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Abstract

This paper presents a preliminary study on the performance
of the vector-valued kernel Ridge regression in complex-
valued regression problems. The proposed approach is ap-
plied for the modeling of the scattering parameters of a slot-
ted ground PCB structure as a function of 2 parameters. The
effectiveness of the proposed modeling scheme in terms of
both training time and accuracy is assessed for an increas-
ing number of training samples.

1 Introduction

Machine Learning (ML) methods have achieved notable
success in various electrical and electronic applications.
Despite demonstrating high performance in practical prob-
lems, the majority of conventional formulations for these
techniques have primarily been designed to handle real-
valued data [1].

However, complex-valued data find widespread use in elec-
tronic applications, particularly in AC simulations and
frequency-domain analysis [2]–[5]. In such scenarios, the
most straightforward approach to extend the applicability
of real-valued ML regression techniques to complex-valued
data is through the dual-channel formulation [6]–[9]. In this
formulation, the complex-valued problem is transformed
into two uncorrelated real-valued ones by concatenating the
real and imaginary parts of the complex input and output
values. While this method allows for the direct adoption of
plain real-valued ML techniques, without the need for gen-
eralization or modification, its application to vector-valued
problem via scalar regression approaches requires the train-
ing of a large number of single output models. Moreover
such scheme overlooks potential correlations between the
real and imaginary parts of the complex-valued output [6]–
[9].

Due to these limitations, alternative formulations dedicated
to pure complex-valued data have been proposed for var-
ious ML techniques. These formulations aim to account
for the inherent correlation between the real and imagi-
nary parts of complex variables in methods such as Ar-
tificial Neural Networks (ANN) [7], Support Vector Ma-
chine (SVM) regression [8], kernel Least Squares regres-

sion [3, 6], Least-Squares Support Vector Machine regres-
sion (LS-SVM) [9, 10], and Gaussian Process regression
(GPR) [11].

Unfortunately, for the specific case of complex-valued
kernel-based regressions (e.g., SVM regression, LS-SVM
regression, and GPR), a critical challenge arises in deter-
mining the appropriate complex-valued kernel. In contrast
to the well-established real-valued formulation of kernel re-
gressions, where Gaussian or polynomial kernels are de-
fault choices, the selection and/or construction of complex-
valued kernels is inherently more challenging and mathe-
matically intricate [9, 10]. Furthermore, depending on their
complexity and structure, these kernels may necessitate the
tuning of several hyperparamters. Due to the aforemen-
tioned constraints, the adoption of complex-valued formu-
lations in kernel regressions has not gained extensive trac-
tion in engineering applications, particularly in electronic
and electrical domains for which the dual-channel formu-
lation typically emerges as the favored choice (see [9] and
the references therein for further insights).

This work explores the capabilities and the viability of an
alternative solution for complex-valued regression prob-
lems based on the vector-valued kernel ridge regression
(VV-KRR). Similar to the dual-channel formulation, the
complex- and vector-value output data are recast into real
ones by stacking their real and imaginary parts. This results
in a new real- and vector-valued regression with an output
dimension that is the double of the original. The above re-
gression problem can be learnt by a single vector-valued
model trained via the VV-KRR. The resulting model allows
accounting for the coupling between real and imaginary
part of the complex-valued problem by exploring the cor-
relation in the output dimensions [12]–[16]. Specifically,
this works exploits the effectiveness of a pure data-driven
output kernel built by looking at the correlation on the out-
put dimension in the training set.

The proposed modeling approach is validated by consider-
ing the modeling of the scattering parameters characteriz-
ing the port behavior of a slotted ground PCB structure as
a function of 2 parameters. The performance of the pro-
posed technique are investigated in both deterministic and
statistical sense.



2 Vector-Valued Kernel Ridge Regression &
Complex-Valued Problems

In this work the VV-KRR will be used to learn a generic
vector-value map, hereafter referred to as surrogate model,
f̂ff : X → Y, starting from the complex-valued output data
collected in the training set D = {(xxxl ,yyyl}Ls

l=1, where xxxl ∈
X ⊆ Rp and the vectors yyyl = [Re{yyyC

l }T , Im{yyyC
l }T ]T ∈ Y ⊆

R2D defined by stacking the real and imaginary parts of the
realizations of the vector- and complex-valued output yyyC

l ∈
CD. It is important to remark that the above manipulation
of the training set leads to a real-valued regression problem
in which the dimensionality of the real-valued output space
(i.e., 2D) is two times the one of the original complex one
(i.e., D).

The above learning problem turns out to be equivalent to
learn 2D scalar real-valued functions f̂ (d) : X → R with
d = 1, . . . ,2D minimizing the following empirical risk func-
tional:

f̂ff = argmin
f̃ff∈H

2D

∑
d=1

Ls

∑
l=1

(y(d)l − f̃ (d)(xxxl))
2 +λ∥ f̃ff∥2

H, (1)

where λ is the regularizer hyperparameter and, y(d)l and
f̃ (d)(xxxl) represent the d-th component of the l−th train-
ing output and the corresponding model prediction, respec-
tively.

As per the theorem introduced in [14], any optimal solution
f̂ff for (1) can be formulated as:

f̂ff (xxx) =
Ls

∑
l=1

K(xxx,xxxl)cccl , (2)

where f̂ff (xxx) = [ f̂ (1)(xxx), . . . , f̂ (2D)(xxx)]T is a vector col-
lecting the model prediction for any xxx ∈ X, K(·, ·) :
Rp×p → R2D×2D is the matrix kernel function and cccl =
[c1,l , . . . ,c2D,l ]

T ∈ R2D with l = 1, . . . ,Ls are column vec-
tors collecting the regression unknowns, which must be es-
timated during the training phase.

The multi-output kernel needs to address correlation in both
parameter space and output components, which in this case
includes also the correlation among the real and imaginary
parts of the output. However, different from the scalar
case, there is a lack of ready-made kernel functions suit-
able for direct application in a vector-valued context [12].
A straightforward approach is to focus on a particular cat-
egory of multi-output kernels, such as the separable kernel
or the sum of separable kernels [14].

Hereafter we will consider a separable matrix kernel func-
tion K(xxx,xxx′) derived as the product of two scalar kernels op-
erating on either the input space or the output dimensions,
which writes:

[K(xxx,xxx′)][d,d′] = kxxx(xxx,xxx′)ko(d,d′), (3)

where kxxx and ko are scalar kernels acting independently on
the input space (i.e., kxxx : X×X → R) and on the output
dimensions (i.e., ko : {1, . . . ,2D}× {1, . . . ,2D} → R), re-
spectively.

Therefore the separable kernel matrix K(x,x′) can be ex-
pressed as:

K(xxx,xxx′) = kxxx(xxx,xxx′)B, (4)

where B ∈ R2D×2D is a symmetric semi-definite matrix ac-
counting for the correlation among the output dimensions.

Similar to the scalar case, Gaussian or polynomial kernels
can be seen as default choices for the kernel kxxx, since it acts
on the input parameters only. On the other hand, the choice
of the output kernel ko or of the corresponding the matrix B
is more problematic. Several structures have been proposed
in the literature (see [15, 16] and the references therein).

In this work, we investigate a purely data driven approach
in which the output kernel matrix B in (4) is built from the
correlation matrix computed on the output dimension:

B̂ = corr(Y), (5)

where Y = [yyy1, . . . ,yyyLs ]
T is a Ls × 2D matrix associated to

the training output, in which the rows correspond to obser-
vations, and the columns correspond to output dimensions.
The resulting correlation matrix B̂ is a 2D×2D matrix, such
that:

B̂i j = E
[
yyyT
(:,i)yyy(:, j)

]
, (6)

in which the expected valued is computed on the inner prod-
uct between the i- and j-column of the matrix Y, respec-
tively. It is important to notice that after standardization
the realizations collected in the columns of the matrix Y
have zero mean and standard deviation equal to 1. The out-
put kernel B is obtained as a low-rank approximation of the
matrix B̂. Further details will be provided in a future report.

The separable kernel structure of the matrix kernel in (4)
allows reformulating the training problem in (1) in terms of
the following discrete-time Sylvester equation:

KxxxCB+λC = Y, (7)

where Kxxx is a Ls ×Ls Gram matrix of the input kernel (i.e.,
[Kxxx]i j = kxxx(xxxi,xxx j)), B is the the output kernel defined in (5),
C = [ccc1, . . . ,cccL]

T ∈RLs×2D is a matrix collecting the model
unknowns and Y is the Ls × 2D matrix associated to the
training output used in (5).

The above discrete-time Sylvester equation is then effi-
ciently solved via the diagonalization procedure presented
in [13].



3 Application Example: PCB Interconnect
with Slotted Ground Plane

The application example concerns the PCB interconnect
with slotted ground plane considered in [5] and shown in
Fig. 1. A copper microstrip line with width t = 0.12mm and
a thickness of 35 µm runs over a square dielectric substrate
of size a×b, with a = b = 100mm, thickness h = 0.3mm,
and relative permittivity εr = 4.3. The bottom ground plane
has a transversal slot of width w = 0.12mm, with a nomi-
nal length L and offset d from the midpoint of 15 mm each.
These two parameters are considered as independent Gaus-
sian random variables with a 10% relative standard devia-
tion.

εr
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w

h

tP1 P2

Figure 1. PCB interconnect with slotted ground plane [5].

S-parameter samples for the considered two-port structure
in Fig. 1 are computed with CST Studio Suite from dc
to 10GHz at D = 1389 linearly spaced frequency points
{ fd}D

d=1 for 1000 random configurations of the uncertain
parameters, drawn according to a latin hypercube design.
The data obtained for each S-parameter are then normal-
ized via standardization and split into the training and test
set by stacking their real and imaginary part.

For each S-parameter, the corresponding training set is used
to train a vector-valued model with output dimension D =
2× 1389 = 3718 via the VV-KRR presented in Sec. 2 by
using a Gaussian kernel as input kernel and the correlation
matrix in (5) as output kernel. The model hyperparameters
are tuned via a 3-fold cross-validation.

Table 1 provides a quantitative analysis of the performance
of the regression models built for S11, S22 and S21 (which is
equal to S12 due to reciprocity of the considered structure)
in terms of training time and relative L2-norm error com-
puted on 500 test samples for an increasing number of the
training samples (i.e., Ls = 50, 150 and 300).

The results highlight the capability of the proposed mod-
eling strategy of accurately learning the actual parametric
behavior of the S-parameters. An average error < 5% is
achieved for all the considered S-parameters over the con-
sidered frequency bandwidth with Ls = 300 sample. It is
important to remark that a Gaussian distribution of the in-
put parameters has been considered, while for the case of
the parametric modeling a uniform distribution is usually
preferred. Concerning the computational cost, the overall
training time turns out to be less than 5min for Ls = 300
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Figure 2. Parametric plots comparing the real and imagi-
nary parts of S22 predicted by the proposed model trained
with 300 samples with the corresponding values in the test-
set for 10 different realizations of the input parameters.

Table 1. Training time and relative L2-norm error com-
puted from the regression models built for the S-parameter
of the structure in Fig. 1 with an increasing number of train-
ing samples (i.e., Ls).

Param. Ls = 50 Ls = 150 Ls = 300
εL2 ttrain εL2 ttrain εL2 ttrain

S11 8.8% 40s 4.6% 59s 3.9% 90s
S12 / S21 3.3% 45s 2.4% 69s 2.4% 104s

S22 8.6% 40s 5.6% 60s 4.1% 92s

and the overall evaluation time is around 1s, while a sin-
gle CST simulation for a given configuration of the input
parameters requires 2min.

Figure 2 shows a parametric plot providing a comparison
between the real and imaginary parts of S22 predicted by
the proposed model trained via Ls = 300 training samples
with the corresponding responses in the test set for 10 ran-
dom configurations of the input parameters. The plots high-
light the complexity and the richness of the responses in
the considered testcase, as well as the remarkable accuracy
achieved by the proposed model.

Moreover, Fig. 3 compares the probability density func-
tions (PDFs) of the magnitude of S22 at the frequency
f = 9GHz predicted by the proposed model trained with
Ls = 300 training samples with the corresponding one com-
puted from 500 test samples. The results provide a further
statistical validation of the proposed modeling framework.



Figure 3. Comparison of the PDF of the S22 at 9 GHz com-
puted from 500 test samples with the corresponding one ob-
tained from the predictions of the proposed model trained
with 300 training samples.

4 Conclusions

This paper investigates the performance of the VV-KRR in
the context of complex-valued regression problems. The
effectiveness of the proposed modeling scheme is assessed
in terms of accuracy and training time by considering the
modeling of scattering parameters for a slotted ground
PCB structure as a function of 2 parameters. The re-
sults underscore the potential of the proposed method. A
more comprehensive analysis, including a comparison with
other state-of-the-art techniques, will be conducted in fu-
ture works.
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