixed magnets

𝑏1, length (𝑥 direction) 22 mm
𝑏2, width (𝑦 direction) 22 mm
ℎ, height (𝑧 direction) 11 mm
𝐵𝑟, residual magnetic induction 0.277 T
𝜌, density 4480 kg∕m3

Floating magnets

𝑑𝑖𝑛𝑡, internal diameter 18 mm
𝑑𝑒𝑥𝑡, external diameter 32 mm
ℎ𝑑 , height (𝑥 direction) 5 mm
𝐵𝑟, residual magnetic induction 0.277 T
𝜌, density 4480 kg∕m3

Bosch profiles are used to mount four Keyence Laser sensors (LK-
H052, LK-H082, and LK-H152) measuring rotor horizontal and vertical
displacements in sections #1 and #2 discussed in Fig. 1. The Laser data
is post-processed using the approach adopted in [20].

The laser tachometer LaserTach LT2 ICP from ‘‘The modal shop’’
is positioned beside the rotor to measure the rotor angular speed. The
tachometer points at a small reflective adhesive placed on the rotor
section #1 at each rotor turn. The passage detection is used to estimate
rotor angular speed.

All the sensor data are collected by LMS SCADAS Mobile acquisi-
tion board at a sampling frequency of 8192 Hz and post-processed in
Matlab® environment.

Two types of tests are performed:

• Null rotor angular speed free response: rotor free end non-null
displacement initial condition is imposed and null rotor angular
speed 𝛺 = 0 to estimate the system natural frequencies;
3

• Rotor angular speed sweep down: rotor free response to a non-
null rotor angular speed 𝛺 ≠ 0 to investigate the rotor dynamic
behaviour and support nonlinearities.

3.1. Null rotor angular speed free response

Null rotor angular speed free response tests have been performed
with the following test protocol. The rotor free end is brought in contact
with the target metal plate in Fig. 3, while the other rotor end is in
contact with the base glass plate. The rotor free end non-null initial
displacements 𝑥𝑝, 𝑦𝑝 and null initial speeds �̇�𝑝, �̇�𝑝 are imposed and the
target metal plate is 20 mm retracted towards 𝑧 direction. Then, the
rotor free response is recorded.

The 𝑥𝑔 , 𝑦𝑔 rotor barycentre displacements and 𝜃𝑥, 𝜃𝑦 rotor rotations
are obtained by using the post-processing methodology adopted in [21]
and further described in Appendix A.

The Fast Fourier Transform (FFT) time–frequency analysis is per-
formed over the modulus of the typical complex composition of
barycentre displacements 𝑥𝑔 + i𝑦𝑔 to study the amplitude of the radial
displacement of the rotor. Fig. 4 shows the FFT spectrogram result for
the selected null rotor angular speed free response test. The 𝑥 axis
corresponds to the test time while the 𝑦 axis to the frequency content
in the investigated bandwidth. The yellow colour content is low in
amplitude, while the red colour one is higher in amplitude, hence more
significant.

The two horizontal lines at 4.5 Hz and 5 Hz are related to two
system natural frequencies. Moreover, two horizontal lines at twice
the previous frequency values (almost 9 Hz and 10 Hz) are visible.
These frequency contents are superharmonics caused by the nonlinear
magnetic support stiffness characteristics.

3.2. Rotor angular speed sweep down

The angular speed sweep down test is performed with a strict test
protocol. An operator spins the rotor, that is left spinning with angular
speed decay by dissipation. A time history of at least 350 s is recorded
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Fig. 3. Null rotor angular speed free response test: rotor free end lateral view (left), and initial condition of the analysed test (right).
Fig. 4. Experimental FFT spectrogram of |𝑥𝑔 + i𝑦𝑔 | (null angular speed). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

to ensure the occurrence of resonance phenomena. Also, all the tests
with measured rotor angular speed in the first 10 s below 1100 rpm are
discarded.

The proposed test protocol is focused on the study of the dynamic
behaviour of the system in different rotation regimes. Moreover, it is
experimentally observed that the initial conditions only affect the initial
transient behaviour, which is not of interest to this research. In fact,
after the starting transient, being the rotor in supercritical regime, i.e.,
the rotor self-centres, the initial conditions effects on the steady state
behaviour are limited.

3.2.1. Time domain analysis
In this section, the Laser acquisitions are analysed and post-

processed with Appendix A procedure to obtain the whole rotor axis
trajectory.

In Fig. 5, the Laser measurements are shown. The rotor displace-
ments exhibited at section #2 are wider than the ones at section #1,
since the rotor oscillates around a centre of rotation which is between
the contact point 𝐶 and centre of magnet support 𝑆1. The amplitude
abrupt increments, up to 8 mm, are related to rotor resonances.

Also, resonance regimes can be identified in Fig. 6 at rotor angular
speed drop time instants, respectively at 132 s and 195 s, which cor-
respond to large amplitude behaviour and higher energy dissipation
rate. The first resonance phenomenon occurs at a rotor angular speed
of 580 rpm, while the second resonance occurs at about 290 rpm.
4

The developed experimental test-rig is devoted to the evaluation of
angular speed in 𝑧 direction only. Even though, the large rotor displace-
ments in resonance induce a three-dimensional spatial variability in the
angular velocity direction.

In the experimental test, the rotor naturally passes through three
regimes: supercritical, resonance, and subcritical. In supercritical and
subcritical regimes, the eccentricity arm angular speed is almost con-
stantly out-of-phase or in-phase with the rotor angular speed. Since
precession and revolution motions are synchronous, the period de-
tection is not affected by spatial variability. Consequently, the mean
spatial variability effect on the angular speed in 𝑧 direction is null
at each revolution. In resonance regime the eccentricity arm angular
speed is in quadrature with the rotor angular speed.

Then, after a resonance occurs by reaching a critical speed, i.e., at
132 s, the phase between eccentricity arm and rotor angular speed starts
to vary. This phase transient affects the tachometer measurements:
since precession and revolution speeds are different, the two motions
are no longer synchronous and the period between two reflective
speckle acquisitions is altered by the angular velocity spatial variability.

This phenomenon can be seen in Fig. 5 as a marginal scatter
occurring from 132 s to 195 s: the scatter is reduced by the progressive
self-centring before the reaching of the next critical speed at 195 s. This
effect cannot be avoided, hence the laser tachometer is placed at the
section #1, the closest to the contact point, to minimise it due to the
smaller displacements. Consequently, Fig. 6 data only show amplitude
fluctuation of the rotor angular speed at 150 ÷ 195 s transient.

The rotor, at the end of its slowdown at 275 s in Fig. 6, stops rotating
and begins to oscillate as a pendulum.

In Fig. 7, all the significant rotor point displacements 𝐶, 𝑆1, 𝐺, 𝑆2,
and 𝑃 are analysed and compared.

The fitted displacements show the rotor oscillation phenomenon is
prominently conical, due to the monotonically crescent amplitude from
the constraint to the free end.

Moreover, the figure shows a non-null rotor constraint point dis-
placement 𝑥𝑐 , 𝑦𝑐 (green curves), not compliant with visual experimental
outcomes. In this case, the fitting procedure is affected by the effective
rotor geometry, which is not perfectly circular, at sections #1 and #2.
The fitting procedure assumes a constant rotor radius, calculated as
the average of the experimental values at different angular locations
of sections #1 and #2. Therefore, the measurements are affected by a
periodic offset proportional to the rotor rotation angle 𝜃𝑧.

The post-processed rotor free end trajectories are compared with
identified rotor trajectories via ‘‘Kinovea’’ video tracking tool, to vali-
date the rotor trajectory fitting procedure. Fig. 8 shows the rotor free
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Fig. 5. Laser measurements of rotor 𝑥 (left) and 𝑦 (right) displacements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
𝑥

𝑥

Fig. 6. Rotor angular speed.

end trajectory larger in 𝑥 direction, therefore the global rotor rotation is
prominent in the 𝑥𝑧 plane. Differently, Fig. 9 shows a more significant
rotor free end trajectory in 𝑦 direction, hence related to the global rotor
rotation in the 𝑦𝑧 plane.

3.2.2. Frequency domain analysis
Time–frequency analysis is performed on post-processed Laser dis-

placement data, by evaluating the radial amplitude |𝑥𝑔 + i𝑦𝑔| frequency
content during the rotor angular sweep down test. The FFT spectrogram
is computed with a frequency resolution of 0.1 Hz, a compromise
between time windows averaging and frequency content scattering.

The FFT spectrogram of Fig. 10 can be divided into four time history
parts:

• Supercritical regime and superharmonics (𝑡 = 0 ÷ 132 s): the rotor
shows small amplitudes of the natural frequency harmonics, i.e.,
small orbit trajectories, since the rotor is in self-centring regime.
Moreover, the descending trend curves are all related to the rotor
angular speed 𝛺. The first harmonic 𝛺, i.e., the lower descending
curve, appears at the instantaneous rotor angular speed. Also
higher order superharmonics are present, i.e., the 2Ω, 3Ω, 4Ω,
5Ω descending curves at multiples of instantaneous rotor angular
speed.
In this system, the superharmonics are caused by the smooth non-
linearities of magnetic support stiffness characteristics [22,23].
Even superharmonics show higher amplitudes than the odd ones,
since they are related to the asymmetric magnet configuration.

• First resonance regime by subharmonics (𝑡 = 132÷195 s): this regime
begins when harmonics related to 𝛺 cross the natural frequency
horizontal lines. This resonance is explained by the subharmonic
response effect of nonlinear phenomena, already investigated in
various rotordynamics case studies [24–27]. Subharmonic vibra-
tion refers to the response of a dynamic system to the excitation at
5

a whole-number multiple 𝑛 of its natural frequency by vibrating
asynchronously at its natural frequency at 1∕𝑛 of the excitation.

• Critical speed of first harmonic (𝑡 = 195 ÷ 275 s): the first harmonic
𝛺 crosses the two natural frequency curves at 195 s.

• Amplitude decay up to pendulum motion (𝑡 = 275 ÷ 400 s): in this
time span the rotor regime passes from rotation to non-complete
rotation oscillation as a pendulum.

4. Magnetic support modelling

The interactions between fixed and floating magnets are described
via a continuous magnetic model developed in Matlab environment
with LUPOS package [28]. The restoring force and torque mappings are
evaluated by considering one floating magnet at time, discretely moved
in 𝑦 and 𝑥 directions. Eq. (1) allows the evaluation of the generalised
magnetic forces between the infinitesimal magnets 1 and 2 in Fig. 11 by
considering the mutual magnetisation field 𝐌1 and the magnetic flux
density 𝐁2 (or 𝐌2 and 𝐁1).

𝐅1→2 = ∇
(

𝐌2 ⋅ 𝐁1
)

= −∇
(

𝐌1 ⋅ 𝐁2
)

𝐓1→2 = 𝐌2 ∧ 𝐁1 = 𝐌1 ∧ 𝐁2
(1)

The generalised force components of 𝐅1→2 and 𝐓1→2 are repre-
sented in Eq. (2) as directional derivatives of the magnetic flux density
components.

𝐹1→2,𝑥 = −
(

𝑀𝑥,2
𝜕𝐵𝑥,1

𝜕𝑥
+𝑀𝑦,2

𝜕𝐵𝑥,1

𝜕𝑦
+𝑀𝑧,2

𝜕𝐵𝑥,1

𝜕𝑧

)

𝐹1→2,𝑦 = −
(

𝑀𝑥,2
𝜕𝐵𝑦,1

𝜕𝑥
+𝑀𝑦,2

𝜕𝐵𝑦,1

𝜕𝑦
+𝑀𝑧,2

𝜕𝐵𝑦,1

𝜕𝑧

)

𝑇1→2,𝑥 = 𝑀𝑦,2𝐵𝑧,1 −𝑀𝑧,2𝐵𝑦,1
𝑇1→2,𝑦 = 𝑀𝑧,2𝐵𝑥,1 −𝑀𝑥,2𝐵𝑧,1

(2)

Therefore, Eq. (2) are integrated to obtain the generalised magnetic
forces between the fixed and the floating magnets with Eq. (3).

𝐅𝑓𝑖𝑥→𝑓𝑙𝑜𝑎𝑡 = − ∫𝑉 ,𝑓 𝑖𝑥 𝐌𝑓𝑖𝑥 ⋅ ∇𝐁𝑓𝑙𝑜𝑎𝑡𝑑𝑉 = ∫𝑉 ,𝑓𝑙𝑜𝑎𝑡 𝐌𝑓𝑙𝑜𝑎𝑡 ⋅ ∇𝐁𝑓𝑖𝑥𝑑𝑉
𝐓𝑓𝑖𝑥→𝑓𝑙𝑜𝑎𝑡 = ∫𝑉 ,𝑓 𝑖𝑥 𝐌𝑓𝑖𝑥 ∧ 𝐁𝑓𝑙𝑜𝑎𝑡𝑑𝑉 = − ∫𝑉 ,𝑓𝑙𝑜𝑎𝑡 𝐌𝑓𝑙𝑜𝑎𝑡 ∧ 𝐁𝑓𝑖𝑥𝑑𝑉

(3)

The generalised forces by concave, hollow, or complex volumes are
obtained by linear superposition of prismatic convex volumes effects.
In this application, the support magnets are modelled using rectangular
prismatic shapes equivalent in volume to the real ones, considerably
reducing the computational cost for the generalised force estimations.
In this application, the generalised magnetic forces are calculated as
functions of the floating magnet displacements (whose axial distance
from the barycentre is 𝑑). These displacements are obtained as superpo-
sition of rotor barycentre translations epurated of static offsets at static
equilibrium position �̄�𝑔 , �̄�𝑔 and rotations 𝜃𝑥 and 𝜃𝑦 with Eq. (4).

̄1 = �̄�𝑔 − 𝑑 sin 𝜃𝑦
�̄�1 = �̄�𝑔 + 𝑑 sin 𝜃𝑥
̄2 = �̄�𝑔 + 𝑑 sin 𝜃𝑦

(4)
�̄�2 = �̄�𝑔 − 𝑑 sin 𝜃𝑥
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Fig. 7. Rotor fitted 𝑥 (left) and 𝑦 (right) displacements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 8. Rotor free end 𝑃 trajectory around first resonance (𝑡 = 195 s): post-processing (left) and video tracking (right).

Fig. 9. Rotor free end 𝑃 trajectory around second resonance (𝑡 = 220 s): post-processing (left) and video tracking (right).

Fig. 10. Experimental FFT spectrogram of |𝑥𝑔 + i𝑦𝑔 | (rotor angular speed sweep down) (left) and a detail (right).
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Fig. 11. Force and torque interactions between two magnets.

The computed generalised magnetic forces are shown in Figs. 12
and 13. In the maps, the floating magnet is moved in the range
[−15, 15] mm around the local rotor reference frame.

The maps show a switch trend from increasing to decreasing (and
vice versa) when the floating magnet horizontal displacement value
is close to ±10 mm or when vertical displacement value is close to
−10 mm. This behaviour is caused by interpenetration of floating and
fixed magnets for those values of floating magnet displacement in
the mapping. This condition, analytically computed, has no physical
meaning, and is never reached by floating magnets during simulations.

The magnetic map shows the magnetic field as a function of the
floating magnet motion under small oscillations hypothesis.

4.1. Magnetic characteristic approximation

The generalised magnetic force mappings, theoretically computed
in the previous Section 4, are in this section analytically approximated
by using Eq. (5), used in [29–31].

𝐹𝑚 = 𝐴
(

1 + 𝑥
𝐵

)𝑛 (5)

where 𝐴, 𝐵, and 𝑛 are empirical parameters depicting the magnetic
force 𝐹𝑚. This passage is finalised to obtain generalised magnetic
forces compact polynomial formulations, easily manageable in the
linear model development described in Section 4.1.

Therefore, it is obtained:

𝐹𝑚,𝑥 (𝑥, 𝑦) =
𝐴𝐹 ,𝑥𝑦

(

1 +
�̄�𝑧

𝐵𝐹 ,𝑥𝑦

)𝑛𝐹 ,𝑥𝑦

⎛

⎜

⎜

⎜

⎜

⎝

𝐴𝐹 ,𝑥𝑥
(

1 +
�̄�𝑧

𝐵𝐹 ,𝑥𝑥

)𝑛𝐹 ,𝑥𝑥
−

𝐴𝐹 ,𝑥𝑥
(

1 −
�̄�𝑧

𝐵𝐹 ,𝑥𝑥

)𝑛𝐹 ,𝑥𝑥

⎞

⎟

⎟

⎟

⎟

⎠

𝐹𝑚,𝑦 (𝑥, 𝑦) =
𝐴𝐹 ,𝑦𝑦

(

1 +
�̄�𝑧

𝐵𝐹 ,𝑦𝑦

)𝑛𝐹 ,𝑦𝑦
+

𝐴𝐹 ,𝑦𝑥
(

1 +
�̄�𝑧

𝐵𝐹 ,𝑦𝑥

)𝑛𝐹 ,𝑦𝑥
+

𝐴𝐹 ,𝑦𝑥
(

1 −
�̄�𝑧

𝐵𝐹 ,𝑦𝑥

)𝑛𝐹 ,𝑦𝑥

𝑇𝑚,𝑥 (𝑥, 𝑦) =
𝐴𝑇 ,𝑥𝑦

(

1 +
�̄�𝑧

𝐵𝑇 ,𝑥𝑦

)𝑛𝑇 ,𝑥𝑦
+

𝐴𝑇 ,𝑥𝑥
(

1 +
�̄�𝑧

𝐵𝑇 ,𝑥𝑥

)𝑛𝑇 ,𝑥𝑥
+

𝐴𝑇 ,𝑥𝑥
(

1 −
�̄�𝑧

𝐵𝑇 ,𝑥𝑥

)𝑛𝑇 ,𝑥𝑥

𝑇𝑚,𝑦 (𝑥, 𝑦) =
𝐴𝑇 ,𝑦𝑦

(

1 +
�̄�𝑧

𝐵𝑇 ,𝑦𝑦

)𝑛𝑇 ,𝑦𝑦

⎛

⎜

⎜

⎜

⎜

⎝

𝐴𝑇 ,𝑦𝑥
(

1 +
�̄�𝑧

𝐵𝑇 ,𝑦𝑥

)𝑛𝑇 ,𝑦𝑥
−

𝐴𝑇 ,𝑦𝑥
(

1 −
�̄�𝑧

𝐵𝑇 ,𝑦𝑥

)𝑛𝑇 ,𝑦𝑥

⎞

⎟

⎟

⎟

⎟

⎠
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(6)
Table 2
Unbalance reference default value.

Parameter Value

𝜀𝑟𝑒𝑓 , static unbalance 4.3 ⋅ 10−6 m
𝛾𝑟𝑒𝑓 , dynamic unbalance 4.8 ⋅ 10−3 rad

In Eq. (6), the �̄�𝑧 and �̄�𝑧 quantities generically refer to the directions
of the evaluation of the generalised magnetic forces. In this application,
the evaluation of Eq. (6) is limited to rotor floating magnet central
points 𝑆1 and 𝑆2, therefore the subscript 𝑧 is substituted with 1 and
2 in the complete model formulation.

The signs of forces and torques in Eq. (6) are defined by considering
the restoring action of fixed magnets on floating magnets. Parameters
𝐴, 𝐵 and 𝑛, listed in Table B.4, are evaluated by fitting polynomial
force functional to the nonlinear magnetic force maps in Figs. 12 and
13. The same force fitting parameters are used to compute polynomial
magnetic torques since both have the same surface shapes. Force fitting
parameters are scaled by 10−3 factor.

5. Rotor model

The Jeffcott rotor model is taken as a starting reference to model
this horizontal magnetic rotor. A common way to model magnetic
coupling consists of using springs, as in [15,32,33], characterised by
stiffness coefficients related to forces generated by the interactions
between floating and fixed magnets. Stiffness terms can be linear or
nonlinear depending on the type of the target behaviour. Fig. 14
shows a representation of the rotor model: the magnetic forces act
on the respective floating magnet, the mass is considered lumped at
the barycentre, the forces and torques are expressed with restoring
convention. Moreover, the force directions orthogonal to the plane are
represented with ‘‘⨀’’ and ‘‘⨂’’ symbols. The ‘‘⨀’’ symbol represents
an arrow that is coming out of the page and the ‘‘⨂’’ symbol represents
an arrow that is going into the page. Rotor systems are subject to
excitation based on their angular speed, similarly to other systems
subject to parametric excitation [34]. Since a real rotor is not perfectly
axisymmetric, the barycentre is a point that does not belong to system
axis, hence periodic forces created by eccentricity effect (7) must be
considered.
𝐹𝜀𝑥 = 𝑚𝜀𝛺2 cos (𝛺𝑡)
𝐹𝜀𝑦 = 𝑚𝜀𝛺2 sin (𝛺𝑡) (7)

The proposed method to calculate the eccentricity by Eq. (8) con-
sists of evaluating the period of oscillation 𝑇 , hence its frequency 𝜔𝑛,
when the rotor stops rotating and begins to oscillate as a pendulum
about its equilibrium position at the end of the time history of Fig. 6.

𝜔𝑛 =
√𝑚𝑔𝜀

𝐼𝑝
(8)

𝜀 =
𝐼𝑝

𝑇 2𝑚𝑔
(9)

Since rotor mass is unevenly distributed around the rotation axis, its
barycentre is out of alignment with the centre of rotation, so dynamic
unbalance must be considered [35], and it generates an unbalance
moment that is expressed as follows:

𝑇𝛾𝑥 = 𝛾𝛺2 (𝐼𝑝 − 𝐼𝑑
)

sin (𝛺𝑡)
𝑇𝛾𝑦 = 𝛾𝛺2 (𝐼𝑑 − 𝐼𝑝

)

cos (𝛺𝑡) (10)

Parametric analyses are performed to investigate the effect of static
and dynamic unbalances on the dynamics of this magnetic rotor to
obtain displacement amplitudes compliant with the experimental ones
(see Table 2).

Furthermore, two more parametric analyses are performed with
LUPOS software to model the contact between the glass plate and rotor
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Fig. 12. Generalised magnetic forces at rotor support 𝑆1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 13. Generalised magnetic forces at rotor support 𝑆2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 14. Free body diagram of ideal rotor.
Fig. 15. Stiffness parametric analysis (𝐾𝑐 = 𝐾𝑐,𝑥 = 𝐾𝑐,𝑦): mode frequencies.

constraint end, since considering it as a pinned constraint would delete
the dynamic behaviour related to 𝑥 and 𝑦 degrees of freedom (DOF).
Two possible options are evaluated:

• spring constraint;
• damper constraint.

Stiffness and damping are evaluated by simultaneously varying their
respective 𝑥 and 𝑦 values, since a parametric analysis with null angular
speed makes gyroscopic effects null and 𝑥 and 𝑦 DOFs result uncoupled.
The first parametric analysis, whose result is shown in Fig. 15, is
performed by analysing mode frequency variation while changing the
values of the two stiffness terms 𝐾𝑐,𝑥 and 𝐾𝑐,𝑦 and keeping damping
terms 𝐶𝑐,𝑥 and 𝐶𝑐,𝑦 null. Only the first four modes are investigated,
ignoring rigid body motion and modes related to 𝑧 translation and 𝜃𝑧
rotation.

Modes 2 and 4, related to 𝑥 and 𝑦 translations, are the ones more
influenced by stiffness increase. Increasing the stiffness would hinge the
rotor end as a pinned constraint, while rotor constrained tip drifts on
the glass plate, as shown in Fig. 7. Hence, a second parametric analysis,
whose results are shown in Fig. 16, is performed by investigating mode
frequencies and damping ratio while changing the values of the two
9

damping terms 𝐶𝑐,𝑥 and 𝐶𝑐,𝑦 and keeping stiffness terms 𝐾𝑐,𝑥 and 𝐾𝑐,𝑦
null.

The first eight complex and conjugate modes, excluding rigid body
motion and modes related to 𝑧 translation and 𝜃𝑧 rotation, are in-
vestigated. Similarly to the previous analysis, Fig. 16, the complex
and conjugate modes 1, 2, 5, and 6, related to 𝑥 and 𝑦 translations,
are more influenced by damping increase. In fact, from 𝐶𝑐 values
higher than 0.6 Ns∕m they start to vary, while the other modes remain
unaltered. Additionally, the latter modes become overdamped when
𝐶𝑐 = 0.6 Ns∕m. In conclusion, it is possible to obtain experimentally
compliant dynamic behaviour by using a damping constraint equal to
or higher than 0.6 Ns∕m. Furthermore, the use of a damper instead of
a spring allows an 𝑥𝑦 plane drift of the rotor end on the glass plate (as
shown in Fig. 7).

For this application, 𝐶𝑐 = 2 Ns∕m even though displacements of the
rotor end in contact with the glass plate are characterised by a variation
which is smaller than the ones in the experimental case, as it can be
seen comparing Fig. 16 to Fig. 7. The real behaviour is found more
compliant with the simulated one by assuming this damping value.

5.1. Linearised model

In order to develop a linearised rotor model, it is necessary to
calculate constant stiffness coefficients as derivatives of the generalised
magnetic forces evaluated at the equilibrium position from Eq. (6). The
main passages are shown in Appendix B. The linear model is expressed
as the following matrix system:

𝐌�̈� + (𝐂 +𝛺𝐆) �̇� +𝐊𝐱 = 𝐅 (11)

where:

𝐱 =
{

𝑥 �̄� 𝑧 𝜃𝑥 𝜃𝑦 𝜃𝑧
}𝑇 (12)

𝐌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝑚 0 0 0 0 0
0 𝑚 0 0 0 0
0 0 𝑚 0 0 0
0 0 0 𝐼𝑑 0 0
0 0 0 0 𝐼𝑑 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

(13)
⎣0 0 0 0 0 𝐼𝑝⎦
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Fig. 16. Damping parametric analysis (𝐶𝑐 = 𝐶𝑐,𝑥 = 𝐶𝑐,𝑦): pole modulus (left) and damping ratio (right).
Table 3
Simulation initial conditions.

Parameter 𝛺, angular speed 𝐱, DOF vector �̇�, DOF derivative vector

Value 157 rad∕s

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

10−5 m
10−5 m
0 m

10−5 rad
10−5 rad
0 rad

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0.1 m∕s
0.1 m∕s
0 m∕s

0.3 rad∕s
0.3 rad∕s
157 rad∕s

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶𝑐,𝑥 0 0 0 −𝐶𝑐,𝑥
𝑙
2

0

0 𝐶𝑐,𝑦 0 𝐶𝑐,𝑦
𝑙
2

0 0
0 0 0 0 0 0

0 𝐶𝑐,𝑦
𝑙
2

0 𝐶𝑐,𝑦
𝑙2

4
+ 𝐶 0 0

−𝐶𝑐,𝑥
𝑙
2

0 0 0 𝐶𝑐,𝑥
𝑙2

4
+ 𝐶 0

0 0 0 0 0 𝐶𝛺

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(14)

𝐆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 𝐼𝑝 0
0 0 0 −𝐼𝑝 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(15)

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾𝐹𝑥 ,𝑥 𝐾𝐹𝑥 ,𝑦 0 𝐾𝐹𝑥 ,𝜃𝑥 𝐾𝐹𝑥 ,𝜃𝑦 0
𝐾𝐹𝑦 ,𝑥 𝐾𝐹𝑦 ,𝑦 0 𝐾𝐹𝑦 ,𝜃𝑥 𝐾𝐹𝑦 ,𝜃𝑦 0
0 0 𝐾𝐹𝑧 ,𝑧 0 0 0

𝐾𝑇𝑥 ,𝑥 𝐾𝑇𝑥 ,𝑦 0 𝐾𝑇𝑥 ,𝜃𝑥 𝐾𝑇𝑥 ,𝜃𝑦 0
𝐾𝑇𝑦 ,𝑥 𝐾𝑇𝑦 ,𝑦 0 𝐾𝑇𝑦 ,𝜃𝑥 𝐾𝑇𝑦 ,𝜃𝑦 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)

𝐅 =
{

𝐹𝜀𝑥 𝐹𝜀𝑦 𝑅𝑧 𝑇𝛾𝑥 𝑇𝛾𝑦 0
}𝑇

(17)

𝐶 terms added to 𝐂 Coulomb friction matrix [36], correspond to
dummy dampers acting on rotational DOFs to simulate rotordynamics.
The term 𝐶𝛺 is tuned to create a speed sweep down compliant with
the experimental one. Displacements caused by 𝑥 and 𝑦 translational
DOFs are already damped by the constraint dummy damper, so it is
not necessary to add more 𝐶 terms to the 𝐂 matrix. To tune these 𝐶
damping terms, it is necessary not to overcome 𝛺𝐆 terms so as not to
hide the gyroscopic effect. For this application, 𝐶 damping parameter
is 5 ⋅ 10−5 N ms∕rad. The developed linear model is used to simulate
the angular speed sweep down of the system. The simulation initial
conditions are listed in Table 3.

The parameters of Table 3 are chosen to start the simulation with
non-null conditions applied to each DOF but the ones related to 𝑧
and 𝜃𝑧. Furthermore, starting damping parameters of 0.1 Ns∕m and
0.1 N ms∕rad are applied to the system during the first 5 s of the
10
simulation to limit the rotor dynamics dependence from the initial
conditions and facilitating the system reaching of operating conditions.

5.1.1. Time domain analysis
The linear model results are presented in Fig. 17 to highlight

limits and advantages of the linearisation of this specific case study
characterised by nonlinearities.

The starting anomalous displacements of Fig. 17 are caused by
the starting damping. The main differences between the linear model
displacements and the experimental ones are:

• Lack of the first resonance phenomenon at 132 s: the first ex-
perimental resonance is due to the subharmonic resonance ef-
fect, described in Section 3.2.2, hence it cannot be shown by
the linear model. Actually, the linearisation of the generalised
magnetic forces removes all high order contributions causing
superharmonics and subharmonics seen in FFT spectrogram of
Fig. 19.

• DOFs decoupling : the linearisation of magnetic maps causes decou-
ples DOFs, since all the cross-derivatives are null. Therefore, high
displacements in resonance regime do not cause any variation
of magnetic force on orthogonal directions. The two numerical
resonances at 195 s and 220 s, are independent.

• Incompatible orbit trajectories: in the model 𝑦𝑧 plane displacement
a small variation of the rotor behaviour occurs at 195 s as a
consequence of the resonance in 𝑥𝑧 plane. This effect is caused
by gyroscopic terms which weakly couple the rotational DOFs 𝜃𝑥
and 𝜃𝑦. Again, the decoupling in the linear model is confirmed
by the respective displacements from Fig. 17. Furthermore, by
comparing the linear model orbit trajectories at the critical speeds
(Fig. 18) with experimental test ones (Figs. 8 and 9), it is possible
to observe that the linear model trajectories are symmetric with
respect to 𝑥 and 𝑦 directions. Since the magnet configuration of
the real system is not symmetric with respect to 𝑦 direction, the
related magnetic characteristics cannot be totally modelled by a
linear map. On the other hand, the magnetic behaviour on the
𝑥𝑧 plane, where magnet positions are symmetric with respect to
the origin of the reference system, can be properly simulated by
linear stiffness.

5.1.2. Frequency domain analysis
The linear model time–frequency analysis is shown in Fig. 19. The

FFT spectrogram does not show multiples of the fundamental harmonic
related to rotor angular speed and of the two natural frequencies. Nev-
ertheless, the model natural frequencies are close to the experimental
ones. Additionally, the amplitudes of the whole FFT spectrogram are
quite similar to the experimental ones, suggesting a dynamic behaviour
of the linear model compliant with the experimental data.

Despite the highlighted differences, the results demonstrate how the
linear model approximation is enough to simulate the overall rotor
dynamic behaviour despite its nonlinearities.
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Fig. 17. Linear model rotor 𝑥 (left) and 𝑦 (right) displacements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
Fig. 18. Linear model rotor free end trajectories around resonances: 𝑡 = 195 s (left) and 𝑡 = 220 s (right).
Fig. 19. Linear model (left) and experimental (right) FFT spectrograms.
5.2. Nonlinear model

A nonlinear model based on Eq. (18) is developed to thoroughly
investigate the rotordynamics. The generalised magnetic force maps
shown in Figs. 12 and 13 are used to model the nonlinear restoring
force effect of the supports [37]. This nonlinear model can be expressed
in matrix form as follows:

𝐌�̈� + (𝐂 +𝛺𝐆) �̇� + 𝐅𝑛𝑙= 𝐅 (18)

where 𝐅𝑛𝑙 is the nonlinear generalised force vector obtained from
magnetic maps as functions of floating magnet positions.

𝐅𝑛𝑙 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝐹𝑚,𝑥1 + 𝐹𝑚,𝑥2
𝐹𝑚,𝑦1 + 𝐹𝑚,𝑦2
𝐹𝑚,𝑧1 + 𝐹𝑚,𝑧2

𝑇𝑚,𝑥1 + 𝑇𝑚,𝑥2 + 𝐹𝑚,𝑦1𝑑 − 𝐹𝑚,𝑦2𝑑
𝑇𝑚,𝑦1 + 𝑇𝑚,𝑦2 − 𝐹𝑚,𝑥1𝑑 + 𝐹𝑚,𝑥2𝑑

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

(19)
11

⎩

0
⎭

𝐅 =
{

𝐹𝜀𝑥 −𝑚𝑔 + 𝐹𝜀𝑦 𝑅𝑧 𝑇𝛾𝑥 𝑇𝛾𝑦 0
}𝑇

(20)

The same initial parameters and rotor angular speed profile as in
Table 3 are used to simulate the rotor speed sweep down.

5.2.1. Time domain analysis
The nonlinear model results are presented in Fig. 20 to investigate

the improvements of switching from the linear formulation to the
respective nonlinear one.

Concerning the linear model limits highlighted in Section 5.1, the
use of the nonlinear model allows for the following results:

• Lack of the first couple of resonances: there are no resonances but
the couple at about 200 s;

• DOF decoupling : the second resonance causes wide displacements
on 𝑦𝑧 plane and just a narrow displacement variation in 𝑥𝑧 plane;
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Fig. 20. Nonlinear model rotor 𝑥 (left) and 𝑦 (right) displacements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Fig. 21. Nonlinear model rotor free end trajectories around resonances: 𝑡 = 195 s (left) and 𝑡 = 220 s (right).
• Compatible orbit trajectories: the nonlinear model trajectories anal-
ysed in Fig. 21 are close to the experimental ones. In fact, the first
resonance investigation shows a horizontally wide ovoid trajec-
tory with a 𝑦 average displacement higher than the equilibrium
position, while the second resonance variation corresponds to a
narrower vertical trajectory.

The ovoid trajectory can be analytically explained starting from the
analytical model of the Jeffcott rotor with anisotropic supports [38].
This model assumes that, under the hypothesis of a reference system
with the rotor axis in the 𝑧 direction, supports can be modelled with
different support stiffness 𝐾𝑥 and 𝐾𝑦 in the two directions causing an
elliptical precession orbit. In the studied case, the orbit is not perfectly
elliptical since, assuming the 𝑦 direction to be vertical and orthogonal
to the rotor axis, the support stiffness 𝐾𝑦 is different between the parts
above and below the rotor. A higher value of upward displacement
in y direction corresponds to a lower value of Ky and, consequently,
the ovoid trajectory in Fig. 21. The presence of the superharmonics in
time–frequency analysis of Fig. 22 shows a further improvement of the
nonlinear model if compared to the linear one.

The lack of the subharmonic resonance effect and the weak plane
couplings are due to the way how magnetic forces and torques are
calculated, as demonstrated in the following section.

5.3. Model updating

Traditionally, model updating for dynamics is performed by
eigensensitivity optimisation based on structural parameter uncertain-
ties [39] or by direct structural parameter updating against modal
matrix with physical constraints [40]. In this application, the de-
pendency of gyroscopic effects from rotor angular speed and model
intrinsic nonlinearity makes the application of these procedures un-
feasible. Therefore, the generalised magnetic force maps are tuned by
multiplying them by parameters which change their shapes to highlight
12
nonlinear characteristics. The aim of this procedure is to demonstrate
how subharmonic resonance effect and DOFs coupling mainly depend
on magnetic interaction. Each row of points of the maps, from the
centre to the edge of the grid, is multiplied by a vector of rising values:

• 𝐹𝑚,𝑥 by powers of 3 of the equally spaced vector [1.1,… , 1.2];
• 𝐹𝑚,𝑦 by powers of 2 of the equally spaced vector [1.1,… , 1.4].

The choice to use different powers is made since 𝐹𝑚,𝑦 and 𝑇𝑚,𝑥
formulations should be more affected by an increment of their value
which is closely related to the powers of even order, due to the vertical
asymmetric configuration of the magnets. While, on the other hand,
𝐹𝑚,𝑥 and 𝑇𝑚,𝑦 formulations should be more affected by an increment of
their value which is closely related to the powers of odd order, due to
the horizontal symmetric configuration of the magnets. The two equally
spaced vectors are different, since the objective is to multiply maps by
a series of values whose maximum power (of different order) is the
same. This process changes the natural frequency values, but it is not
considered an issue since the tuning is not finalised to create a more
accurate model and it is just a demonstration of the previous nonlinear
model limits. The same initial parameters and angular speed profile of
Table 3 are used to simulate the rotor speed sweep down.

Figs. 23 and 24 show the system behaviour with the applied mod-
ifications is even closer to the real one. DOFs are now coupled, even
superharmonics are more evident than odd ones, and now the system
shows the first resonance couple. Fig. 24, at the time interval from
100 ÷ 135 s, shows the corresponding subharmonic resonance induced
by even superharmonics. In fact, as the experimental first resonance, it
starts when the main harmonic 𝛺 assumes values equal to multiples of
the main natural frequencies at 5 Hz and 6 Hz. These results confirm
that the main approximation that causes the not total compliance of
the original nonlinear model is due to the way how forces and torques
are calculated. Therefore, the possible reason could be found in the
estimation of these magnetic maps by just translating floating magnets
instead of rotating them.
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Fig. 22. Nonlinear model (left) and experimental (right) FFT spectrograms.
Fig. 23. Nonlinear tuned model rotor 𝑥 (left) and 𝑦 (right) displacements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 24. Nonlinear tuned model (left) and experimental (right) FFT spectrograms.
6. Conclusions

The comparison between simulation results and experimental out-
comes, shows that the approach proposed in this paper as methodology
to develop models to simulate and analyse rotordynamics, is viable
for quasi-conservative rotor systems characterised by smooth nonlinear
passive supports.

Additionally, the analysed models can easily suit different rotor con-
figurations, with appropriate modifications to the described analytical
formulations. Finally, it is demonstrated how the main characteristics
of the nonlinear system can be related to a linear model, which is
indeed the one that most influences the rotordynamics. In fact, the
developed linear model shows it is not necessary to add the nonlin-
ear characterisation to obtain the correct natural frequencies and the
overall understanding of the system dynamics.
13
It is necessary to use the nonlinear model if the objective of the
analysis is to simulate a more accurate rotordynamics concerning tra-
jectories and DOFs coupling, displacements, subharmonic and super-
harmonic effects. Indeed, the analysed results show how the nonlinear
model, even with approximated magnetic maps, gives results compliant
with the experimental outcomes. Despite that, it must be considered
that the lack of subharmonic resonances represents a not negligible
difference between the model and the real rotor. Consequently, consid-
ering just the nonlinear model itself, without an experimental reference,
could lead to unexpected resonances of the system.

A future improvement concerning the experimental setup consists of
using more sensors to perform displacement measurements of specular
points at the two highlighted sections. In this way it is possible to
exploit all the detected data to obtain an average value of fitted axis
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position that is less affected by the not perfect axisymmetry of the rotor.
Finally, as future development of this activity, it is straightforward to
assume this approach, developed by analysing the educational demon-
strator, as a tool to study the dynamics of similar configurations with
magnetic bearings, as the ones of kinetic energy accumulators.
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Appendix A. Rotor axis trajectory fitting procedure

The procedure described in this section allows the evaluation of the
axis position of a cylinder with a known radius, in a three-dimensional
reference system, by using the coordinates of four points detected on
its surface. Fig. A.25 shows the considered reference system. The rotor
axis at the equilibrium condition corresponds to the 𝑧 axis. The two
couples of optical sensors provide displacement measurements of the
points on the rotor surface at the two axial positions which correspond
to sections #1 and #2 of Fig. 1. From the displacement of these points,
acquired during the motion of the rotor, it is possible to determine
two conics lying on the two planes corresponding to the two analysed
sections.

The section of the cylinder at the analysed plane changes from a
circumference to an ellipse due to the rotor motion. The transforma-
tion matrix 𝐑 in Eq. (A.1) is used to obtain, from these two conics,
the equations showing the position of the circular undeformed rotor
sections in 3D space, and therefore the position of the rotor axis itself.

𝐑 =
⎡

⎢

⎢

⎣

1 0 0
0 cos 𝜃𝑥 − sin 𝜃𝑥
0 sin 𝜃𝑥 cos 𝜃𝑥

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos 𝜃𝑦 0 sin 𝜃𝑦
0 1 0

− sin 𝜃𝑦 0 cos 𝜃𝑦

⎤

⎥

⎥

⎦

(A.1)

It is assumed to study a generic cylinder with its axis in 𝑧 direction
at equilibrium. The following three vectors (3 × 1) are defined:
14
Fig. A.25. Reference system.

• 𝒙′ post processed 𝑥′, 𝑦′, and 𝑧′ coordinates of the points of
the undeformed circumference with respect to the fixed global
reference system.

• 𝒙 experimental 𝑥, 𝑦, and 𝑧 coordinates of the points measured by
the optical sensors at the two planes where a section of the rotated
and translated cylinder is detected.

• 𝛥𝒙 translations in 𝛥𝑥, 𝛥𝑦, and 𝛥𝑧 directions.

By considering the superposition of rotations and translations in
Eq. (A.2) and the rotor section geometry with Eq. (A.3), the Eq. (A.4)
is obtained:

𝐱′ = 𝐑𝐓 (𝐱 − 𝚫𝐱) (A.2)

𝑥′ 2 + 𝑦′ 2 = 𝑟2 (A.3)

𝑎9𝑥
2 + 𝑎8𝑦

2 + 𝑎7𝑧
2 + 𝑎6𝑥𝑦 + 𝑎5𝑥𝑧 + 𝑎4𝑦𝑧 + 𝑎3𝑥 + 𝑎2𝑦 + 𝑎1𝑧 + 𝑎0 = 0 (A.4)

The parameters 𝑎𝑖 are functions of the four unknown variables
consisting of axis rotations 𝜃𝑥, 𝜃𝑦 and translations 𝛥𝑥, 𝛥𝑦 at the axial
coordinate 𝑧 = 0. The measured sets of point coordinates are four,
as the number of the test-rig optical sensors. Therefore, it is possible
to calculate the four previous unknowns from the following system
written in matrix form:

𝐗𝐚 = 𝐜 (A.5)

where:

𝐗 =
⎡

⎢

⎢

⎣

𝑥21 𝑦21 𝑧21 𝑥1𝑦1 𝑥1𝑧1 𝑦1𝑧1 𝑥1 𝑦1 𝑧1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥24 𝑦24 𝑧24 𝑥4𝑦4 𝑥4𝑧4 𝑦4𝑧4 𝑥4 𝑦4 𝑧4

⎤

⎥

⎥

⎦

(A.6)

where the coordinate subscript indicates the corresponding measured
point. Axial coordinates 𝑧 are the only ones that do not vary because
they depend on the mounting position of the optical sensors.

𝐚 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

cos2𝜃𝑦
sin2𝜃𝑥sin

2𝜃𝑦 + cos2𝜃𝑥
cos2𝜃𝑥sin

2𝜃𝑦 + sin2𝜃𝑥
2 cos 𝜃𝑦 sin 𝜃𝑥 sin 𝜃𝑦
−2 cos 𝜃𝑦 cos 𝜃𝑥 sin 𝜃𝑦

−2
(

sin 𝜃𝑥sin
2𝜃𝑦 cos 𝜃𝑥 − cos 𝜃𝑥 sin 𝜃𝑥

)

−2
(

𝛥𝑥cos2𝜃𝑦 + 𝛥𝑦 cos 𝜃𝑦 sin 𝜃𝑥 sin 𝜃𝑦
)

−2
[

𝛥𝑥 cos 𝜃𝑦 sin 𝜃𝑥 sin 𝜃𝑦 + 𝛥𝑦
(

sin2𝜃𝑥sin
2𝜃𝑦 + cos2𝜃𝑥

)]

2
[

𝛥𝑥 cos 𝜃𝑦 cos 𝜃𝑥 sin 𝜃𝑦 + 𝛥𝑦
(

sin 𝜃𝑥sin
2𝜃𝑦 cos 𝜃𝑥 − cos 𝜃𝑥 sin 𝜃𝑥

)]

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(A.7)

𝐜 =
{

1 1 1 1
}𝑇 [𝑟2 − 𝛥𝑥2cos2𝜃𝑦

−𝛥𝑦2
(

sin2𝜃𝑥sin
2𝜃𝑦 + cos2𝜃𝑥

) (A.8)

−2𝛥𝑥𝛥𝑦 cos 𝜃𝑦 sin 𝜃𝑥 sin 𝜃𝑦]
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Table B.4
Magnetic surface parameters.

Parameter 𝐴 [N] 𝐵 [m] 𝑛 [−]

𝑥𝑥, 1 0.100000 0.150000 8.000000
𝑥𝑦, 1 3.500000 0.124970 8.000000
𝑦𝑥, 1 0.035523 0.092261 12.00000
𝑦𝑦, 1 0.147200 0.112770 8.000000
𝑥𝑥, 2 0.100000 0.138090 8.000000
𝑥𝑦, 2 3.500000 0.125860 8.000000
𝑦𝑥, 2 0.039148 0.093603 11.00000
𝑦𝑦, 2 0.139900 0.112810 8.000000

The barycentre coordinates 𝑥𝑔 and 𝑦𝑔 can be evaluated during the
hole time history with Eq. (A.9) after solving the system in Eq. (A.5)
ith the four sets of point coordinates at each time instant of the
xperimental test.

𝑔 = 𝑥𝑒𝑞 + 𝛥𝑥 + 𝑙∕2 sin 𝜃𝑦
𝑔 = 𝑦𝑒𝑞 + 𝛥𝑦 − 𝑙∕2 sin 𝜃𝑥

(A.9)

where 𝑙 is the length of the analysed rotor (see Table 1), and 𝑥𝑒𝑞 and
𝑒𝑞 respectively correspond to the horizontal and vertical offsets at the
quilibrium position with respect to the reference system.

ppendix B. Magnetic interaction analytical formulation

The parameters used for the analytical formulation of the magnetic
aps are shown in Table B.4.

The analytical model is developed from Eq. (B.1) referred to Fig. 14.

�̈� + 𝐹𝑚,𝑥1 + 𝐹𝑚,𝑥2 + 𝐹𝑐,𝑥 = 𝐹𝜀𝑥
𝑚�̈� + 𝐹𝑚,𝑦1 + 𝐹𝑚,𝑦2 + 𝐹𝑐,𝑦 = −𝑚𝑔 + 𝐹𝜀𝑦
𝑚�̈� + 𝐹𝑚,𝑧1 + 𝐹𝑚,𝑧2 = 𝑅𝑧

𝐼𝑑 �̈�𝑥 + 𝐼𝑝𝛺�̇�𝑦 +
(

𝑇𝑚,𝑥1 + 𝑇𝑚,𝑥2
)

+
(

𝐹𝑚,𝑦1 − 𝐹𝑚,𝑦2

)

𝑑 + 𝐹𝑐,𝑦
𝑙
2
= 𝑇𝛾𝑥

𝑑 �̈�𝑦 − 𝐼𝑝𝛺�̇�𝑥 +
(

𝑇𝑚,𝑦1 + 𝑇𝑚,𝑦2
)

−
(

𝐹𝑚,𝑥1 − 𝐹𝑚,𝑥2

)

𝑑 − 𝐹𝑐,𝑥
𝑙
2
= 𝑇𝛾𝑦

𝐼𝑝�̈�𝑧 + 𝑐𝛺 �̇�𝑧 = 0

(B.1)

Constant stiffness coefficients are calculated as derivatives of forces
and torques evaluated at the equilibrium position to develop a lin-
earised model of the dynamic behaviour of the rotor, starting from
Eq. (6).

𝐹𝑚𝑙𝑖𝑛𝑒𝑎𝑟
(𝑥, 𝑦) = 𝐹𝑚

(

𝑥𝑒𝑞 , 𝑦𝑒𝑞
)

+
𝜕𝐹𝑚
𝜕�̄�𝑧

|

|

|

|𝑥=𝑥𝑒𝑞 ,𝑦=𝑦𝑒𝑞
�̄�𝑧 +

𝜕𝐹𝑚
𝜕�̄�𝑧

|

|

|

|𝑥=𝑥𝑒𝑞 ,𝑦=𝑦𝑒𝑞
�̄�𝑧

𝑚𝑙𝑖𝑛𝑒𝑎𝑟
(𝑥, 𝑦) = 𝑇𝑚

(

𝑥𝑒𝑞 , 𝑦𝑒𝑞
)

+
𝜕𝑇𝑚
𝜕�̄�𝑧

|

|

|

|𝑥=𝑥𝑒𝑞 ,𝑦=𝑦𝑒𝑞
�̄�𝑧 +

𝜕𝑇𝑚
𝜕�̄�𝑧

|

|

|

|𝑥=𝑥𝑒𝑞 ,𝑦=𝑦𝑒𝑞
�̄�𝑧

(B.2)

The approximated magnetic analytical formulations of Eq. (6) are
sed to numerically evaluate the force and torque derivatives. After
ubstituting Eq. (B.2) in Eq. (B.1), the system becomes:

𝑚�̈�
𝜕𝐹𝑚,𝑥1
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑥 −

𝜕𝐹𝑚,𝑥1
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑑𝜃𝑦 +

𝜕𝐹𝑚,𝑥2
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑥 +

𝜕𝐹𝑚,𝑥2
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑑𝜃𝑦

+
𝜕𝐹𝑚,𝑥1
𝜕𝑦

|

|

|

|

|𝑒𝑞
�̄� +

𝜕𝐹𝑚,𝑥1
𝜕𝑦

|

|

|

|

|𝑒𝑞
𝑑𝜃𝑥 +

𝜕𝐹𝑚,𝑥2
𝜕𝑦

|

|

|

|

|𝑒𝑞
�̄� −

𝜕𝐹𝑚,𝑥2
𝜕𝑦

|

|

|

|

|𝑒𝑞
𝑑𝜃𝑥

+𝐶𝑐,𝑥�̇� − 𝐶𝑐,𝑥
𝑙
2
�̇�𝑦 = 𝐹𝜀𝑥

(B.3)

𝑚�̈�

+
𝜕𝐹𝑚,𝑦1
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑥 −

𝜕𝐹𝑚,𝑦1
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑑𝜃𝑦 +

𝜕𝐹𝑚,𝑦2
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑥 +

𝜕𝐹𝑚,𝑦2
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑑𝜃𝑦

+
𝜕𝐹𝑚,𝑦1
𝜕𝑦

|

|

|

|

|𝑒𝑞
�̄� +

𝜕𝐹𝑚,𝑦1
𝜕𝑦

|

|

|

|

|𝑒𝑞
𝑑𝜃𝑥 +

𝜕𝐹𝑚,𝑦2
𝜕𝑦

|

|

|

|

|𝑒𝑞
�̄� −

𝜕𝐹𝑚,𝑦2
𝜕𝑦

|

|

|

|

|𝑒𝑞
𝑑𝜃𝑥

+𝐶 �̇� + 𝐶 𝑙 �̇� = 𝐹

(B.4)
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𝑐,𝑦 𝑐,𝑦 2 𝑥 𝜀𝑦
Table B.5
Model updating parameters.

Model updating parameter Value

𝑘𝑥 0.5822
𝑘𝑦 1.8462

Table B.6
Translational DOF stiffness value.

Stiffness parameter Value

𝐾𝐹𝑥𝑥
45.3488 N∕m

𝐾𝐹𝑦𝑦
37.5950 N∕m

𝑚�̈� +
𝜕𝐹𝑚,𝑧

𝜕𝑧

|

|

|

|

|𝑒𝑞
𝑧 = 𝑅𝑧 (B.5)

𝐼𝑑 �̈�𝑥 + 𝐼𝑝𝛺�̇�𝑦

+

(

𝜕𝑇𝑚,𝑥1
𝜕𝑥

|

|

|

|

|𝑒𝑞
+

𝜕𝐹𝑚,𝑦1
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑑

)

(

𝑥 − 𝑑𝜃𝑦
)

+

(

𝜕𝑇𝑚,𝑥1
𝜕𝑦

|

|

|

|

|𝑒𝑞
+

𝜕𝐹𝑚,𝑦1
𝜕𝑦

|

|

|

|

|𝑒𝑞
𝑑

)

(

�̄� + 𝑑𝜃𝑥
)

+

(

𝜕𝑇𝑚,𝑥2
𝜕𝑥

|

|

|

|

|𝑒𝑞
−

𝜕𝐹𝑚,𝑦2
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑑

)

(

𝑥 + 𝑑𝜃𝑦
)

+

(

𝜕𝑇𝑚,𝑥2
𝜕𝑦

|

|

|

|

|𝑒𝑞
−

𝜕𝐹𝑚,𝑦2
𝜕𝑦

|

|

|

|

|𝑒𝑞
𝑑

)

(

�̄� − 𝑑𝜃𝑥
)

+
(

𝐶𝑐,𝑦�̇� + 𝐶𝑐,𝑦
𝑙
2
�̇�𝑥
) 𝑙
2
= 𝑇𝛾𝑥

(B.6)

𝐼𝑑 �̈�𝑦 − 𝐼𝑝𝛺�̇�𝑥

+

(

𝜕𝑇𝑚,𝑦1
𝜕𝑥

|

|

|

|

|𝑒𝑞
−

𝜕𝐹𝑚,𝑥1
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑑

)

(

𝑥 − 𝑑𝜃𝑦
)

+

(

𝜕𝑇𝑚,𝑦1
𝜕𝑦

|

|

|

|

|𝑒𝑞
−

𝜕𝐹𝑚,𝑥1
𝜕𝑦

|

|

|

|

|𝑒𝑞
𝑑

)

(

�̄� + 𝑑𝜃𝑥
)

(

𝜕𝑇𝑚,𝑦2
𝜕𝑥

|

|

|

|

|𝑒𝑞
+

𝜕𝐹𝑚,𝑥2
𝜕𝑥

|

|

|

|

|𝑒𝑞
𝑑

)

(

𝑥 + 𝑑𝜃𝑦
)

+

(

𝜕𝑇𝑚,𝑦2
𝜕𝑦

|

|

|

|

|𝑒𝑞
+

𝜕𝐹𝑚,𝑥2
𝜕𝑦

|

|

|

|

|𝑒𝑞
𝑑

)

(

�̄� − 𝑑𝜃𝑥
)

−
(

𝐶𝑐,𝑥�̇� − 𝐶𝑐,𝑥
𝑙
2
�̇�𝑦
) 𝑙
2
= 𝑇𝛾𝑦

(B.7)

𝐼𝑝�̈�𝑧 + 𝐶𝛺 �̇�𝑧 = 0 (B.8)

Approximations are done during the calculation of magnetic maps,
so these stiffness values need to be tuned to obtain the right values. The
applied procedure consists of respectively multiplying the generalised
magnetic force derivates by tuning parameters 𝑘𝑥 and 𝑘𝑦, and then
comparing the tuned resulting natural frequencies with the ones of
an experimental frequency analysis, as the one shown in Fig. 4, until
the values match each other. Table B.5 shows the model updating
parameters used for this application.

Hence, the stiffness values related to forces calculated for the linear
model are listed in Table B.6,

Values from Table B.6 are to be divided by 2 to obtain the stiffness
of the single springs that model the magnetic supports.
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