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Digital PLLs for phase noise channels: a concept
based on the Tikhonov distribution

Barbara Ripani , Student Member, IEEE, Andrea Modenini , Guido Montorsi Fellow, IEEE

Abstract—We explore the concept of a digital phase-locked
loop (PLL) of the first type, derived as an alternative solution
to Kalman’s estimation problem by employing the Tikhonov
distribution rather than the traditional Gaussian model.

The resulting Tikhonov PLL is a complex-valued nonlinear
filter that is simple to implement and demonstrates interesting
features in channels affected by strong phase noise. We present
a comparative analysis including the classical PLL and Kalman
filter to highlight the strengths of the Tikhonov PLL in such
contexts.

I. INTRODUCTION

Current literature on advanced algorithms for phase
noise (PN) channels mainly considers two approaches. The
first involves advanced demodulation and decoding algo-
rithms (see [1] and reference therein), while the second
involves proper shaping of the constellation (e.g., [2], [3]).
Focusing on the first approach, the work in [4] derived forward
& backward algorithms that are suitable for iterative decoding.
In particular, it was found that using the Tikhonov probability
distribution function (pdf) to model phase noise probabilities
closely matches the actual distributions.

Several variations have been introduced to improve the
similarity between the Tikhonov distribution and the actual
probabilities. This has been achieved in more challenging
scenarios, such as those with the absence of pilots and larger
PN variance, by minimizing the Kullback–Leibler divergence
or by using expectation propagation [5], [6].

In some applications, the use of forward & backward
algorithms, as well as iterative decoding, may not be possible
due to engineering constraints such as limited memory and
complexity. In many communication systems, carrier synchro-
nization is achieved through the use of PLLs, which are simple
and well-established loops that perform their task efficiently
under benign conditions. However, when the channel is af-
fected by strong PN, PLLs may fail to properly track the
carrier, thus decreasing the signal reception quality.

For this reason, we investigate a possible improvement in
PLL performance for PN channels. Since PLLs are a solution
to Kalman’s estimation problem [7] where hidden Markov
chain variables are Gaussian distributed, we explore how a
Tikhonov distribution can be used to derive a new family
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Fig. 1. Factor graph corresponding to (2).

of first-type PLLs that are well-suited for PN channels. The
analogy between Tikhonov-based phase estimators and PLL
was for the first time recognized by the authors in [5], although
they did not delve into the specific technical aspects, as it
was beyond the scope of their work. The objective of this
letter is therefore to present a Tikhonov-based variation of the
classical PLL and analyze its similarities and differences with
both Kalman filter (KF) and traditional PLL schemes.

II. KALMAN FILTER AND PLLS: A FACTOR GRAPH
PERSPECTIVE

Consider a pure carrier tone on the Wiener PN channel
that, despite its simplicity, is still representative of actual
oscillators [8]. The samples of the received signal normalized
and in complex base-band are defined as

yk = ejθk + wk , (1)

where wk is AWGN with variance σ2 = N0/2PT per
component, N0 is the noise power spectral density, P is the
carrier power, T is the sampling time, and θk is the k-th PN
sample. The PN process is a random walk, for which

θk − θk−1 ∼ N (θk − θk−1, 0, σ
2
∆) ,

where N (θ, µ, σ2) indicates a Gaussian distribution in θ with
mean µ and variance σ2.

Defining the vector yk = {y0, .., yk}, we want to compute
the minimum mean square error (MSE) Bayesian estimator
θ̂k = E [θk|yk]. This requires the pdf p(θk|yk) that can be
derived using the factor graphs (FGs) and sum-product al-
gorithm (SPA) [9]. Given the vectors θ and y containing
all samples of the phase and received signal, the posterior
probability factorizes as

p(θ|y) ∝ p(θ0)
∏
k≥0

p(yk|θk)
∏
k≥1

p(θk|θk−1) , (2)

represented by the FG in Fig. 1. Assuming a symmetrical and
non-skewed distribution for the forward messages αk(θk), the
MSE estimator can be derived using the SPA as

θ̂k = argmax
θk

αk(θk)p(yk|θk) , (3)
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Fig. 2. Block diagrams of the digital PLL.

where ∀k αk(θ) can be recursively computed as

αk(θk) ∝
∫ 2π

0

αk−1(θk−1)p(yk−1|θk−1)p(θk|θk−1) dθk−1 .

(4)
Clearly, it is not possible to solve (3) and (4) in a closed
form. However, approximating the messages with distributions
belonging to the exponential family, a closed-form solution can
be found. For instance, the well-known KF is derived using the
Gaussian distribution. Modeling p(yk|θk) as N

(
θk,∠yk, σ2

)
and αk(θk) as N

(
θk, µk, σ

2
k

)
, the recursion in (4) generates

a sequence of Gaussian pdfs. Their mean value and variance
can be recursively computed as

µk+1 = µk + βk (∠yk − µk) (5)

σ2
k+1 =

1

(1/σ2
k + 1/σ2)

+ σ2
∆ , (6)

where βk is known as the Kalman gain [10] and is defined as

βk =
σ2
k

σ2
k + σ2

. (7)

Thus, the MSE estimator in (3) is found as

θ̂k = µk+1 , (8)

and can be implemented using the digital filtering scheme in
Fig. 2. In the figure, the phase estimate θ̂k = µk+1 is updated
based on the phase error ∠yk−µk. In the recursive calculations
in (5) and (6), we can identify the time-update equations1 [10].

The KF steady-state variance satisfies its Riccati equa-
tion [11], i.e. σ2

k → σ2
∞ as k → ∞. As a result, the gain

of the KF tends to a steady-state fixed value (denoted as β∞
as k → ∞). Substituting (8) into (5), we find

θ̂k = θ̂k−1 + β∞(∠yk − θ̂k−1) , (9)

where one can recognize the equation of a digital PLL of the
first type [12] having loop gain β∞.

More generally, it can be shown that performing the SPA
on the FG in Fig. 1 using an N -th order Gaussian distribution
leads to a KF [9]. In steady-state conditions, when N ≤ 3,
this KF becomes equivalent to a PLL of the N -th type [13].
However, there is a significant difference in the way the
two schemes operate. In the standard PLL, the observable

1According to the classical Kalman filtering notation [7], µk represents
both the updated state estimation (x̂k|k) and the predicted state (x̂k|k−1). On
the other hand, σ2

k corresponds to the variance associated with the predicted
state (σ2

k|k−1
), while the variance of the update state estimation (σ2

k|k) is
represented by the term (1/σ2

k + 1/σ2)−1 in (6).

Fig. 3. Block diagram of the digital PLL based on the Tikhonov distribution.

yke
−jθ̂k−1 is used for carrier tracking [12]. On the other hand,

KF uses the most current estimate θ̂k = µk+1 to directly
compensate the signal. Thus, the PLL effectively operates like
a KF that provides MSE delayed by one sample, resulting in
reduced tracking performance.

III. TIKHONOV BAYESIAN ESTIMATOR AND PLL

In Section II, we defined the well-known concept of
Kalman-PLL duality (see [14], [15]) from the perspective of
FGs. In this section, we introduce a new, generalizable model
of PLL. We consider using the Tikhonov distribution, another
well-known example of the exponential family, to describe the
messages flowing along the FG in Fig. 1. We model αk(θk)
as a circular distribution in θk ∈ [0, 2π) that reads

t(zk; θk) ∝ eℜ[zke
−jθk ] ,

where zk is a complex-value parameter. Its angle ∠zk deter-
mines the mode of the pdf, while 1/|zk| represents its disper-
sion. On the other hand, p(yk|θk) is by definition t( yk

σ2 ; θk).
The work in [4] demonstrated that the recursion in (4) can

be approximated as a sequence of Tikhonov pdfs with zk
recursively computed as

zk+1 = γ
(
σ2
∆, zk +

yk
σ2

)
, (10)

where γ(x1, x2) =
x2

1+x1|x2| . Thus, the MSE is found to be

θ̂k = ∠ (zk + yk/σ
2) (11)

= ∠ zk+1 .

Such an estimator can be implemented with the digital filtering
scheme in Fig. 3.

To better understand the behavior of the phase transition
in (11), Fig. 4 provides a vector representation of the equation.
Consider the scenario in Fig. 4a, where the magnitude of
the channel coefficient yk/σ

2 is greater than the forward
coefficient zk. This situation usually occurs in high signal-
to-noise ratio (SNR) scenarios, where the past estimate is less
reliable than the channel information. In these cases, the phase
estimation, represented by the argument of zk + yk/σ

2 (equal
to that of zk+1), tends to closely follow the error identified as
∠yk−θ̂k−1. However, in situations where the magnitude of the
forward coefficient dominates over that of the channel term,
such as in the scenario depicted in Fig. 4b, the predicted phase
will be heavily influenced by the past estimations. This is
because the past estimations are more reliable than the channel
information.
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(a) (b)
Fig. 4. Vector representation of (11).

We will now prove that the MSE derived in (11) has an
equivalency to first-type PLLs, as shown for Kalman filtering.
By expanding the terms in (11), we obtain

θ̂k = ∠
(
|zk|ejθ̂k−1 +

|yk|
σ2

ej∠yk

)
(12)

= θ̂k−1 +∠
(
|zk|+

|yk|
σ2

ej(∠yk−θ̂k−1)

)
(13)

≈ θ̂k−1 +
|yk|/σ2

|zk|+ |yk|/σ2
(∠yk − θ̂k−1) (14)

≈ θ̂k−1 + βk(∠yk − θ̂k−1) , (15)

where (14) was derived by using a linear approximation of the
angle (ratio of imaginary and real part) and assuming that the
difference ∠yk − θ̂k−1 is small. Finally, in (15), we redefine,
with an abuse of notation, βk as

βk =
1/|zk|

1/|zk|+ σ2/|yk|
. (16)

A preliminary comparison of (15) and (9) reveals the similarity
between the two estimators. This similarity is expected in
scenarios characterized by reliable estimation, such as those
with high SNR. In such contexts, the Tikhonov distribution,
characterized by its small dispersion, closely approximates a
Gaussian distribution [16]. Consequently, the Tikhonov can be
viewed as a Gaussian with variance 1/|zk|. However, when
comparing (7) with (16), we observe the introduction of time
dependence on the variance of the measurement (σ2

k/|yk|).
Although not demonstrated here, numerical results showed that
the gain in (16) does not converge to a steady-state value,
but its average E[βk] does. Additionally, for high SNR, it
holds that E[βk] → β∞, and 1/|zk| → σ2

∞. Thus, despite the
fluctuations of βk in (16) around its mean value, the scheme
presented in Fig. 3 introduces a new concept of a first-type
digital PLL.

IV. KEY ALGORITHMIC FEATURES

In high SNR scenarios, mathematical derivations from
Sections II and III suggest that the Kalman and Tikhonov
PLLs offer comparable performance. However, having support
within the range (0, 2π], the Tikhonov pdf aligns perfectly
with the nature of phase distributions. This results in slightly
improved phase estimation in scenarios with strong PN and has
implications in scenarios where data modulate the transmitted

carrier. For instance, consider the case of a binary modula-
tion that directly modulates the carrier in (1) with symbols
xk ∈ {±1}. For demodulation, it is beneficial to perform a
“hard” decision on the phase for the KF by compensating
the received signal using its estimation. Log-likelihood ratios
(LLRs) are then computed, by definition, as

λk = log

[
p(ỹk|xk = 1)

p(ỹk|xk = −1)

]
,

where ỹk = yke
−jθ̂k , and the distribution p(ỹk|xk = ±1) ∼

N
(
ỹk, xk = ±1, σ2

)
. In contrast, the Tikhonov PLL performs

a “soft” approach as described in [4], computing LLRs as

λk = log

[
I0

(∣∣zk + yk

σ2

∣∣)
I0

(∣∣zk − yk

σ2

∣∣)
]
,

where I0(·) is the modified Bessel function of the first kind and
order 0. Section V will show that the Tikhonov-based “soft”
approach yields better code-error-rate (CER) performance than
the Kalman method. However, it would be possible to explore
a hybrid approach that integrates the Kalman phase recursion
based on Gaussian distributions with the LLR computation
using the soft Tikhonov approach.

V. NUMERICAL RESULTS

This section compares the performance of the PLL architec-
tures discussed earlier. These include the classical (first-type)
PLL, the KF, the Tikhonov PLL (TK-PLL), and a delayed KF.
The latter corresponds to the KF producing a phase estimate
with a one-sample delay. As discussed in Section II, the
delayed KF represents the maximum performance achievable
by classical PLLs, which have a fixed gain that needs to be
tuned depending on the scenario.

Consider the case of a pure carrier transmission through
a channel affected by PN as in (1). Fig. 5 compares the
phase jitter over PT/N0 for a channel affected by PN with
a standard deviation of σ∆ of 0.1 and 6 deg. Multiple curves
corresponding to different loop gain values for the classical
PLL are included in the figure. When σ∆ = 6 deg, the figure
reveals that the TK-PLL outperforms classical PLLs, which
are in turn lower-bounded by the KF delayed by one sample.
Both the KF and the TK-PLL exhibit a linear decrease in jitter
as PT/N0 increases, with the TK-PLL showing slightly lower
jitter at low SNR. When σ∆ is small, the jitter of the TK-PLL
and the delayed version of the KF coincide, except for low
SNR values.

Fig. 6 shows the time-evolution of both the KF gain, βk,
and the TK-PLL mean value, E[βk], with a PN of σ∆ = 6
deg and PT/N0 values of 0 and 10 dB. As expected, the KF
gain βk rapidly converges to its steady-state value β∞. On the
other hand, as discussed in Section III, E[βk] tends to β∞ only
in high-SNR scenarios. This can be observed at a PT/N0 of
10 dB in Fig. 6. However, when PT/N0 decreases to 0 dB,
E[βk] converges to a larger value than the Kalman steady-state
gain β∞. This suggests that, on average, the TK-PLL tends to
keep a larger loop bandwidth for more effective PN tracking.

Finally, we consider the transmission of a carrier modulated
by binary data as discussed in the previous section. We adopt
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a short low-density parity-check (LDPC) code having a code
rate of 1/2 and a block length of 256 [18], as well as binary-
shift keying (BPSK) modulation, which is typical of low-
rate applications where severe PN may occur. To facilitate
the demodulation and tracking, we distribute pilots along the
transmitted sequence, with a frequency of one pilot every
20 symbols. Both the KF and the TK-PLL adopt a data-
aided approach where an update in the phase estimate only
occurs in the presence of pilots. Fig. 7 compares the CER of
the two schemes when the phase noise process has standard
deviation σ∆ of 1.5 and 6 deg. As the figure shows, the
performance of the TK-PLL and the KF algorithms is nearly
identical for a small phase noise of σ∆ of 1.5 deg. However,
the TK-PLL algorithm performs better with a higher value
of PN standard deviation (6 deg). The results in Figures 5
and 6 revealed identical phase tracking capabilities for both
algorithms. Hence, the disparity in CER between the two
algorithms under σ∆ = 6 deg can be attributed to differences
in their LLR computation. For small values of σ∆, I0(·)
behaves similarly to an exponential function. This explains
the minimal differences observed between the two CER curves
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Fig. 7. CER performance of the TK-PLL and the KF schemes for a PN
characterized by a σ∆ of 1.5 and 6 deg.

when σ∆ = 1.5 deg. However, as the PN standard deviation
increases, the behavior of I0(·) and an exponential function
gradually start to differ. This can cause the LLRs of the KF to
be less precise representations of the true LLRs. Differently,
the I0(·) function provides a better approximation of the LLRs,
which is reflected in the performance improvement observed in
Fig. 7. The TK-PLL’s performance could be further improved
using more advanced algorithmic features such as those in [4],
[5], [17] and references therein. For example, in [5] and [17],
Tikhonov mixtures of different orders are used to approximate
the SPA messages. As shown in [5], these algorithms represent
a set of PLLs with a controller determining the number of
tracking loops necessary to maintain tracking on all possi-
ble trajectories. Similarly, the decision-aided variant of the
Tikhonov algorithm, as discussed in [4], can be implemented
using a conventional PLL that makes direct decisions on the
symbols based on a threshold for selected symbols. Moreover,
both the KF and the TK-PLL performance could be improved
by utilizing a non-linear model that matches the non-linear
observation equation in (1) [10], [19]–[21].

VI. CONCLUSION

In this letter, we reviewed the KF and first-type PLLs as
an instance of the SPA within the FG framework. We then
introduced an alternative first-type PLL scheme based on the
Tikhonov distribution. We found that the resulting Tikhonov
PLL exhibit similar tracking performance compared to the KF,
while surpassing classical PLLs. However, in situations where
both demodulation and tracking are required, the Tikhonov
PLL outperforms the KF, especially for large values of σ∆.
This advantage derives from the Tikhonov PLL’s ability to
better model the pdfs associated with phase estimation.

We believe that the Tikhonov PLL scheme is a new ad-
dition to the family of PLLs, with interesting open research
directions. Further research could involve establishing its
equivalency with higher-order PLLs in the presence of N-
dimensional pdfs, enabling frequency shift and rate estimation,
and expanding the investigation to other pdfs belonging to the
exponential family.
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