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Abstract: The growing demand for high-performance and energy-efficient processing in edge- 1

oriented Systems-on-Chip is driving the adoption of dedicated integrated circuits that accelerate 2

computationally intensive workloads. To minimize area and performance overhead, low-power, 3

general-purpose CPUs are often tightly coupled with domain-specific coprocessors implementing 4

custom instructions, thereby delivering higher throughput and reduced memory traffic. However, 5

commonly used in-order CPUs are not optimized for instruction-level parallelism, leading to stalls in 6

the instruction stream while waiting for long-latency coprocessor operations, and under-utilizing the 7

coprocessor while executing other instructions. This work investigates the benefits of replacing simple 8

in-order cores with a more complex out-of-order architecture to dynamically schedule instructions 9

for the main core and coprocessor, optimizing resource utilization and reducing execution time. 10

To ensure generality, an in-depth analysis was carried out by offloading instructions to a custom 11

dummy coprocessor capable of emulating iterative and pipelined operations with arbitrary latency. 12

Various workloads simulating real-world applications were executed on two variants of an open- 13

source microcontroller, equipped with a recent out-of-order core and the state-of-the-art CV32E40X 14

in-order core, respectively. Results from Register Transfer Level simulations show that the former 15

configuration executes up to 60 % more instructions per cycle, with a modest 12 % system area 16

overhead on a 65 nm CMOS technology node. 17

Keywords: CPU Microarchitecture; Out-of-Order; RISC-V; Edge Computing; Coprocessors 18

1. INTRODUCTION 19

With the recent shift towards a data-driven computing paradigm, the demand for 20

higher processing capabilities and better energy efficiency in edge-oriented Systems-on- 21

Chip (SoCs) has dramatically increased to overcome the bandwidth and latency limitations 22

of the existing centralized computing infrastructure. Artificial Neural Networks (ANNs) 23

are increasingly being embedded in Internet of Things (IoT) devices to provide private 24

and low-latency advanced functionalities. Health monitoring [1], robotics [2], and au- 25

tonomous driving [3] are some of the possible applications of ANNs on resource- and 26

energy-constrained devices. 27

In this context, heterogeneous SoCs have been proposed as a promising solution 28

to address the inherent inefficiency of the von Neumann architecture, which has been 29

the mainstay of embedded computers since their introduction. These systems accelerate 30

computationally intensive parts of the workload by offloading them to specialized, tightly- 31

coupled coprocessors implementing domain-specific Instruction Set Architecture (ISA) 32

extensions. Semantically rich instructions replace long sequences of scalar instructions, 33

significantly reducing the pressure on the memory hierarchy and execution time, ulti- 34

mately leading to higher throughput and energy efficiency at the system level. This benefit 35

is amplified by the preference for Reduced Instruction Set Computer (RISC) instruction 36

sets in low-power embedded systems, where executing computationally intensive tasks 37

on the Central Processing Unit (CPU) requires several additional instructions to move 38
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operands from the main memory into the CPU General Purpose Registers (GPRs) and 39

to construct potentially complex operations using elementary arithmetic instructions. In 40

contrast, domain-specific instructions are usually designed to apply Single Instruction 41

Multiple Data (SIMD) or vectorized operations, possibly implementing complex dataflow 42

patterns, in a single instruction. Consequently, the latency of instructions offloaded to 43

the coprocessor is often significantly higher than that of scalar instructions executed in 44

the CPU pipeline. Therefore, the effectiveness of such an approach partially depends on 45

the ability of the host CPU to efficiently offload accelerated instructions without causing 46

stalls in the main program while waiting for the coprocessor to produce the instruction 47

results. To this end, exploiting Instruction-Level Parallelism (ILP) in addition to Data-Level 48

Parallelism (DLP) is crucial. One possibility is to take advantage of strategies to leverage 49

ILP that are already implemented in general-purpose, application-class microprocessors. 50

In particular, Out-of-Order (OoO) instruction execution is a well-known technique to opti- 51

mize the Instructions Per Cycle (IPC). It exposes a large pool of instructions to the CPU 52

execution engine, allowing it to select those without data hazards with previous instruc- 53

tions for immediate execution, possibly breaking the original program order. Superscalar 54

execution, which allows more than one instruction to be executed simultaneously, offers 55

additional opportunities to exploit ILP, especially when coupled with OoO execution. 56

Though the main purpose of OoO superscalar microprocessors is to achieve a superior IPC 57

with conventional scalar instruction sets, their architectural solutions can also be beneficial 58

in hiding the latency of long-latency coprocessors by reordering the program instructions 59

and executing scalar instructions in parallel with those offloaded to the coprocessor. This 60

work elaborates on this concept to propose an analysis of the performance benefits and 61

limitations of employing an OoO-capable CPU to drive coprocessors with arbitrary latency, 62

as an alternative to the simple in-order CPUs employed in most edge-oriented scenarios. 63

In particular, the main contributions of this article are twofold: 64

• Define a general strategy to comprehensively evaluate the benefits of OoO instruction 65

execution in the context of tightly-coupled coprocessors, using a variable-latency 66

module and an automatic generator of test applications with different instruction 67

compositions and instruction dependency patterns. 68

• Demonstrate the effectiveness of an existing open-source OoO CPU in covering the 69

latency of long-latency coprocessors in a wide selection of workloads. 70

The rest of this paper is organized as follows: Section 2 discusses relevant use cases 71

of tightly-coupled coprocessors in edge applications and provides examples of existing 72

OoO CPUs; Section 3 focuses on key aspects of the CPU microarchitecture selected for 73

the experiments; Section 4 elaborates on the experimental setup and discusses the results 74

obtained; finally, Section 5 concludes the paper. 75

2. BACKGROUND AND RELATED WORKS 76

2.1. Tightly-Coupled Coprocessors 77

To motivate the need for better ILP exploitation in coprocessor-based computing 78

systems, this section presents a brief review of some relevant examples of state-of-the-art 79

tightly-coupled coprocessors. While loosely-coupled, memory-mapped accelerators typi- 80

cally offer superior peak performance and energy efficiency with large workloads, they lack 81

flexibility and area efficiency, which are crucial for devices targeting low-effort application 82

deployment across various domains. Similar considerations apply to reconfigurable solu- 83

tions like Field-Programmable Gate Arrays (FPGAs) and Coarse-Grained Reconfigurable 84

Arrays (CGRAs). Accordingly, this work focuses on small, versatile, general-purpose 85

SoCs where maximum flexibility is paramount, driving the need for more fine-grained, 86

instruction-level acceleration to enhance performance while maintaining programmability. 87

In this context, custom instruction set extensions, implemented by tightly-coupled copro- 88

cessors that cover a subset of common operations in the data-flow graphs of the target 89

applications, are a more suitable solution compared to the aforementioned alternatives [4], 90

and have gained traction since the recent diffusion of extendable ISAs [5]. As argued in 91
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[4], the effectiveness of a tightly-coupled coprocessor can be measured by the reduction 92

in overall program execution latency when using the custom instructions. Generally, the 93

speedup is proportional to the amount of computation that is atomically implemented by a 94

single offloaded instruction, albeit with some trade-offs in terms of flexibility. Moreover, 95

physical constraints such as the available area and power budget or the target operating 96

frequency often result in a multi-cycle instruction execution latency due to the iterative or 97

pipelined implementation of custom instructions. This ranges from a few cycles for simple 98

arithmetic operations, such as those in floating-point or ANN-focused coprocessors [6,7], to 99

tens or hundreds of cycles for more complex data manipulation like cryptographic accelera- 100

tors [8] or vector processing units [9]. While custom instructions alone significantly reduce 101

the overall execution time, their latency creates opportunities for deeper ILP exploitation. 102

Scalar instructions following the accelerated ones can be issued and executed in parallel, 103

provided there are no data dependencies between them. This is a common scenario where 104

scalar instructions perform housekeeping tasks or control operations. Dynamic instruc- 105

tion scheduling capabilities in the CPU can thus maximize the utilization of computing 106

resources in both the CPU and the coprocessor, leading to further performance and energy 107

efficiency improvements. 108

2.2. Out-of-Order CPUs 109

To demonstrate the effectiveness of dynamic instruction scheduling in coprocessor- 110

accelerated systems, the analysis presented in Section 4 compares the performance of the 111

state-of-the-art in-order CPU with an OoO core when offloading instructions with variable 112

latency to a configurable, dummy Configurabe-Latency Coprocessor (CLC), described in 113

Section 4.1.2. The well-known CV32E40X microprocessor [10] was selected as the reference 114

in-order core due to its design, which is specifically optimized for IPC, thus representing a 115

best-case baseline for the experiments. On the other hand, selecting a candidate OoO core 116

was challenging due to the limited availability of open-source designs and deployment 117

examples. Three alternatives were considered: the Berkeley Out-of-Order Machine (BOOM) 118

[11], Alibaba’s OoO RISC-V core [12], and the LEN5 microprocessor [13]. Ultimately, LEN5 119

was chosen for its modularity and scalability, with its most relevant architectural features 120

described in Section 3. In particular: 121

• LEN5’s modular microarchitecture facilitates the straightforward deployment of cus- 122

tom instruction-set extensions and coprocessors. This modularity greatly simplified 123

the integration of the CLC in the system, whereas the centralized execution control 124

scheme used by the available OoO cores would have required significant modifica- 125

tions. 126

• Compared to other OoO cores, LEN5’s architecture prioritizes scalability over perfor- 127

mance, resulting in a more area-efficient design. Conversely, BOOM and Alibaba’s 128

cores are optimized for superscalar instruction execution, featuring wider issue win- 129

dows and multiple execution units for each instruction class. While these features 130

yield superior IPC when executing sequences of scalar instructions, they are less ad- 131

vantageous for the purposes of this work. When handling long-latency accelerated 132

instructions, maximizing the number of scalar instructions executed per cycle could 133

result in the CPU Execution Units (EUs) idling while awaiting the completion of 134

offloaded instructions, thus not justifying the additional area and power overhead. 135

• The base variant of LEN5 targets bare-metal applications without a cache hierarchy, 136

thereby offering a simpler interface with the host system bus. This interface is com- 137

patible with common bus protocols used in low-power Microcontroller Units (MCUs) 138

like the OBI bus in the X-HEEP platform [14] selected for the experiments. Adapting 139

the interface of other available cores would have required additional efforts. 140

Apart from the above considerations, the conclusions drawn from the analysis in 141

Section 4 are general and applicable to any CPU with OoO capabilities. The minor differ- 142

ences in the obtained IPC due to the specific architectural choices do not impact the overall 143

justification for considering OoO cores in coprocessor-accelerated systems. 144
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3. OUT-OF-ORDER CPU MICROARCHITECTURE 145

This section elaborates on the general concepts of OoO execution that are relevant 146

to achieve optimal exploitation of the available computing resources when executing 147

long-latency instructions, using the LEN5 microprocessor presented in [13] and briefly 148

introduced in Section 2.2 as a reference. Regardless, most of the insights discussed in this 149

section are applicable to any OoO microprocessor. 150

In general, the key to hiding the latency of in-flight instructions is threefold: 151

1. Enable sufficient entry of instructions into the execution engine of the core, regardless 152

of their readiness for execution. This approach maximizes the chances of identifying 153

instructions that are independent of the previous ones, allowing for their immediate 154

scheduling and execution, irrespective of the original program order. 155

2. Facilitate the parallel execution of multiple instructions (a superscalar design), so that 156

if one instruction requires a prolonged time to complete, another can be dispatched to 157

different EUs and executed concurrently. 158

3. Ensure the prompt retirement of completed instructions, potentially out of program 159

order, to allow new instructions to enter the execution engine, thereby maintaining 160

the EUs’s productivity. 161

Item 1 leverages the generally valid assumption that a program is typically composed 162

of two types of instructions: those implementing the computation core of the algorithm and 163

those performing housekeeping tasks, such as updating loop iteration indexes or memory 164

addresses. Generally, these two categories of instructions do not depend on each other, 165

allowing them to be executed concurrently. However, this assumption does not hold in 166

scenarios where the program control flow or memory access patterns are dependent on 167

the computed results, as is common in iterative search algorithms. These scenarios are 168

typically more challenging to predict, leading to significant performance penalties unless 169

additional hardware resources and energy are allocated to more complex branch predictors. 170

Nevertheless, the majority of modern data-intensive applications predominantly involve 171

workloads that fit the former category, which is the focus of this work. LEN5 implements 172

Item 1 and Item 2 with its OoO execution engine, which is based on Tomasulo’s algorithm 173

[15], extensively discussed in [16]. This implementation is enhanced with support for 174

precise exceptions and efficient handling of speculative instructions. To promptly free the 175

decode stage, newly decoded instructions are moved into designated buffers, known as 176

Reservation Stations (RSs), until all associated execution conditions are met, such as the 177

availability of the input operands from previous instructions or the resolution of previous 178

speculative branches. A ReOrder Buffer (ROB) then accumulates the produced results 179

and selects instructions ready for retirement, potentially out of program order, if no Write- 180

After-Write (WAW) dependencies are present. It is important to note that the OoO commit 181

strategy employed in the current version of LEN5 does not fully guarantee Item 3. Although 182

newer instructions can be retired while older ones are still completing, the ROB allocation 183

is still sequential, preventing the reassignment of freed entries to new issued instructions. 184

The effects of this limitation is further discussed in Section 3.2. 185

As previously noted, LEN5’s design philosophy emphasizes extendability and modu- 186

larity, granting system implementers the flexibility to adapt its internal components to a 187

broad spectrum of physical implementation constraints, operating conditions, and expected 188

workloads. This adaptability is facilitated by a system-wide valid-ready handshake protocol, 189

enabling each internal component to function independently of the latency affecting other 190

parts of the architecture. To mitigate potential bottlenecks, LEN5 incorporates several inter- 191

nal buffers of configurable size that queue outstanding requests from upstream modules 192

when downstream hardware is engaged, aiming to minimize stalls in the fetch and issue 193

stages that would otherwise lead to system-level delays due to their in-order nature. 194

Similarly, RSs provide a flexible interface between the dynamically scheduled exe- 195

cution pipeline and the EUs. They enable straightforward integration of new processing 196

elements tailored to specific domain or application needs with minimal modifications to 197
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the core architecture. This is in contrast with microarchitectures relying on centralized 198

control and instruction tracking mechanisms. 199

These principles also facilitate the optional inclusion of hardware enhancements like 200

the M and F/D RISC-V extensions, which support integer operations and floating-point 201

calculations, respectively. LEN5’s design effectively minimizes the latency impact of 202

these operations, critical for applications relying on complex calculations. In our analysis 203

(Section 4), a dummy coprocessor was employed to maintain generality, though similar 204

results were observed when dispatching long-latency Floating Point Unit (FPU) instructions 205

in data-intensive kernels. 206

To keep the EUs continually operational, LEN5 incorporates a speculative frontend 207

with a configurable gshare branch predictor, Branch Target Buffer (BTB), and Return Ad- 208

dress Stack (RAS), detailed in [13]. Figure 1 showcases LEN5’s backend architecture and 209

exemplifies resource allocation during execution, highlighting the system’s adaptability 210

and efficiency. 211

Figure 1. Block diagram of the backend of LEN5 with examples of out OoO execution and commit.
Among the in-flight sequence of instructions (shown in the ROB), the sw is waiting for the result
(t2) produced by the long-latency coproc instruction (Read-After-Write (RAW) hazard), that has just
completed. The result is therefore broadcast to the sw instruction and the ROB through the Common
Data Bus (CDB). In the meantime, the addi and bne instructions, that do not depend on coproc, have
already completed their execution OoO (greyed out in their RS), and are eligible for commit.

3.1. Out-of-order Instruction Execution 212

Building on the overview presented in [13], this section delves into the microarchitec- 213

ture of LEN5’s OoO execution engine, elucidating how its design contributes to the IPC 214

improvements discussed in Section 4. 215

The decode stage of LEN5 handles several critical tasks: 216

• Translating incoming instructions into commands for the associated RS and EU. 217

• Allocating an available ROB entry to buffer the result of the instruction once it com- 218

pletes. From this moment, the instruction is uniquely tagged with the index of the 219

assigned ROB entry. 220

• Fetching the operands for the instruction from the Register File (RF) or the ROB, if 221

available. 222

A dedicated module monitors the status of each register, forwarding their values 223

from the RF or the ROB, based on whether the last instruction that wrote to a specific 224

register has been committed. If the operand is from an in-flight instruction that has not yet 225

completed, no forwarding occurs at issue time. Regardless, the instruction is dispatched 226

to the target RS. Concurrently, its assigned tag (i.e., the ROB index) is linked with the 227

instruction’s destination register, effectively implementing a renaming mechanism that 228

eliminates false Write-After-Read (WAR) dependencies. This strategy obviates the need 229

for dedicted register renaming resourrces, as the RSs and ROB collectively function as a 230

distributed register file. 231
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Each instruction is uniquely associated with a ROB entry, setting the maximum number 232

of in-flight instructions to the adjustable ROB size. If, at issue time, either the ROB or 233

the destination RS is full, the processor experiences a stall. This is a primary cause of 234

performance degradation when dealing with instructions with a very long execution latency, 235

as demonstrated in Figure 6 and discussed in Section 4. The size of a RS determines the 236

maximum number of outstanding instructions of the same type that can be dispatched. This 237

sets an upper limit on LEN5’s capability to mask the latency of long-latency instructions, 238

even when they are pipelined. Specifically, filling the RS causes a stall at issue time if 239

instructions of varying types are not fetched subsequently. A full RS, when combined with 240

the fetch of an instruction of the same type, leads to performance degradation similar to 241

what is observed due to a full ROB. 242

Once an instruction is loaded into the target RS and its operands are available, it is 243

ready for execution. The order of selection at this stage is irrelevant for program coherence 244

since the forwarding and renaming mechanism previously discussed ensures that all RAW 245

hazards are correctly resolved. To prevent starvation, a round-robin approach determines 246

the sequence of execution inside each RS: no new instructions are considered until all 247

previously eligible instructions have been issued to the EU. The Branch Unit (BU) is an 248

exception, as its instructions must execute sequentially to accurately recover from branch 249

mispredictions. Similarly, the Load-Store Unit (LSU) enforces additional checks to handle 250

memory hazards correctly, employing store-to-load forwarding managed internally until 251

additional space is needed, effectively creating a level-zero caching mechanism inspired by 252

[17]. 253

Once an instruction completes its execution, its result is stored in the RS, awaiting 254

acceptance by the CDB to be forwarded to the ROB and other RSs while releasing the 255

EU for other instructions of the same kind. Branch instructions have the highest priority 256

on the CDB since their resolution has the greatest potential to unlock new commit and 257

memory update operations, thereby freeing up resources for new instructions. All other 258

instructions are subject to a round-robin selection policy. The CDB implements an efficient 259

forwarding mechanism that connects one instruction’s output to potentially all other 260

in-flight instructions through a simple 1-to-N interconnect, rather than a fully parallel 261

N-to-N crossbar. The tag of the instruction producing the result is checked against the 262

one associated with each operand of a waiting instruction to trigger the forwarding. Since 263

instructions’ operands are tagged at issue time in program order with the tag of the latest 264

instruction that wrote to the corresponding register, this mechanism effectively ensures the 265

correct resolution of RAW hazards. It is possible for multiple instructions to become ready 266

for execution as a result of operand forwarding. In such cases, they may be selected for 267

execution within the same cycle, provided that sufficient EUs are available. 268

3.2. Out-of-order Instruction Commit 269

As mentioned in the previous section, a ROB entry is allocated for each new instruction 270

at issue time, in program order. Once the result of a completed instruction is received on 271

the CDB, it is buffered within the allocated ROB entry. Subsequently, any instruction that 272

requires the destination register of the completed instruction as a source operand has its 273

value forwarded from the ROB, marking it as immediately ready for execution. 274

Once buffered in the ROB, an instruction becomes eligible for commit into the physical 275

register file, if necessary, and for retirement. LEN5’s ROB includes two commit slots, 276

which facilitate instruction commitment in both program order and out of program order. 277

Out-of-order commit is permitted under the following conditions for a given instruction: 278

• Its execution is complete, making the instruction result available in the ROB. 279

• It is no longer speculative, meaning all previous branch predictions have been vali- 280

dated. 281

• It did not trigger any exceptions. 282
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• There are no newer instructions eligible for commit that would write to the same 283

destination register (WAW hazard); in such cases, the older instruction is simply 284

retired without updating the RF. 285

Due to these stringent conditions, the out-of-order commit slot never advances past 286

mispredicted branches or exception-raising instructions, ensuring consistency with the pro- 287

gram order. The in-order commit slot consistently points to the oldest instruction awaiting 288

commitment. If a mispredicted branch or an exception-raising instruction is committed 289

through the in-order slot, the entire execution pipeline, including the ROB, is flushed, and 290

execution restarts. To minimize the penalty associated with branch mispredictions, the 291

BU immediately communicates the correct branch target to the frontend upon resolving a 292

misprediction. 293

However, the LEN5 OoO commit process does not permit the reallocation of ROB 294

entries freed by the out-of-order commit slot to new instructions. Instead, ROB entries are 295

allocated in a fixed sequence. Nevertheless, the OoO commit process expedites the clearing 296

of the ROB when an older instruction, waiting for its result, is selected for commitment. 297

This reduces the issue stage’s backpressure, thus diminishing the stalls caused by an over- 298

committed ROB. An enhanced OoO commit strategy, currently under development, would 299

eliminate the in-order allocation constraint, enabling the issuance of a greater number of 300

independent instructions after a very-long-latency instruction than the ROB size permits, 301

thereby addressing the performance bottleneck illustrated in Figure 6. 302

4. EXPERIMENTAL RESULTS 303

Assessing the effectiveness of employing an OoO-capable CPU to optimize the of- 304

floading process necessitates a comprehensive test plan and simulation environment, 305

incorporating a diverse array of applications, instruction set extensions, and coprocessor 306

characteristics. While there are several open-source examples of tightly-coupled copro- 307

cessors, their variations in communication protocols and physical integration with their 308

intended host CPU pose significant challenges in creating a unified test plan. Moreover, 309

the generality of the results is constrained by the specific combinations of CPU and ISA, co- 310

processor architecture, and instruction-level dependency patterns, demanding substantial 311

technical effort and time to achieve sufficient comprehensiveness. Instead, this work aims 312

to provide general guidance on the benefits and limitations of using an OoO-capable CPU 313

to drive coprocessors with arbitrary architectures (i.e., iterative or pipelined data flow) and 314

latencies. To this end, this study employs a synthetic approach composed of two main 315

components: a Configurabe-Latency Coprocessor (CLC) whose latency can be specified at 316

runtime and an automatic code generator that assembles test applications featuring various 317

combinations of instructions (i.e., scalar and accelerated) and data dependencies. The LEN5 318

and CV32E40X [10] CPUs, representing an OoO and an in-order core respectively, are used 319

as host CPUs in the experiments. Their average IPC is utilized to evaluate their capacity 320

to continue program execution while waiting for offloaded instructions to complete. A 321

higher IPC indicates more effective exploitation of coprocessor resources and, consequently, 322

a reduced overall execution time. As noted in Section 2.2, both cores were selected for their 323

modular architecture, ease of extendability, and interface compatibility with the X-HEEP 324

platform, chosen as an example MCU. Additionally, their focus on optimizing the IPC 325

within their respective CPU classes plays a crucial role. The differences in IPC performance 326

when managing instruction offloading primarily stem from their contrasting execution 327

paradigms—dynamic for LEN5 and static for CV32E40X. While low-level, microarchitec- 328

tural details influence the IPC achieved in the experiments, they do not significantly alter 329

the conclusions of this work, which are generalized at the end of this section. 330

The subsequent sections will detail the software and hardware configurations used in 331

the experiments and discuss the results obtained. 332
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4.1. Experimental Setup 333

4.1.1. System Configuration 334

For the experiments, LEN5 parameters were set to align with the Max Performance con- 335

figuration as described in [13]. This setup includes a 32-entry ROB, an 8-entry Arithmetic 336

Logic Unit (ALU) RS, a 4-entry BU, a 4-entry multiplication and division unit featuring 337

a 2-stage pipelined multiplier and a serial divider, a 16-entry Store Buffer (SB), and an 338

8-entry Load Buffer (LB). This configuration, whose post-synthesis characteristics are 339

detailed in Table 1, imposes a minimal 12 % area overhead on the host system compared 340

to the CV32E40X core in a basic 256 KiB X-HEEP configuration. The choice of the Max 341

Performance configuration is intended to maximize the benefits of out-of-order execution, 342

thereby offering the best-case performance improvements across a comprehensive set of test 343

applications. While optimized LEN5 configurations or other OoO CPUs microarchitectures 344

might provide even better trade-offs in terms of area and power consumption, these are not 345

the focus of this work. A dedicated bridge was developed to adapt LEN5’s data memory 346

requests to X-HEEP’s 32-bit bus. The bridge splits 64-bit requests into two 32-bit ones and 347

ensures correct alignment and handshaking. Because the application software used in the 348

experiments exclusively relies on 32-bit data, most of the memory accesses complete in a 349

single cycle, making the performance impact of the bridge negligible. Apart from these 350

changes in the CPU subsystem, no other modifications were made to the X-HEEP platform. 351

Table 1. Area and clock frequency of the LEN5 Max Perf variant from [13], implemented on a low-
power, 65 nm CMOS technology node.

LEN5 Max Perf CV32E40X

Clk Freq. [MHz] 438 360
Area [1 × 103 µm2] 423 49
Area [kGE]a 294 34
Relative System Areab 1.12 1.00

a GE is the 2-input drive strength-one NAND gate equiva-
lent area. b X-HEEP host system with 256 KiB memory.

4.1.2. Configurabe-Latency Coprocessor architecture 352

The CLC was engineered to comprehensively emulate the behavior of coprocessors 353

with arbitrary latencies, accommodating both iterative and pipelined instructions. The 354

operational mode—iterative or pipelined—and the latency are configurable at runtime 355

using a dedicated control signal and one of two input operands. This input operand 356

specifies which of the internal pipeline registers serves as the output for the coprocessor. 357

A Finite-State Machine (FSM) manages the handshaking with the CPU according to the 358

selected mode. Specifically, in pipelined mode, the coprocessor can accept a new input 359

transaction every cycle. In contrast, in iterative mode, it must wait to accept a new input 360

until the CPU has acknowledged the output of the previous transaction. The maximum 361

latency and the number of pipeline stages are adjustable Register Transfer Level (RTL) 362

parameters. The second operand is propagated to the output after a predetermined number 363

of cycles, facilitating experiments with various data dependency patterns in software. 364

Additionally, the coprocessor adheres to a valid-ready handshake protocol for managing 365

both input and output transactions. 366

From a software standpoint, the CLC is controlled by a custom RISC-V ISA extension 367

that defines two I-type instructions for the iterative and pipelined operating modes, re- 368

spectively. Each accepts an input GPR as the input operand and a 12-bit immediate value 369

encoding the desired latency or pipeline register to use as output: 370

xdummy.iter rd, rs1, imm # iterative mode, imm is the latency
xdummy.pipe rd, rs1, imm # pipelined mode, imm is the number of stages
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This architecture allows for a pure software-controlled configuration of the CLC, 371

making it possible to explore a wide range of scenarios without the need to modify the RTL 372

description and recompile the simulation model, resulting in a streamlined and efficient 373

exploration process. 374

The CLC is integrated into LEN5 through the following key modifications to the core 375

architecture: 376

1. The new custom instructions were incorporated into the main decoder, specifying the 377

expected control signals for the CLC, the necessary source operands, and the result 378

type, so that the CPU can correctly manage dependencies and commit. 379

2. A new, 4-entry RS was adapted from the ALU one and added to LEN5’s backend with 380

negligible impact on the overall area. 381

3. The CLC was connected to the dedicated RS. Dynamic synchronization between the 382

CLC and the CPU is inherently achieved by the system-wide valid-ready handshake 383

protocol. 384

On the other hand, the integration into the CV32E40X CPU is achieved through the 385

CORE-V eXtension Interface (CV-X-IF)[18], using a bridge to convert the simple valid-ready 386

interface of the CLC into compliant instruction offloading transactions. 387

1 B4:
2 xdummy.iter a0, a1, 5
3 add a2,a4,a3
4 xor a2,a5,a4
5 addiw a5,a5,-1
6 bnez a5, B4

(a) Loop with independent it-
erations.

1 B4:
2 xdummy.iter a0, a0, 5
3 add a2,a4,a5
4 xor a2,a4,a5
5 addiw a3,a3,-1
6 bnez a3, B4

(b) Loop with dependent iter-
ations.

1 B4:
2 xdummy.iter a0, a0, 5
3 jal [bookeeping]
4 add a0,a0,s1
5 addiw s0,s0,-1
6 bnez s0, B4

(c) Loop with dependent iterations
and housekeeping.

Listing 1: Example of assembly code with dummy instructions.

4.1.3. Configurable Test Applications 388

As previously outlined in Section 3, instructions within a typical data-intensive work- 389

load fall into two distinct categories: those that form the core of the processing algorithm, 390

and those that perform housekeeping tasks, such as updating iteration counters and man- 391

aging the memory addresses of input and output data. The processing core generally 392

consists of a loop that processes input data iteratively, where each iteration may or may 393

not depend on the results of the previous one. Housekeeping tasks, on the other hand, 394

are typically independent of the processing core, as loop indices and memory addresses 395

usually do not directly relate to the outcomes of the algorithm. For instance, linear algebra 396

vector kernels and general-purpose algorithms that include floating-point operations are 397

practical examples that reflect this bifurcation. Tasks such as loop maintenance, exception 398

handling, and memory management are executed through sequences of instructions that 399

lack direct data dependencies with the computational results produced by the core code. To 400

assess the impact of coprocessor latency on the execution times of workloads with varying 401

dependency patterns, an automatic application generator was developed. 402

This tool generates the main function of a C program containing a loop with a sin- 403

gle CLC instruction followed by a block of single-cycle arithmetic and logic instructions 404

derived from the base RISC-V ISA. The Number of Instructions per Block (Number of 405

Instructions per Block (NIB)) and the latency of the CLC are both configurable, enabling 406

detailed exploration of how increasing coprocessor latencies and different quantities of 407

other instructions affect performance. The simplest configuration, which illustrates the 408

CLC operating independently of other instructions, is presented in Listing 1a. 409
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To emulate algorithms with dependent loop iterations, such as reduction and accumu- 410

lation operations, the output register of the CLC instruction in a certain loop iteration can 411

optionally be used as an input register for the same instruction in the next loop iteration, 412

as shown in Listing 1b. The tool can also add to the main loop a function call to a routine 413

that performs a configurable number of instructions that are independent of the offloaded 414

one. The appropriate compiler directives were employed to ensure that the housekeeping 415

routine is never inlined, to evaluate the impact of LEN5 branch prediction over the in-order, 416

non-speculative CPU. An example of such a case is reported in Listing 1c. 417

4.2. IPC Analysis 418

As explained in Section 3.1, LEN5’ dynamically scheduled execution engine can select 419

instructions as soon as their operands are ready. To evaluate the effectiveness of OoO 420

execution in the presence of long-latency instructions, LEN5’ IPC is compared to that of 421

CV32E40X while executing a large set of automatically generated test applications. In 422

particular, tests were conducted with the CLC latency varying from one to twenty cycles. 423

For each latency value, the NIB was swept from one to twenty as well. Several test program 424

configurations were considered, each time repeating the test with the CLC in iterative and 425

pipelined mode. The collected data is reported in the following paragraphs. 426

All the tests reported in the following sections were compiled for both CPUs using 427

GCC with the -O2 optimization level. Only 32-bit variables were used to generate analogous 428

assembly code for the 64-bit LEN5 core and the 32-bit CV32E40X core. The IPC was 429

measured as a ratio between the values of the minstret and mcycle control and status 430

registers, accessed immediately before and after the test application code. The C++ RTL 431

simulation model used to run the simulations was compiled using Verilator. 432

The first set of tests is conducted using the simplest kind of workload: a loop where 433

a single CLC instruction is followed by a block of independent single-cycle instructions. 434

Each loop iteration produces a result that does not depend on the previous operations. The 435

IPC obtained by LEN5 and CV32E40X is reported in Figure 2. As shown, the performance 436

degradation on the in-order CPU is significant even for the lowest latency values and only 437

marginally improves with a higher NIB. A similar trend is observed with iterative (left) and 438

pipelined (right) instructions. In contrast, LEN5 is able to keep an optimal IPC close to 1 439

even for the highest latency values, provided that there are enough single-cycle instructions 440

to execute while waiting for the CLC instruction to complete. 441

In LEN5, the pipelined case shows significantly better performance even with low 442

NIB values, thanks to the possibility of issuing multiple coprocessor instructions to the 443

4-entry reservation station before having to stall the issue stage. With a 20-stage pipeline, a 444

new coprocessor instruction can be accepted every 5 cycles. Therefore, four single-cycle 445

instructions, including the add and bnez instructions implementing the loop, are in theory 446

enough to prevent stalls due to a full RS. However, the internal handshake between the RSs, 447

the CDB, and the issue stage adds a few cycles before an entry in the RS is actually freed, 448

which motivates the performance degradation observed for NIB values below 5 instead of 449

2. 450

Despite this, LEN5 succeeds in dynamically scheduling multiple iterations of the for 451

loop at the same time, pipelining their instruction execution. In the iterative case, while it is 452

possible to hold up to four coprocessor instructions from the four initial loop iterations in 453

its RS, they cannot be executed in parallel, causing the issue to stall on subsequent iterations 454

because of the structural hazard on the full RS. Therefore, in the iterative case, a high IPC is 455

possible only if the number of single-cycle instructions equals the latency of the coprocessor 456

minus one (the coprocessor instruction itself). Regardless, LEN5 achieves an IPC which is 457

up to 50 % higher than CV32E40X with both iterative and serial instructions. This test also 458

proves how LEN5 branch predictor is able to correctly predict the loop condition, avoiding 459

expensive flushes and keeping the IPC close to 1. 460

If the system running the application is required to perform housekeeping actions 461

while the accelerator is running, then the ability to execute those independent instructions 462
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Figure 2. IPC comparison between LEN5 and CV32E40X using an example application without
housekeeping and dependencies when using iterative (left) and pipelined (right) CLC.

becomes crucial. In this experimental setup, the housekeeping routine, containing a config- 463

urable number of single-cycle instructions, is invoked while the CLC runs. As illustrated 464

in Figure 3, the trend in both the CPUs resembles the one from the previous experiment, 465

except this time the performance penalty with a low NIB is lower due to the presence of 466

the additional instructions to call and execute the bookkeeping routine. 467

Like before, the in-order processor must pause before executing the subsequent loop 468

iteration, whereas LEN5 can continue queuing new instructions. For low NIB values, LEN5 469

achieves more than twice the IPC of the in-order code. 470

Figure 3. IPC comparison between LEN5 and CV32E40X using an example application with house-
keeping and without dependencies when using iterative (left) and pipelined (right) CLC.

The next test emulates a scenario where the loop iterations are interdependent, creating 471

RAW hazards between consecutive coprocessor instructions. Such cases limit the exploita- 472

tion of pipelined coprocessors, resulting in the same performance penalty as if relying on an 473

iterative coprocessor. This effect is clearly shown by Figures 4 and 5, which report the IPC 474

when executing the exact same applications, with iterative and pipelined CLC instructions, 475

respectively. In both cases, the positive effect of housekeeping instructions observed in 476

Figure 2, is visible, offering more instructions to cover the latency of the coprocessor, and 477

thus increasing the IPC. 478

The left examples in both experiments, where no housekeeping is performed, show 479

the two CPUs reach the same IPC for the combination of highest latency and lowest NIB. 480

In this case, the body of the for loop solely contains the coprocessor instruction, offering 481

no opportunities for the OoO core to perform any operation besides resolving the branch 482

condition and updating the loop counter. This scenario is also true for the 4-stage CV32E40X, 483

which is able to fetch and execute two additional scalar instructions before stalling in the 484

writeback stage, waiting for the external coprocessor to provide its result. 485
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Figure 4. IPC comparison between LEN5 and CV32E40X using an example application with depen-
dencies when using iterative CLC without housekeeping (left) and with it (right).

Figure 5. IPC comparison between LEN5 and CV32E40X using an example application with depen-
dencies when using pipelined CLC without housekeeping (left) and with it (right).

One final experiment is set up to highlight the limitations of the current LEN5 commit 486

stage when dealing with very long-latency coprocessors, such as those implementing Post- 487

Quantum Cryptography (PQC) cryptographic functions. In these cases, the coprocessor 488

latency exceeds the ROB size. As previously noted, due to the in-order allocation of the 489

ROB, it is not possible to issue more instructions than those that can fit inside the ROB. The 490

simplest test case is run with the NIB set equal to the coprocessor latency to demonstrate the 491

performance degradation resulting from this limitation. This setup matches the condition 492

where, in all previous tests, LEN5 could reorder instructions and completely hide the 493

coprocessor’s execution latency. The experiment is repeated for a wide range of latency 494

values, with the results reported in Figure 6. As shown, once the latency value approaches 495

the ROB size (32), the IPC of LEN5 starts to degrade, eventually reaching an asymptotic 496

limit of 0.5, similar to the in-order CPU. This degradation occurs because, once the ROB 497

is full, the issue stage must stall until the oldest in-flight instruction, the coprocessor 498

instruction, is retired. 499

The value of the asymptotic limit can be verified by expressing the IPC as a function of
the coprocessor latency L, the ROB size R, and the number of other instructions N (N + 1
instructions in total). At the beginning of the program, one coprocessor instruction and
R − 1 single-cycle instructions can be issued. The single-cycle instructions are executed
while waiting for the coprocessor result. After this point, the issue stage stalls, and no
more instructions can be issued until the coprocessor completes. When that happens, the
coprocessor instruction is removed from the ROB, which becomes empty, allowing the
remaining N − (R − 1) single-cycle instructions to be issued and executed one per cycle
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Figure 6. IPC comparison between LEN5 and CV32E40X as the CLC latency and NIB increase.

until the next coprocessor instruction is fetched, and the cycle repeats. The IPC during one
iteration can therefore be expressed as:

IPC =
1 + N

L + N − R + 1

In the hypothesis of this experiment, N = L (the instructions implementing the loop are
neglected), so:

lim
L=N→∞

IPC = 0.5

Because compensating for large values of the latency L by increasing the ROB size R 500

is not sustainable from a hardware resources standpoint, a better solution is to manage 501

the ROB in such a way that new issuing instructions can be allocated to free ROB entries 502

regardless of their position, overcoming the limitations of the current in-order ROB alloca- 503

tion policy. This approach guarantees a possibly infinite window of candidate instructions 504

to be selected for execution while waiting for the long-latency instruction to complete. 505

However, the additional hardware resources needed to ensure the correct resolution of 506

WAW hazards and consistently recover from branch mispredictions and exceptions are 507

justified only if the control, dependency patterns, and instruction count in the expected 508

workload provide enough instructions eligible for execution before structural hazards 509

emerge in the accelerator reservation station. In the case of pipelined accelerators, this last 510

problem can be mitigated by removing instructions from an RS as soon as they are selected 511

for execution, relying on the accelerator to propagate the information required to commit 512

the result in the ROB and to handle the CDB handshake. 513

5. CONCLUSIONS 514

This work investigates the performance benefits and limitations of replacing conven- 515

tional in-order cores with OoO implementations within edge-oriented SoCs. The study 516

demonstrates the performance gains achievable through dynamic instruction schedul- 517

ing by comparing the IPC of the OoO LEN5 RISC-V CPU with that of the state-of-the- 518

art CV32E40X in-order CPU. A variety of workloads with variable-latency coprocessor- 519

accelerated instructions and differing data dependency patterns were executed. Utilizing 520

a Configurabe-Latency Coprocessor (CLC) and an automatic code generator, the study 521

simulated a broad spectrum of use cases, revealing substantial performance improvements 522

across all workloads when compared to the in-order core, even when managing instructions 523

with extensive latencies. LEN5 consistently achieves near-optimal IPC in parallelizable 524

workloads devoid of data dependencies and markedly mitigates performance degradation 525

in loops with interdependent iterations. Overall, the experimental results indicate that 526

employing cores with OoO capabilities and speculative branch prediction can enhance the 527

IPC by up to 60 % compared to in-order cores. 528

Considering the modest system-level area overhead introduced by the added com- 529

plexity of the OoO CPU, this study advocates for the integration of OoO execution in 530
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edge-oriented SoCs as a viable solution to fully leverage the benefits of tightly-coupled 531

coprocessors. This approach contributes significantly to reducing overall execution time 532

and energy consumption. Furthermore, the study exposes a notable limitation of LEN5 533

when handling instructions whose latency surpasses the size of the ROB. In such scenarios, 534

the processor struggles to utilize unrelated instructions to mask the coprocessor latency, 535

leading to diminishing returns in terms of IPC gains. This effect asymptotically approaches 536

the performance level of an in-order core for extremely long-latency operations. These 537

findings suggest that more sophisticated OoO instruction commit schemes could unlock 538

additional performance improvements without necessitating the complexities associated 539

with enlarging the ROB or expanding other internal buffers. 540

In light of these findings, future research on extendable, CPU-based embedded systems 541

should investigate the balance between performance optimization and the area and power 542

overhead introduced by OoO execution engines. The insights gained from this study 543

indicate that further microarchitectural enhancements are necessary to fully capitalize on 544

the energy efficiency and performance benefits associated with the increasingly prevalent 545

paradigm of tightly-coupled coprocessor acceleration in edge SoCs. 546
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The following abbreviations are used in this manuscript: 557

ALU Arithmetic Logic Unit 558

ANN Artificial Neural Network 559

BTB Branch Target Buffer 560

BU Branch Unit 561

CDB Common Data Bus 562

CGRA Coarse-Grained Reconfigurable Array 563

CLC Configurabe-Latency Coprocessor 564

CPU Central Processing Unit 565

DLP Data-Level Parallelism 566

EU Execution Unit 567

FPGA Field-Programmable Gate Array 568

FPU Floating Point Unit 569

FSM Finite-State Machine 570

GPR General Purpose Register 571

ILP Instruction-Level Parallelism 572

IoT Internet of Things 573

IPC Instructions Per Cycle 574

ISA Instruction Set Architecture 575

MCU Microcontroller Unit 576

NIB Number of Instructions per Block 577

OoO Out-of-Order 578

PQC Post-Quantum Cryptography 579

LB Load Buffer 580

LSU Load-Store Unit 581

RAS Return Address Stack 582

RAW Read-After-Write 583
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RISC Reduced Instruction Set Computer 584

RF Register File 585

ROB ReOrder Buffer 586

RS Reservation Station 587

RTL Register Transfer Level 588

SB Store Buffer 589

SIMD Single Instruction Multiple Data 590

SoC System-on-Chip 591

WAR Write-After-Read 592

WAW Write-After-Write 593
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