
07 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Latency-aware Scheduling in the Cloud-Edge Continuum / Chiaro, Cristopher; Monaco, Doriana; Sacco, Alessio; Casetti,
Claudio; Marchetto, Guido. - (2024). (Intervento presentato al  convegno IEEE/IFIP Network Operations and
Management Symposium tenutosi a Seoul, South Korea nel 6–10 May 2024) [10.1109/noms59830.2024.10575183].

Original

Latency-aware Scheduling in the Cloud-Edge Continuum

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/noms59830.2024.10575183

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2990945 since: 2024-07-17T12:06:25Z

IEEE



Latency-aware Scheduling in the Cloud-Edge
Continuum

Cristopher Chiaro ∗ Doriana Monaco ∗ Alessio Sacco ∗ Claudio Casetti ∗ Guido Marchetto ∗
∗ Department of Control and Computer Engineering, Politecnico di Torino, Italy

Abstract—In recent years, containerized deployment models
have gained favor across many domains of applications. Kuber-
netes, the de-facto standard for containers orchestration, can effi-
ciently manage heterogeneous devices, but fails to adapt to possi-
bly stringent requirements, as it only considers computing metrics
for scheduling decisions. In addition, the rising prominence of
distributed cloud environments, which enable the development of
highly available, performant solutions, requires modifications to
the default Kubernetes scheduler. To address these challenges, we
introduce LAIS, a multi-cluster Kubernetes scheduler optimized
for end-to-end latency measurements to enhance user Quality
of Experience (QoE). Unlike existing approaches, we define a
geographically distributed environment and deploy a solution
that satisfies user-specified intents in terms of latency. Depending
on user needs, LAIS can either meet a specific latency constraint
or schedule pods in the cluster with the lowest latency. After
implementing LAIS in a multi-cluster environment, we found
it highly effective in accommodating a range of user intents,
outperforming the default Kubernetes scheduler in this regard.

I. INTRODUCTION

Container virtual technology is increasingly adopted for the
development of microservice-based applications. In such a
context, orchestrators simplify the management of container
applications by overseeing the entire life cycle of containers.
However, they are usually limited by infrastructure-level man-
agement policies. For example, Kubernetes, the de-facto stan-
dard orchestrator, enables the automation of application de-
ployment, scaling, and operations, including the management
of pods, the smallest deployable units in a Kubernetes cluster.
Nonetheless, the optimization strategies adopted are limited to
computing capacity. However, the rapid advancement of tech-
nology is pushing the boundaries of digital transformation and
creating an enormous dependency on network-based services.
In this evolving landscape, network latency plays a crucial
role, influencing the user experience and ultimately impacting
the overall success of services.

In addition, as the edge and fog computing paradigms gain
prominence to address issues related to geographic proximity,
reduced latency, and enhanced privacy [1]–[3], these strategies
are gradually expanding their reach to encompass smaller
data centers situated at the network periphery. This expansion
leverages consistent foundational elements to promote service
flexibility and an edge-to-cloud continuum [4], [5], with the
increasing popularity of multi-regional cloud resources.

For this reason, novel solutions for distributed environments
are being developed. Many orchestrators prioritize resource
optimization, often incorporating auto-scaling features as seen
in works like [6]–[8]. These studies propose architectures that

establish a federated Kubernetes domain, making use of Net-
work Service Mesh (NSM) tools for enhanced functionality.

An essential element in the management of microservices
within Kubernetes is the scheduler, handling the intricate task
of arranging and executing the distribution of pods across
nodes. Originally designed for conventional cloud settings that
depend on centralized, high-capacity data centers, the typical
Kubernetes scheduling techniques are primarily focused on
optimizing computational resources like CPU and memory [9].
Nevertheless, within the edge-cloud continuum, scheduling
decisions can have a significant impact on the performance
achieved by applications managed via Kubernetes. Despite
the advanced scheduling mechanisms provided by Kubernetes,
such as load balancing or the round-robin algorithm [10], a
critical observation is the absence of innate capabilities to
dynamically adapt to variations in network metrics and the
absence of real-time metrics in decisions.

Several approaches to overcome such limitations exist.
Recent solutions aim at minimizing the end-to-end delay
of applications clustering together dependent microservices,
either estimating the latency via the amount of traffic to be ex-
changed [11], [12] or collecting intra-node latencies [13], [14].
Other approaches focus on reducing the deployment time [15],
[16] or schedule pods close to a specified target location [17].
However, only a few of these schedulers make informed
decisions based on user-perceived latency. [18] designs a
scheduler’s architecture to encompass initial scheduling based
on predetermined metrics and enable dynamic re-scheduling
in response to real-time latency data. In contrast, we design
a multi-cluster scheduler that not only meets user-specified
intents but also focuses on user-perceived latency, effectively
leveraging the cloud-edge continuum.

In particular, we propose Latency-Aware Intent Scheduler
(LAIS), a custom Kubernetes scheduler that dynamically
(de)allocates pods based on real-time latency measurements to
satisfy users needs. LAIS considers a multitude of distributed
peering clusters and schedules pods in the closest cluster to
reduce the user-perceived latency. The system is modeled as
a closed loop that continuously monitor the latency, in order
to update scheduling decisions and meet user mobility needs.

We deployed LAIS in a real-world cluster system hosted
at Politecnico di Torino, and compared our solution to the
default Kubernetes Scheduler to demonstrate its effectiveness
in reducing the latency. In addition, we compared its intent-
based behaviors and studied their impact on performance and
convergence time.



II. SCHEDULING SOLUTION

Virtualized infrastructures are increasingly distributed
across multiple geographic locations. Traditional single-cluster
solutions cannot be adopted in such environments because of
the inherent restriction in cluster size. Moreover, managing
resources spanning numerous sites introduces complexities
in scheduling, resource allocation, and other critical aspects
emphasizing the need for a more scalable, robust approach.
Multi-cluster solutions are necessary to ensure high availabil-
ity and application isolation, while dealing with geographic
regulations, especially considering the nature of edge devices.
However, multi-cluster scheduling comes with challenges:
distributed resources increase fragmentation and balancing the
workload is complex for heterogeneous dynamic clusters.

Our solution enhances scheduling decisions while managing
a multi-cluster environment, as shown in Fig. 1. As in other
multi-cluster architectures [19]–[21], one cluster has the role
of master: it is equipped with our Latency-Aware Scheduler
and it is connected to other (slave) remote clusters as geo-
distributed Kubernetes nodes. Each cluster consists of a control
plane node and multiple worker machines. The control plane is
in charge of orchestrating the cluster and performs scheduling
actions for the allocation of pods, while worker nodes run
the application containers. In this context, remote pods can
communicate with each other as if they are all executed in the
same cluster, either with or without NAT translation. However,
while for pods the remote or local communication is transpar-
ent, this is not the case for the applications on top, where the
proximity of pods to the user play a significant role. Whenever
a user sends a request (Phase 1), it communicates with LAIS
API, which internally queries the Latency-Aware Scheduler.
Thanks to Latency Meter containers, real-time measurements
are collected and used to identify the appropriate cluster
that meets the latency requirements. To balance the workload
across nodes, a resource-aware Scheduler is deployed inside
each cluster. When the pods are eventually allocated (Phase
2), a peer communication between the user and the pods is
established (Phase 3).

Fig. 1: Multi-cluster scheduler. LAIS leverages edge comput-
ing to deploy pods close to the user.

A. How to Consider the Latency in LAIS Orchestration

To perform latency-based actions, we leverage two bespoke
Golang applications: the Latency Meter and a Custom Latency
Aware Scheduler. The Latency Meter is deployed across all
worker nodes as a sentinel container in each pod replica and
acts as a proxy: it intercepts each user request to measure and
store real-time network latency between users and nodes. Upon
receiving a request, it compares server and client timestamps
to compute the latency, then stores it in a volatile memory
LatencyMeasurements (LM). These measurements can be pe-
riodically fetched by the custom Latency Aware Scheduler.

The Latency-Aware Scheduler operates in the control plane,
replacing the default scheduler and leveraging latency metrics
for dynamic, informed pod scheduling. This custom scheduler
comprises a scheduler and a descheduler. The Scheduler
extends the default scheduler behavior with a mechanism that
prioritizes unexplored nodes to collect new latency measure-
ments. The Descheduler reads the LM and decides whether a
pod needs to be reallocated.

Whenever a user request is received, an exploration phase
to collect measurements begins. At first, no measurements are
available and the requested replicas are scheduled at random.
If the current configuration violates the latency constraints,
the Descheduler takes action by deallocating the involved
pods. These pods are then reallocated to previously unexplored
nodes in order to gather new latency measurements. A steady
state is achieved once the latency constraints are met. However,
it is worth noting that the perceived latency can fluctuate
due to dynamic network conditions or user mobility. As
a result, the entire process operates within a control loop
that continuously monitors latency levels, leading to adaptive
updates in scheduling decisions as needed.

B. LAIS Node Selection

The scheduling process outlines a framework for allocating
pods to worker nodes. Typically, it employs a request-based
approach that initially filters out nodes lacking sufficient
resources, then allocates the pod to one of the remaining
available nodes. This makes the scheduler a critical com-
ponent responsible for resource management and workload
adaptation decisions. Additionally, it plays a vital role for
latency-sensitive microservices executing within the cloud-
edge continuum.

LAIS performs scheduling decisions based on user’s la-
tency needs, expressed as intents. Indeed, for each Kuber-
netes deployment the user can specify hard, soft, or no
constraint through a YAML file. Specifically, within the
spec:template:metadata:annotations section of the YAML,
users can specify up to two values: hard_constraint and
soft_constraint. Since we assume a reduced latency
variation inside a cluster, LAIS first performs latency-aware
decisions to select a suitable cluster, and later applies load-
balancing decisions to choose the node.

Based on user-defined constraints, the LAIS Scheduler
classifies the N tot clusters into three distinct types, based
on the suitability of each cluster for hosting the pods:



• Soft Valid: latency < soft constraint
• Hard Valid: soft constraint < latency < hard constraint
• Invalid: latency > hard constraint

This approach allows users to fine-tune LAIS and trigger
different behaviors depending on specific needs.

Setting a hard constraint implies enforcing a strict latency
threshold. In this case, if the strict threshold is not respected,
the Descheduler immediately releases the involved replicas
and requests a reassignment, until the constraint is satisfied.
Here, the system prioritizes a fast and efficient mechanism over
frequent pod migrations. The focus is on a trade-off between
minimizing latency and maintaining operational stability. If
the constraint cannot be satisfied, the scheduler will select the
lowest latency cluster and notifies the user.

If a soft constraint is specified, Soft Valid clusters are
prioritized over Hard Valid ones. In addition, if the hard
constraint is already satisfied and a sufficient number of Soft
and Hard Valid clusters is used, then the Soft Condition
mechanism can be activated. The triggering condition of this
mechanism is determined by:

N soft + N hard >
N tot
2

, (1)

where N soft the number of Soft Valid clusters that cur-
rently host the replicas (resp. N hard, Hard Valid). The Soft
Condition mechanism consists of descheduling replicas from
Hard Valid clusters in favor of Soft Valid ones to further reduce
the latency. However, because of the higher number of mea-
surements and reallocations needed, and the prioritization of
Soft clusters over the other ones, satisfying the soft constraint
comes at the expense of convergence time and load balancing.

If no constraint is defined, our scheduler will minimize the
user-perceived latency. To do so, it collects measurements from
all the clusters. Therefore its primary strategy is to allocate
pod replicas on a variety of nodes, while the Descheduler
continuously monitors the latency. Once the Descheduler
stores measurements from all the application pod replicas, a
loop mechanism begins. As a result, pods in the worst cluster,
the one with highest latency, are removed. This triggers the
allocation of new replicas in nodes that are not yet visited.
New measurements are then collected and the worst cluster is
again identified. Once an adequate number of measurements
is collected, the entire set of stored values is considered to
schedule replicas on the global lowest latency clusters.

Since a cluster is composed of nodes that are geographically
close to each others, especially in edge computing environ-
ments, we assume that the latency variability inside a cluster
is minimal, thus we deploy a resource-aware scheduler for
node selection. To distribute pods across a variety of nodes,
LAIS creates a priority list. A node’s priority is based on
the number of pod replicas of the same application it hosts:
the fewer the replicas, the higher the priority. If nodes have
the same priority, the one with less resource usage (like CPU
and RAM) is chosen. In case of a tie, the selection becomes
random. It is important to note that any network-aware solution
for intra-cluster scheduling can be integrated with LAIS.

III. EVALUATION

We test our LAIS over CrownLabs [22], a specialized cloud
environment provided by Politecnico di Torino. We create 9
Kubernetes-driven clusters and 18 nodes in Kubernetes 1.28,
each worker node runs Ubuntu 20.04.6 LTS with 2 GB RAM,
2 CORE CPU and 20 GB disk, containerd is the default
container-runtime, and the Container Network Interface (CNI)
is Flannel. Clusters interconnection is enabled by Liqo [19]
through Out-of-band peering, which means that the Liqo
control plane traffic, including initial authentication and com-
munication with remote Kubernetes API servers, flows outside
the VPN tunnel established between clusters. This approach
supports dynamic synchronization between clusters and allows
them to interact independently under different administrative
domains, while ensuring secure communications via TLS.

To collect real-time metrics we leverage an Nginx appli-
cation incorporating a Latency-Meter container, while we use
the tc command to set the latency range for each cluster.
Note that we empirically assessed an inherent baseline latency
within clusters between 15 and 25 ms.

We design three scenarios to study the success rate and
latency distribution for diverse network conditions: Scenario
1 enforces strict latency constraints, which is challenging for a
large number of clusters to meet, exemplifying a high-demand,
low-tolerant application setup. Scenario 2 relaxes the latency
limits and consists of low latency clusters, reflecting a more
accommodating network environment. In contrast, Scenario 3
is characterized by clusters with higher latency but acceptable
latency bounds. This diversity in scenarios, reached by varying
the latency via tc, allows us to assess the capability of
schedulers in deploying pods in the most suitable clusters.

We set the latency meter to collect values every 5 seconds,
and the descheduler to operate every 30 seconds, to avoid
frequent migrations and consider a reliable evolution of laten-
cies. In each condition, we performed 100 tests and reported
the average values.

A. Convergence and Accuracy of LAIS

In this set of experiments we compare the Default Kuber-
netes Scheduler and three variants of LAIS: LAIS-Hard, where
our latency-aware scheduler only aims at satisfying the hard
constraint, LAIS-Soft, where the scheduler also attempts to
meet the soft constraint, and LAIS-0, where the scheduler just
selects the node that minimizes the user latency.

We start by comparing the ability of schedulers to meet
the required latency. Fig. 2 shows the distribution of latency
values (box plot) and the success rate for soft constraints
(blue curve) for all the tested schedulers in multiple scenarios.
We can observe how the Default Scheduler exhibits mediocre
performance across the scenarios with an average latency of
70.52 ms, the highest among all schedulers. In addition, the
latency fluctuates considerably among runs since pods are
scheduled in a latency-agnostic way. Concerning its success
rate, it hovers around 50%. This indicates it has merely a
50% likelihood of placing a pod in a valid cluster, basically
performing tantamount to a random decision.
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(c) Scenario 3

Fig. 2: Latency (box plot) and success rate (blue curve) for all testing scenarios.
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Fig. 3: CDF of converge time for the three scenarios. Compared to a different latency-aware scheduler a LAK, LAIS reduces
the convergence time.

LAIS-Hard showcases a significant reduction in latency as
opposed to the Default Scheduler across all use cases. It has
a success rate of 76.5%. It does not reach 100% since it
trades off “hard” and “soft” constraints. LAIS-Soft and LAIS-
0 consistently maintained remarkably low latency, below 22
ms, with LAIS-0 slightly outperforming LAIS-Soft in most
scenarios. Conversely, both LAIS-Soft and LAIS-0 hit an
impressive 100% success rate, denoting they are extremely
reliable in assuring task execution.

Clearly, LAIS-0 demands more time, so we define the
convergence time as the period required to satisfy the user
intent (meanwhile services are consistently available). For this
reason, we also evaluate and report the cumulative distribution
function (CDF) of convergence time of all LAIS schedulers in
Fig. 3. We compare against a similar latency-aware scheduler,
namely [18] referred to as Latency-Aware Kubernetes (LAK)
in the following. The variance in convergence time among
the LAIS schedulers belies different behaviors. LAIS-Hard
regularly recorded the quickest convergence times, proving
its swift adaptability to system fluctuations. LAIS-Soft took
instead longer to adapt but was considerably quicker than
LAIS-0, which displayed prolonged convergence times, often
exceeding 241 seconds. LAK, instead, by not considering the
union of clusters but treating them individually, takes much
longer to find suitable nodes to host the applications in all three
scenarios. This result validate our proposed fluid architecture.

In summary, the Default Scheduler does not implement
any latency mechanism, instead, it randomly choose nodes in

a cluster, resulting in either correct or incorrect selections.
In contrast, the LAIS schedulers demonstrate a clear advan-
tage. On the one hand, LAIS-Hard offers a balance between
swiftness and performance, making it ideal for dynamic en-
vironments. On the other hand, LAIS-Soft and LAIS-0 are
geared towards highly-performing solutions. Hence, based on
the requirements - adaptability or swift action - an appropriate
scheduler can be chosen.

IV. CONCLUSION

In this work, we tackle the limited adaptability of the default
Kubernetes scheduler by introducing LAIS, a latency-aware
scheduler that uses real-time measurements to fulfill user-
defined intents. Our scheduler offers unified management for
geographically distributed clusters and leverages edge com-
puting capabilities to allocate pods in clusters with reduced
latency. Within the cluster, we adopt a load-balancing strategy
to evenly distribute pods across nodes.

Depending on the user’s specified intent, LAIS can deliver a
balanced mix of responsiveness and performance, or zero in on
providing the lowest possible latency. Continuous monitoring
accommodates user mobility, allowing for timely updates to
scheduling decisions as needed.
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