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Abstract—Recent advancements in spaceborne receiver tech-
nology have extended the application of Global Navigation Satel-
lite System (GNSS)-based navigation systems to space missions.
However, the actual availability and usability of GNSS signals in
deep-space is still questionable, lacking experimental evidence.
The Lunar GNSS Receiver Experiment (LuGRE) is a joint
NASA-Italian Space Agency (ASI) payload aiming to showcase
GNSS-based Positioning, Navigation and Timing (PNT) during
its transfer orbit to the Moon. Operating without direct interface
with on-board Guidance, Navigation & Control (GNC) subsys-
tems, the LuGRE receiver requires alternative means of aiding to
pursue precise Orbit Determination (OD) in the challenging space
environment. This paper investigates a custom Trajectory-Aware
EKF (TA-EKF) architecture that integrates aiding observations in
the form of a pre-mission design of the LuGRE trajectory. Two
alternative designs are presented, integrating aiding observations
in the observation-domain and state-domain, respectively. The
proposed architectures are evaluated by post-processing raw
GNSS observables collected in a real-time Hardware-in-the-Loop
(HIL) simulation with GNSS Radio Frequency (RF) signals. A
comprehensive assessment leveraging Monte Carlo (MC) analyses
characterizes the OD performance under aiding observation
errors and mismodeling, comparing the TA-EKF models against
a standalone Extended Kalman Filter (EKF) solution.

Index Terms—Satellite navigation systems, Navigation,
Bayesian estimation, Kalman filters, Moon.

I. INTRODUCTION

Nowadays, the navigation, guidance, and maneuvering of
space vehicles predominantly rely on ground segment assets.
The utilization of Radio Frequency (RF) tracking through
Deep Space Networks (DSNs) facilities and Direct-to-Earth
(DTE) links enables advanced Orbit Determination (OD) tech-
niques that rely upon sophisticated off-board processing al-
gorithms [1]. To afford semi-autonomous navigation, ground-
based observations can be further combined with on-board
relative measurements [2]. Similarly, maneuver control oper-
ations often involve telecommands from ground stations [3].
Ground-based assets have many advantages, but relying on
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them for OD and guidance introduces drawbacks. Operational
costs escalate, and managing numerous missions can become
impractical due to fast depletion of ground segment resources.
Additionally, significant communication delays can hinder the
success of latency-critical operations [4].

In light of the forthcoming deep-space exploration
roadmap [5], there’s an urgent need to enhance spacecraft
autonomy to effectively address the challenges ahead. Within
the Space Service Volume (SSV), Global Navigation Satellite
Systems (GNSSs) are a fundamental asset for autonomous
navigation. In fact, GNSS systems were conceived to supply
Positioning, Navigation and Timing (PNT) services to terres-
trial users, and their use has been recently foreseen and regu-
lated up to high earth orbits and geosynchronous altitudes [6],
[7]. However, the use of GNSS at higher altitudes faces sig-
nificant hurdles. Earth obstruction of the satellite-to-spacecraft
Line-of-Sight (LOS) largely (i) limits signal availability [8].
Moreover, even in good radiometric visibility conditions, (ii)
the large pathloss accumulated by GNSS signals over deep-
space distances results in weak signal reception and noisy
observations. Yet (iii) multilateration solutions computed from
such observations are affected by poor geometry caused by the
unfortunate relative distribution of Earth-based satellites w.r.t.
a user that is navigating the deep-space.

Despite the limitations mentioned above, interest has grown
about using GNSS systems for autonomous navigation in
transfer orbits (e.g., Earth-Moon transfer orbits (MTOs)) and
for supporting propulsive maneuvers, such as trans-orbital
injections or landings. [9]–[11]. Conforming to the dynamic
OD approach, [12] combines filtered GNSS observations with
predictions of the orbiting vehicle state based on a finely
tuned orbital propagator . Moreover, the reduced dynamic OD
approach additionally accounts for the uncertainties of fully
dynamic trajectory modeling in the process noise, and [13]
assessed this method for different filtering schemes using GPS
data. Yet the navigation module can benefit from external a-
priori information such as control inputs from Guidance, Nav-
igation & Control (GNC) subsystems. Although approaches
leveraging complex models of physical forces and orbital
dynamics can afford highly accurate OD solutions, they have
implications in terms of computational burden.

This study demonstrates the feasibility of onboard OD using
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GNSS observations without the need of real-time assistance
from ground assets or external control data about vehicle
dynamics. This operational assumption aligns with the design
of the spaceborne GPS/Galileo dual-frequency receiver for the
upcoming Lunar GNSS Receiver Experiment (LuGRE). Lu-
GRE, a joint National Aeronautics and Space Administration
(NASA)-Italian Space Agency (ASI) demonstration payload
on the Firefly Blue Ghost Mission 1 (BGM1) lander, aims
to showcase multi-GNSS-based PNT in cis-lunar space and
at the Moon [14], [15]. The LuGRE receiver is designed to
operate as a self-contained payload whose onboard OD can
rely solely on GNSS observables and aiding data pre-loaded
by the ground segment prior to mission deployment. One of
the driving scientific objectives of LuGRE is to assess the per-
formance of GNSS-based OD solutions obtained both onboard
at mission time and through ground-based post-processing of
multi-GNSS observables collected by the receiver in the MTO
and on the Moon surface [16]–[18].

Building upon previous work [19], [20] targeting the kine-
matic approach to OD, this paper proposes an Extended
Kalman Filter (EKF)-based architecture that integrates aiding
observations in the form of a pre-mission design of the
spacecraft trajectory. Two alternative Trajectory-Aware EKF
(TA-EKF) algorithms are formulated, featuring observation-
domain and state-domain integration of aiding observations,
respectively. The former envisages aiding data integration in
the measurement model, while the latter addresses flaws in the
state prediction due to mismodeled motion dynamics. The de-
veloped TA-EKF architectures can enable autonomous GNSS-
based orbital navigation aided with offline information about
the dynamic system evolution, without the need to rely on
external input controls from spacecraft GNC subsystems, and
without real-time ground support. Additionally, the adoption
of a simplistic model for state dynamics provides an attractive
alternative to resource-intensive models of orbital motion.

Raw GNSS observables, as constructed by the LuGRE
receiver from simulated RF signals relative to a MTO seg-
ment, are post-processed to showcase both TA-EKF models
against a standalone EKF solution, demonstrating the limited
orbital navigation performance achievable with the standalone
approach. A comprehensive assessment of both aiding inte-
gration models is conducted through extensive Monte Carlo
(MC) analyses to characterize OD performance under aiding
observation errors and mismodeling.

II. BACKGROUND

In the context of Bayesian inference as a statistical inversion
problem, the Kalman Filter (KF) pursues optimal recursive
regression for linear, Gaussian systems. For discrete-time sys-
tems involving non-linear transformations and possibly non-
Gaussian statistics, the EKF undertakes a Gaussian approx-
imation of the filtering distributions with Taylor series lin-
earization of dynamic and observation models [21]. Assuming
additive process and measurement noises, the EKF solution to
the filtering problem reads as:

xk = fk−1(xk−1, cd,k−1) +wk−1 (1)

zk = hk(xk) + vk (2)

where:
• xk is the system state at time tk.
• zk is the measurement vector at time tk.
• wk−1 ∼ N (0,Qk−1) and vk ∼ N (0,Rk) are the

zero-mean, normally distributed process and measure-
ment noises with covariance matrices Qk−1 and Rk,
respectively.

• fk−1 and hk are known state-transition and measurement
functions, respectively.

• cd,k−1 are deterministic forcing inputs affecting the pro-
cess state.

The estimation of the parameters of the Gaussian filtering
distributions develops across a two-step procedure.

a) Prediction step:

x̂−
k = fk−1(x̂k−1) (3)

P̂−
k = Φk−1P̂k−1Φ

T
k−1 +Qk−1 (4)

where:
• x̂−

k is the a-priori state estimate at time tk.
• P̂−

k is the a-priori state covariance estimate at time tk.
• Φk−1 is the state transition matrix. For non-linear fk−1,

it is the Jacobian matrix evaluated at x̂k−1 (i.e., the latest
a-posteriori state estimate).
b) Update step:

Kk = P̂−
k HT

k (HkP̂
−
k HT

k +Rk)
−1 (5)

x̂k = x̂−
k +Kk(zk − hk(x̂

−
k )) (6)

P̂k = P̂−
k −KkHkP̂

−
k (7)

where:
• x̂k is the a-posteriori state estimate at time tk.
• P̂k is the a-posteriori state covariance estimate at time

tk.
• Hk is the measurement matrix. For non-linear hk, it is

the Jacobian matrix evaluated at x̂−
k .

• Kk is the Kalman gain matrix at time tk.

A. System model for kinematic OD

In the context of the considered OD task based on GNSS
signals, the system state is formulated as:

xk =
[
rk ṙk bu,k ḃu,k

]T
(8)

and it involves the following quantities:
• rk = [rx,k ry,k rz,k] the spacecraft absolute position

vector expressed in Earth-Centered Inertial (ECI) coor-
dinates;

• ṙk = [ṙx,k ṙy,k ṙz,k] the spacecraft absolute velocity
vector expressed in ECI coordinates;

• bu,k the range equivalent of the GNSS receiver clock bias;
• ḃu,k the range-rate equivalent of the GNSS receiver clock

drift;



Under the assumption that the Gaussian filter is not subject
to known control inputs reflecting process dynamics (i.e.,
cd,k−1 = 0), a simplistic constant-velocity motion model is
considered yielding the following state transition matrix:

Φcv,k−1 =


I3×3 I3×3∆t 03×1 03×1

03×3 I3×3 03×1 03×1

01×3 01×3 1 ∆t
01×3 01×3 0 1

 (9)

where ∆t is the discrete-time state estimation interval, In×n

is the n×n identity matrix and 0n×n is the n×n null-matrix.
As a matter of fact, Φcv,k−1 obtained from discretization
of continuous-time, linear differential equations; hence, the
kinematic state model is not significantly affected by local lin-
ear approximations. Correspondingly, the process covariance
matrix can be written with block-diagonal structure as:

Qk−1 =

[
Qp 06×2

02×6 Qt

]
(10)

where Qp is the component modelling the stochastics of
the kinematic states in (8) and depends upon the driving
acceleration noise density Sa. Qt, instead, is the component
for the timing states in (8) and depends upon St and Sf ; the
latter are the GNSS receiver clock phase drift and frequency
drift, respectively1. More details about the dynamic model can
be found in [20].

B. GNSS-based observation model

GNSS measurement functions for code-based ranging in-
volve non-linear transformations. Given the processed signal
from the i-th GNSS satellite visible at time tk, the pseudorange
measurement equation can be written in metric units as:

ρsik = ∥rsik − rk∥+ bu,k + ϵsik (11)

where ∥·∥ is the vector norm. In particular, the following
quantities have been introduced:

• rsik the i-th GNSS satellite position vector at time tk.
• ϵsik is the nuisance term which aggregates all the errors

in the pseudorange measurement for satellite i.
Differentiating (11) w.r.t. time, a pseudorange-rate measure-
ment is extracted which is proportional to the Doppler-shift
between the receiver and the i-th satellite. The pseudorange-
rate equation takes the form:

ρ̇sik = (ṙsik − ṙk) ·
rsik − rk
∥rsik − rk∥︸ ︷︷ ︸

u
si
r,k

+ḃu,k + ϵ̇sik (12)

where:
• ṙsik the i-th GNSS satellite velocity at time tK .
• ϵ̇sik is the nuisance term which aggregates all the errors

in the pseudorange-rate measurement for satellite i.
• usi

r,k is the unit pointing vector from the receiver position
to the i-th satellite position at time tk.

1For Qk−1, Scϕ = 2.5 ·10−12 (m/s)2/Hz, Scf = 1.5 ·10−4 (m/s2)2/Hz,
Sa,x = Sa,y = Sa,z = 2 (m/s2)2/Hz were set as in [22].

As a matter of fact, (12) is proportional to the radial com-
ponent of the relative velocity between the satellite and the
receiver.

Assuming m satellites signals being tracked at time tk, the
GNSS-based measurement vector can be formulated as:

zGNSS
k =

[
ρs1k ... ρsmk ρ̇s1k ... ρ̇smk

]T
. (13)

Then, by applying first-order Taylor linearization of (11) and
(12), it results the following measurement matrix for the
GNSS-based observation model:

HGNSS
k =

[
Um×3 0m×3 1m×1 0m×1

0m×3 Um×3 0m×1 1m×1

]
(14)

where Um×3 is the geometry matrix of pointing vectors to
the m tracked satellites signals. Assuming the nuisance terms
in (11) and (12) are i.i.d., the GNSS measurement noise
covariance matrix RGNSS

k is diagonal and the Carrier-to-
Noise-density ratio (C/N0) is taken as metric to estimate the
component variances.

III. METHODOLOGY

Although ground-dependent tracking subsystems are the
most conventional sources of aiding to the OD task, the pro-
posed TA-EKF architectures are aided through an off-board,
pre-mission design of the planned spacecraft orbit. The consid-
ered aiding observations, which correlate with the spacecraft’s
instantaneous kinematic state, can be originated from a high-
precision orbit propagator. The latter can incorporate complex
mathematical models accounting for gravitational effects from
the Earth and other solar system bodies, atmospheric drag,
solar radiation pressure, and other perturbations [23]. The fol-
lowing sections suggest two alternative strategies to profitably
integrate aiding observations into the state-space model.

A. Observation-domain TA-EKF

Interpreting aiding observations as a known function of the
spacecraft’s state allows them to complement the GNSS-based
observation set (13). Assuming additive measurement noise as
in (2), the aiding measurement model for the EKF solution to
the Bayesian filtering model would read as:

z̃k = h̃k(xk) + ζk (15)

where:
• h̃k is the known (and possibly non-linear) aiding mea-

surement function.
• ζk ∼ N

(
0, R̃k

)
is the zero-mean, normally-distributed

aiding measurement noise with covariance matrix R̃k.
Assuming h̃k linear(-izable), (15) can be written in terms of
the aiding measurement matrix:

z̃k = H̃kxk + ζk . (16)

In this research, aiding observations are available as a pre-
mission orbit plan which provides information about the
spacecraft position and velocity states but not about the



GNSS receiver clock offset and drift states. Thus, the aiding
measurement vector at time tk is defined as:

z̃k = [r̃x,k r̃y,k r̃z,k︸ ︷︷ ︸
r̃k

˜̇rx,k ˜̇ry,k ˜̇rz,k︸ ︷︷ ︸
˜̇rk

]T (17)

where r̃k and ˜̇rk are, respectively, the position and velocity
aiding states (i.e., spacecraft instantaneous kinematic states);
hence, they admit a simple identity relationship with (8). It
follows that the aiding measurement model is linear and the
measurement equation yields the following aiding measure-
ment matrix:

H̃k =
[
I6×6 06×2

]
. (18)

In light of the foregoing, it is possible to define the composite
measurement vector for the observation-domain TA-EKF:

zk =
[
zGNSS
k z̃k

]T
. (19)

Correspondingly, the composite measurement matrix for m
satellites being processed at time tk takes the form:

Hk =

[
HGNSS

k

H̃k

]
=


Um×3 0m×3 1m×1 0m×1

0m×3 Um×3 0m×1 1m×1

13×3 03×3 03×1 03×1

03×3 13×3 03×1 03×1

 . (20)

The statistical modeling of aiding observations should align
with the precision pursued by the external aiding source. As
such, aiding observation weighting in R̃k is expected to reflect
the estimator’s confidence in the aiding source. For the case
at hand, variance weights are adjusted based on the accuracy
of the physics-based models integrated into the orbit design
and maneuver planning software [23]. Alternatively, R̃k might
be designed based on pre-mission requirements allocated to
the external aiding source. Moreover, statistical independence
between GNSS measurements and aiding observations can
be safely assumed when the latter result from a pre-mission
orbital planning. It follows a block-diagonal measurement
noise covariance in the observation-domain TA-EKF:

Rk =

[
RGNSS

k 0m×6

06×m R̃k

]
. (21)

B. State-domain TA-EKF

The EKF solution to the mean of the predictive state distri-
bution (3) might suffer from large errors due to misspecified
orbital dynamics in the overly simple motion model (9). In
turns, this would enhance the local linearization errors of
the GNSS measurement functions according to Section II-B.
Avoiding to resort to more complex dynamic models and in
absence of prior information about the system state evolution
from external controls, aiding observations can be integrated
in the dynamic model to enhance the accuracy of the a-priori
state estimate.

Based on these premises, the state-domain TA-EKF design
pursues an optimal weighted estimate of the Gaussian predic-
tive state distribution by combining two a-priori estimates of
the unknown state:

• the time-propagated estimate yielded by the constant-
velocity kinematic state model (9);

• an aiding state x̃k yielded by the aiding measurement
model (15).

At time tk, the time-propagated estimate and the associated
estimation error covariance can be obtained as:

x̂cv,k = Φcv,k−1x̂k−1 (22)

P̂cv,k = Φcv,k−1P̂k−1Φ
T
cv,k−1 +Qk−1 . (23)

Concerning the aiding state and its covariance, a Weighted
Least-Squares (WLS) estimate can be obtained from the
linear(-ized) aiding measurement model (16) as:

x̃k =
(
H̃⊤

k R̃−1
k H̃k

)−1

H̃⊤
k R̃−1

k z̃k (24)

P̃k =
(
H̃⊤

k R̃−1
k H̃k

)−1

(25)

where (25) propagates the aiding covariance R̃k in the aiding
state. The existence of both (24) and (25) is tied to the
application context and the nature of the aiding, and thus
should be properly evaluated on a case-by-case basis. In the
present study, x̃k straightly matches the aiding measurement
vector (17) at time tk, and the relation P̃k = R̃k holds.

State-domain integration leverages the assumption that both
a-priori point estimates are realizations of multivariate Gaus-
sian random variables with matching mode—the true yet
unknown system state—and different covariance matrices. An
optimal estimate of the mean of the predictive state distri-
bution is obtained by Generalized Least-Squares (GLS). The
following quadratic loss can be defined:

L(xk,est;xk, P̂cv,k, P̃k) = ∆xT
k (P̂

−1
cv,k + P̃−1

k )∆xk (26)

where ∆xk = xk,est − xk and xk,est is the estimate of xk

considered to evaluate the loss. As a matter of fact, (26)
evaluates the Mahalanobis length of the residual between the
estimate and the true system state. The a-priori state estimate at
time tk for the state-domain TA-EKF is the Minimum-Mean-
Square Error (MMSE) estimate:

x̂−
k = (P̂−1

cv,k + P̃−1
k )−1(P̂−1

cv,kΦcv,k−1x̂k−1+ P̃−1
k x̃k) (27)

which turns out being the Best Linear Unbiased estimator
(BLUE) for the loss (26) [24]. The a-priori estimation error
covariance estimate is retrieved by resorting to the uncertainty
propagation principle for linear combinations [25]:

P̂−
k = (P̂−1

cv,k + P̃−1
k )−1 (28)

with statistical independence between x̂cv,k and x̃k being
assumed.

IV. EXPERIMENTAL TESTBED

Taking the LuGRE mission as case-study of GNSS-based
PNT in MTO, a simulation-based analysis with representative
RF signals and Hardware-in-the-Loop (HIL) is carried out
relative to a segment of the LuGRE orbit at 17 Earth Radii
(RE).
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Fig. 1. GNSS operational environment along the analyzed segment of LuGRE MTO.

A. Radio-frequency simulation scenario

A multi-GNSS simulation model is configured in Spirent
GSS9000 GNSS RF simulator [26] to emulate the dynamic
environment and the GNSS signal conditions the LuGRE
payload is expected to be subject to in deep-space. Taking
a pre-mission trajectory design as reference model of the
space vehicle orbit, GPS and Galileo satellite positions are
reproduced from precise ephemeris and interpolated to cover
a 2 hours long simulation span. Space-weather effects and
ephemeris errors are considered for their impact on GNSS
signals to enhance the realism of the test scenario. A HIL
test is then set-up by integrating the GNSS receiver described
in Section IV-B in the simulation testbench. Specifically,
digital GNSS signals samples are created by Spirent SimGEN
control software for GPS L1/L5 and Galileo E1/E5 bands,
before being converted to analogue RF signals processed by
the receiver front-end. According to the signal acquisition
and tracking sensitivity of the receiver, Figure 1a shows the
expected visibility of GNSS satellites for both constellations
over the whole simulation span. Moreover, the estimated C/N0

profile is highlighted in Figure 1b for the received GPS (G) and
Galileo (E) satellite signals. The multi-GNSS raw observables
obtained by the real-time operation of the radio receiver are
logged, and the developed TA-EKF models are run in post-
processing on the retrieved dataset.

B. Spaceborne GNSS receiver

The HIL simulation integrates a Moon-customized develop-
ment of the Qascom QN400-SPACE [27], a dual-constellation
and dual-band GNSS Software Defined Radio (SDR) receiver
tailored to operate in deep-space in the context of LuGRE.
This receiver plays a pivotal role in the acquisition and
processing of simulated RF satellite signals, thereby consti-
tuting the backbone of the raw GNSS observables collection.
The QN400-SPACE employs both coherent and non-coherent
signal acquisition schemes to mitigate the challenges posed
by weak GNSS signal power in deep space navigation. The
acquisition process involves two stages: initially, satellites

with the highest received power are acquired using a larger
search space in the domain. Then, signals at lower power
are acquired, reducing Doppler space by estimating clock
drift. Signal tracking refines signal frequency and code phase
estimates, demodulates navigation data, and generates GNSS
raw measurements. The receiver’s tracking loop performance
is fine-tuned through semi-analytical analysis and MC simula-
tions, resulting in improved signal tracking lock success rates,
especially in noisy environments. This optimization process
significantly enhances receiver robustness and performance.

C. Stochastic model of aiding observations

Aiding observations of discrete-time kinematics are syn-
thetically constructed starting from the pre-mission design of
the planned spacecraft orbit. Then, aiding observations are
corrupted with a time-variant bias component driven by ad-
ditive white noise. This approach is meant to model expected
discrepancies between the aiding observations and the GNSS
measurements. In particular, a temporal mismatch (i.e., a time
offset) can set under asynchronous aiding data integration. In
a real application, aiding observations are supplied to the PNT
module as a sequence of space vehicle kinematic states at equi-
spaced points in time. As soon as a new set of raw GNSS
observables is available to the receiver, a synchronous sample
from the aiding sequence must be selected. However, aiding
observations are likely to be timestamped to a time-scale
different from the one of the GNSS receiver [28]. Moreover,
the rate of the aiding sequence can be different from the
Position, Velocity, Timing (PVT) rate. Although the proposed
method can bear limited mismatch as shown in Section V,
the optimal selection of the aiding observation sample can be
addressed resorting to preprocessing methods [29] which are
beyond the scope of this work.

In the experimental analysis, the aiding measurement vector
at time tk is formulated as:

z̃k =
[
r̃k ˜̇rk

]T
+ b̃k (29)
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(a) observation-domain TA-EKF

16
.6
6

16
.7
5

16
.8
4

16
.9
3

17
.0
2

17
.1
0

17
.1
9

17
.2
8

17
.3
7

17
.4
6

17
.5
5

17
.6
4

17
.7
3

17
.8
1

17
.9
0

17
.9
9

18
.0
8

18
.1
7

18
.2
6

18
.3
5

18
.4
4

18
.5
2

18
.6
1

18
.7
0

18
.7
9

18
.8
8

Altitude [RE]

-50

0

50

"
C

[m
]

(b) state-domain TA-EKF

Fig. 2. Statistical characterization of the OD solution in RIC frame for the TA-EKF models. Horizontal altitude ticks (in RE) are referred to the simulated
segment of the LuGRE MTO.

where the first term embeds the spacecraft kinematic state from
the planned spacecraft orbit and b̃k is the introduced aiding
bias factor. This bias is simulated as a discrete-time sequence
of samples drawn from a multiple, first-order autoregressive
AR(1) model [25]:

b̃k −mb = Ak

(
b̃k−1 −mb

)
+ ηk (30)

where the time-variant matrix of first-order coefficients is
defined based on the spacecraft velocity and acceleration
states:

Ak =

[
˜̇rk/∥˜̇rk∥ 03×3

03×3
˜̈rk/∥˜̈rk∥

]
. (31)

The mean values of each component bias time-series impairing
the aiding spacecraft kinematic state are collected in mb.
Eventually, ηk is the zero-mean, normally distributed driving
noise term with steady-state covariance Σ̃k. Expanding upon
the asynchronous mismatching behavior captured by the AR(1)
process, the driving noise term allows to account for residual
unmodeled effects (e.g., unpredicted thrusting maneuvers).

V. RESULTS

Based on the experimental framework presented in Section
IV, the OD solutions from the TA-EKF models are analyzed
when filtering in post-processing the GNSS observations as
provided by the QN-400 SPACE receiver, and navigation
accuracy performance is highlighted against the reference
spacecraft orbit. In particular, for the simulated segment
of LuGRE MTO, a sample of 103 MC realizations of the
AR(1) bias process is collected to significantly characterize
the error statistics of the aided navigation solutions. For each
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Fig. 3. Standalone EKF OD error in RIC coordinates with 3-sigma confidence
intervals from the square-root of the corresponding diagonal elements in P̂k .

MC realization, the mean value of each component bias time-
series in (30) is drawn as a probabilistic outcome:

mb ∼ N
(
06×1,

[
σ2
pI3×3 03×3

03×3 σ2
vI3×3

])
(32)

where σp = 5 m and σv = 0.1 m/s. To highlight the benefit of
integrating aiding observations, a GNSS-based kinematic OD
via a standalone EKF is included as benchmark to quantify
the accuracy enhancement pursued by the proposed TA-EKF
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the standalone EKF and the TA-EKF architectures.

models. Yet filtering-based post-processing of combined GPS-
Galileo observables (GPS L1/L5 - Galileo E1/E5) implement-
ing dual-frequency iono-free linear combination is examined
for all the involved EKF-based architectures.

Accuracy and precision of the OD solution are characterized
in Figure 2, where the time-series of position estimation error
are illustrated in Radial, In-track, Cross-track (RIC) frame
for both observation-domain TA-EKF (Figure 2a) and state-
domain TA-EKF (Figure 2b). In each spatial coordinate, errors
are calculated against the reference spacecraft orbit and are
regularly observed at different altitudes over the whole orbital
segment. Each box represents the summary positioning error
statics as the instantaneous output of the collected MC sample
from 103 realizations of the AR(1) bias process. The top
and bottom edges of the box (i.e., the interquartile range)
indicate the 75-th and 25-th percentiles, respectively, and the
black mark with a square shape inside the interquartile range
identifies the mean of the MC sample. The lines extending
above and below each box are referred to as whiskers. The
latter goes from the end of the interquartile range to the
furthest MC realization within the whisker length. Obser-
vations beyond the whisker length are marked as outliers
and are relevant to characterizing the instantaneous position
estimation uncertainty. As a matter of fact, the TA-EKF
solutions demonstrate equivalent performance. In fact, when
both (24) and (25) exist, the state-domain model adheres to the
alternative information filter formulation [30]. This outcome
is valuable as it ensures the flexibility to select the most
convenient architecture based on the application context and
the nature of the aiding observations.

The time-series of position estimation error in RIC com-
ponents when filtering multi-GNSS observations with a stan-
dalone EKF are depicted in Figure 3. In each subplot, the
individual error time-series are shown with black, solid lines,
and the outer boundaries of the gray, shaded areas highlight
the Root-Mean-Square Error (RMSE) measured at 3-sigma.
Moreover, Fig. 4 illustrates the empirical Cumulative Density
Function (CDF) lines in terms of 3D position (top) and
velocity (bottom) estimation errors. In addition, summary
cumulative error statistics at relevant percentiles are listed
in Table I for the 3D position estimate and in Table II
for the 3D velocity estimate. For the position estimate, the
accuracy improvement pursued by the TA-EKFs as measured
at the 50-th percentile amounts to 58.12%, while at the 95-
th percentile it equals to 47.16%. For the velocity estimate,

TABLE I
CUMULATIVE POSITION ERROR STATISTICS (IN [m]) FOR TA-EKF

ARCHITECTURES AND THE STANDALONE EKF.

Navigation Filter
CDF (percentile)

25 50 75 95

EKF standalone 14.78 29.409 48.884 86.230

TA-EKF (observation-domain) 8.259 12.316 19.431 45.568

TA-EKF (state-domain) 8.259 12.316 19.431 45.568

TABLE II
CUMULATIVE VELOCITY ERROR STATISTICS (IN [m/s]) FOR TA-EKF

ARCHITECTURES AND THE STANDALONE EKF.

Navigation Filter
CDF (percentile)

25 50 75 95

EKF standalone 1.002 1.510 2.025 3.114

TA-EKF (observation-domain) 0.015 0.023 0.037 0.077

TA-EKF (state-domain) 0.015 0.023 0.037 0.077

instead, the 50-th percentile and 95-th percentile estimation
accuracy improvements are 98.48% and 97.53%, respectively.

For the standalone EKF, the vulnerability of a kinematic ap-
proach to OD is evident. This filtering architecture propagates
the spacecraft kinematic state between successive position fix-
ing epochs through simplistic model-based dynamics, and the
Kalman gain weigh much GNSS observations to sequentially
update the orbit estimate. However, the space environment
at high-altitudes emphasizes non-systematic errors in pseu-
dorange observables due to weak received signal conditions
(i.e., high receiver noise). Moreover, the spatial distribution
of satellites exacerbates the propagation of pseudorange noise
over the computed orbit solution. Nevertheless, systematic er-
rors may arise in such extreme conditions as well. Established
corrective models, widely adopted for terrestrial applications,
might be out of their validity domain in deep space. Being
pushed outside of their nominal working point, the use and
effects of such models in the experimental setup are still under
investigation. Nonetheless, these effects can be successfully
mitigated via the TA-EKF solutions, even under circumstances
of mild asynchrony between GNSS measurements and aiding
observations as modelled by the AR(1) bias process, thus
emphasizing the proposed techniques’ robustness.

VI. CONCLUSION

This paper has addressed the task of autonomous OD
based on GNSS signals for high-altitude space applications.
Adhering to the kinematic OD approach, which is free from as-
sumptions about process dynamics, a TA-EKF model has been
proposed to pursue meter-level GNSS-based navigation of an
orbiting vehicle. This is accomplished by leveraging on aiding
data consisting of kinematic observations of the spacecraft
trajectory as retrieved from a pre-launch orbit design. Two
alternative yet equivalent TA-EKF models are foreseen. The
observation-domain TA-EKF expands the filter measurement



model by complementing GNSS measurements with the ob-
servations of the spacecraft kinematic state. The state-domain
TA-EKF, instead, improves the filter prediction by optimally
weighting the time-propagated state with the kinematic aiding
observations. The developed filtering architectures are assessed
in the framework of LuGRE, a joint NASA/ASI demonstration
payload which will fly a GPS/Galileo receiver expected to
process real GNSS signals in transit between Earth and the
Moon, in lunar orbit, and on the lunar surface. For a segment
of the LuGRE MTO, HIL dual-constellation, dual-frequency
observations are collected through a Spirent simulation and
post-processed via the aided filters. Results highlight equiva-
lent OD performance for the aided estimator architectures, thus
allowing the flexibility to choose the most affordable, well-
defined model depending on the characteristics of the aiding
data. Extensive MC analyses are simulated to draw significant
performance statistics when mild discrepancies between GNSS
measurements and aiding data are taken into account, ans
meter-level OD accuracy is demonstrated. Compared to a stan-
dalone EKF architecture, the position and velocity estimation
accuracies can be enhanced up to 47.16% and 97.53% at
the 95-th percentile, respectively. Recognizing the pitfalls of
asynchronous aiding data integration, further effort will be
devoted to calibration techniques that can handle the alignment
between aiding observations and GNSS measurements. Yet a
finer non-linear model reflecting orbital dynamics is about to
be tested jointly with the integration of aiding data.
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