
27 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Deep Learning Gain and Tilt Adaptive Digital Twin Modeling of Optical Line Systems for Accurate OSNR Predictions /
D'Ingillo, Rocco; D'Amico, Andrea; Ambrosone, Renato; Virgillito, Emanuele; Gatto, Vittorio; Straullu, Stefano; Aquilino,
Francesco; Curri, Vittorio. - STAMPA. - (2024). (Intervento presentato al  convegno International Conference on Optical
Network Design and Modeling (ONDM) tenutosi a Madrid (Spain) nel 06-09 May 2024)
[10.23919/ondm61578.2024.10582772].

Original

Deep Learning Gain and Tilt Adaptive Digital Twin Modeling of Optical Line Systems for Accurate OSNR
Predictions

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.23919/ondm61578.2024.10582772

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2990886 since: 2024-07-16T10:11:44Z

IEEE



Deep Learning Gain and Tilt Adaptive
Digital Twin Modeling of Optical Line Systems

for Accurate OSNR Predictions
1st Rocco D’Ingillo
Politecnico di Torino

Turin, Italy
rocco.dingillo@polito.it

2nd Andrea D’Amico
NEC Labs America
Princeton, NJ, USA

adamico@nec-labs.com

3rd Renato Ambrosone
Politecnico di Torino

Turin, Italy
renato.ambrosone@polito.it

4th Emanuele Virgillito
Politecnico di Torino

Turin, Italy
emanuele.virgillito@polito.it

5th Vittorio Gatto
Politecnico di Torino

Turin, Italy
vittorio.gatto@studenti.polito.it

6th Stefano Straullu
LINKS Foundation

Turin, Italy
stefano.straullu@linksfoundation.com

7th Francesco Aquilino
LINKS Foundation

Turin, Italy
francesco.aquilino@linksfoundation.com

8th Vittorio Curri
Politecnico di Torino

Turin, Italy
vittorio.curri@polito.it

Abstract—We propose a deep learning algorithm trained on
varied spectral loads and EDFA working points to generate a
digital twin of an optical line system able to optimize line control
and to enhance OSNR predictions.

Index Terms—EDFA, deep learning, digital twin, GNPy

I. INTRODUCTION

As the demand for network capacity continues to rise [1],
network operators are exploring innovative solutions to max-
imize transmission speeds and capacities. Disaggregated and
open optical infrastructures offer flexibility and support multi-
vendor approaches, enabling a software-defined networking
(SDN) approach to control and manage optical networks, al-
lowing dynamic assignment of lightpaths (LPs) for wavelength
division multiplexed (WDM) optical transport. [2] Quality
of transmission estimation (QoT-E) is crucial for assessing
network performance, considering factors such as amplified
spontaneous emission (ASE) noise and nonlinear interference
(NLI). The ASE noise is the main contributor to QoT degra-
dation, depending on the working points of the erbium-doped
fiber amplifiers (EDFAs) present in the optical line system
(OLS) [4]. To minimize downtime, network operators establish
a minimum QoT threshold, often incorporating conservative
design margins, which can sometimes reach multiple dB
due to cautious estimations [5]. Streamlining these margins
has the potential to significantly enhance traffic capacity, all
without requiring modifications of the network infrastructure.
To achieve this objective, this study focuses on a partially
disaggregated optical network framework using SDN with re-
configurable optical wavelength selective switches (WSSs) and
an independent optical line systems (OLS). The two compo-
nents of the optical signal-to-noise ratio (OSNR), namely the
transmitted signal and ASE powers, both experience signif-
icant fluctuations when the spectral load is modified. Deep
learning and artificial intelligence (AI) approaches have shown
outstanding results for signal and ASE power fluctuations due
to a varying spectral load [7], [8], providing a significant

enhancement of the prediction capabilities of a digital model
such as GNPy, and in general machine learning (ML) tech-
niques have been leveraged for QoT-E accuracy improvements
and system margin reduction [3], [6]. Extending the results
presented in [7], system response fluctuations induced by a
varying spectral load have been measured for an extensive set
of working points, i.e. gain and tilt values for each amplifier,
in order to enable an adaptive control of the OLS. Remarkably,
the proposed methodology is based on a optical system digital
twin (DT) approach, where data collection is automatized and
managed by an OLS controller with a direct access to EDFAs
and the optical channel monitoring (OCM) within the WSSs
through device vendor interfaces.

II. TELEMETRY OF THE OPTICAL LINE SYSTEM

In Fig. 1 the testbed in use for measurements is presented.
The OLS consists of 10 commercial EDFAs (one booster
(BST) at transmitter side (TX), one pre-amplifier (PREAMP)
at receiver side (RX) and 8 in-line amplifiers (ILAs)), in-
terconnected by 9 standard single mode fiber (SSMF) spans
with a nominal length of 100 km. A 96-channels C-band
WDM comb is generated at BST input with 50 GHz spacing
between channels. A commercial waveshaper is responsible
to shape the amplitude of an ASE noise for the generation
of 92 channels. These channels are combined with 4 addi-
tional equally spaced modulated channels under test (CUT)
(centered at 191.5, 193.0, 194.5 and 196 THz, respectively),
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Fig. 1: Framework in use for gathering telemetry data in the WDM optical
line system.
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Fig. 2: Error distribution of signal and noise powers evaluated with the ML model.

at 32 GBd rate, through a commercial WSS multiplexer
(MUX). The 4 CUTs are modulated by 4 commercial coherent
pluggable transceivers plugged into two Cassini whiteboxes.
The whiteboxes exploit OcNOS operating system developed
by IP Infusion, which provides NETCONF interfaces that
enable both data retrieval and the configuration of parameters
necessary for conducting measurements on the devices. All
EDFAs are controlled through vendor-proprietary interfaces
which allow the operative working points of the devices to
be read and set managing gain and tilt (G&T) values. The
OLS is controlled by a single optical line controller (OLC)
developed in Python language in charge to get and set the
EDFA (G&T) values independently and to manage and retrieve
the telemetry from the EDFAs and OCM of the WSSs MUX
and demultiplexer (DMX) at TX and RX side. In the scope
of this study, 8 different EDFA working point conditions
have been taken into account. Additionally, the spectral load
in line is varied considering 1030 different combinations of
ON/OFF channels in the 96-channels WDM comb, going from
a minimum of 4 ON channels, given by the CUTs coming
from the Cassini whitebox, up to the full spectral load. The
data collection performed in the telemetry campaign is fed
to a deep neural network (DNN) able to provide accurate
predictions of signal and noise profiles of the OLS considering
all the different working point condition of the EDFAs and
for each spectral load configuration. The time necessary for
data collection settled around 16 hours considering all 1030
channel spectral load combinations for G&T EDFA working
point case, for a total amount of 128 hours. Remarkably, the
main driver of the data collection time is the OCM estimation
and register update speed, which exceeds 1 minute in the
investigated testbed.

III. DEEP NEURAL NETWORK MODELING AND TRAINING

The proposed methodology involves the implementation
of a ML algorithm to enhance the QoT assessment for the
OLS under investigation. This implementation aims to reduce
inaccuracies in OSNR component estimation. In order to create
a ready-to-use training dataset for the DNN to satisfy this
condition, collected telemetry data are processed in order to
detect and treat outliers. In the implementation of the ML algo-
rithm within this study, we standardize and partition the dataset

into training, validation, and testing subsets, comprising 80%,
10%, and 10% of the total dataset size, respectively. We utilize
the open-source Keras high-level API from TensorFlow library
to construct a sequential DNN model consisting of an input
layer of the same size of the input features, one single hidden
layer composed by 1024 hidden neurons, with rectifying linear
unit (ReLU) activation function, and one output layer of
the output label size, with linear activation function. These
values have been determined as optimal through a validation
process, striking a balance between the accuracy of ML
predictions and the overall training time. The entire measured
dataset is prepared in order to use the diverse G&T EDFA
configurations, the input power and the ON/OFF spectral load
channel configurations as features of the DNN , whereas, the
output power of each channel, including the channel cross-
talk (XT) and ASE noise, as DNN label. As spectral load
and G&T EDFAs configurations vary for each measurement
within the dataset, the selection of appropriate features for
DNN input and output is crucial. The feature selection must
be finalized before the training process begins and remains
constant throughout the training. The features used for training
must correspond to known system variables, as individual
DNN predictions rely on these inputs. Consequently, the
complete set of power measurements can be used exclusively
as DNN outputs, as they are unknown for any given spectral
load. The main challenge is described in the following: when
a channel is active, the signal power can be measured, but
the ASE and, if present, XT noise powers cannot. Conversely,
when a channel is inactive, by definition, there is no signal
power, but ASE noise or XT powers can be measured. To
overcome this issue, we applied a data augmentation procedure
leveraging the system similarities between adjacent channels.
Each DNN then features a total of 136 inputs and 96 outputs,
with precise signal and ASE noise power predictions, leading
to accurate signal and ASE power estimations.

IV. RESULTS

We present the ML prediction results for a test dataset
containing 824 different combinations of spectral load and
EDFA G&T configurations (before data augmentation). The
accuracy metric used is the mean-square error (MSE) between
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Fig. 3: Signal and Noise errors (∆ Signal, ∆ Noise) over different ranges of spectral load percentage:
dots represent the mean absolute error (µ), the vertical lines the standard deviation of the error (σ), in
dB.
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Fig. 4: Distribution of the error on the OSNR
(∆ OSNR) between measured and predicted
cases, in dB.

measured and predicted quantities, which is robust to out-
liers [9], used as difference between measured and predicted
values. Also mean absolute error (MAE), standard deviation
of the absolute error (STD) and maximum absolute error
(MaxAE) between predicted and measured data are monitored,
in order to stop the training only for a STD lower than 0.2 dB
and a MaxAE lower than 1 dB, per channel. To show the
benefits of using a machine learning approach, we assess
the DNN accuracy in predicting output DMX power levels
across the full WDM comb for all the different configurations
in the test dataset. The predicted signal and noise power
model of the OLS is obtained after 45 minutes of training
time, with a MaxAE of 0.9 dB, maximum STD of 0.1 dB
and with a minimum accuracy R2 score (R2S) parameter of
97.98%, per channel. To provide a qualitative evaluation of
the model accuracy, Fig. 2 displays the signal and noise error
(∆ Signal, ∆ Noise) distribution results after ML prediction,
illustrating error distribution as vertical colored strips for each
channel. Brighter colors represent higher density, while darker
colors indicate lower density. Fig. 3 shows these results in
detail, with focus on the mean absolute error µ (represented
with dots) and the standard deviation σ (represented with
vertical lines) of both errors for different ranges of spectral
load percentage, demonstrating the stability of the per-channel
results shown in Fig. 2. Finally, the accurate signal and noise
power predictions of the ML model can be used for the OSNR
estimation. In particular, in this work we assume that the noise
level does not change significantly when a single channel
is switched off, and the value of a channel OSNR can be
measured through this standard procedure. In order to estimate
the ML model prediction accuracy of this OSNR measurement,
we select throughout the entire test dataset all the pairs
of spectral configurations that differs of one single channel
switched off. Then, the ML model is applied to the two
configuration to predict the signal and the noise, respectively,
and the distribution of the error on the OSNR (∆ OSNR)
between measured and predicted cases is showcased in Fig. 4,
confirming the high accuracy of the ML prediction. This
comparison provides a prediction error distributions with 0 dB
MAE, 0.1 STD and 0.6 MaxAE, demonstrating the potential of
the ML model as an accurate unbiased OSNR estimator. This
approach, combined with already existing QoT-E like GNPy

can move towards increased accuracy of estimation, reducing
error and thresholds in design margins.

V. CONCLUSION

This study showcase a ML approach to optical network
QoT-E for varying spectral load and OLS working points.
The study employs a partially disaggregated OLS combined
with SDN to dynamically manage optical networks, using deep
learning and AI to reduce uncertainties in ASE noise charac-
terization. Considering 8 different configurations of G&T of
the EDFAs in the OLS, which are the main source of noise in
line, and 1030 spectral load configurations, the OLS telemetry
performed is used to train a deep learning model of signal and
noise power profiles of the global OLS. ML predictions present
a high accuracy, moving error distributions near zero mean.
This method, combined with a QoT-E to predict the NLI noise
like GNPy is a strong means to enhance the already existing
estimation techniques to predict the GSNR with high accuracy,
streamlining design margins even in challenging condition of
varying working points of the amplifiers in line and with
diverse spectral load application.
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