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ABSTRACT
This paper presents a proof of concept for a novel evolutionary
methodology inspired by core knowledge. This theory describes
human cognition as a small set of innate abilities combined through
compositionality. The proposed approach generates predictive de-
scriptions of the interaction between elements in simple 2D videos.
It exploits well-known strategies, such as image segmentation, ob-
ject detection, simple laws of physics (kinematics and dynamics),
and evolving rules, including high-level classes and their interac-
tions. The experimental evaluation focuses on two classic video
games, Pong and Arkanoid. Analyzing a small number of raw video
frames, the methodology identifies objects, classes, and rules, creat-
ing a compact, high-level, predictive description of the interactions
between the elements in the videos.
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• Computing methodologies → Artificial intelligence; Ma-
chine learning approaches.
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1 INTRODUCTION
Artificial Intelligence (AI) is an umbrella term that covers several
different techniques, ranging from rule-based systems to Machine
Learning (ML), from Reinforcement Learning (RL) to Evolutionary
Algorithms (EAs). AI algorithms have recently set important mile-
stones in a wide range of domains. DL approaches can learn predic-
tive models directly from large data samples. Still, they suffer from
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essential limitations [4], such as brittleness, the unpredictable and
undesirable behavior for given samples, opacity, the impossibility
of explaining the overall predictions of the model, and limited gener-
alization ability, the poor prediction quality for out-of-distribution
samples.

Most of these issues stem from the black-box nature of the mod-
els, whose behavior cannot be verified by human experts. A few
sub-domains of AI are currently exploring different possible so-
lutions. The eXplainable AI (XAI) community [6] is developing
techniques to make black-box models more human-readable, for
example, using concept bottlenecks or visualization techniques able
to highlight the features that ML/DL models use to make decisions.
On the contrary, neural-symbolic (NeSy) approaches [1] aim to
combine modern neural-network models with classic symbolic AI,
capitalizing on both advantages. A different research direction, pro-
posed in [2], is to build AI systems exploiting principles similar
to human core knowledge, that is, a small set of innate capacities
identified by cognitive psychologists. Examples of core knowledge
include evaluation of quantities, identification of agents, and predic-
tion of movement. Instead of starting from a blank slate informed
only by the available training data, as in the case of current state-
of-the-art ML, AI algorithms may begin with a limited amount of
specialized hard-coded capacities, compose and combine them to
solve tasks and use only a limited amount of training samples. In
principle, algorithms that learn in a way that is more similar to
humans could require less training data to complete tasks while
providing a white-box, interpretable explanation of their behavior.

In this paper, we propose a first step towards an evolutionary
AI approach inspired by core knowledge. Core knowledge is a psy-
chological theory of human cognition [7] postulating a small set of
innate cognitive capacities all animals are born with. The source
of this core knowledge is uncertain, but it is currently believed
to be the process of natural selection. All animals, however, have
the potential to learn new skills or concepts through experience,
and distinguishing core knowledge from learned skills is not a
straightforward process. Cognitive psychologists tackled this chal-
lenge by either evaluating the performance of human groups that
are culturally isolated or by focusing on toddlers and infants. No-
table examples include the study of arithmetical intuition among
indigenous populations of the Amazonian rainforest [3, 5], and
the assessment of quantity in six-month-old infants [9]. In our ap-
proach the EA is used to create a high-level, concise description
of a simple 2D video recorded from a video game. Using a small
number of primitive concepts, such as patches tracked over frames
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and simplified laws of motion to predict their expected behavior,
the proposed approach can generate a compact, correct video de-
scription. Our approach first groups patches that behave coherently
into objects. Groups of objects that share similar behaviors are then
grouped into classes. The interactions between objects belonging
to specific classes are then described through rules. In the proof
of concept presented in this work, the identification of objects is
performed through simple heuristics. In contrast, the association
of objects to classes and the creation of rules is delegated to the
EA engine. The proposed approach is evaluated on two popular
benchmarks, Pong and Arkanoid, and it has been proven to explain
the interactions appearing in short video-game videos, generating
accurate and human-readable descriptions from a relatively small
amount of data.

2 PROPOSED APPROACH
We propose a novel EA-based methodology to create the description
of a simple, two-dimensional video, identifying objects appearing
in it, clustering them into classes, and generating rules describing
their interactions. The process is organized as follows.

First, we perform data analysis, gathering the positions of the
segmented patches and their possible contact points in each frame.
Then, we detect the interactions between patches, transforming
them into objects and providing a physical status, with features such
as speed and shapes identified by the patches forming that object.
This step can be performed through several different approaches,
but, in this first proof of concept, we opted for a strategy based on
evolutionary optimization.

After detecting the different patches, the algorithm aggregates
objects with a coherent behavior into classes and creates rules to
describe their interactions, ultimately building a human-readable
description of the actions identified in the video. An object can be
either static or dynamic. Static objects can be defined using simple
rules mimicking humans’ idea of persistence: (a) the object exists
only in one position, and (b) the object may disappear, but if it
reappears, it does so in the same position. Dynamic objects, on the
other hand, are clusters of patches that move through the screen.

We model concepts following basic laws of physics, allowing
the approach to detect events inspired by physical interactions. For
instance, in Arkanoid, the contact between two patches may be
detected as an interaction, providing a cause-effect relationship
between events. More specifically, some patches are recognized
as the object “ball” and others as the “paddle”. Then, when the
ball collides with the paddle, the velocity on the 𝑦-axis of the ball
changes sign, and the velocity on the 𝑥-axis changes based on
the angle formed by the ball and the center of the paddle. Such
fundamental interactions are the core knowledge of the system,
i.e., the idea of “collision”, the dynamic of a “bounce”, and the
appearance and disappearance of an object. Moreover, it could
be noted that even a cause-effect relationship is part of the core
knowledge, mimicking how humans explain the world.

More generalization becomes possible as more physical events
are discovered in the video frames, as the same rules may explain
several other events. Generalization can also reinforce some of the
previous hypotheses and rule out others. For example, on the one
hand, a video that does not include a bounce with the top ”wall”

may lead to an indeterminism in the classification of the wall itself.
To the analysis, the wall may as well not exist or be a background
object. On the other hand, if there is an interaction between the
ball and the wall, the effect is discovered, and the wall is correctly
classified.

Patch detection, however, presents a few technical obstacles.
In particular, the most challenging issue is an aliasing problem.
Our approach involves knowing the velocity of patches at each
frame. However, all our data is related to pixels, which can be ei-
ther belonging or not belonging to the patch in a binary way. Thus,
analyzing differences frame-by-frame may not yield a satisfactory
result, as this procedure may detect spurious accelerations due to
the discretization. To overcome this difficulty, we provide knowl-
edge based on the first law of physics, i.e., an object not subject to
any forces has a constant velocity. Thus, if we assume a uniform
speed between two frames, the precision of detecting the actual
rate of the object increases, as does the distance between frames.
Similarly, a larger distance between positions, obtained by expand-
ing the time difference between frames, can provide a more precise
average velocity. However, we shall ensure that the hypothesis is
verified; thus, each time we expand the time difference, we check if
the ball position on the frames in between is well-approximated.

The last step of our process is a learning phase, performed by
an EA, that aggregates the objects detected by the heuristics into
classes, and then describes the interactions between classes using
rules. A class is a coherent aggregate of objects. A rule is a cause-
effect relationship, where the cause is an interaction between two
objects, and the effect is an alteration of the state of some target
objects, which might or might not have been directly involved in
the interaction. Classes and rules are ontologically dependent on
each other, i.e., a class’s existence depends on the presence, or not
presence, of the interactions with other objects. For instance, the
Arkanoid game’s top, left, and right walls trigger a bounce in the
ball; however, their state does not change in any way. Finally, some
events may not be explicable from what is observed. An example is
the horizontal movement of the paddle in Arkanoid, which depends
on the user input and that no observer can explain with a rule.

However, according to the video analysis, the EA finds a set of
classes and rules derived from the “perceived” events, minimizing
the number of rules and entities involved in the explanation.

Each candidate solution can have an arbitrarily large number
of classes and rules, with a minimum of one classe and one rule
(describing the interaction between objects belonging to the same
class). The fitness function evaluates the accuracy and the complex-
ity of our explanation, with a preference for the simpler description
between two approximately equally accurate solutions, with an
idea similar to Occam’s razor. Thus, the fitness function defined for
this optimization problem is:

𝐹 (𝐼 ) = ¬𝐸 (𝐼 ) + 𝛼 · (𝐶 (𝐼 ) + 𝑅(𝐼 )) (1)

where 𝐼 is a candidate solution, ¬𝐸 (𝐼 ) is the number of unexplained
events, 𝐶 (𝐼 ) and 𝑅(𝐼 ) are the total number of classes and rules in
the solution, respectively, and 𝛼 is a user-defined weight regulating
the relative importance of the second part of the equation. For
example, setting 𝛼 to a small value means that a solution with a
larger amount of classes and rules able to explain a more significant
portion of the events will be considered more promising than a
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solution with fewer rules but unable to explain as many events. The
value of 𝐹 (𝐼 ) must be minimized.

Given the structure of a candidate solution, we define genetic
operators that may modify either the set of classes or the set of rules
in each explanation. For the set of classes, we use the following
operations:

• Class mutation: A randomly selected object is moved be-
tween two randomly selected classes in the same explana-
tion; if a class ends up with no objects, the class is removed
from the explanation.

• Class removal: A randomly selected class is removed, and
its objects are randomly distributed among other existing
classes with uniform probability; all the rules in which the
class is involved are discarded.

• Class addition: A new class is added to the explanation, and
a randomly selected object is moved to the newly created
class.

For the rules, we can apply the following operators:
• Rule mutation: An existing rule is mutated; the mutationmay
involve the target class, the interacting classes, the cause,
and the effect; in all cases, a new randomly selected element
is selected to replace the current one.

• Rule removal: A randomly selected rule is removed.
• Rule addition: A new randomly generated rule is created.

3 EXPERIMENTAL EVALUATION
We tested the proposed approach on Pong and Arkanoid (also
known as Breakout), two extremely popular two-dimensional video
games. These experiments aim to test our strategy on puzzles based
on similar concepts but different layouts.

We tested our approach with two different videos for each game.
Each video is recorded with 60 frames per second. For Pong, the first
video includes about 4,318 frames, and the second includes about
6,086. For Arkanoid, the videos are 2,335 and 12,082 frames long.
Moreover, each experiment was repeated 30 times with 30 different
initial seeds for the random generator to check the convergence
ability of our technique. Each video is part of a training test case.
Ideally, with sufficient events in the video, we show that converging
to a shared knowledge of the game is possible. All experiments
are run on a server using an Intel(R) Xeon(R) Gold 6238R CPU
@ 2.20GHz, equipped with 256 GB of RAM. All the code and the
data necessary to reproduce the experiments are freely available
on a GitHub repository at https://github.com/to-be-disclosed-after-
revision.

The scene analysis focuses on identifying separate patches inside
and across video frames. Many image-segmentation techniques
have been proposed to detect elements in images, and the best
choice is often application-specific. In the current work, we select
OpenCV. The EA used in the experiments employs a classic (𝜇 + 𝜆)
replacement scheme and a tournament selection for choosing the
individuals for reproduction. The evolutionary library used in the
experiments is inspyred [8]. For all the following experiments, we
use a population size of 𝜇 = 1, 000 and an offspring size of 𝜆 = 1, 000
individuals. The tournament selection employs 𝜏 = 2, and the
termination condition is set on 2, 000 maximum generations, with
an early stop if the best fitness does not improve for 100 generations.

When a new candidate solution is to be produced starting from a
parent solution, a single genetic operator is selected with uniform
probability among those previously described. We used the value
0.001 as 𝛼 in Equation 1.

Pong involves a ball bouncing on both the walls and the two
paddles on each side; each object can send the ball back. Paddles
are user-controlled and can be moved vertically up and down. Each
player’s target is to hit the opposite wall with the ball, getting
beyond the opponent’s paddle and scoring a point. The ball starts
with an initial velocity on the x-axis 𝑣𝑥 ≠ 0, and the paddles should
catch the ball. Once the ball touches a paddle, it bounces. There are
two variants of this game. In the first one, ball bounces are perfectly
elastic; in the second one, the new angle of the ball depends on the
distance from the center of the paddle. We experimented with both
variants, as they deliver slightly different results.

In our video analysis, when the ball touches one of the white
stripes representing the net, it disappears (meaning that the video
analysis has no concept of the permanence of an object). Conse-
quently, the algorithm finds the following rule: The ball bounces
when the ball touches one of the white stripes (grouped in a class).
This effect is seen in Figure 1, showing that the algorithm adds the
rule for the ball’s disappearance. In particular, starting from differ-
ent complexity values, the algorithm can improve over the solution
until it finds the final complexity of 227.006 within 20 generations
at most.

Figure 1: The Pong puzzle: The classes and rules discovered
by our strategy.

Arkanoid features a single horizontal paddle controlled by the
player, a set of bricks, and a ball that can bounce on walls and bricks.
Each time the ball bounces against a brick, the brick disappears,
and the player’s score increases. The game’s goal is to make all
bricks disappear by hitting them with the ball; missing the ball with
the paddle and letting it hit the bottom of the screen causes a game
over. The paddle is user-controlled and can be moved horizontally
left and right. In our case study, we have three lines of bricks, and
bricks of different colors represent each line.

The ball bounces elastically against the walls and the bricks.
Colliding against the paddle generates a bounce that follows the
same rules we analyzed with Pong. Arkanoid is more challenging
to interpret for our learning program. This is due to the higher
number of patches in the frames and the more significant number
of rules required to interpret all events. In particular, our instance of
Arkanoid can be described using 26 patches, whereas Pong requires
only 3 (without the net in the middle) or 10 (with the net) patches.

As shown in Figure 2, the learner can separate the ball from
the other patches by finding the classes “ball”, “blocks”, and “misc”.
However, most of the blocks belonging to the miscellaneous class
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are artifacts. Indeed, they disappear when the ball touches them,
even if it never bounces back. Moreover, as the bottom wall is never
touched in this game, the learning algorithm has no experience
with its interactions and places it in a random class.

Figure 2: The Arkanoid puzzle: The classes and rules discov-
ered by our strategy.

This behavior is similar to the one we discovered analyzing
Pong. In both games, we converge toward a very good set of rules,
perfectly describing the basic principles of the games. For Arkanoid,
such rules can be described as “the ball bounces”, “all blocks share
the same behavior”, and “each block disappears when hit by the
ball”.

To sum up, we analyze two games with several similarities and
our solutions converge as expected on both game videos, leading
to a unique and reasonable explanation. Table 1 shows that the
algorithm converges to the same value even using very different
starting seeds. In the table, seeds are selected randomly. The first
column shows the seed we used. Then, for each game, the first
column reports the fitness of the best individual after the first
generation, and the second one presents the best individual in the
last generation. However, the number of generations needed to
converge varies significantly. For instance, for the Pong game our
approach may require more than 40 generations to converge to
the solution with fitness shown in the fifth column of Table 1. For
Arkanoid, the convergence requires more than 70 generations, with
minor differences in the convergence rate depending on the initial
random seed used to find the solution. By exploring the solution
space, we noticed a typical pattern: Our approach tries to minimize
the number of classes despite the number of rules involved. When
an object is moved between classes, the number of rules increases,
creating false explanations. However, as one of our targets is to
minimize the number of rules, the ones that do not provide any
proof are automatically discarded after three or four generations
from the generation in which they are introduced.

4 CONCLUSIONS
This work is the first step in a research line to build AI systems
inspired by core knowledge and exploiting evolutionary compu-
tation to aggregate the basic information provided by hard-coded
algorithms. We present an approach to explain a 2D video as a set
of objects, classes, and rules. We apply it to two simple but wide-
spread games, Pong and Arkanoid. The approach provides a human
and machine-readable description of the videos and a resulting
explanation for their models. We show that, even with a limited
training set, the process can differentiate classes and abstract rules
involving them. Thus, the approach builds a believable explanation
of the rules followed by the various classes.

Pong Evolution Arkanoid Evolution
[Generations] [Generations]

Seed First Last First Last
123456 237.006 227.006 171.020 150.014
42 238.007 227.006 167.005 150.014
256 236.007 227.006 157.007 150.014

190283 236.007 227.006 160.005 150.014
328 239.005 227.006 159.005 150.014

715321 234.005 227.006 161.007 150.014
0 228.005 227.006 171.005 150.014

10000 235.005 227.006 161.004 150.014
444 235.007 227.006 161.007 150.014
711 234.005 227.006 165.007 150.014

8125002 235.007 227.006 165.004 150.014
30 234.008 227.006 164.004 150.014
59 235.007 227.006 164.006 150.014
100 239.006 227.006 157.007 150.014
99 233.006 227.006 166.004 150.014
999 234.004 227.006 160.004 150.014

999999 229.004 227.006 159.008 150.014
13 235.008 227.006 167.006 150.014
75 237.007 227.006 159.007 150.014
915 235.004 227.006 164.004 150.014
627 233.006 227.006 157.006 150.014
498 242.005 227.006 166.006 150.014
186 236.004 227.006 168.006 150.014
216 234.006 227.006 161.006 150.014
311 235.008 227.006 172.006 150.014
618 234.008 227.006 164.008 150.014

Table 1: The evolution of Pong and Arkanoid games respec-
tively: for each seed,we show thefitness of the best individual
in the first generation and the fitness of the best individual
in the last generation.
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