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ABSTRACT
Global Navigation Satellite Systems (GNSSs) have settled as a crucial asset for Positioning, Navigation and Timing (PNT)35

within the Space Service Volume (SSV), and this technology is increasingly recognized a major player to serve the realm of36

lunar exploration missions. Current space operations are heavily relying on ground infrastructures, with escalating operational37

costs and limited resources. Therefore, it is urgent to enhance autonomy of space users, particularly in the task of real-time38

Orbit Determination (OD). This study aims to demonstrate the performance of GNSS-based onboard OD in the lunar regime. In39

a sequential Bayesian architecture, where GNSS observations are filtered with an orbital propagator, the sigma-point Unscented40

Kalman Filter (UKF) model is compared against the renowned Extended Kalman Filter (EKF)-based Orbital Filter (OF). The41

upcoming LuGRE mission serves as a case study, showcasing near-Moon PNT from a simulated portion of lunar ignition42

orbit at approximately 61 Earth Radii (RE). Both navigation algorithms are assessed with actual receiver observables, retrieved43

from a high-fidelity Hardware-in-the-Loop (HIL) simulation. Results highlight that the UKF effectively smooths out harmful44



Dilution of Precision (DOP) leaps induced by losses of lock of some GNSS signal, while maintaining position estimation errors45

within 2 km for 98.97% of the time. Moreover, remarkable accuracy gains over the EKF are observed, with a 3σ percentile46

improvement of 79.97% for position estimates and 63.62% for velocity estimates.47

I. INTRODUCTION
In contemporary space operations, the navigation, guidance, and maneuvering of space vehicles largely depend on ground48

segment assets. Radio Frequency (RF) tracking via Deep Space Networks (DSNs) facilities and Direct-to-Earth (DTE) links49

enables advanced Orbit Determination (OD) techniques through sophisticated off-board processing algorithms (Iess et al., 2014).50

However, relying on ground-segment assets introduces several drawbacks. Operational costs are elevated, and the management51

of numerous missions is constrained by limited ground segment resources (Turan et al., 2022). To meet the objectives set by the52

space exploration roadmap, there is a pressing need to enhance autonomous navigation capabilities.53

In the Space Service Volume (SSV), Global Navigation Satellite Systems (GNSSs) are a crucial asset for autonomous spacecraft54

(S/C) navigation and timing, and their usage has been regulated up to Geosynchronous Orbit (GEO) altitudes (Parker et al.,55

2018). While processing of Earth’s GNSS signal in space has been proven feasible at higher altitudes, several technological56

challenges arise. The Earth’s obstruction of satellite signals determines drops of availability. Moreover, the increased free-space57

path loss attenuation together with frequent tracking of side lobes results in weak signal reception and noisy observations. Yet58

the unfavourable geometric diversity of ranging sources can exacerbate navigation uncertainty.59

Targeting the lunar regime, scientific literature has proposed sequential filtering architectures to address the challenges of60

ground-independent and precise OD using onboard GNSS radiometric observations. Extended Kalman Filter (EKF)-based61

Orbital Filter (OF) models, as pioneered by (Capuano, 2016), have demonstrated significant navigation performance in Earth-62

Moon transfer orbit (MTO) up to Moon altitudes. In line with the reduced dynamic approach, (Capuano et al., 2017) augmented63

the state space model with consider parameters to mitigate the effects of unmodeled orbital forces. Additionally, an ensemble64

Kalman filter (EnKF) model targeting orbital navigation in MTO has shown promising performance in simulations at lunar65

altitudes (Murata, 2023). Recently, unconventional EKF architectures that constrain a kinematic OD solution with a planned66

orbital trajectory have also been proposed (Vouch et al., 2024).67

As part of National Aeronautics and Space Administration (NASA)’s Commercial Lunar Payload Services (CLPS) program68

(Task Order 19D), the Lunar GNSS Receiver Experiment (LuGRE) (Parker et al., 2022) serves as case study to investigate the69

potential of more advanced Bayesian formulations for autonomous GNSS-based orbital navigation of a S/C in lunar proximity.70

The LuGRE technology development payload will deploy the Navigation Early Investigation on Lunar surface (NEIL) module–a71

GNSS Software Defined Radio (SDR) receiver specifically customized for operations in deep-space (Tedesco et al., 2023)–72

onboard the US Firefly Blue Ghost Mission 1 (BGM1) lander. The mission will set as the first flight demonstration of multi-GNSS73

PNT in cis-lunar space and on the Moon surface; one of the key scientific objectives of LuGRE is to assess the performance of74

filtering-based PNT solutions obtained both by the real-time receiver operation and through ground-based post-processing of75

sampled multi-system, multi-band observables (Minetto et al., 2022; Nardin et al., 2022, 2023).76

This work aims to demonstrate the potential of a more complex Unscented Kalman Filter (UKF) model which integrates77

multi-channel GNSS observables tightly with the prediction of space dynamics from an orbital propagator. Benchmarking the78

UKF formulation against an EKF-based model, a Low Lunar Orbit (LLO) segment 61 RE away from Earth is considered to79

comprehensively assess the attainable orbital navigation performance. In particular, both Bayesian estimators are tested for80

the post-processing of observables constructed by the LuGRE receiver in a Hardware-in-the-Loop (HIL) simulation with RF81

GNSS signals. Leveraging a faithful model for the RF link simulation, the operational environment seen by a receiver in lunar82

proximity is also discussed in terms of navigation metrics. Even with an error-prone initialization, the UKF-based architecture83

can effectively tackle harsh multilateration geometry and reduced availability exhibiting position estimation errors within 2 km84

for the 98.97% of the analyzed orbit.85

II. BACKGROUND
From the navigation perspective, OD is the problem of determining the S/C motion relative to the center of mass of the Earth,86

and express it in a specified coordinate system. Orbital motion is described by the state of the dynamical system, which87

encompasses the instantaneous S/C position and velocity as minimal set of parameters useful to predict future motion states.88

In a Bayesian filtering framework, GNSS-based orbital navigation can be framed as a statistical estimation process which89

sequentially estimates the belief of the latent system state. Given an initial estimate x0 of the state drawn from a distribution90

p (x0) which reflects the initial knowledge about the system (i.e., the initial condition), the estimation process tackled by the91

Bayesian filter follows two steps:92
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Figure 1: Bayesian filtering approach for orbital navigation with radiometric GNSS observations, integrating predictions from an orbital
propagation model. Inspired by (Fang et al., 2018).

• Prediction of the prior state density: the moments of the prior p(xk|x̂k−1)1 predict the system state evolution at time93

tk by applying the transitional model f(·) to the latest state estimate x̂k−1.94

• Estimation of the posterior state density: the posterior p(xk|zk) is estimated leveraging sampled observations zk which95

relate to the state through the measurement model h(·).96

A mathematical formulation of the S/C orbital dynamics (i.e., an orbital propagator) defines the transitional (or, motion) model97

as a non-linear, stochastic differential equation:98

ẋ(t) = f(x(t), t) +w(t) . (1)

Inaccuracies in the physical model of the orbital forces would end up causing the orbital propagator to deviate from the actual99

motion. These effects, together with deterministic yet unknown control inputs, are captured in the process noise term w(t).100

As a matter of fact, (1) is a transitional model with continuous-time dynamics. Although the orbital motion is more accurately101

described in continuous-time, the system is observed at discrete-time instants. When an estimate of the orbiting vehicle state is102

available at tk−1, (1) can be numerically integrated (cf. (Battin, 1999)) between sample intervals:103

xk = xk−1 +

∫ tk

tk−1

f(x(t), τ)dτ +wk . (2)

Model (2) characterizes the system evolution in terms of an equivalent non-linear, discrete-time difference equation. The104

random white-noise sequence wk is considered from the discretization of a piecewise constant process noise (Schutz et al.,105

2004). Under the assumption that the system state evolves as a discrete-time Markov process, a graphical representation of the106

sequential procedure is shown in Figure 1.107

When sampled GNSS observations are retrieved onboard (i.e., zk), they are processed through the measurement model:108

zk = hk(xk) + vk . (3)

This model filters observations using predictions based on orbital propagation, treating non-systematic measurement errors as109

additive disturbances with runtime-adaptable covariance. The resulting Bayesian formulation integrates GNSS observables110

tightly with the prediction of space dynamics (Capuano, 2016). This approach is well-suited at lunar altitudes where GNSS111

signal depletion occurs and blind spots are likely to intermittently appear. In fact, the integration of an orbital propagator enables112

continuous navigation without the need for a minimum set of radiometrically visible satellites to compute a single-point solution.113

Additionally, a limited number of measurements can still be beneficial in constraining the model-based orbital propagation,114

provided these measurements are not outliers. This helps to prevent drift caused by the integration of process noise.115

1xk=x (t = tk), and x̂k is an estimate of the true yet unknown system state.



1. Space vehicle dynamics116

In the framework of Newtonian’s physics, the spacecraft motion dynamics in an inertial reference frame relative to the Earth’s117

center of mass are governed by the two-body model:118

r̈(t) = −GMer(t)

r(t)3
= −µer(t)

r(t)3
(4)

which defines the second-order differential equation of motion for the unperturbed Keplerian orbit. In particular:119

• r(t) = [rx (t) , ry (t) , rz (t)]
T is the instantaneous, absolute spacecraft position vector expressed in an Earth-Centered120

Inertial (ECI) reference frame (or, its realization in the J2000 frame);121

• ṙ(t) = [ṙx (t) , ṙy (t) , ṙz (t)]
T is the instantaneous, absolute spacecraft velocity vector expressed in ECI frame;122

• r̈(t) = [r̈x (t) , r̈y (t) , r̈z (t)]
T is the instantaneous, absolute spacecraft acceleration vector expressed in ECI frame;123

• r(t) is the instantaneous geocentric distance of the S/C from the Earth center of mass (i.e., r(t) = ∥r(t)∥)124

• µe is the Earth’s gravitational parameter (µe = 398600.4405 km3 s−2 based on (Montenbruck et al., 2002))125

Time is the independent variable in the equations of motion for orbital navigation using GNSS measurements, which are tagged126

to the GPS time system (GPST). Transformations using TAI are needed for transitions between dynamical and atomic time127

scales (Montenbruck et al., 2002). However, time dependence will be implicit hereafter and time variable will be omitted.128

It is remarked that (4) undertakes the assumption of the Earth being a sphere that is gravitationally equivalent to point mass.129

Although a realistic Earth’s gravitation model should account for the geopotential gradient due to the non-uniform mass distri-130

bution of the geoid, this first-order approximation is increasingly acceptable for orbital altitudes above 50 000 km (Montenbruck131

et al., 2002). As the S/C moves away from the Earth in the interplanetary trajectory towards the Moon, other perturbing forces132

become dominant, such as luni-solar gravitational fields and solar radiation pressure (SRP). Incorporating third-body effects133

into the spacecraft’s orbital dynamics extends the two-body model into a multi-body problem. Since the physical realization of134

forces is additive in nature, the non-linear differential equation of perturbed orbital motion can be expressed following Cowell’s135

formulation:136

r̈ = −µer

r3
+ r̈p . (5)

The net perturbative acceleration r̈p to the spherically symmetric Earth’s gravitation reads as:137

r̈p = r̈3b + r̈srp (6)

and it includes r̈3b the acceleration due to the point mass gravitation of other celestial bodies, and r̈srp the acceleration arising138

from solar photons impinging on the S/C surface.139

140

Assuming a set of nc celestial bodies, the first term of (6), resolved about ECI frame axes, is:141

r̈3b =

nc∑
j=1

µj

(
rj − r

∥rj − r∥3
− rj

r3j

)
. (7)

where rj denotes the geocentric position vector of the j-th celestial body, rj its distance from the Earth’s center of mass,142

and µj its planetary mass parameter. For GNSS-based navigation in deep-space up to cislunar altitudes and lunar orbits, (7)143

encompasses perturbations from the Sun and Moon. The geocentric positions of these celestial bodies can be retrieved from144

Jet Propulsion Laboratory (JPL) Development Ephemerides series DE440 (Park et al., 2021). These ephemerides, reference145

to the International Celestial Reference System (ICRS) (e.g., ECI-frame), and are computed by fitting integrated orbits to both146

ground-based and space-based observations in a series of Chebyshev polynomials. The DE series are time-tagged to Barycentric147

Coordinate Time (TCB), requiring conversions to align with the GPS time system. The planetary mass parameters according to148

DE440 are tabulated in (Park et al., 2021).149

The SRP induced acceleration on a S/C of mass m can be considered as a surface force which is approximated by the following150

model:151

r̈srp = −PsrpCR
A(1AU)2

m

rs − r

∥rs − r∥3
(8)



where A is the S/C surface exposed to solar energy, CR is the radiation pressure coefficient (cf. Table 3.5 of (Montenbruck152

et al., 2002)) that depends on the S/C reflectivity ϵ, and rs is the ECI-frame position vector of the Sun w.r.t. the S/C position. At153

one astronomical distance (i.e., 1AU ≈ 149.6× 106 km), the solar pressure Psrp ≈ 4.56× 10−6 Nm−2 assuming that surface154

A absorbs all photons (i.e., ϵ = 0) and is normal to the direction of the incoming radiation (Montenbruck et al., 2002).155

Following from (1), the transitional model for the orbital propagator in an ECI-frame would result from reframing the perturbed156

Keplerian motion (6) into a non-linear, first-order vector differential equation:157

d

dt

[
r
ṙ

]
︸︷︷︸
xsc

=

[
ṙ

−µer
r3 + r̈3b + r̈srp

]
︸ ︷︷ ︸

f(xsc,t)

+

[
03×1

wsc

]
(9)

where wsc is the instantaneous acceleration driving noise with Power Spectral Density (PSD) Ssc
w =

[
Ssc
wx

, Ssc
wy

, Ssc
wz

]T
.158

The differential model (9) is applicable for a deep-space orbital propagator during a transfer orbit above 50 000 km altitude, and159

it is also suitable for cislunar and lunar altitudes. Recent contributions have considered a model in a selenocentric inertial frame160

that incorporates higher-order lunar gravity harmonics (Iiyama et al., 2024). Nonetheless, this model lies beyond the scope of161

the present study.162

2. GNSS measurement model and clock dynamics163

Sampled GNSS observations admit a non-linear functional model with the S/C positioning states. Assuming TOA ranging164

based on code tracking, the pseudorange equation for the PRN sequence transmitted by the i-th GNSS satellite is formulated at165

time tk as:166

ρik =
∥∥rk − rik

∥∥+ c · δtu,k + ϵik (10)

where:167

• rik is the position vector of the satellite center of mass at tk;168

• δtu,k is the receiver clock offset w.r.t. GNSS system time at tk;169

• ϵik is the non-systematic, residual model error which combines both signal-in-space user range error (SISRE) and user170

equipment error (UEE) into the user equivalent range error (UERE) (Teunissen and Montenbruck, 2017).171

The pseudorange equation (10) is valid under the assumption that space-segment corrections, relativistic effects, atmospheric172

delays2, and biases have been compensated for by external data or physical models (Teunissen and Montenbruck, 2017). The173

position vector rk is referenced to the phase center of the GNSS receiver antenna onboard the S/C, unlike Section II.1, which174

considers the position relative to the S/C center of gravity. A lever-arm correction factor should be applied to account for such175

spatial offset. For a GNSS receiver tracking PRN sequences of both GPS and Galileo satellites, δtu,k represents the clock-offset176

relative to GPST. As such, the Galileo pseudorange equation must include an additional term for the GPS-to-Galileo time-offset177

(GGTO). Unless demodulated from the navigation message and embedded as space-segment correction, the GGTO is included178

as part of the sequential estimation process. The satellite position vector in (10), whether computed from broadcast ephemeris179

parameters in the navigation message or through precise orbit products, is determined in an Earth-Centered Earth-Fixed (ECEF)180

frame (i.e., WGS84) (Teunissen and Montenbruck, 2017). Since the receiver position vector is more conveniently expressed in181

an ECI frame, a rotational transformation is required to compare on-board GNSS measurements with satellite positions.182

Doppler measurements arise from the relative motion between the receiver and GNSS satellites, and they are relevant to the183

estimation of both the receiver velocity and the frequency deviation of the receiver clock. The Doppler model can be derived184

by differentiating the pseudorange equation w.r.t. time, and is computed from the projection of the relative satellite-receiver185

velocity vector on the receiver-to-satellite Line-of-Sight (LOS) (Morichi et al., 2024). For the tracked carrier component of the186

i-th GNSS satellite, the Doppler measurement Di
k is expressed as:187

ρ̇ik − ṙik · eik︸ ︷︷ ︸
Di

k

= −eik · ṙk + c · δṫu,k + ϵ̇ik (11)

where:188

2When tracking signals on multiple frequency bands, the dispersive group delay induced by the ionosphere is referenced to a single frequency using
frequency-dependent ionospheric coefficients.



• ρ̇ik is the pseudorange-rate measurement at tk;189

• ṙik is the velocity vector of the satellite center of mass at tk;190

• eik =
[
eix,k, e

i
y,k, e

i
z,k

]T
is the unit pointing vector from the S/C position to i-th satellite position at tk;191

• δṫu,k is the receiver oscillator frequency deviation (i.e., clock drift);192

• ϵ̇ik is the residual error after model-based corrections and compensation of known physical effects.193

Eventually, clock dynamics can be modelled using to the following discrete-time, linear stochastic system (Galleani, 2008):194 [
δtu,k
δṫu,k

]
︸ ︷︷ ︸

xclk
k

=

[
1 ∆t
0 1

]
︸ ︷︷ ︸

Φclk

[
δtu,k−1

δṫu,k−1

]
+

[
wclk

ϕ,k

wclk
f,k

]
︸ ︷︷ ︸
wclk

k

(12)

where ∆t = tk − tk−1, Φclk is the time-invariant state-transition matrix, and wclk
k is the white noise random sequence (i.e.,195

from discretization of clock noise random walk) with stationary covariance Qclk (cf. Section 9.3 in (Brown and Hwang, 1992)).196

3. State-space model formulation197

Combining S/C orbital dynamics with the GNSS receiver clock states, the state vector for GNSS-based orbital navigation can198

be defined at time tk:199

xk =
[
xscT

k xclkT

k

]T
∈ Rn×1 (13)

where xsc
k ∈ R6×1 includes the S/C absolute position and velocity vector states at time tk, and n = 8 for the present study.200

Starting from the non-linear, differential model (9) for perturbed orbital motion, an approximate linear model between sample201

times can be derived w.r.t. the latest estimate of S/C dynamics (i.e., x̂sc
k−1). The solution to the first-order, vector differential202

equation of the state-transition matrix can be expressed as a function of the system matrix (Bar-Shalom et al., 2004):203

Φsc
k−1,k = eF

sc(t,x̂sc
k−1)∆t (14)

where:204

F sc
(
t, x̂sc

k−1

)
=

∂f (xsc, t)

∂xsc

∣∣∣∣
xsc = x̂sc

k−1

=

[
03×3 I3×3

∂
∂r

(
−µer

r3 + r̈3b + r̈srp
)∣∣

xsc = x̂sc
k−1

03×3

]
. (15)

The partial derivatives of Earth’s point mass gravitation, third-body effects, and SRP can be found in (Montenbruck et al., 2002).205

From (14), the state-transition matrix for the linearized dynamics is obtained via Taylor series approximation. The linearized206

approximation may be inaccurate compared to the true transition matrix. An alternative is to express the differential equation207

of the state-transition matrix in variational form, and use numerical integration (Montenbruck et al., 2002). A simpler approach208

is to use a complex-step derivative approximation (Capuano, 2016).209

Assuming a first-order Taylor approximation of (14), the state-transition matrix including receiver clock states takes the form:210

Φk−1,k =

[
I6×6 + F sc

(
t, x̂sc

k−1

)
∆t 06×2

02×6 Φclk

]
. (16)

Discretizing the process driving noise in (9) into a white noise sequence wsc
k , the covariance matrix of the discrete process211

sequence affecting state-transition dynamics becomes:212

Qk =

[
Qsc

k 06×2

02×6 Qclk

]
, Qsc

k =

[
∆t3

3
∆t2

2
∆t2

2 ∆t

]
⊗ diag

(
Ssc
wk

)
(17)

where Ssc
wk

=
[
Ssc
wx,k

, Ssc
wy,k

, Ssc
wz,k

]T
is the sampled PSD of the acceleration process white noise.213

In a similar vein, the non-linear GNSS observation model (cf. Section II.2) can be linearized by taking the partials of the214

measurements w.r.t. the state evaluated locally at the sample instant. Assuming Ns tracked GPS/Galileo satellites at time tk and215



GGTO demodulation (i.e., single constellation model), the Jacobian of the observation equations (10) and (11) is computed as:216

Hk =

[
H̃k 0Ns×3 c · 1Ns×1 0Ns×1

0Ns×3 H̃k 0Ns×1 c · 1Ns×1

]
, H̃k =

[
−e1k, . . . , −eNs

k

]T
. (18)

This linearized measurement model is valid under the assumption of processing single-frequency, code-based observations. For217

dual-frequency processing, (18) strictly holds after ionosphere-free linear combination (Teunissen and Montenbruck, 2017).218

When considering the processing of GNSS observations in a spaceborne receiver, it is reasonable to assume measurement noise219

vk as a white random sequence with non-stationary covariance Rk. For Ns pseudorange and pseudorange-rate observations220

available from navigation satellites, the covariance matrix assuming i.i.d. random errors is compactly written as:221

Rk = diag
([

σ2
ϵ1,Sk

, . . . , σ2
ϵNs,S
k

, σ2
ϵ̇1,Sk

, . . . , σ2
ϵ̇Ns,S
k

])
. (19)

For the stochastic disturbance affecting pseudorange observations, the error budget in terms of UERE includes space-segment222

errors (i.e., satellite clock and ephemeris parameters), uncorrected atmospheric effects, relativistic errors, and receiver noise.223

The dominant contributor to receiver noise on pseudorange measurements is the code tracking jitter from the Delay-Lock Loop224

(DLL), induced by thermal noise. The model from (Betz and Kolodziejski, 2000), valid for BPSK modulated codes3, can be225

used to weight code tracking accuracy runtime by jointly accounting for code loop tuning, front-end bandwidth, and received226

Carrier-to-Noise-density ratio (C/N0).227

Doppler measurements variance, instead, should account for the Phase-Lock Loop (PLL) carrier tracking jitter, influenced by228

thermal noise and short-term Allan deviation, and Frequency-Lock Loop (PLL) frequency tracking jitter, primarily affected by229

thermal noise, neglecting vibration-induced errors.230

For a comprehensive understanding of each noise source, the reader is encouraged to refer to the literature on the topic (Kaplan231

and Hegarty, 2017).232

III. METHODOLOGY
1. UKF architecture with orbital propagator233

For non-linear transitional models, the sub-optimal EKF uses a Taylor series approximation under the Gaussian assumption for234

covariance prediction, while state-propagation can be achieved through numerical integration. In contrast, the UKF uses the235

Unscented Transform (UT) paradigm, which can directly capture the moments of a target Gaussian distribution, providing a236

more accurate representation of highly non-linear functions in sequential estimation. This section discusses the UKF model237

embedded with an orbital propagator for GNSS-based sequential OD. The EKF-based model is not extensively discussed, as it238

is well-documented in the literature (Capuano, 2016). However, the results section will evaluate both Bayesian models in the239

task of S/C orbital navigation in LLO, when GNSS observations are filtered in a tightly integrated configuration.240

Following the augmented form of the UKF (Särkkä and Svensson, 2023) with process noise terms, the augmented posterior241

state estimate at tk−1 is expressed4 as:242

x̂a
k−1 =

[
x̂T
k−1 01×n

]T
. (20)

Correspondingly, the augmented posterior covariance estimate follows as:243

P̂ a
k−1 =

[
P̂k−1 0n×n

0n×n Qk

]
. (21)

A set of 2n+ 1 sigma-points are then deterministically computed as:244

χi
k−1 =

[(
χi,x

k−1

)T (
χi,w

k−1

)T]T
=


χ0

k−1 = x̂a
k−1 for i = 0

χi
k−1 = x̂a

k−1 +

√
(n+ λ)

[
P̂ a

k−1

]
i

for i = 1, . . . , n

χi+n
k−1 = x̂a

k−1 −
√
(n+ λ)

[
P̂ a

k−1

]
i

for i = n+ 1, . . . , 2n

(22)

3When processing subcarrier modulated codes, the modified formulation discussed in (Betz, 2000) should be used. Yet for the processing of Galileo E5 and
E5ab signals, code tracking error models can be found in (Tawk et al., 2012).

4For discrete-time equivalent models, the additive discrete process sequence has the same dimensionality of the state vector. However, this is not true in
general, and a similar equivalence does not hold for model noises defined directly in discrete time (Gustafsson and Gustafsson, 2000)



where [·]i denotes the i-th matrix column, and the square-root of a matrix is computed from the Cholesky decomposition of the245

positive definite P̂ a
k−1. The terms of χi

k−1 can be further decomposed as:246

χi,x
k−1 =

[(
χi,sc

k−1

)T (
χi,clk

k−1

)T]T
; χi,w

k−1 =

[
01×3

(
χi,wsc

k−1

)T (
χi,wclk

k−1

)T]T
(23)

to differentiate between the components relative to S/C positioning states and those relative to the GNSS receiver clock.247

Equation (22) defines the scaled UT (Van Der Merwe, 2004) with248

λ = α2 (n+ κ)− n

determining the spread of the sigma-points around the mean of the posterior state density; this spread is tuned through the filter249

parameters (α, κ). The sigma-points are assigned a set of scalar, time-invariant weights:250

Wi =

{
λ

n+λ i = 0
1

2(n+λ) i = 1, . . . , 2n
(24)

a) Moments of the Gaussian prior state density251

x̂−
k =

2n∑
i=0

Wiχ
i,x
k|k−1

P̂−
k =

2n∑
i=0

Wi

[
χi,x

k|k−1 − x̂−
k

] [
χi,x

k|k−1 − x̂−
k

]T
.

(25)

The term χi,x
k|k−1 is obtained through numerical integration of

(
χi,sc

k−1,χ
i,wsc

k−1

)
based on (9), and linear propagation of252 (

χi,clk
k−1 ,χ

i,wclk

k−1

)
via (12). The predicted covariance evaluates the spread of the time propagated sigma-points over the253

estimated mean of the prior. For the i-th time-propagated sigma-point χi,x
k|k−1, the predicted GNSS measurement vector ẑi

k is254

calculated by leveraging the non-linear functional models (10) and (11). The predicted GNSS measurement vector would then255

be computed:256

ẑk =

2n∑
i=0

Wiẑ
i
k (26)

b) Posterior estimation257

Pxz =

2n∑
i=0

Wi

[
χi,x

k|k−1 − x̂−
k

] [
ẑi
k − ẑk

]T
Pzz =

2n∑
i=0

Wi

[
ẑi
k − ẑk

] [
ẑi
k − ẑk

]T
x̂k = x̂−

k + PxzP
−1
zz (zk − ẑk)

P̂k = P̂−
k − PxzH

T
k −HkP

T
xz +HkPzzH

T
k

(27)

where zk is the GNSS measurement vector at the sample instant (cf. Section II.2), Pxz is the the cross-covariance between258

x̂−
k and ẑk, and Pzz is the innovation covariance (Julier et al., 2000). The last relation of (27) expresses a generalized Joseph259

formula for the posterior covariance estimation, applicable to non-linear measurement models (Zanetti and DeMars, 2013).260

2. Lunar orbit scenario261

The upcoming LuGRE mission is considered as case-study to assess the potential of more complex non-linear Bayesian262

formulations when tackling the challenges of autonomous orbital navigation of a S/C in the lunar regime.263

The initial state-vector of the BGM1 lander has been used in AGI’s Systems Tool Kit (STK) to retrieve ephemeris parameters264

for the whole mission based on the High Precision Orbit Propagator (HPOP). The ephemeris parameters are expressed in the265



(a) (b)

Figure 2: (a) The BGM1 lander trajectory with a zoom in the analyzed LLO segment. (b) The dynamic skyplot of tracked GPS and Galileo
satellites in lunar proximity.

Table 1: Overview of the analyzed LuGRE mission segment in LLO.

Parameter Value
Trajectory Type LLO
Reference Frame ICRF (ECI-J2000 realization)
Initial geocentric distance [km] (RE) 389032.47 (60.99)
Maximum geocentric distance [km] (RE) 390981.82 (61.30)
Mean geocentric distance [km] (RE) 389206.46 (61.02)
Initial GPS time [s] / UTCG date 1411329668.38 / 25-Sep-2024 20:01:49.382
Final GPS time [s] / UTCG date 1411336800.38 / 25-Sep-2024 21:59:42.382
Sampling time [s] 60

geocentric, inertial J2000 frame, and are converted to position and velocity states. Starting from the complete mission trajectory266

(45.97 days), a section (2 hours) has been selected for the evaluation of the navigation algorithms. This section involves a267

selenocentric segment in LLO around 61Earth Radii (RE) and close to apolune, happening after the second Lunar Orbit Injection268

(LOI) maneuver (Parker et al., 2022). The LuGRE trajectory together with the analyzed LLO section are shown in Figure 2(a).269

Moreover, the LLO details are summarized in Table 1. For the selected LLO, the original 60-second step trajectory was up-270

sampled to 1 Hz performing 7-th order Lagrange interpolation in General Mission Analysis Tool (GMAT) (Hughes et al., 2014).271

This step was performed in view of emulating the operational scenario of the LuGRE receiver (cf. Section III.3). Eventually,272

a frame transformation to an Earth-fixed frame (ECEF-WGS84 realization) was operated on the up-sampled trajectory segment273

by accounting for Earth’s rotational effects w.r.t. the inertial space.274

The authors remark that the reported trajectory and details are based on a pre-launch orbit design; the latter does not reflect the275

actual trajectory that the BGM1 lander will follow upon mission deployment. The details of the operational orbit are classified276

and therefore cannot be disclosed.277

3. RF simulation framework & navigation analysis278

To emulate the GNSS operational environment and the RF signal conditions the LuGRE receiver is expected to be subject279

to in the LLO segment, a multi-GNSS simulation model was configured in Spirent GSS9000 GNSS RF simulator (Spirent,280

2015). Consistent with the NEIL hardware design and Earth GNSS signal processing capabilities, only GPS (G) and Galileo281

(E) constellations were modelled in the simulation environment. The most recent Almanac data and space-segment operational282

advisories were incorporated into the navigation systems’ configuration. Although also other services are broadcast by the283

respective satellite payloads, the RF signal generation was confined to L1 C/A and L5 signals for GPS, and E1 and E5a signals284

for Galileo. For the Global Positioning System (GPS) constellation, the gain patterns for batches IIR and IIR-M were modelled285

according to (Marquis, 2016), with the boresight EIRP configured based on (Delépaut et al., 2020) for L1 C/A and L5-Q signals.286

Similarly, the gain pattern for batch IIF was taken from (Donaldson et al., 2020), and replicated for batch III-A. Given the287

confidentiality of the radiation patterns for the Galileo satellites, the Galileo EIRP design for the main-lobe was based on GPS288



(a) C/N0 from RF-visible satellites (L1/E1)

(c) Visibility map of GNSS satellites (unique SVs)

(b) C/N0 from RF-visible satellites (L5/E5a)

(d) Single-point positioning error (left axis) and Dilution of Precision
metrics (right axis).

Figure 3: GNSS environment seen by the LuGRE receiver in the analyzed LLO segment in terms of relevant navigation metrics.

batch IIF, with the main lobe rescaled according to the Galileo orbit semi-major axis. For sidelobes, they were conservatively289

configured after power calibration based on (European GNSS Service Centre, 2023). Moreover, the non-isotropic radiation290

patterns of both GNSS systems for the modelled signals were truncated with an off-boresight mask to account for satellite body291

effects. Further details about modelled patterns for both E1-C and E5a-Q signals as well as details about RF link simulation can292

be found in (Tedesco et al., 2023). Regarding atmospheric effects, GNSS signals received from satellites on the opposite side293

of the Earth relative to the spacecraft’s position cross the ionosphere twice, causing greater delays and introducing unmodelled294

biases in the retrieved measurements These signals correspond to the main lobe portion in the transmitting EIRP that spills over295

the Earth’s disk and is confined within the altitude of the ionospheric layer (i.e., ≈103km). For GPS satellites, this translates296

to an angle of approximately 13◦ in the EIRP pattern, with an additional 2.2◦ margin for the ionosphere, while for Galileo297

satellites, the angles are slightly smaller at approximately 12◦ plus 2◦ respectively, due to the higher orbit radius. At Moon298

altitudes, the likelihood of receiving such signals is very low, as demonstrated in the feasibility study by (Delépaut et al., 2020).299

Therefore, ionospheric effects were neglected in the simulation, which is justified for the analyzed LLO section of the LuGRE300

trajectory. Nevertheless, when tracking dual-band signals for the same satellite and processing observables, ionospheric-free301

measurements can be obtained, albeit with higher noise variance.302

Based on the described framework, a HIL test was set-up by integrating the NEIL receiver in the configured GNSS testbench.303

Analogue were for generated by Spirent for GPS L1/L5 and Galileo E1/E5a bands, and processed by the radio receiver. Taking304

into account S/C attitude while navigating the LLO, de-pointing loss effects were accounted for. The real-time data and the305

multi-GNSS raw observables collected during the receiver operation were eventually post-processed.306

Figure 2(b) displays the dynamic skyplot of GPS and Galileo satellites, whose signals are tracked and for which observables are307

constructed, according to the high-sensitivity acquisition and tracking capabilities of the LuGRE receiver. This polar diagram308

considers the instantaneous relative dynamics between the S/C and the tracked GNSS satellites in the LLO segment. The309

positions and velocities of the tracked GNSS satellites are projected onto a Local Vertical Local Horizontal (LVLH) frame (for310

Space Data Systems , CCSDS), with the radial direction representing the S/C’s boresight, assuming perfect pointing to the311

Earth’s center of mass. To ease graphical interpretation, a zoom is included that frames the boresight direction; it is clearly312

visible that the batch of tracked satellites is clustered at boresight thus lacking variability in elevation due to the large distance313

of the S/C from the Earth compared to the GPS/Galileo orbit semi-major axis. Moreover, the minimum elevation for the Earth’s314

disk and the elevation isolines of both GPS and Galileo systems are identified by modeling the GNSS system’s orbit semi-major315



axis and flattening. For each S/C position, an ellipsoid is considered, and the minimum elevation level is determined and316

repeated over the entire analyzed LLO. This elevation isoline represents the boundary circle beyond which satellites cannot be317

seen inside the polar diagram. The Moon’s occlusion of the S/C-to-Earth LOS is considered as well instant-by-instant, with the318

skyplot representing the worst-case Moon occupation. Despite this occlusion, RF signals are not necessarily blocked. Given319

the S/C’s mean geocentric distance (cf. Table 1) and the Moon’s radius (about 0.2727 of Earth’s mean equatorial radius), the320

Moon’s disk occupies an angle roughly 84.19 times smaller than the Galileo E1 main lobe beamwidth when the Moon center of321

mass is taken collinear with the S/C-to-Earth LOS.322

By setting a 20 dB-Hz threshold as the minimum received C/N0 level of a signal for the corresponding raw observable to be323

considered available for processing in the PVT unit, the C/N0 patterns seen by the LuGRE receiver are depicted in Figure 3(a)324

for L1/E1 band and in Figure 3(b) for the L5/E5a band. For the mean geocentric distance of the analyzed LLO, a 30 dB-Hz325

threshold is reasonable to differentiate between the reception of the main lobe and peak side lobes. The measured C/N0 levels326

for L5/E5a band signals are higher, reaching up to 43 dB-Hz for GPS L5, due to the wider transmission pattern beamwidth and327

lower path loss. This aligns with the observations by (Delépaut et al., 2020). However, more signals are tracked on the L1/E1328

band because only a subset of satellites of each system broadcasts services in the lower frequency band. Notably, measurements329

are available from only one Galileo satellite (i.e., E19) in the whole LLO segment, with a side lobe signal being tracked. This330

is likely caused by the conservative modeling of Galileo EIRP in the simulator, or the orbital geometry, as Galileo satellites are331

distributed across three orbital planes compared to GPS’s six, limiting orbital diversity.332

Figure 3(c) illustrates the radiometric visibility profile of GNSS satellites throughout the entire LLO section. It shows that a333

maximum of five GPS satellites are tracked for a short interval of 130 s, accounting for only the 1.21% of the dataset length. On334

average, 2.72 satellites are tracked, indicating that fewer than three satellites are available for most of the dataset. Moreover, the335

availability of the minimum number of measurements required for the computation of a single-point PVT solution is 21.32%.336

This availability is reflected in the weighted Least-Mean Squares (LMS) solution shown in Figure 3(d) (left axis). The right axis337

on the same figure highlights the profiles of geometric DOP (GDOP), position DOP (PDOP), and time DOP (TDOP). To better338

illustrate the dependence of the single-point positioning error on the DOP metrics, a logarithmic scale was chosen. Due to the339

scarcity of tracked GNSS satellites, the LLO scenario is characterized by remarkable DOP discontinuities. In particular, the340

rapidly changing geometric conditions can be characterized by steep ascending ramps, which rapidly deteriorate the accuracy341

of GNSS single-point estimates.342

IV. RESULTS
This section discusses the OD performance of the UKF-based OF model (cf. Section III.1) within the analyzed LLO scenario343

in the LuGRE framework, benchmarked against the renowned EKF-based model. The filtering-based algorithm are analyzed344

for post-processing sampled GNSS observations collected by the LuGRE receiver in the HIL simulation (cf. Section III.3).345

The filters have been developed with equivalent orbital propagators modeling S/C dynamics, and share the same stochastic346

characterization of the noises affecting both the process and the measurements (cf. Section II.3). It is remarked that sequential347

estimators require an initial condition for the PVT states, which models the prior knowledge about the system. Typically, this348

initialization can be provided through a (weighted) single-point solution. However, the limited multi-system, multi-channel349

position fixing availability observed in lunar proximity (cf. Figure 3) suggests the need for alternative approaches. For the350

current assessment, aided initialization is assumed; in the real operational scenario, this approach would leverage data via the351

ground-based TeleCommand (TC) link. Similarly, in this analysis, the navigation algorithms are initialized using the upsampled352

BGM1 lander trajectory. To simulate inaccuracies in the aiding information, purposely degraded initialization is considered.353

For the position states, a 1km error is uniformly added to each spatial dimension. A similar approach is applied to the velocity354

states, with a smaller error accounting for the 0.1% of the true lander speed at the initial sample time. In the absence of reference355

values for the receiver timing states, rule-of-thumb values are assumed, and this lack of prior knowledge is modelled in the356

covariance of the initial state distribution.357

Figure 4 shows the time-series of S/C position and velocity estimation errors (ECI frame) using dual-channel GNSS observations,358

with separate plots for position (Figure 4(a)) and velocity (Figure 4(b)). The solid lines of each error subplot evaluate the distance359

of the estimated mean of the posterior density w.r.t. the true lander positioning state at the sample instant. Moreover, the shaded360

areas indicate the conditional 3-sigma Root-Sum-Squared (RSS) error. Figure 5 presents the errors in the S/C comoving orbital361

frame, separating radial error from the orthogonal plane components. Cumulative error statistics are summarized in Table 2.362

Upon the biased initialization of 1 km, the radial position error in Figure 5(a) reduces to about 50m after the first sample of363

GNSS observations are filtered through to orbital propagator. Given that the tracked satellites are clustered at high elevation364

(cf. 2(b)), the radial error mirrors the error in the receiver clock offset estimate. A similar behavior characterizes the radial365

component of the velocity estimate, as shown in Figure 5(b). Despite the limited number of available measurements at the366

beginning of the LLO section, the receiver timing states possess enough observability to allow for the convergence of the radial367

estimate. Conversely, the normal component exhibits an error bigger than the initial mismatch and takes longer time (about 10368
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Figure 4: EKF and UKF OD error (solid line) with RSS confidence intervals (shaded area) at 3σ (99.7% confidence).
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Figure 5: EKF and UKF OD error decomposed in radial (left axis) and normal (right axis) components of a local orbital frame.

minutes) to reduce for both filters. Additionally, for the normal components, the mean posterior estimates remain biased by369

roughly the same amount as the simulated initialization error. This suggests that accurate initialization is crucial for achieving370

accurate OD solutions in operational scenarios with significant depletion of Earth GNSS signal, such as those experienced at371

the Moon.372

During the first time frame of single-point PVT availability (cf. Figure 3(d) between 20:20 and 20:34), the radial position and373

velocity error profiles of both estimators follow the GDOP pattern as expected. However, at the end of the time frame, the UKF374

radial position estimate exhibits a sudden deviation while the EKF remains stable. This phenomenon might be associated with375

a decrease in the observability of the clock states due to the loss of L1 signal track for satellites G1 and G21 (cf. Figure 3(a)),376

along with the UKF filter gain weighting more the observations than the EKF. Moreover, examining the entire LLO section,377

abrupt variations in the radial error time series often coincide with discontinuities in the radiometric tracking of satellites (cf.378

Figure 3(c)). These discontinuities can determine anomalies in the clock states’ estimates, directly affecting the radial terms.379

However, the UKF appears to be less affected by these effects, resulting in a smoother estimate overall.380

More interesting effects can be observed during the second time frame of single-point PVT availability (cf. Figure 3(d) between381

21:8 and 21:19), which is marked by a harmful PDOP ramp with values reaching nearly 160 × 103. At the end of this ramp,382

coinciding with the loss of signal track for G1 on L1 band and G7 on L5, the conditional posterior estimates from the two383

filters highlight different behaviors. the EKF posterior mean for both position and velocity states drifts, accumulating an error384

against the true lander state that increases exponentially over time. This is clearly evidenced by the axial errors in Figure 4.385



Table 2: Cumulative OD error statistics for EKF and UKF architectures.

Position Error [km] Velocity Error [m/s]Bayesian Filter
68.3% 95.5% 99.7% 100% 68.3% 95.5% 99.7% 100%

EKF 2.26 13.06 15.43 15.52 2.42 8.44 8.63 8.67
UKF 1.02 1.76 3.09 3.16 0.81 2.29 3.14 3.20

Despite the growing error, the EKF maintains high confidence in its estimate, as the 3σ RSS error profile closely follows the386

OD error curves. This likely results from the non-linearity of the system dynamics, which compromises the validity of the EKF387

Taylor approximation about the latest state estimate. For each component of xsc
k , comparing the terms of (15) evaluated both388

about the latest state estimate and about the true lander state, the difference between these quantities exceeds the corresponding389

state estimate’s uncertainty, leading to an overoptimistic covariance and a growing state estimation error. Conversely, the UKF390

posterior estimate maintains its accuracy, albeit the above mentioned bias on the normal component. Simultaneously, the UKF391

confidence in the estimate decreases exponentially, as indicated by the RSS error profile. This suggests that the UT-based392

approximation of the state density better accounts for unknown changes in the system dynamics in the absence of GNSS393

observations. Moreover, sigma-points enable an improved approximation of state correlations in the Gaussian belief, which is394

crucial for maintaining estimate quality under compromised state observability. In the final part of the LLO, new measurements395

from a Galileo satellite allow for a reduction in the UKF state uncertainty estimate. For the EKF, instead, the estimate is sensitive396

to changes in the observables’ set, but this is insufficient to recover from divergence.397

V. CONCLUSION
This study has demonstrated the performance of autonomous GNSS-based OD in the lunar regime. In a sequential Bayesian398

architecture which integrates GNSS radiometric observations tightly with the prediction of space dynamics from an orbital399

propagator, the potential of an UKF-based model has been investigated for statistical OD. The more complex sigma-point filter400

has been compared against the renown EKF-based OF model, showcasing near-Moon PNT at about 61RE. The upcoming LuGRE401

scientific mission has served as case-study, selecting a LLO segment from a pre-launch design of the BGM1 trajectory. Both402

Bayesian navigation algorithms have been assessed through the post-processing of raw multi-band GPS/Galileo observables;403

these measurements have been constructed by the NEIL receiver in a HIL test with realistic RF link simulation.404

By leveraging the UT under the Gaussian assumption, the UKF can better approximate the moments of the posterior belief for the405

latent state. When the state observability is undermined due to the absence of fresh measurements, enhanced OD performance406

can be pursued through better modelling the correlations of states while propagating orbital dynamics. This seems promising in407

scenarios with severe satellite signal depletion, such as in lunar proximity. Moreover, the UKF’s sigma-point sampling proves408

effective in maintaining estimate accuracy and mitigating the effects of harmful discontinuities characterizing multi-lateration409

geometry in the lunar regime.410

Highlights of the study include:411

• The UKF maintains position estimation errors within 2 km for the 98.97% of time over the analyzed dataset, with a net412

3σ accuracy gain over the EKF of 79.97% for the position estimate and of 63.62% for the velocity estimate.413

• Under detrimental GDOP conditions, the UKF results in a smoother and more resilient state estimate compared to the414

EKF; the latter exhibits a divergent trend driven by an overoptimistic covariance estimate.415

• Accurate initialization might be critical for both filters, particularly in the lunar environment, where availability of416

radiometric observations is limited and mismatching biases can be hardly cancelled.417

• The strong yet peculiar TDOP caused by the lack of elevation diversity in satellite ranging sources necessitates sequential418

estimators that can reduce the sensitivity of radial estimates to discontinuities in the timing estimates.419

Aligning with the goals of increased autonomy, the UKF-based OF model seems to offer a promising solution for GNSS-based420

onboard OD in the lunar regime. Further research will aim to further enhance PNT algorithms, and GNSS-based OD will be421

explored in different deep-space and cis-lunar operational scenarios.422
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