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A B S T R A C T   

Over the past decade, energy systems for the combined management of power vectors have been attracted the 
attention of the scientific community. Most of the published works aim at finding optimal design and operations 
of Multi Energy Systems (MES). In these works, the basic structure and assumptions of the formulation are often 
taken for granted. Consequently, approaching MESs for the first time, understanding how to guarantee the 
desired optimization detail with proper computational expenses, is a challenging and time-consuming task. The 
present work presents a novel approach to the analysis of the MES literature, since it is devoted to guide a 
practical development of MES optimization. Through the discussion of six case studies, the mathematical 
formulation is presented to provide a clear reference to build the model. Emphasis is placed on how the aspects 
investigated can change the nature of the problem and the choice of the solvers for the process execution. For 
each of these aspects, a literature review to identify and discuss the main proposals for its implementation is 
presented. Finally, a great attention is posed on the inclusion of thermal networks and storage in the optimization 
of multi-energy systems, discussing the different approaches used in the literature.   

1. Introduction 

1.1. MES definition and similar aggregation concept 

The energy infrastructures are currently under a significant trans-
formation due to the need to reduce the environmental impact in the 
energy sector and ensure affordable and clean power production. In this 
context, Multi Energy Systems (MES) propose an intelligent intercon-
nection of energy infrastructures (i.e. production, conversion, trans-
mission and storage technologies). MESs have been recognized as a 
promising option to exploit the links among different energy vectors (e. 
g. electricity, gas, hot/cold water) at various levels (e.g. spatial level, 
network level, etc. [1]). Combined management of renewable sources 
fluctuations and exploitation of other sources (such as waste heat) are 
among the main benefits. 

In recent years, some terms devoted to defining aggregation concepts 
have been gaining importance, whose area of influence often overlaps 
with that of multi energy systems. Some examples are:  

1. Energy Hub (EH), developed specifically to model generic MES from 
a technical point of view;  

2. Combined Heat and Power (CHP) generation that can be considered 
as the simplest form of a multi energy system. In fact, besides 
combining the production of two or more energy carriers, it is also 
frequent the presence of additional components such as auxiliary 
boilers or thermal storage that are included in such systems;  

3. Distributed Generation (DG), which indicates a multi energy system 
where technologies are typically small-scale (compared to central-
ized power plants) directly embedded in the distribution network or 
located close to the point of energy consumption;  

4. other systems such as Microgrids (MG) and Virtual Power Plants 
(VPPs), which, although they typically focus on strictly electrical 
issues, are described using a mathematical formulation that is not too 
far from that of MES. 

Multi Energy Systems can be constituted by any kind of technology 
for the production, consumption, storage and transportation of energy. 
Electric Generators (EG, [2]), Heat Only Boilers (HOB, [2]), Combined 
Heat and Power units (CHP, [3]), Combined Power and Cooling units 
(CPC, [4]), Electric Heat Pumps (EHP, [5]), Gas Heat Pumps (GHP, [6]), 
Fuel Cells (FC, [7]), Absorption Chillers (AC, [8,9]), PhotoVoltaic panels 
(PV, [10]), Solar Thermal panels (ST, [11]), Wind Turbines (WT, [12]), 
energy storages [13,14], Electric Networks (EN, [15]), and District 
Heating Networks (DHN, [15]) are the most common technologies 
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included as part of the MES investigated in the literature, but any other 
option can be considered as well. Since the discussion conducted in the 
present work concerns the Multi Energy Systems as a whole and does not 
consider a single real case study, a description of the technologies results 
to be unnecessary and only the aspects required for their mathematical 
modelling will be discussed in the next paragraphs. 

1.2. Benefits and challenges of MES optimization 

Multi energy systems are inherently complex and structured systems. 
The intermittency of renewable sources, the technical constraints of the 
components, the dynamic variation of energy prices and energy loads 
are only some of the elements that make their management a difficult 
task. As a consequence, optimization tools for the evaluation of these 
systems are indispensable. Among the most important benefits gained 
with the MES optimization, the followings are worth to be mentioned: 

Nomenclature 

a Binary variable (technologies connection) 
C Costs [€] 
c Specific costs [€/kW] 
d Decision variables (design) 
F Set of imported fuels 
g Inequality constraints 
h Equality constraints 
I Imported amount of fuel [kW] 
l Storage loss coefficient [kW/h] 
m Number of inequality constraints 
N Number of interval (linearization) 
n Number of equality constraints 
o Decision variables (operation) 
oom Order of magnitude 
P Power [kW] 
SOC State of charge [kWh] 
s Decision variables (synthesis) 
t Time instant 
U Set of technologies 
V Set of energy vectors 
x Function breakpoints (linearization) 
w Binary variable (existence of the technologies) 
y Binary variable (on/off state) 
y’ Binary variable (selection of linearization interval) 

Abbreviations 
AC Absorption Chiller 
CAP Storage capacity [kWh] 
CHP Combined Heat and Power system 
CCHP Combined Cooling, Heat and Power system 
CFVT Constant Flow Variable Temperature 
CTVF Constant Temperature Variable Flow 
DG Distributed generation 
DH(N) District Heating (Network) 
DPR Demand Response Program 
FC Fuel Cell 
FRP Flexible Ramping Product 
EG Electric Generator 
EH Energy Hub 
EHP Electric Heat Pump 
EN Electric Network 
FEL Following Electric Load 
FTL Following Thermal Load 
GHP Gas Heat Pump 
HOB Heat Only Boiler 
HP Heat Pump 
LP Linear Programming 
MA Memetic Algorithm 
MES Multi Energy Systems 
MG Microgrid 
MILP Mixed Integer Linear Programming 

MINLP Mixed Integer Nonlinear Programming 
MIQCP Mixed Integer Quadratically-Constrained 
OUT Exiting 
MP Master Problem 
NLP Nonlinear Programming 
nZEB Nearly Zero Energy Building 
PV PhotoVoltaic 
RES Renewable Energy Sources 
RO Robust Optimization 
RP Rated Power [kW] 
SA Simulated Annealing 
SNO Social Network Optimization 
SP Slave Problem 
VFVT Variable Flow Variable Temperature 
VPP Virtual Power Plant 
WT Wind Turbine 

Greek letters 
Δ Difference 
ξ Random vector 
π Scenario probability 
ω Dummy continuous variable (linearization) 

Superscripts 
BUY Bought from the grid 
CH Charging phase 
DIS Discharging phase 
IN Entering 
INV Investment 
M Maintenance 
MIN,OFF Minimum shut-down time 
MIN,ON Minimum start-up time 
OP Operating 
SELL Sold to the grid 
ST Storage 
START Initial value 
RD Ramp-down 
RU Ramp-up 

Subscripts 
c cold 
el electricity 
f Index for imported fuels 
gas Natural gas 
i Index for energy vectors 
j Index for technologies 
jc Index for producers 
jp Index for consumers 
k Index for time instants 
th thermal 
‘ First stage 
‘’ Second stage  
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- lower consumptions of primary energy, and, consequently, operating 
costs and emissions. Based on the case studies proposed in the 
literature, the cost reduction in economic terms typically ranges from 
5 % to 25 %. Significant advantages can be achieved as well when the 
optimization criterion is the primary energy reduction or the 
decrease of the CO2 emissions (up to one half, [16–23]). Combined 
heat and power production is only an example of the benefits that 
can be achieved compared to separate generation [24,25];  

- a better planning of component operation and the compliance of 
technical constraints respect the common practice operation set. In 
fact, in real applications load following techniques (e.g. Following 
Electric Load, Following Thermal Load, etc.), which manage the 
components operation according to a predefined hierarchy, are 
usually employed. Differently from an operation strategy, an opti-
mization process allows to solve the unit commitment problem with 
a higher degree of freedom, since a hierarchy between the compo-
nents operation is not defined. This typically results in smaller 
operation costs (from 5 % up to 25 % [17,23]); 

- distributed generation can significantly reduce peaks and conges-
tions in energy networks. This advantage is increased if its operation 
is the result of an optimization process. This is due to the lower 
amount of energy vectors requested to the grids thanks to the prox-
imity of generators and users, which can be matched without resort 
to external networks. In addition, the capability to include network 
constraints in the optimization contributes significantly in avoiding 
operation criticalities (e.g. network congestion, [26,27];  

- the most proper management of storage units, whose quality would 
be otherwise relatively poor in case of adoption of operation 
strategies. 

From a theoretical point of view, therefore, the advantages of MES 
optimization have been amply demonstrated. Nevertheless, for optimal 
strategies to be put into practice in real scenarios, the optimization 
model must be able to realistically describe the energy system. Indeed, 
despite the undeniable benefits, modelling multi energy systems in a 
realistic way still presents several challenges that have to be met. The 
most important ones are:  

- the intrinsic dependence of the solution to the initial assumptions, 
which can significantly affect the meaningfulness of the results. As a 
consequence, this can determine a non-complete applicability of the 
solution obtained in case the real conditions are excessively different 
from the simplified ones assumed. To guarantee a robust solution, 
the assumptions adopted should be adequate for any operation 
configuration in which the system could operate;  

- the limited amount of real phenomena and practical aspects that can 
be implemented in the optimization model (e.g. components per-
formance, decision variables, etc.). In fact, some features charac-
terizing MESs are difficult to be considered because they require a 
complex modelling. Therefore, simplifications result necessary;  

- computational times and convergence issues that arises when the 
problem reaches high dimensions. This can be caused by the need to 
consider long time periods in the analysis (e.g. as in the case of 
synthesis, design and operation optimization) or to include the un-
certainties affecting the problem. In those cases, the model must be 
able to find a solution as close as possible to the global optimum in a 
reasonable amount of time. 

1.3. Previous reviews on MES optimization 

Given the enormous popularity of applying optimization tools to 
these types of systems, several works can be found in the scientific 
literature that provide comprehensive reviews on MES. The first review 
papers, written from 2006 to 2009 ([28–30]), discuss the concept of 
multi energy system and present the technologies that can be used for 
the combined generation. A holistic overview on MES, with a critical 

discussion on main characteristics, modelling approaches, aggregation 
concepts, and analysis tools for their operation and planning is pre-
sented in [1]. Concerning the synthesis and design problems for smart 
energy systems, a comprehensive analysis of optimization strategies can 
be found in [31] and [32], with references on decision-making pro-
cesses. Some distinctions based on the size of the systems are made in 
[33–35], where the most common control strategies and optimization 
processes for MESs operation are discussed. Regarding large shares of 
renewable sources, [36] and [37] provide a comprehensive and detailed 
investigation of some important aspects, such as renewable energy 
availability analysis, load profile analysis, geographical domain and the 
choice of both time period and time step. In addition, relevant references 
are given for the different approaches typically used in the literature. 
Important aspects related to renewable sources are the uncertainty and 
flexibility of energy systems are reviewed in [38] and [39], considering 
both modelling and optimization purposes. Finally, the modelling al-
ternatives, the problem formulation, and some exploitable solvers are 
presented in [40] and [41], highlighting pros and cons of the approaches 
found in literature. The evaluation of the system performance based on 
available data, thermodynamic simulation or dynamic modelling are 
discussed in [42], with a deepening on thermodynamic techniques for 
cooling and thermal system arrangements (trigeneration, multi- 
generation, etc.). 

1.4. Goals of the present work 

The reviews found in literature are comprehensive and feature an in- 
depth analysis of the scientific subjects. As a result, these sources are 
aimed towards researchers who already possess a solid understanding of 
the subject matter. However, they may not be the most suitable choice 
for researchers approaching this problem for the first time, even if they 
have expertise in energy. Furthermore, it is common for review articles 
to omit the mathematical formulation of the optimization problem 
typically found in research papers. Consequently, one can derive the 
mathematical formulation applicable to distinct case studies under 
precise underlying assumptions. This is a significant limitation as it does 
not take into account the impact of configuration modifications. 

The main objective of this article is to provide the reader with a 
comprehensive guide to the creation of optimization models for multi 
energy systems. In order to achieve this goal, the authors identified and 
examined the factors that are typically associated with multi-energy 
systems and require adjustments in either their structure or mathemat-
ical formulation for optimization purposes. For each of these elements, 
which will be here called discriminating elements, relevant works from the 
scientific literature are cited, with the purpose of furnishing the reader 
with a compilation of articles where the proposed modelling framework 
has been employed. At the beginning, the formulation of an optimiza-
tion problem for the operation of a multi-energy system assumed as base 
case is presented. Subsequently, additional instances are showcased in 
order to examine the integration of discriminating elements into the base 
case optimization model, as well as the challenges and benefits associ-
ated with their inclusion. Through the use of these modules, it is possible 
to incorporate any modifications into the mathematical formulation of 
the initial scenario, such that tailored optimization models can be 
developed. The inclusion of device’s physical operation constraints to 
ensure practical and feasible results in real scenarios, the changes 
required to pass from an operation optimization to a synthesis and 
design optimization, the inclusion of uncertainty within the optimiza-
tion framework, the possible flexibility measures to enhance the 
response of the energy system to changes in energy supply and demand 
are some examples of the topics covered by this review paper. Each 
discriminating element is analyzed independently, allowing for -
easy isolation and examination. The authors thoroughly examined 
various analyses found in the literature, presenting the advantages and 
disadvantages of each approach. This enables readers to find an analysis 
that best suits their individual requirements. Moreover, most literature 
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reviews on multi-energy systems tend to focus mainly on the electrical 
aspects and often overlook the inclusion of heating and cooling networks 
in such systems. Our study aims to fill this gap by providing a compre-
hensive model that takes into account various forms of energy in the 
problem-solving process. Specifically, we investigate how to include 
thermal networks and energy storage in optimizing multi-energy sys-
tems and highlight the different methods used in existing research to 
achieve this. 

Hence, the primary innovations introduced in this paper are as 
follows:  

1. Emphasis on the factors that influence the nature of the optimization 
problem, the subsequent selection of the optimization solver, the 
associated computational challenges, and problem scale;  

2. Presentation of a mathematically formulated approach, chosen for its 
practical applicability among the various alternatives found in the 
literature, with the intent to facilitate a discussion on the problem’s 
characteristics;  

3. A structured presentation format relying on case studies, suitable for 
model development. The computational complexity of the model 
depends on the desired level of detail;  

4. A specific focus on thermal aspects within the context of Multi- 
Energy Systems optimization. 

For each stage of this focus, pertinent research articles are cited as 
reference studies. 

1.5. Structure of the paper 

The structure of the paper has been developed to fit the purpose of 
the review analysis and to support the desire to focus the discussion on 
the modelling-related aspects. 

The paper is structured as follows:  

- Section 1, where the base case is presented, focusing on the operation 
optimization. This section includes the description of decision vari-
ables and objective function, mathematical formulation of con-
straints and storage modelling; 

- Section 2 allows to include some real characteristics of energy sys-
tems into the model (e.g., real performance curves, technical con-
straints to account for system dynamism and the inclusion of 
maintenance costs);  

- Section 3 focuses on the optimization purpose: from operation 
optimization to synthesis, design and operation optimization;  

- Section 4 provides some insights into the introduction of uncertainty 
in multi energy system optimization problems; 

- Section 5 discusses the different techniques that can be used to in-
crease system flexibility;  

- Section 6 draws the concluding remarks. 

To further increase the clarity in the exposition of the paper’s 
structure, Fig. 1 provides a graphical representation of the approach 
adopted in the present review analysis. Starting from an essential case 
study (Case 0), the discussion of the different modelling aspects of the 
MES optimization are exposed in separate case studies (Case1-4), which 
can be considered as independent among them. Notice that, for every 
case study, the corresponding section of the paper is reported. 

ScienceDirect and Google Scholar have been used as databases for 
the research of the scientific papers discussed in the present review. In 
order to obtain an overview as wide as possible, no filters or limitations 
have been imposed in the research. 

2. Discriminating elements 

The discriminating elements are key characteristics of multi energy 
systems that strongly influence: a) the problem formulation; b) the 
optimization solution. In other words, they can change the nature of the 

Fig. 1. Structure of the review paper.  
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problem and, therefore, the way it can be solved. 
The most important discriminating elements identified by the au-

thors are (see Fig. 2):  

A. Optimization purpose 
The optimization process can include up to three different tasks:  

1. Synthesis, when the objective is finding the most suitable com-
ponents to employ for the combined production of the energy 
vectors, as well as establishing their interconnections.  

2. Design, when the problem consists in the optimal dimensioning of 
the technologies selected by the synthesis process.  

3. Operation, when the aim is to find a proper working schedule for 
the components (i.e., when a technology operates over time and 
its operating load).  

B. Single-objective/multi-objective 
The optimization can be done with a single objective function (e.g., 
cost, primary energy consumption, emissions) or a multi-objective 
function (a combination of two or more objective functions). This 
choice does not affect the problem formulation, but it could influence 
the choice of the solver. Longer computational times must be 
accounted for the multi-objective optimization, since multiple 
feasible solutions must be found, and their position in the Pareto 
curve must converge.  
C. Nonlinearities 
The problem to be solved can become nonlinear for different reasons:   

1. Nonlinear performance of system components 
The performance of a component varies at partial load operation, 
in off-design conditions. Efficiencies usually have nonlinear 
trends, sometimes even non-convex. Therefore, nonlinearities are 
introduced in order to properly describe the performances of the 
components.  

2. Nonlinear investment costs 
The investment costs vary nonlinearly with the size of the 
component, due to scaling phenomena and other economic 
aspects. 

The presence of nonlinearities strongly influences the formula-
tion of the problem, the choice of the solver, the computational 
time and the reliability of the solution.  

D. Technical constraints of system components 
All components operating in energy systems are characterised by 
technical constraints. To represent the behaviours of the technolo-
gies, the problem formulation and the solver must be appropriate.  
E. Time interval and time step 
The length of the time interval that is taken in analysis (e.g., hours, 
days, years, etc.) can be very important. Considering longer periods 
means including a higher number of time steps and therefore a 
higher number of independent variables. By contrast, concerning the 
time step (15 min, 30 min, 1 h, 2 h. etc), larger values help reducing 
the problem size, but they bring a loss of precision in the operation 
simulation.  
F. Uncertainties 
Many inputs by the optimization process and referred to the future 
time periods can be difficult to be estimated (i.e., energy/fuels prices, 
energy demands, and availability of renewable sources). If the so-
lution must include the effects of the uncertainties, suitable tech-
niques must be adopted during the problem formulation. This 
increases the problem complexity and the computational cost.  
G. Presence of energy storages 
Energy storages allow decoupling the energy demand and genera-
tion, providing a higher degree of freedom to the system operation. 
However, their presence introduces a correlation between time steps, 
which can no longer be considered independent. Consequently, the 
optimization process moves from a series of small problems (several 
optimizations, each per time step) to a single problem (one optimi-
zation over all time steps). Therefore, the problem becomes larger in 
size. This makes the solution process more complex to solve due to 
the exponential relation that links computation time and problem 
size.  
H. Flexibility measures 
Beside energy storages, other solutions exist to increase the system 
flexibility. Among them are the adoption of demand response stra-
tegies and the exploitation of the infrastructure transients (e.g., 

Fig. 2. General structure of an energy system with discriminating elements reported on the corresponding elements.  
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district heating network used as thermal storage). The inclusion of 
these aspects can be very complex, especially for the dynamic 
simulation of the network, where the presence of bilinear terms and 
high sizes of the problem must be addressed. 

In addition, there are few other aspects that contribute shaping the 
formulation of the problem. These are not listed between the discrimi-
nating elements because they have a weaker influence on the problem 
formulation. As a consequence, the changes required to take them into 
account are minor. These are:  

a. The typology of energy vector/product 
Natural gas, electricity, heating, and cooling are by far the most 
common energy vectors, but others can be included, such as 
hydrogen, biofuels, desalted water, etc. As is easy to understand, 
every energy vector/product needs its balance. Each balance 
represents a constraint of the optimization problem. Therefore, 
adding or removing an energy vector from the operation of an 
energy system can be simply done by adding or removing the 
corresponding constraint.  

b. The objective function 
Minimization of primary energy consumptions, economic costs 
and CO2 emissions are the most common criteria adopted, but 
other interesting objective functions are sometimes evaluated, 
such as peak shaving, social welfare, electric grid stability, 
curtailment of renewable power, etc. However, the type of 
objective function does not determine substantial differences in 
the problem definition. In fact, the issues that can be encountered 
in simulating the system are mainly referred to the constraints, 
while the objective function change is straightforward.  

c. The presence of renewable sources in the energy system 
RES generation cannot be arbitrarily modified since it depends on 
the availability of the source. This aspect represents an additional 
constraint (as renewable generation into an input data instead of 
a variable to optimize), but, even in this case, it does not modify 
the nature of the problem. 

Discriminating elements are listed in Fig. 3 and for each of them the 
possibilities of analysis are summarised. 

The importance to the identification of discriminating elements is 
driven by the fact that, influencing the mathematical formulation of the 
problem, they pose limitations on the selection of the optimization 
solver. As can be found in the scientific literature, high dimensional 
problems for MESs optimization are usually simplified and reformulated 
in order to be executed with deterministic solvers, which can reach 
better solutions compared to heuristic methods. This because they are 
able to guarantee the global optimality and can handle a much higher 
number of variables compared to heuristics. However, in order to fully 
exploit these advantages, the optimization problems should not include 
sources of non-convexity and, possibly, sources of nonlinearity. The 
classes of this kind of optimization are: Linear Programming (LP), 
Nonlinear Programming (NLP), Mixed Integer Linear Programming 
(MILP), and Mixed Integer Nonlinear Programming (MINLP). The dif-
ferences of these categories are discussed further on, and are related to 
problem formulation, computational times and solution quality. 

The following sections are devoted to the description of the case 
studies to discuss the implementation in an optimization model of the 
discriminating elements listed above. First of all, Case 0 is presented for 
providing the reader a mathematical formulation of a simple problem. 
Then, different discriminating elements are consecutively included; for 
each case, the changes of the nature of the optimization problem, the 
impacts on the choice of optimization solvers, as well as the increase of 
computational complexity and problem dimensions due to their inclu-
sion, are discussed. 

3. Case 0 - Simplified operations 

Case 0 aims at defining the optimal scheduling of a multi energy 
system, consisting of generation, conversion, and storage technologies. 
The only specifications addressed are: a) the presence of energy storages; 
b) energy components have neither minimum operating load nor partial 
load operation; c) no uncertainty inclusion; c) the absence of other 
flexibility measures in the system. For a similar case, the most suitable 
time horizon is the short-term, which is usually addressed considering a 

Fig. 3. Discriminating elements.  
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daily operation discretized with an hourly resolution [43]. Table 1 
presents the discriminating elements setup for Case 0. 

The authors’ aim is not to detail the energy system (e.g., specifying 
energy components). The intention is to provide the reader with a 
general formulation that is as flexible as possible. However, an example 
of MES with the related mathematical formulation is provided in the A. 
ppendix section. This is done to help the reader understand the problem 
with a clear case reference. 

More generally, concerning the discriminating elements described in 
Table 1, the reference model for this type of problem is a Linear Pro-
gramming (LP) model that can be written in the standard form as re-
ported in Eq. (1). 

min
o

f (o)

s.t.

{
gi(o) ≤ 0∀i ∈ {1,⋯,m}

hj(o) = 0∀j ∈ {1,⋯, p}

o ∈ R

(1) 

where o is the vector containing the decision variables referred to the 
system operation, f(o) represents the linear objective function, g(o) and 
h(o) are the linear inequality and equality constraints, while m and n are 
the total number of inequality and equality constraints, respectively. In 
the following subsections, the definition of the decision variables (Sec-
tion 3.1), the objective function (Section 3.2), and the constraints of the 
problem (Section 3.3) will be discussed. 

For Case 0, since the use of integer variables is not necessary and the 
nonlinear equations are not present, it is possible to execute the opti-
mization process using LP solvers, which are among the fastest algo-
rithms able to reach the global optimum [44]. 

3.1. Definition of decision variables 

In the type of problem described by Case 0, the decision variables are 
continuous. Often in the modelling of multi-energy systems, the oper-
ating power of each technology is described by a single decision vari-
able. However, there are some units that, in some cases, may need to be 
described by two variables. This situation arises, for example, when 
modelling interactions with external networks like the power grid or 
district heating. In these cases, it is possible to employ two distinct 
variables—one for purchases from the network and another for sales to 
it. Alternatively, a single variable can be utilized, capable of assuming 
positive and negative values with different meanings (such as positive 
values for purchases and negative values for sales). The same applies to 
energy storages with regard to their charging and discharging phases. 

Except for a few circumstances (see layout constraints in Section 
3.3.3 and charging/discharging efficiency in Section 3.3.2), the two 
approaches can be generally considered equivalent, but each alternative 
has its pros and cons. The choice of using only one real variable implies a 
reduction of the number of variables and therefore a reduction in the 
computational effort. In addition, this choice allows the problem to be 
kept simple from a computational point of view. In fact, with the two- 
variables modelling, additional constraints to prevent simultaneous 
charging/discharging of the storage or simultaneous buying/selling 
from/to the grid must be included in the formulation. An exception 
concerns decision variables describing the energy networks when the 

optimization criterion is economic. In this case, two variables are needed 
since the purchase price and the selling price of the same energy carrier 
are always different. Furthermore, if the selling cost is lower than the 
buying cost (as is usually the case), no constraint needs to be added 
because the simultaneous buying and selling is intrinsically always 
disadvantageous. 

3.2. Objective function 

One of the most widely used objective functions is the economic one, 
here proposed as an example. As far as the operation optimization is 
concerned, the objective function includes only the operating costs, 
consisting of the costs of fuels imported into the energy system and the 
costs/revenues due to exchanges with energy networks. Consequently, a 
general form of the economic objective function can be written as Eq. 
(2). 

COP =
∑tend

k=1

⌈
∑

j∈U

(
∑

f∈F
cf ,j,kIf ,j,k

)

+
∑

i ∈ V
cBUY

i,k PBUY
i,k − cSELL

i,k PSELL
i,k

⌉

(2)  

Where F is the set of the fuels purchased (such as natural gas, hydrogen 
etc.), while V is the set of energy vectors managed within the system 
(heat, cold, electricity, etc.) and U is the set of generation and conversion 
technologies. Furthermore, If is the fuel imported in the time step 
considered and cf is the related unit cost. In the same way, Pi

BUY and Pi
SELL 

represent the bought/sold power for each energy vector i, while ci
BUY 

and ci
SELL are the related unit costs. 

Practical optimization problems often require minimizing or maxi-
mizing several conflicting objectives simultaneously. Multi-objective 
optimization methods attempt to find solutions that are as close as 
possible to the Pareto optimal front, defined as the set of non-dominated 
solution in the objective function space. Two main approaches can be 
identified for achieving this: Pareto-based approaches and aggregation 
approaches. Pareto-based approaches (e.g., Nondominated Sorting 
[45–50], Strength Pareto Evolutionary Approach [47,51,52] etc.) look 
for the Pareto front without making any choices among the selected 
solutions. In this case, multiple objectives are optimized simultaneously. 
Once the Pareto optimal set is found, decision-makers need to choose the 
“best compromise solution”, based on the specific optimization problem 
or personal preferences. On the other hand, aggregation approaches 
(such as the weighted sum method [53–57], or constrained approach 
[57–61]) combine different objectives into a single objective function. 
These methods are widely used due to their ease of implementation. In 
this case, preferences are expressed before the optimization, which is 
why they are also referred to as “a priori methods”. One critical aspect is 
that conflicting objectives often have different physical dimensions and 
variation ranges, so normalization is required. In this case, the multi- 
objective problem is transformed into a single-objective optimization 
problem, enabling the use of solution methods designed for single- 
objective problems. Aggregation approaches typically yield a single 
solution, but if the decision maker’s preferences are expressed and op-
timizations are carried out iteratively, a set of solutions can be obtained. 

3.3. Constraints 

The fundamental constraints for this type of optimization problem 
are: a) the energy balances (Section 3.3.1); b) constraints for describing 
the behaviour of storage technologies (Section 3.3.2); c) constraints 
related to the layout of the system (Section 3.3.3). 

3.3.1. Energy balances 
As previously mentioned, for each energy vector, an equality 

constraint must be included in the mathematical formulation of the 
problem. The general form is reported in Eq. (3). 

Table 1 
Discriminant elements setup for Case 0.  

Optimization purpose Operation 

Presence of energy storages ✓ 
Technical constraints of system components ×

Nonlinearities ×

Time interval Short-term 
Uncertainties ×

Flexibility measures ×

G. Mancò et al.                                                                                                                                                                                                                                  



Applied Thermal Engineering 236 (2024) 121871

8

∑

j∈U

(
POUT

i,j,k − PIN
i,j,k

)
+PBUY

i,k − PSELL
i,k ± PST

i,k − PLOAD
i,k = 0 ∀ i ∈ V, ∀ k

∈ {1, .., tend} (3) 

These sets of constraints state that, for each energy carrier i and at 
any time step k∈{1,..,tend}, the sum of imported (PBUY) and generated 
powers (POUT) must equal the sum of exported (PSELL) and consumed 
powers (PIN). In addition, power related to the charging and discharging 
phases of the storage (PST) should be included in the balance equation. 

3.3.2. Energy storages 
The main factors that need to be taken into account when modelling 

energy storages are:  

- Limitation on charging/discharging powers;  
- The storage capacity as maximum limit for the stored energy or, 

alternatively, the upper and lower limitations of the state of charge 
(typically used for electrical storage);  

- The energy balance of the storage. 

Moreover, other factors can be considered in the analysis, for 
example:  

- Inclusion of charging/discharging efficiency of the energy storage;  
- Inclusion of self-discharge due to energy losses;  
- Impact of the ambient temperature (for thermal storage);  
- Periodicity constraint (equilibrium of storage energy at initial and 

final hours of the simulation). 

As already mentioned in Section 3.1, each energy storage, regardless 
of the typology, can be modelled by a single variable or by two variables. 
It is important to note that one case in which the two modelling ap-
proaches cannot be used indiscriminately is when a parameter changes, 
depending on the phase (charging and discharging). This occurs, for 
example, when two different values for the charging and the discharging 
efficiency should be included in the modelling of the energy storages. 

The storage units can be described through linear equations. If only 
one variable is used for the modelling of these components, a possible 
formulation could be given by Eqs. (4)–(7) (ideal case) or Eqs. (6) – (8) 
(case with losses). 

− PCH,max
i,k ≤ PST

i,k ≤ PDIS,max
i,k ∀i ∈ V, ∀k ∈ {1, .., tend} (4)  

0 ≤ CAPSTART
i +

∑t

k=1
PST

i,k Δt ≤ CAPi∀i ∈ V,∀t ∈ {tstart, .., tend} (5)  

or 

0 ≤ (1 − li)
tCAPSTART

i +
∑t

k=1
(1 − li)

t− kPST
i,k Δt ≤ CAPi∀i ∈ V,∀t

∈ {tstart, .., tend} (6)  

− CAPSTART
i −

∑t

k=1
PST

i,k Δt ≤ 0∀i ∈ V,∀t ∈ {tstart, .., tend} (7)  

or 

− (1 − li)
tCAPSTART

i −
∑t

k=1
(1 − li)

t− kP
ST
i,k Δt ≤ 0∀i ∈ V, ∀t ∈ {tstart, .., tend}

(8) 

More in detail, Eq. (4) sets the upper and lower limits for charging/ 
discharging power, while Eq. (5) ensures that physical storage limits, 
due to its finite capacity (CAP), are not violated. As an alternative to the 
previous equation, it is possible to impose that the state of charge (i.e., 
the available capacity expressed as a. 

percentage of its rated capacity) is within the permissible range in 
each time step. Finally, Eq.7 ensures that the discharged energy was 
previously stored. 

To account for energy losses over time, Eq. (6) must be used instead 
of Eq. (5), and Eq. (8) instead of Eq. (7); in this case the losses are 
modelled by the loss coefficient l that represents a percentage of energy 
that is lost in each time step and it takes into account that energy storage 
is not free over time. This phenomenon is particularly important for 
thermal storage and a method to estimate this parameter based on the 
ambient temperature and the storage capacity is described in [62]. 
However, if short term storage is under consideration, thermal losses can 
be typically neglected. 

Concerning the electrical storage, charging, and discharging effi-
ciencies are the most used parameters, with typical values between 0.75 
and 0.90 [37]. Some examples of articles where single-variable model-
ling is selected in the analysis are [63–68]. 

The following equations (Eq.9 – Eq.14) are also given for the 
modelling case with two decision variables linked to each storage. The 
binary variable yST is required to prevent simultaneous charging and 
discharging of the storage. 

0 ≤ PCH
i,k ≤ yST

i,k ⋅PCH,max
i,k

∀i ∈ V, ∀k ∈ {1, .., tend} (9)  

0 ≤ PDIS
i,k ≤

(
1 − yST

i,k

)
PDIS,max

i,k ∀i ∈ V,∀k ∈ {1, .., tend} (10)  

0 ≤ CAPSTART
i +

∑t

k=1

(
PCH

i,k − PDIS
i,k

)
Δt ≤ CAPi∀i ∈ V,∀t ∈ {tstart, .., tend}

(11)  

or 

0 ≤ (1 − li)
tCAPSTART

i +
∑t

k=1
(1 − li)

t− k
(

PCH
i,k − PDIS

i,k

)
Δt ≤ CAPi∀i ∈ V, ∀t

∈ {tstart, .., tend}

(12)  

− CAPSTART
i −

∑t

k=1

(
PCH

i,k − PDIS
i,k

)
Δt ≤ 0∀i ∈ V,∀t ∈ {tstart, .., tend} (13) 

or 

− (1 − li)
tCAPSTART

i −
∑t

k=1
(1 − li)

t− k
(

PCH
i,k − PDIS

i,k

)
Δt ≤ 0∀i ∈ V, ∀t

∈ {tstart, .., tend} (14) 

Some specific cases of articles where two-variable modelling is 
selected for the study are [69–76]. 

In addition, the periodicity constraint can be included in order to 
impose the same storage level at the beginning and at the end of the 
considered time interval. The formulation of both modelling approaches 
is reported in Eqs. (15)–(16). 

(1 − li)
tend

CAPSTART
i +

∑tend

k=1
(1 − li)

tend − kPST
i,k Δt = CAPSTART

i (15)  

(1 − li)
tend

CAPSTART
i +

∑tend

k=1
(1 − li)

tend − k
(

PCH
i,k − PDIS

i,k

)
Δt = CAPSTART

i (16)  

3.3.3. Layout constraints 
Layout constraints are often overlooked, under the simplifying 

assumption that all components can be connected indiscriminately. 
However, parallel and series connections between different devices can 
be found in most of real applications. Furthermore, a particular example 
concerns heat generation technologies that operate at different tem-
perature levels. In this case, the different circuits typically communicate 
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via heat exchangers. On a practical level, in order to include the actual 
connections of the components in the mathematical formulation, the 
energy balances must be modified. For each energy vector, two types of 
constraints must be inserted. The first one (Eq.17) states that the output 
power of each generation/conversion technology must be less than the 
sum of the powers consumed by the interconnected technologies. On the 
other hand, the second constraint (Eq.18) expresses that the input power 
of each technology must be less than the sum of the powers produced by 
the interconnected generators. 

POUT
i,jp ≤

∑

jc∈Uc

PIN
i,jcajp,jc∀i ∈ V (17)  

PIN
i,jc ≤

∑

jp ∈ Up

POUT
i,jp ajp,jc∀i ∈ V (18) 

In Eqs. (17)–(18), i represents the energy vector, jp and jc are sub-
scripts to distinguish producer from consumer technologies and a in-
dicates the state of the connection between the considered technologies 
(1 if connected and 0 otherwise). It should be noted that the set Up in-
cludes not only producer technologies, but also purchase from the net-
works and discharging phase of storage. Similarly, the set Uc denotes 
both consumer technologies but also selling to networks and charging 
phase of storage. When layout constraints need to be included in the 
problem formulation, since it is necessary to distinguish the producers of 
each energy vector from its consumers, only double variable modelling 
can be used as modelling approach. 

In the A.ppendix section, Eqs (17)–(18) are written in their extended 
form, referring to the proposed MES example. 

3.4. LP models of multi energy systems in literature 

The simplified description of energy systems, through Case 
0 formulation, could bring to a representation far from the real one. As a 
result, there are few articles in the literature that perform the opera-
tional optimization using exclusively an LP formulation [77–82]. Among 
them, Georgiou et al. [83] propose a LP optimization scheme for the 
minimization of the net grid energy usage of a nearly Zero Energy 
Building (nZEB). However, the study proposes to include a further step 
at the end of the optimization: the import of the optimal dispatching in 
the software System Advisor Model (SAM), in order to address a more 
realistic modelling of storage and take into account the power conver-
sion losses. More frequently, however, the use of the linear approach is 
embedded in a more complex optimization framework. In this case, the 
simplified linear approach allows the characteristics of the system to be 
broadly taken into account, allowing to analyse more complex aspects 
[84]. For example, Lauinger et al. [85] developed a decision-support 
tool in the form of a linear program in order to apply a stochastic pro-
gramming approach, able to account for the uncertainty of the weather 
parameters. This choice is justified by the fact that stochastic program-
ming increases the computational complexity in proportion to the 
number of considered weather scenarios, requiring the formulation of 
simple and fast operation problem. Another article that presents a 
similar methodological approach is [86]. Furthermore, a two-level 
nested optimization is presented by Capone et al. [87] in order to 
model the multi energy system taking into account the thermal dy-
namics of the district heating network. The upper-level uses the genetic 
algorithm to optimize the demand-side management, while the lower- 
level optimization uses a linear programming algorithm to find the 
best operation of the production plant. Finally, the short computational 
times characterizing LP problems can be particularly advantageous 
when the optimization process has to be repeated, for example for 
finding the Pareto curve in a multi-objective optimization [79]. 

4. Case 1 - Realistic modelling of the system components 

Case 0 represents a highly simplified model since it neglects 

technical limitations that characterize the operation of the technologies, 
such that it is possible to say that the resulting formulation provides an 
ideal formulation of their operation. These simplifying assumptions are 
sometimes used even at the cost of significant impacts on model 
accuracy. 

In general, the choice of whether to include technical constraints 
within the optimization can strongly influence the results of the optimal 
operation and load characteristics of individual technologies. In the 
present work, the more detailed description of the components opera-
tion obtained by including their technical features will be referred as 
“real performance”. In this section, these issues are addressed. More in 
detail:  

a) Case 1a presents the modelling of technical constraints, thus 
analysing:  
- The minimum power constraints in Section 4.1.1;  
- Minimum up and down time constraints in Section 4.1.2;  
- Ramp rate constraints in Section 4.1.3;  
- Maintenance cost modelling in Section 4.1.4.  

b) Case 1b the different possibilities to include nonlinearities are 
exposed. In particular:  
- Part load performance in Section 4.2.1;  
- Investment costs in Section 4.2.2.  

c) Case 1c both operational constraints and actual performance are 
treated together. 

4.1. CASE 1a - Technical constraints of system components 

In order to include operational technical constraints of the technol-
ogies within the optimization problem, such as the discrete working 
ranges of technologies or their minimum operating period, a more 
complex mathematical formulation is required since binary variables 
become essential. Table 2 presents the discriminating elements charac-
terizing Case 1a. 

The formulation of the above-mentioned optimization problem turns 
out to be a Mixed Integer Linear Program (MILP) and it can be written in 
general form as in Eq. (19): 

min
o

f (o)

s.t.

{
gi(o) ≤ 0∀i ∈ {1,⋯,m}

hj(o) = 0∀j ∈ {1,⋯, p}

o ∈ {R} ∨ {Z} ∨ {0, 1}

(19)  

where o is the vector containing the continuous and integer decision 
variables, f is the objective function, while gi and hi are the sets of 
inequity and equity constraints, respectively. In particular, f, g and h are 
linear functions, while o represents real or integer variables. 

This formulation differs from the previously one presented in Section 
3 due to the presence of the integer variables (that can appear both 
within the objective function and the equality/inequality constraints). 

4.1.1. Minimum operating power 
Most of the technical devices cannot operate in arbitrary low part 

load. Constraints on the minimum powers of the components can be 

Table 2 
Discriminating elements setup for Case 1a.  

Optimization purpose Operation 

Presence of energy storages ✓ 
Technical constraints of system components ✓ 
Nonlinearities ×

Time interval Short-term 
Uncertainties ×

Flexibility measures ×
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included in the model by acting on the upper and lower boundary of the 
variables. In particular, the formulation is given in Eq. (20). 

PIN,MIN
j,k yj,k ≤ PIN

j,k ≤ PIN,MAX
j,k yj,k∀ j ∈ U, ∀ k ∈ {1, .., tend} (20) 

Where y is the binary decision variable representing the on/off state 
of the technology and PIN,MIN and PIN,MAX are the extreme values of its 
working range. If the binary variable is set to zero, the only value that 
the PIN variable can assume is 0 (and therefore the technology is off). If, 
instead, y is equal to 1, the technology is switched on at a level between 
its real minimum and maximum operating power. 

It is worth to notice that the addition of this constraint is trivial for 
components whose performances have been piecewise linearized (Sec-
tion 4.2.4), since the binary variables are already present, and therefore, 
considering the minimum operating powers does not increase the di-
mensions of the problem. 

4.1.2. Minimum up and down time constraints 
For some types of devices, the associated on/off schedule cannot 

assume arbitrary values. More in detail, each unit shall remain switched 
on for at least a predefined number of time periods after start-up. This 
constraint is called minimum up time constraint. Similarly, each unit 
must respect minimum down time constraints, remaining switched off 
for at least a predefined number of periods after shutting down. For 
example, this is typical of cogeneration units due to their slow dynamics. 
This technical constraint is important also because each unit, in addition 
to operating and maintaining costs, can have a start-up cost, incurred 
each time the unit is switched on. This cost is usually due to the inertia of 
the component (i.e., it consumes primary energy without producing any 
useful effect [88]). Consequently, neglecting these constraints may lead 
to erroneous estimates that may impact the feasibility of a technology in 
the energy system. 

In the literature, three approaches can be found to manage this issue.  

a) One possible way to set the minimum times for a technology to be 
switched on or off is to include the following constraints in the 
problem formulation (Eqs. (21)–(23)). 

zj,k = yj,k − yj,k− 1 ∀k ∈
{

2, .., tend} (21)  

∑k+NΔtMIN,ON

t=k

[
yj,t
]
≥ NΔtON −

(
zj,k − 1

)
⋅M ∀k ∈

{
2, .., tend − NΔtON} (22)  

∑k+NΔtMIN,OFF

t=k

[
yj,t
]
≤
(
1+ zj,k

)
⋅M ∀k ∈

{
2, .., tend − NΔtOFF} (23)  

Where y is a binary variable equal to 1 if the device is on and 0 other-
wise; z is a dummy variable to recognise the start-ups and shut-downs; 
NΔtMIN,ON and NΔtMIN,OFF are the minimum number of time steps in 
which the component must stay on and off, respectively; and M is an 
arbitrary big and constant number, usually called Big-M. These con-
straints allow the on/off vector to be scanned, relating the current 
instant to previous and subsequent ones, in such a way that the mini-
mum time constraints are respected. It is worth to notice that, in order to 
compute the first z of the series, it must be provided a binary value for y 
as the initial state of the component (when k = 0). Obviously, these 
constraints require a single optimization over several time steps, as in 
case of storages (since the various time steps are linked by Eqs.21–22). 
This type of modelling is used in [58,76,72,89,90].  

b) Minimum up and down time constraints can also be modelled in a 
less rigid way. This can be done by adopting some limitations or 
penalties to prevent the operation of components characterized by 
frequent starts and stops. In most cases, these effects are monetised 
by introducing in the objective function specific costs (known as 

“start-up and shut-down costs”) for each component start and/or 
stop [91,92].  

c) A less frequently used method is limiting starts and stops per day a 
priori [66,93,94]. 

The aforementioned methods for start/stop restrictions can also be 
applied simultaneously [16,95]. 

4.1.3. Ramp rate constraints 
Another technical constraint that accounts for transitional behaviour 

of the devices is the ramp up/down constraint. In particular, it aims to 
limit the output power variation between each time step in order to 
represent a physical limit due to the real operation of the components 
and to improve the lifetime of the device. This type of constraint also 
handles information related to subsequent time steps, so it is not possible 
to adopt it within a series of separate optimizations. It can be written in 
the form reported in Eq. (24). 

ΔPRD
j −

(
1 + zj,k

)
M ≤ Pj,k − Pj,k− 1 ≤ ΔPRU

j +
(
1 − zj,k

)
M ∀k

∈
{

2, .., tend}, ∀ j ∈ U (24) 

Where ΔPRD and ΔPRU are the ramp-down and ramp-up powers, 
respectively. Notice that the constraints are not applied when startups or 
shutdowns take place. Concerning the scientific literature, 
[58,66,67,76,96] are some of the works that employ this kind of 
constraint in the analysis of the multi energy system operation. 

4.1.4. Maintenance costs 
The inclusion of maintenance costs within the optimization model 

can be done in different ways:  

a) Maintenance costs are usually single-step costs unlike operating costs 
which scale with input power. As a consequence, they should only be 
added to the objective function only if the technology operates in the 
considered time step. This type of information can be managed only 
through the use of binary variables. The calculation of these costs is 
reported in Eq. (25). 

CM =
∑

j∈U

[
∑tend

k=1
cM

j yj,k

]

(25)  

Where cM
j is the specific maintenance cost of the j-th technology, while y 

is the binary variable that represents the on/off state of the component 
(equal to 1 if on, 0 otherwise). 

b) Maintenance costs can be assumed to be proportional with the pro-
duced power and, consequently, with the operating cost [92,95] or, 
in other cases, they are given as a fraction of the capital cost 
([73,97,98]. 

It should be noted that, with the modelling approach explained in 
point 2, maintenance costs are considered in a more approximate way, 
and, in this case, the use of binary variables is not necessary. 

4.1.5. MILP models of multi energy systems in literature 
Among the alternatives that address the scheduling optimization 

problem by taking into account the technical constraints that charac-
terize these systems, the most commonly adopted formulation in liter-
ature for solving short-term operation is the Mixed-Integer Linear 
Programming ([16,17,53,68,99–108]). Brahman et al. [70] obtained a 
MILP model of a residential energy hub, focusing on advantages related 
to load shifting, load curtailing and flexible load modelling considering a 
maximum heating and cooling temperature deviation from desired set 
points. Several binary variables were used to represent the on/off states 
of the cogeneration unit and equipment identified as shiftable loads, 
along with the charge and discharge states of the storage units. Morais 
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et al. [69] presented an optimal operation of a renewable micro-grid and 
the effectiveness of the presented methodology is demonstrated through 
its application to a real case study. The dispatching is formulated as a 
MILP problem since two variables are required for modelling the storage 
batteries. Daraei et al. [109] adopted the MILP method to evaluate the 
interaction between local renewable resources and CHP plants and its 
influence on the CHP production planning and energy demand. Finally, 
in this context, one of the most significant research works is presented by 
Wirtz et al. [110]. The authors of the paper investigated 24 MILP models 
with different levels of details for the design of MES and pointed out 
that, for the analysed case, considering part load efficiencies leads to 
lowest system costs but highest computational time. The large number of 
variables required for the linearization makes this model feature the one 
with the most impact on the optimization. In contrast, the features of 
minimum part load and start-up costs have a small impact on 
optimization. 

4.2. CASE 1b - Nonlinearities 

In this section the impact of nonlinearities on the energy system 
optimization model is analysed. More in detail, Case 1b aims at defining 
the optimal scheduling of a multi energy system, including in the 
mathematical formulation the off-design characteristics of the equip-
ment and the investment costs. Table 3 presents the discriminating ele-
ments characterizing Case 1b. 

The mathematical formulation for Case 1b is Nonlinear Program-
ming (NLP) and its standard form for this kind of problem is expressed in 
Eq.1. It differs with respect to Case 0 for the presence of nonlinear 
relation in the objective function and/or in the constraints. 

In the following section the above-mentioned sources of nonlinearity 
are described and different methodologies for dealing with non-
linearities are presented. 

4.2.1. Part load performance 
Although most models assume that the component efficiency is 

constant even when the system component is operating under off-design 
conditions, a critical aspect is the decrease of the nominal efficiency at 
part load. Unlike constant efficiency devices, nonlinear devices create a 
natural incentive to operate close to optimum efficiency, discouraging 

part-load operation. In addition, the inclusion of non-linear performance 
in the optimisation model not only allows fuel consumption to be 
minimized, but also allows the increase in emissions at part loads to be 
taken into account in the analysis. As a result, production planning and 
exchanges with storage and energy networks could change considerably. 

In particular, modelling of off-design conditions is crucial when load 
profiles are highly variable. For example, the challenge for increasingly 
popular small-scale technologies (i.e., CHP units for residential appli-
cations) is to decrease the minimum load level and increase part-load 
efficiency to meet variable energy demands. Moreover, also on a large 
scale, this aspect is becoming important to model, as the operating re-
gimes of central power plants are changing from pure base load to 
variable renewable energy balancing. 

The constant efficiency approximation may be close to the reality for 
some technologies and operating conditions, but a very rough simplifi-
cation for others. For example, among different prime movers used in 
cogeneration and trigeneration plants, the simple cycle gas turbine is 
characterized by the most pronounced degradation of efficiency (about 
63 % of the nominal value at half load). Simple cycle gas turbines are 
followed by micro gas turbines and internal combustion engines (that 
have similar decreasing percentage, 88 % and 84 % respectively) [111]. 

4.2.2. Investment costs 
The specific cost of many types of equipment typically decreases as 

size increases. In most cases this relation is nonlinear (e.g., wind turbine, 
internal combustion engine, simple cycle gas turbine, absorption chiller 
etc.)[111]. This nonlinearity is typically neglected and constant in-
vestment costs per unit of capacity are usually used [76,100]. In this 
case, the error made by assuming a linear relation between the two 
quantities can be non-negligeable when dealing with small-scale tech-
nologies. For example, with regard to the above-mentioned prime 
movers used in cogeneration and trigeneration plants, moving from a 
size of 10 kW to a size of 200 kW, a reduction in the unitary plant cost of 
28 % for simple cycle gas turbines, 37 % for internal combustion en-
gines, and up to 47 % for gas micro-turbines can be observed [111]. 

4.2.3. Nonlinearities and linearization of the NLP problem 
Nonlinear optimization problems are intrinsically more difficult to 

solve and nonlinear programming procedures cannot guarantee that the 
solution is a global optimum, unless the optimization problem is convex. 
A possible alternative to always guarantee the global optimum and, at 
the same time, to exploit the advanced stage of development of MILP 
solvers, is the linearization of the nonlinear terms. This technique con-
sists in replacing the original objective function and/or constraints with 
linear approximations. More in detail, any equation curve of second (or 
higher) order is divided into multiple regions in which the curve is 
approximated to a straight line. In this regard, a key factor is the choice 
of the number of regions. On one hand, if the efficiency curve is not 
divided into an adequate number of regions, the model does not 

Table 3 
Discriminating elements setup for Case 1b.  

Optimization purpose Operation 

Presence of energy storages ✓ 
Technical constraints of system components ✓ 
Nonlinearities ✓ 
Time interval Short-term 
Uncertainties ×

Flexibility measures ×

Fig. 4. Piecewise linearization.  
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adequately account for nonlinearities in the system. On the other hand, 
if the number of regions becomes significant, the variables of the 
problem increase considerably and, consequently, so does the calcula-
tion time. 

Advanced discussions about linearization techniques can be found in 
[112,113]. A basic algebraic formulation of a piecewise-linear approx-
imation of a function f(x) is given hereafter. Fig. 4 shows graphically the 
piecewise linearization method. 

First of all, known N as the number of intervals for the linearization, 
denote xz (z = 1,..,N + 1) as the breakpoints of f(x). Then, it is necessary 
to include in the formulation N continuous variables ω and N binary 
variables y’. The field of existence of the variables ω is defined in Eq. 
(26), while the limit for choosing no more than one interval at a time is 
addressed with Eq. (27). Finally, the original parameters (x and f(x)) can 
be computed with Eqs. 28–29, where fn is the linear approximation of 
the curve in the n-interval. 

xzy′n ≥ ωn ≥ xz+1y′n (26)  

∑N

n=1
y′n ≤ 1 (27)  

x =
∑N

n=1
ωn (28)  

f (x) =
∑N

n=1
fn(ωn) (29)  

4.2.4. NLP models in literature 
As for linear models, there are not many research articles in the 

literature on nonlinear modelling approaches for MES management. 
Zhao et al. in [114] present the optimal scheduling of the energy systems 
under day-ahead electricity pricing. The authors point out that their 
proposed predictive control model based on an NLP algorithm is unable 
to take into account certain performance limits such as minimum load 
ratios of the technologies or the minimum water flow for the thermal 
storage. The NLP formulation is most used in decomposed problems for 
analysis with a wider extension. In fact, in problems where the number 
of variables to be optimized becomes considerable, one technique is 
certainly the decomposition of the integral problem into sub-problems. 
For example, an attempt of reducing the computational complexity of a 
problem can be found in [66], where the authors propose the optimal 
scheduling of a gas-electricity integrated distribution system and a 
multi-CCHP system. In this work, due to the detailed modelling of the 
networks and their integration within the energy system, a two-stage 
optimization is proposed. In particular, each phase is an NLP problem: 
the first presents all continuous variables, while in the second an on/off 
component model is obtained from the results of the previous phase. 

4.3. CASE 1c - Technical constraints and nonlinearities 

Case 1c describes an application in which both technical constraints 
and actual components performance are considered. Discriminating ele-
ments setup for Case 1c are reported in Table 4. 

In the most general case, the mathematical formulation for Case 1c is 

a Mixed Integer Nonlinear Program (MINLP) and the standard form for 
this kind of problem is expressed in Eq. (19). It differs with respect to 
Case 1a for the presence of nonlinear relation in the objective function 
and/or in the constraints. If, however, the nonlinearities of the system 
are treated through linear piecewise approximation, the modelling 
approach changes from MINLP to MILP and, consequently, the generic 
formulation becomes that given in Eq. (19). 

4.3.1. MINLP models in literature 
Even though the MINLP approach requires an additional computa-

tional effort as it combines linear programming, nonlinear programming 
and integer programming algorithms, several papers use this method-
ology to model energy systems [115–119]. Moghaddam et at. [10] 
present a MINLP model for the 24-hour scheduling of a residential en-
ergy hub. One of the innovations of the paper is that the presented model 
takes into account part-load efficiency and is able to limit the start-up/ 
shut-down of equipment. Deng et al. [120] proposed a MINLP sched-
uling model based on the input of real load and operation parameters of 
equipment. Both nonlinear input–output characteristics and discrete 
working ranges of energy equipment are considered. A comparative 
analysis with the existing scheduling strategy was conducted and it 
pointed out that the MINLP model proposed truly reflected the real 
operating condition of equipment. 

On the other hand, a consistent number of studies using MILP 
approach presented in literature are not only able to handle the tech-
nical constraints of technologies but also nonlinearities (via the linear-
ization technique presented in Section 4.2.3). Bischi et al. [94] include 
in the model the nonlinearity of the performance curves of the compo-
nents through a piecewise linear approximation (thus transforming a 
MINLP into a MILP), also considering the impact of temperature on these 
curves. They solved the MILP optimization model with different levels of 
accuracy (5,10,20 intervals) of the piecewise linear approximation of 
the nonlinear performance curves. The results of the presented case 
study suggest that 10 intervals are a trade-off between accurate esti-
mates of the optimal objective function and computational time. 
Almassalkhi et al. [103] developed a mixed integer piecewise linear 
programming formulation of an energy hub system considering 
nonlinear energy conversion processes, energy storage, and hub emis-
sion limits. Results highlight a reduction in effects inherent to constant 
efficiency assumption in supporting operational and planning decisions. 
For example, the traditional hub models can significantly undersize 
energy storage as compared to the piecewise linear energy hub 
formulation. 

Finally, the choice of whether to include operational constraints and 
nonlinearities within the optimization can be of fundamental impor-
tance when performing combined synthesis, design, and operation 
optimization. Arcuri et al. [20] formulated a model for selecting the 
optimal typology, size, and operative strategy of a trigeneration system 
for the civil user, analysing different cogeneration plants. The mathe-
matical model proposed is nonlinear since the analysis takes into ac-
count three nonlinear constraints: the variation in nominal efficiency 
and unit cost of the cogeneration plant in relation to its size and the 
decrease in nominal efficiency in part-load configuration. Marocco et al. 
[98] proposed the optimal design of a stand-alone renewable multi en-
ergy system, focusing on the feasibility of H2-based devices in remote 
areas. To this end, affine approximations to the electrolyser and fuel cell 
efficiency curves were included in the analysis to obtain a more detailed 
and accurate techno-economic estimate. 

4.4. Comparison between different optimization approaches 

As stated in the previous sections, several articles in the literature 
address the scheduling optimization problem by taking into account 
realistic modelling of system components, proposing MILP, MINLP and 
NLP optimization. In some cases, different optimization methods are 
applied to the same case study, resulting in comparable results from the 

Table 4 
Discriminating elements setup for Case 1c.  

Optimization purpose Operation 

Presence of energy storages ✓ 
Technical constraints of system components ✓ 
Nonlinearities ✓ 
Time interval Short-term 
Uncertainties ×

Flexibility measures ×
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different approaches. Ommen et al. [121] examined the three most 
frequently used operation optimization methods (LP, MILP, and NLP) in 
order to investigate their impact on operation management of energy 
system technologies. Due to the added constraints in the MILP model 
(minimum powers, ramp rate and shut-up/shut-down constraints) and 
the NLP model (nonlinear performance curves) that limit the operation 
of the technologies under investigation, the number of operation hours 
of alternative units increases (+23 % for MILP, +39 % for NLP compared 
to the linear case). The changes are especially visible in case of using the 
NLP optimization, where efficiencies are reduced in conditions of part 
load. The results indicate that the MILP optimization is most appropriate 
from a viewpoint of accuracy and runtime. Lu et al. [11] proposed a 
MINLP model including in the analysis the nonlinear input–output 
characteristics of energy system components, discrete work intervals 
and limitations of their minimum operating period and the results are 
compared with an NLP optimization approach. Also in this case, the 
authors point out that, although the difference in terms of objective 
function between the two approaches is small, integer programming 
truly reflects the system actual operation. Although with a focus on more 
electrical issues, Nemati et al. [13] perform the optimal day-ahead unit 
commitment and economic dispatch in a microgrid by proposing two 
different algorithms (a genetic algorithm and a MILP algorithm). Both 
algorithms were adapted to the application under consideration; in 
particular, the MILP was combined with an external tool to correctly 
handle nonlinearities thus avoiding the complex resolution of a com-
plete MINLP problem. Moradi et al. [95] employed an advanced dy-
namic programming method for a microgrid energy-scheduling. By 
applying the quadratic programming method to the system formulation, 
the model is divided into linear and quadratic terms only. Appropriate 
technical constraints, such as generation capacity constraints and the 
number of starts and stops, were included in the analysis. In addition, 
Zhou et al. [100] compared a MILP and a MINLP model to analyse the 
impacts of equipment off-design characteristics on the design and 
optimal operation of trigeneration systems. The results show that the 
assumption of constant efficiency has a rather small impact on the 
optimization results. This occurs provided several other devices are 
present in the system including thermal storage and grid connection. In 
this case it can be guaranteed that the efficiency of the power generation 
technology does not deviate significantly from its nominal efficiency. 

In light of the works analysed, it is possible to draw a final consid-
eration: the LP formulation allows to solve very quickly the operation 
problem at the price of a reduction in the precision of the simulation of 
the components. This can significantly decrease the precision of the 
solution since it does not adequately represent the energy system. The 
MINLP formulation provides the simulation of the system with the best 
quality, but finding the global optimum can be non-trivial, especially for 

nonconvex or high dimensional problems, exposing to the risk of 
convergence to local optima. Finally, the MILP formulation results to be 
a good compromise between these two alternatives, since it guarantees 
to find the global optimum of the problem and it ensures a satisfying 
accuracy of the components operation, provided that the linearization 
process is performed with an adequate precision. 

Cited articles that include realistic modelling of system components 
in the analysis are reported in Table 5 also with the indication of their 
own modelling approach. 

5. Case 2 - Synthesis, design and operation optimization 

This case study is focused on the implementation of the synthesis, 
design and operation problems in the optimization process. This task is 
particularly meaningful from a practical point of view, since it repre-
sents the concrete problem that is required to be solved in order to 
properly build from scratch an energy system. 

One of the first literature reviews that collected the main strategies 
developed for this purpose is [124], where the synthesis and design 
problems are posed at the centre of the discussion. The alternatives 
identified in this work are mentioned, discussed and referenced in the 
following subparagraphs. Another review [41] showed that, if only the 
synthesis and design problems are required to be solved, both deter-
ministic and heuristic methods are adopted in the scientific literature, 
but when the operation must be also assessed, then the second ones may 
be not very efficient if used alone. 

5.1. Time period selection 

To correctly deal with the synthesis and design problems it is 
necessary to make an evaluation on a long-term period, theoretically 
(but not mandatorily) equal to the lifetime of the system. Obviously, 
considering the complete time period is not feasible in the practice, 
therefore, some representative days of the year are assumed with the 
aim of reducing quantitatively but not qualitatively the time steps. The 
period considered to perform the long term analysis can range from 5 
years [125] up to 15 years [126], neglecting the differences between the 
single years. The yearly time period has been accounted with a number 
of representative days between 4 and 24 [12,127–132], typically with 
an hourly discretization. Some indications for correctly considering the 
transfer of information between simulated representative periods (e.g. 
energy storage) are contained in [76]. 

5.2. Problem definition 

The most basic approach to deal with this problem consists in 

Table 5 
Research papers that include real performances and operational constraints in the study.  

Reference MODELLING APPROACH Nonlinear Performances Minimum operating power Minimum up/down time Ramp rate 

Di Somma et al.[53] MILP  ✓   
Morvaj et al. [93] MILP  ✓ ✓  
Brahman et al [70] MILP  ✓ ✓ ✓ 
Bischi et al.[94] MILP ✓ ✓ ✓  
Moghaddam et at. [72] MINLP ✓ ✓ ✓  
Deng et al. [120] MINLP ✓ ✓   
Zhao et al. in [114] NLP ✓    
Lu et al. [11] MINLP ✓ ✓ ✓  
Moradi et al. [95] MINLP ✓ ✓ ✓  
Jiang et al [66] NLP ✓ ✓  ✓ 
Arcuri et al. [20] MILP ✓    
Dvorak et al. [16] MILP ✓ ✓ ✓ ✓ 
Bertsimas et al. [122] MILP ✓    
Zhou et al.[100] MINLP ✓ ✓   
Marzband et al.[75] MINLP  ✓ ✓ ✓ 
Polimeni et al. [123] MILP  ✓ ✓ ✓ 
Wald et al.[76] MIQCP  ✓ ✓ ✓  
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expanding the formulation developed for the operation optimization, 
including the synthesis and design variables, and the capital cost of the 
components for all the time steps considered. The synthesis variables are 
binaries that indicate the presence of a certain technology, while the 
design variables can be continuous or discrete and are referred to the 
size of the selected component. Capital costs and components’ perfor-
mances are typically nonlinear but can be piecewise linearized with the 
technique discussed in the previous paragraph. 

5.3. Optimization techniques 

As a result, the problem can be formulated as a single MINLP 
[133,134] or MILP [23,125,135–145,93,146], respectively. In these 
cases, the synthesis and design problems are addressed with the help of a 
superstructure, a theoretical layout that includes all the components that 
are described by the optimization variables. 

5.4. Problem dimensions and computational cost reduction 

The synthesis and design problems dimensions increase respect to 
the operation optimization (in the order of 104 ÷ 105 variables, 
[93,136,140,147]). In fact, additional variables are required to repre-
sent the synthesis and design parameters, as well as to account the in-
crease of time steps needed to represent the system lifetime. As an 
attempt to reduce the computational costs, different decomposition 
strategies have been developed and implemented. The most common 
one has been applied for the first time in order to optimize single CHP 
plants [148] and consists in dividing the single optimization in two 
nested levels (Master and Slave Problem, MP and SP respectively): in the 
outer stage (MP), synthesis and design are optimized with a heuristic 
solver, while in the inner stage (SP) the operation problem is solved with 
a deterministic solver. Therefore, the SP is optimized for any evaluation 
MP performs one iteration, but thanks to the SP small dimensions it is 
possible to take advantage from the exponential correlation between 
computational times and problem sizes. For the master problem, several 
heuristic algorithms are adopted and compared in [127]: the Tabu 
Search is faster in finding the optimum, but the Ant Colony Optimization 
reaches for first the convergence criterion. Genetic Algorithm is adopted 
also in [129,149,150,73], while Particle Swarm Optimization is 
employed in [151]. The choice of the heuristic solver must be evaluated 
according to the features that characterize the problem itself, in order to 
find the optimization method that better fits the case study under 
consideration. The problem decomposition is particularly advantageous 
when the time steps that constitute the representative days are not 
correlated between them (i.e. absence of energy storages or flexibility 
measures, etc.); in this case, the single optimizations become particu-
larly fast (fractions of second) and can be executed in parallel. 

In addition, there are other decomposition strategies that are less 
commonly applied but that are worth to be mentioned. A comparison 
between heuristic and semi-deterministic master problems is performed 
in [152], adopting respectively the evolutionarily stable strategy and the 
NLP derivative-free algorithm Particle Generating Set-Complex, result-
ing in a faster convergence of the latter one. The decomposition strategy 
is demonstrated to be advantageous, showing computational times equal 
up to the 5.4 % of those required by the full MILP formulation [127]. 

Another interesting development of the decomposition consists in 
avoiding the definition of a fixed superstructure for the addressing of the 
master problem [153–155]. The formulation is still similar to the case 
with the superstructure, but a higher degree of freedom can be reached. 

5.5. Operation with following electric/thermal load 

If the operation is managed with load following techniques 
(Following Electric Load, Following Thermal Load, etc.), and therefore 
the system operation is not optimized, the synthesis and design problems 
can be solved in a single stage with MINLP solvers [116,126], Genetic 

Algorithm [18,156–168], Owl Search Algorithm [169], Crow Search 
Algorithm [170] or Particle Swarm Optimization [27,171,172]. Typi-
cally, these problems have limited dimensions, therefore heuristic al-
gorithms are the preferred choice thanks to their simple 
implementation, and their capability in dealing with nonlinear and non- 
convex objective functions or constraints. 

5.6. Benefits of combined optimization 

On the overall, solving the complete problem for the synthesis, 
design and optimization of the energy system allows to make a 
comprehensive analysis of the combined generation and a consistent 
comparison with the separate generation. The advantages of the com-
bined generation are confirmed even on the long-term, with reductions 
of annual costs in the order of 12–17 % [136,173], a decrease of the 
emissions up to 56–66 % [136,173], or a lowering of the primary energy 
consumption of 10–34 % [131,144,173], according to the optimization 
criteria that is chosen. 

5.7. Mathematical formulation 

In light of all the elements collected from the scientific literature, the 
formulation proposed in the present work for the implementation of the 
synthesis, design and operation problem is in the decomposed form. A 
synthetic mathematical formulation is provided in Eq.30. 

min
s,d

f (s, d, o)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
o

f (s, d, o)

s.t.

⎧
⎨

⎩

gSP
k (o) ≥ 0∀k ∈ {1,⋯, n}

hSP
w (o) = 0∀w ∈ {1,⋯, q}

gMP
i (s, d) ≥ 0∀i ∈ {1,⋯,m}

hMP
j (s, d) = 0∀j ∈ {1,⋯, p}

s, d, o ∈ {RVZ}

(30) 

Where s and d are respectively the variables of the synthesis and 
design problem, respectively, while gSP, hSP, gMP and hMP are the in-
equalities and equalities of the Master Problem and Slave Problem. 
Regarding the master problem, the synthesis variables are binaries 
indicating the selection of a specific technology (w), while the design 
variables are discrete or continuous and represent the rated power of the 
selected component (RP). The boundary of the rated powers is defined 
with Eq. (31), where the multiplication between the binary variable and 
the upper and lower values (RPmax and RPmin) forces the rated power to 
zero in case the technology is not selected. 

wi⋅RPmin
i ≤ RPi ≤ wi⋅RPmax

i ∀i ∈ U (31) 

In case multiple components are available for each kind of technol-
ogy, convergence problems often arise. This happens because the same 
MES configuration can be reached through different combinations of the 
MP variables [72]. This can be avoided by imposing hierarchy con-
straints [100] between the sizes of the components belonging to the 
same technology (Eq. (32)), which means that the components are not 
randomly selected, but their choice is made with order. 

RPi,r ≤ RPi,r− 1∀i ∈ U,∀r ∈ {2,⋯, rmax} (32) 

Where rmax is the maximum number of devices that can be installed 
for a single technology. In this case, the rated powers of the units 
belonging to the same technology are imposed to follow an ascending 
order. 

Concerning the operation optimization of the SP, its formulation can 
be made in the same way described in the two previous paragraphs, 
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considering the synthesis and design variables as known inputs of the 
problem. 

6. Case 3 - Uncertainties 

The correct management of the uncertainties is one of the most 
important aspects in the field of the energy systems for both short and 
long-term planning. Neglecting the uncertainties in the short-term 
optimization (e.g. day ahead analysis) can lead to a sub-optimal plan-
ning of the power production and even to critical or congested condi-
tions, while the effect on the long-term optimization can be the 
undersizing/oversizing of the exploited technologies [174]. 

The implementation of uncertainties is often discussed in reviews on 
energy systems [37,1] and some works are completely focused on this 
topic. The parameters subject to uncertainty are recognized and dis-
cussed in [174]. A detailed overview on probabilistic, possibilistic, and 
combined methods, beside information gap decision theory is provided 
in [175], where both strengths and weaknesses are highlighted for each 
strategy. Deterministic and inexact optimization models are compared 
in [26], and precise considerations are provided regarding their limi-
tations. Finally, a clear explanation of the criteria to follow to choose the 
most suitable method according to the data availability is provided in 
[176]. The gaps in the application of some techniques for addressing 
uncertainties in MESs are discussed, as well as the challenges repre-
sented by computational costs and mathematical formulation of more 
recent techniques for uncertainty management. 

the most common sources of uncertainty on the input of the problem 
are: a) the prices of the energy vectors and their related environmental 
parameters such as emission factors; b) the energy demands; c) invest-
ment costs; d) the production from renewable sources; e) the ambient 
conditions [177]; f) the devices’ performance [178,179]; and g) the 
operating reserve of power plants [180]. Furthermore, it is important to 
note that, although most research articles on the subject treat each un-
certain parameter as independent from each other, in reality there may 
be potential correlation between them (e.g. between energy load and 
electricity price [89] or between different energy demands [181]). The 
interdependence between inputs can be defined by the covariance, 
which describes the correlation between two random variables. 

6.1. Approaches to include uncertainty 

Suitable forecasting models must be adopted to properly estimate the 
parameters affected by uncertainty [37]. This task is usually addressed 
in a separate analysis. Since the focus of the present work is devoted to 
the optimization problem, the strategies employed to develop a model 
able to generate input data according to the probabilistic phenomena are 
not furtherly discussed. The interested reader can find comprehensive 
discussions in [182–186]. 

When the research objective is to deal with data uncertainty in multi 
energy system optimization, two different approaches can be employed: 
i) uncertainty/sensitivity analysis, and ii) optimization under uncer-
tainty. The first one aims at understanding the impact of uncertainty on 
model output, while the second method aims at identifying the optimal 
decision that should be taken “here-and-now” based on the uncertain 
parameters. Many research articles perform sensitivity analysis to 
identify which inputs have a major impact on optimization results 
[64,187,53,188]. This type of approach does not take into account the 
dynamic nature of decision-making under uncertainty and its informa-
tion flow. The two main representatives for the inclusion of the un-
certainties in the optimization are: a) stochastic programming; and b) 
the robust optimization. They differ on the basis of the information on 
the random events: in stochastic programming the probability distri-
bution of uncertain data has to be known or estimated, while in robust 
optimization the uncertain data are assumed to be varying in a given 
uncertainty set. 

However, there are many other methods in addition to stochastic 

programming and robust optimization. According to the degree of 
simplification, the complexity of the optimization model can signifi-
cantly vary. A considerable number of tailored alternatives can be found 
in the scientific literature. Among these, scenario-based stochastic pro-
gramming is one of the most employed strategies; this consists in 
defining some scenarios (i.e. sets of input data) and then, taking into 
account their respective probability of occurrence, finding the solutions 
that provide optimal strategy in facing each scenario ([21,189]). In 
other words, the goal is to find a solution that is feasible for all (or almost 
all) the possible parameter realizations and optimizes the expectation of 
some function of the decisions and the random variables. A relatively 
common strategy to coherently determine the different scenarios is to 
generate a high number of cases (order of 103 [180,190]) with the 
Monte Carlo method, and then reducing them to a small number (5 in 
[180], 9 in [191], 10 in [190,192], from 5 to 20 in [193]) with a clus-
tering algorithm [194] or other techniques ([195,196]). Due to the di-
mensions of this problem, deterministic solvers (MILP and MINLP) are 
preferred by far to obtain low computational costs. 

6.2. Security, reliability and availability 

Other aspects related to the uncertainties that are often studied are 
the security, reliability, and availability of the energy system; many 
different models developed to include them in the optimization process 
can be found in the scientific literature. The N-1 principle consists in 
guaranteeing the security of the system even when one of the elements 
of the energy hub fails. This approach is applied in [197,198] with 
multistep optimizations. Robust Optimization (RO) 
([177,178,198–200]) has the aim of finding a result that satisfies the 
worst case that could occur and is often used for reliability and 
availability. 

Moreover, the two-stage formulation is widely used in stochastic 
programming. In this type of problem, the decision maker has to make 
some strategic decisions (“first-stage decisions”) that are not easy to 
change on a short time scale and that can be made without full infor-
mation on random events. After random events occur, corrective actions 
(“second-stage decisions”), that can be adapted on a short notice, are 
taken in response to each random outcome. The objective function of the 
optimization problem is composed of two parts: the cost of the first-stage 
decision and the expected cost of the second-stage decision taking into 
account the probability that each scenario has to effectively happen. If 
the number of scenarios is finite, the stochastic problem can be repre-
sented by its equivalent deterministic problem. 

6.3. Mathematical formulation 

Taking into account the advantages and complexities characterizing 
the inclusion of uncertainties in the optimization of multi energy sys-
tems, the scenario-based stochastic programming represents a good 
alternative for the implementation of uncertainties. Differently to other 
approaches, it has no peculiar constraints related to guaranteeing 
technical concepts such as security, reliability, or availability. Thanks to 
this degree of freedom, it can be found relatively often in the scientific 
literature. 

For this reason, its mathematical formulation is proposed in the 
present work. In particular, the two-stage formulation is reported in Eq. 
(33) and is referred only to the operation problem. 

minf (o′, o″, ξ)

s.t.

{
gi(o′) ≥ 0∀i ∈ {1,⋯,m}

hj(o′) = 0∀j ∈ {1,⋯, p}

s.t.

{
gσ,i(o″, ξ) ≥ 0∀σ ∈ {1,⋯, r},∀i ∈ {1,⋯,m}

hσ,j(o″, ξ) = 0∀σ ∈ {1,⋯, r},∀j ∈ {1,⋯, p}

o′ ∈ {RVZ} (33)  
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f (o) = f (o′)+
∑r

σ=1
[πσ⋅f (o″, ξσ) ] (34) 

Where ξ is the random vector of the uncertain data, σ is the index of 
the scenarios, r is the number of scenarios, π is the related probability, o’ 
and o’’ are the first-stage and the second-stage decision variables, 
respectively. The same equations already seen in the previous para-
graphs (Eq.34) can be used for computing the objective function of every 
scenario. 

Not only optimal operation, but also optimal design can be addressed 
adopting a two-stage stochastic programming. In this case, first-stage 
decision variables are the sizes of components, while second-stage de-
cision variables are related to the demand pattern change (energy sys-
tem scheduling) [193,201–203]. 

7. Case 5 - Flexibility measures 

The degree of flexibility is the capability to guarantee the power 
balance of consumers and producers through efficient changes of oper-
ation. Some sources of flexibility are identified in [204], where an 
overview of the papers from the scientific literature treating this topic is 
given. 

Energy storages are by far the most important flexibility source to the 
system since their influence on both the operation and the modelling of 
the optimization process is noticeable, as discussed in Section 3. The 
other measures that can increase the system flexibility are: i) energy 
substitution; ii) inertia of thermal networks and buildings; iii) Demand 
Response Programs (DRP); and iv) ancillary services. 

7.1. Energy substitution 

Energy substitution means to achieve the same energy product (e.g. 
cold) by adopting a different energy vector (e.g. absorption chiller fed by 
heat instead of electric chiller) ([205]). In this way it is possible to 
exploit another source to satisfy the same loads if an energy vector is no 
longer available. 

7.2. Inertia of thermal networks and buildings 

The inertia of District Heating/Cooling networks is a physical phe-
nomenon determined by the hydraulic and thermal laws that rule the 
transport systems. This phenomenon can be appreciated because of the 
high masses that usually characterize DH networks. Different control 
strategies are exposed in [204], referred to the energy system configu-
ration (centralized or distributed). Conservation laws have to be set out 
in order to simulate the physics of the network and three strategies can 
be found in scientific literature to address the DH inclusion in the MES 
optimization problem.  

a) In some works the design problem of the TN is included in the 
optimization, but in a simplified form [22,137,206–208]. The TN is 
simulated with only the connection parameters (i.e. incidence/con-
nectivity matrix) and the thermal powers flowing into the branches. 
Heat losses are addressed as a percentage (proportional to the dis-
tance between the nodes [146]) of the flowing energy and the sizing 
of the pipes is performed according to the maximum power reported 
in the time period analysed [143,209].  

b) A more detailed optimization is obtained by simulating the operation 
of the thermal network with temperatures and flow rates. However, 
when both are considered as variables, the energy balance of the 
pipes becomes nonlinear. To overcome this issue and preserve the 
linearity of the model, the network can be assumed to operate under 
partially known conditions, such as Constant Flow Variable Tem-
perature (CFVT) or Constant Temperature Variable Flow (CTVF). In 
the first case, the flow rates are considered as known and the tem-
peratures have to be optimized, vice versa for the second case. CFVT 

is considered as the most applied in real operation and is assumed in 
[84,210–213], while CTVF is much less investigated [147]. 
The Variable Flow Variable Temperature (VFVT) configuration can 
be assumed, but complex models must be developed. The Newton- 
Raphson method is used in [214] for solving the nonlinear prob-
lem, while strong efforts for the linearization process are made in 
[191]. 

c) Despite the previously cited works include the DH in the optimiza-
tion, none of them is formulated to consider the inertia of the 
network. However, in case of thermal networks of high dimensions, 
the effects of transients can be noticeable and cannot be neglected 
[215,216]. To fulfil this purpose, the concept of time delay must be 
introduced for each branch of the network, often requiring the 
addition of integer variables. In this case, for CTVF or CFVT config-
urations, an heuristic solver (Particles Swarm Optimization) is used 
in [217], while deterministic algorithms are employed in [218–221] 
(eventually including the building inertia [222]). An intermediate 
strategy is adopted in [188] and [189], where an heuristic Master 
Problem solves a Demand Response problem and, nested into the MP, 
the DH network is simulated with the node method and a simplified 
unit commitment problem is executed with Linear Programming. 
Obviously, the highest complexity of the problem is reached when 
both VFVT configuration and network inertia are considered. Finite 
volumes are used in [224] and finite differences are employed in 
[225] to simulate and optimize the DH with iterative processes. 
However, employing these methods with deterministic solvers is a 
very complex task because of the incompatibility between the stra-
tegies used for the solution of the matrix calculation and the algo-
rithm of the solver itself [204]. Decomposition strategies are often 
proposed to optimize part of the problem with MILP/MINLP solvers. 
In [226], a quadratic solver is used to solve the DH problem in a Slave 
Problem coupled with an iterative Master Problem. A more complex 
model is developed in [138], where Benders decomposition, relaxed 
formulation and an iterative process are employed jointly with the 
simulation of the network based on a water mass method, which 
represents the network with the node method and accounts the 
thermal inertia by averaging the temperature at the outlet of the 
branches. 

7.3. Demand Response Programs 

Demand Response is a strategy aimed at modifying the user energy 
demand [227,228]). Demand Response increases the flexibility of an 
energy system and its effect can be enhanced by other flexibility mea-
sures, as pointed out in [229]. Compensation of renewable generation 
fluctuations, reduction of grid congestions, reduction of power import/ 
export and cost reduction are the main benefits (identified in [230]) that 
can be attained with DRP. In more quantitative terms, a cost reduction 
between 1.7 % and 3.6 % is obtained in [205,223,231] and savings over 
5 % are said to be expected for case studies with more suitable charac-
teristics. However, lack of appropriate market mechanisms and market 
requirements of ahead planning are important challenges to deal with. 

Concerning the DRP implementation in the optimization model, new 
variables for the time shifting of loads and, eventually, the percentage of 
participation have to be introduced, but without introducing other 
sources of nonlinearities [21,180,189,192,193,199,200,205,232–234]). 
As already mentioned, DRP are useful to reduce the effects of power 
fluctuations and deviations from the predicted loads; for this reason, 
most of the cited works include DRP in optimization with uncertainties. 
In addition, residential customer dissatisfaction can be defined in order 
to quantify the impact of the load modification [235]. 

7.4. Ancillary services 

Ancillary services are operation techniques focused on the producers 
and are mostly referred to electricity networks. They consist in 
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guaranteeing a flexible generation capacity and the balance of the de-
viations of the loads from their predicted levels. The most common ones 
are power curtailment [236–239], operating reserve and Flexible 
Ramping Products (FRP, or ramping reserve). Power curtailment is 
performed for technical and economic reasons, but strong efforts are 
made in order to prevent this condition [240–242] because of its 
intrinsic inefficiency. Operating reserve is a production capacity that can 
be made available in a short period (from seconds to tens of minutes) in 
order to compensate an unbalance on the grid. Frequency response, 

spinning reserve and supplemental reserve are the main kinds of oper-
ating reserves [243]. A Flexible Ramping Product is a ramping capability 
commodity that can be dispatched in a 5-minute timeframe to meet 
demand changes on the network. Operating and ramping reserves are 
often included with simple constraints [190,218,220,244–248], which 
have the aim of ensuring a spinning/ramping reserve in the solution 
found by the optimization process. A more complex treatment must be 
developed if they are intended to be treated contemporary to the un-
certainty [180,249,250]. 

Fig. 5. Correlation between discriminating elements and consequences on system modelling.  

Fig. 6. Summary for the formulation of the optimization problem.  

G. Mancò et al.                                                                                                                                                                                                                                  



Applied Thermal Engineering 236 (2024) 121871

18

8. Discussion on the optimization model development 

The present section has the aim of furtherly discuss the concepts 
explained in the previous paragraphs related to the discriminating ele-
ments, the effects of the initial assumptions on the problem formulation 
and the characteristics of the resulting optimization model. The changes 
to be introduced in the model in order to consider different aspects are 
highlighted, recognizing both advantages and challenges. 

As discussed in the previous sections, a more detailed and realistic 
modelling of an energy system leads to an increase in the computational 
cost of the optimization problem with respect to the base case presented 
in Section 3. In Fig. 5, correlations between some of the discriminating 
elements and factors that modify the system modelling leading to a more 
complex and computationally intensive model are highlighted. The 
addition of synthesis and design problems in the operation optimization, 
minimum working ranges, number of components and maintenance 
costs make the inclusion of binary variables necessary. On the other 
hand, the inclusion of nonlinearities within the optimization problem to 
characterise real component performance and investment curves may 
also lead to the use of binary variables, in case they are piecewise 
linearized. Otherwise, if the model is kept nonlinear, a nonlinear (and, 
usually, non-convex) solver is required. Finally, the presence of storages, 
the control of components on/off frequency and ramp rate constraints 
determine a link between the time periods, so multi time steps coupling 
and the execution of a single optimization become necessary. The dia-
gram also shows how some factors, such as the use of a nonlinear solver, 
have a direct impact on computational complexity, while others, such as 
the introduction of binary variables or multi-time steps coupling, lead in 
the first instance to an increase of the problem size and then to an in-
crease in computational difficulty. 

Fig. 6 summarizes the structure of the entire approach proposed in 
this review. As a starting point, it can be considered the operation 
optimization (on the right of the figure) performed in Case 0 but without 
the presence of energy storages, which represents the most simplified 
case and is formulated as a LP (since time steps are not linked between 
them). Then, according to the additional description of the energy sys-
tem, the corresponding resulting formulation of the problem is reported 
with a Venn diagram. In order to address the real performances of the 
components (technical constraints, nonlinear performance curve, etc.) 
the problem turns into a MI(N)LP, where the nonlinearities can be 
piecewise linearized and, for this reason, the letter N is reported between 
brackets in the acronym. The same notation (i.e. reporting some letters 
of the acronym in brackets) is used in the figure when energy storages or 
other flexibility measures are added in the layout; in this case the 
formulation is turned into a (MI)LP, where integer variables can be 
avoided (at least in some circumstances), as discussed in the modelling 

of energy storages. In addition, the sets of the diagram are coloured 
according to the structure of the optimization process, i.e. if it is 
composed by a single optimization or a series of independent optimi-
zations (one for each time step, which can be done when time periods 
are independent between them). 

The other part of the schematic represents the cases in which syn-
thesis, design along with operation are the optimization purposes. As 
already explained, different models are proposed in literature, but the 
one that has been reported in the present study expects the decompo-
sition into Master and Slave Problems. The former is addressed for 
synthesis and design variables and is executed by a heuristic solver 
(because of the strong non-convexities, discontinuities and the nested 
SP), while the latter regards the operation problem and is treated as 
already discussed. 

8.1. Optimization solver 

The choice of the optimization solver is a crucial aspect since it can 
noticeably influence the computational times and the quality of the 
solution. A very high amount of solvers have been developed for each 
class of optimization problem. Table 6 represents a summary of the most 
employed solvers Table 6: these are grouped according to the optimi-
zation method and the problem formulation. Open-source software are 
written in green, while the ones in red require a commercial license. The 
names of the heuristic solvers are shortened with their acronyms: ACO 
(Ant Colony Optimization), ABC (Artificial Bee Colony), CS (Cuckoo 
Search), MA (Memetic Algorithm), BBO (Biogeography Based Optimi-
zation), SNO (Social Network Optimization). Knowing the maximum 
problem size (i.e. number of variables) that a solver is able to manage 
(without losing solution accuracy or requiring excessive computational 
times) can be very useful from a practical perspective. However, this is a 
complex information to achieve since it depends on many different and 
specific aspects. An attempt to answer this question is performed in the 
present study and an indication is provided in the table in terms of or-
ders of magnitude (oom). These values have been taken according to the 
articles analysed for the review work, some benchmark studies found in 
literature [251–253] and other sources [254–256]. 

NLP and MINLP solvers can be adopted also for LP and MILP prob-
lems; however, this option is not considered since this is inefficient. In 
addition, some MILP solvers (e.g. CPLEX and GUROBI) are able to 
manage some kinds of nonlinearities, such as quadratic or conic terms. 
Nevertheless, since these are very specific and limited cases, they are not 
accounted as nonlinear solvers. Finally, in case of nonlinear formulation, 
it is fundamental to pay attention in recognizing if the problem is convex 
or not. Some solvers are not able to deal with non-convexity and the 
sizes of non-convex problem should be kept as low as possible to avoid 

Table 6 
Most popular solvers used in the field of energy systems optimization.   
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convergence issues. 

9. Conclusions 

The present work represents a survey on optimization of Multi En-
ergy Systems (MESs) from an engineering point of view. With this 

purpose, the main physical phenomena and technical constraints have 
been discussed. More in detail, this study addressed the inclusion of 
components technical constraints and their non-linear behaviours, the 
problem of synthesis and design, uncertainties and flexibility measures 
in a basic multi-energy system operation optimization model. In order to 
expose and discuss these concepts in a clear and ordered way, some case 

Fig. 7. Example of simplified Multi Energy System (MES) and related mathematical formulation.  
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studies are identified and treated separately. With this structure it is 
possible to increase the focus on single elements. The literature review of 
the different alternatives proposed for the implementation in the opti-
mization model of these aspects has been proposed, mentioning both 
advantages and challenges. In the authors’ opinion, the mathematical 
formulation selected represented a good compromise between descrip-
tion accuracy and easiness of implementation. The approach adopted in 
the present review allowed to provide an overview on the strategies 
developed for the simulation and optimization of MESs and, at the same 
time, it represents a reference for the practical development of tailored 
optimization models. 

In light of the articles examined during this review, some conclusions 
can be drawn regarding the state of art of the modelling and optimiza-
tion of multi energy systems:  

• The level of detail reached by most of the models presented in 
literature allows a realistic representation of the system operation; 
this is obtained by addressing the real performance of the compo-
nents, including descriptive constraints (layout connections, ramp-
ing constraints, minimum operating times, etc.), and adopting a 
suitable time step (≤1 h). 

• Linearization techniques are often adopted in order to take advan-
tage of the Mixed Integer Linear Programming (MILP) solvers, while 
decomposition strategies are commonly exploited when the synthe-
sis and design optimization are addressed along with the operation 
problem.  

• Several strategies are proposed to include the effects of uncertainties 
and, despite there is not a best one, in general no drastic changes are 
required in the problem formulation.  

• Including the simulation of energy networks (in particular District 
Heating/Cooling) in the model has a high impact on the problem 
formulation. It allows to improve the optimization quality and it 
introduces another source of flexibility. Nevertheless, this leads to an 
increase of the number of variables and the addressing of nonlinear 
and non-convex equations. 

Among the main research gaps are:  

a) the lack of validation studies, even when the input data are taken 
from real case studies. The importance of this task is straightforward, 
since it would demonstrate on a practical way the advantages of MES 
optimization that are only theoretically proven. Therefore, valida-
tion is required both to assess the quality of the mathematical model 
developed to simulate the MES, as well as to prove that the resulting 
optimal operation can be applied in a real system;  

b) the development of a suitable control system for the entire MES, its 
inclusion in the optimization model and the provision of results in a 
form that can be directly provided to the control system itself. This 
task would increase the description quality of the MES and allow the 
practical implementation of the optimization process. The 
complexity related to this task is due to the fact that it requires to 
operate the MES according to the schedule found with the optimi-
zation, but, at the same time, it must be possible to deal with any 
eventual deviation from the predefined operation; 

c) a wider inclusion of flexibility sources in MES optimization pro-
cesses. In fact, most of the models proposed in literature tend to 
apply considerable simplifications. On the other hand, when no as-
sumptions are made, the resulting modelling becomes very complex 
and computationally intensive. The development of strategies able to 
ensure a good level of detail without being excessively time 
demanding would allow to achieve an advantageous implementation 
of more flexibility sources, which are a key element for MES opera-
tion. In this way, it would be possible to obtain reliable operating 
schedules with computational times that are compatible with the 
requirements of the real applications;  

d) the integration of energy transport infrastructures in the MES 
simulation and optimization. In fact, the capability of transferring an 
energy vector from a producer to a consumer is usually taken for 
granted, despite it should be verified. The technical constraints and 
other physical phenomena that characterize the operation of energy 
transport infrastructures can pose important limitations to the pur-
poses of the MES optimization. 

Finally, some further extensions for the present work are identified:  

a) Input data for the MES optimization are usually obtained from 
forecasting models specifically developed for this purpose. Including 
a research that presents the state of art of the methods used in this 
field can be a useful addition to the analysis here conducted; 

b) The components constituting the MES are modelled with perfor-
mance curves and technical constraints. Consequently, their math-
ematical formulation changes according to the assumptions made on 
their operation, with impacts on the nature of the problem and its 
convergence. Reporting an outlook of the different alternatives for 
modelling the components can be another interesting expansion to 
this review work; 

c) A relatively new kind of element is becoming more common in en-
ergy systems, which is the prosumer. Its capability to alternatively 
act both as a producer and a consumer creates the necessity to 
develop devoted methods for its inclusion in the optimization 
problem. It would be worth to investigate how its mathematical 
formulation is addressed in the scientific literature.  

d) Multi Energy Systems can have very different sizes, starting from 
small applications (single buildings) up to portions of a country. An 
analysis of the problem formulations adopted according to the di-
mensions of the case study considered could be of interest for un-
derstanding how the size of the application influences the 
optimization model. 
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Appendix 

Fig. 7 reports the mathematical formulation of the optimization model for a very simple MES, which is taken as an example. The system is 
composed by a CHP, a HOB, two HP (the heating and cooling production respectively), an electric storage and the communication with the electric 
grid. The reported equations are presented with the purpose of providing an example of how the generic formulation discussed in the paper appear in 
their extended form in a practical case. The variables to be optimized are: the power exchanged with the electricity grid, the input power of production 
and conversion technologies (combined heat and power unit, heat only boiler and heat pump, respectively) and the power exchanged with the 
electrical storage. For the simplified case presented, the two variables were used for electricity purchased and sold from/to the power grid and only 
one variable for the exchange with storage. 
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The economic objective function is composed of: a) the cost of the fuel needed to run the CHP and the only heat boiler; b) the cost of the electricity 
purchased from the power grid; c) the revenue from the electricity sold to the power grid. Finally, at the bottom of the figure, an indication of the size 
of the problem is given for the proposed example. 

Layout constraints are written in their extended form for the proposed example. To this end, the technologies included in the system must be 
divided into: energy generators (Uc) and energy consumers (Up). The obtained classification is shown in Fig. 8. 

For example, if the electric heat pump is not physically connected with the electric storage and it can only be supplied by the electric grid, the new 
constraints describing this limitation are reported in Eqs. 35––36. 

PDIS
el,ST ≤ PIN

el,HP0HP,ST + PSELL
el 1POWERGRID,ST + PCH

el 1ST ,ST +PLOAD
el 1LOAD,ST (35)  

PIN
el,HP ≤ POUT

el,CHP1CHP,HP + PDIS
el 0ST,HP + PBUY

el 1POWERGRID,HP (36)  
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