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This study explores the potential synergy between neurodiversity and advanced technology within Industry
5.0, focusing on the integration of neurodiverse individuals in the workforce through Human-Machine Col-
laboration and Reciprocal Learning (RL). A cognitive load (CL) assessment procedure is developed using fuzzy
logic inference across the dimensions of attention, memory, language, math, logic, and reading. A case study
evaluates the effectiveness of RL in assisting assembly tasks. Different error-handling scenarios are compared.
Experimental results show how RL can reduce the CL while improving assembly tasks efficiency, underscor-
ing the value of intelligent systems in inclusive manufacturing, enhancing productivity and facilitating the
integration of neurodiverse workers.
© 2024 The Author(s). Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

In the context of Industry 5.0, the manufacturing paradigm
extends beyond the scope of automation, emphasising a synergistic
integration of human expertise and intelligent technological systems
[1,2]. Despite the growing emphasis on diversity, equity, and inclu-
sion in the workforce, the integration of neurodiverse individuals (e.
g., those affected by conditions such as autism spectrum disorder,
attention deficit hyperactivity disorder, and dyslexia) remains under-
addressed, resulting in their higher underemployment rates and the
fact that research on their workforce development and integration is
still in its early stages [3]. The integration of neurodiverse individuals
could be successfully supported by the implementation of Human-
Machine Collaboration (HMC) and Reciprocal Learning (RL), the latter
referring to the process by which humans and artificial intelligence
systems learn from each other through iterative interactions [4].
These technologies are not merely assistive, but transformative in
nature [5,6], facilitating the optimal employment of the strengths of
the neurodiverse workforce in manufacturing. The HMC enables an
environment in which diverse cognitive approaches can be effec-
tively utilised, while RL fosters a bi-directional learning paradigm,
allowing for the continuous adaptation and advancement of both
human workers and machines through iterative feedback mecha-
nisms. To address the pending research gaps, this study explores
inclusive manufacturing strategies, enhanced by HMC and RL, to
potentially include neurodiverse individuals in assembly processes.
2. Framework and methodology

The proposed framework outlines a comprehensive approach
towards the integration of medically-identified neurodiverse individuals
into the workforce. The framework, shown in Fig. 1, uses real-time data
acquisition of operator behaviour, physiology, workplace settings and
process characteristics, which is fed into a fuzzy logic system that nor-
malises and fuzzifies such data for cognitive load (CL) assessment,
which is carried out across relevant CL domains. Cognitive thresholds
are used to match these results to inform decision-making in suitability,
support, and medical aid, guiding the selection of support strategies
such as workspace design, digital enhancement, as well as RL, and ulti-
mately leading to the implementation of these strategies.

2.1. Cognitive load assessment

In manufacturing, the CL strongly influences operator perfor-
mance, which is heightened by task complexity and error correction.
High CL can overload working memory, causing more errors and
stress, influenced by environmental factors and task design. The
limited presence of neurodiverse workers in industry is attributed
to these challenging conditions. Traditional CL assessment methods
� subjective scales, performance metrics, physiological monitoring �
are intrusive and not ideal for industry [7]. Current research is focus-
ing on automated, industry-appropriate CL assessment systems that
incorporate attention, environmental factors, workspace design, task
difficulty, and behavioural stressors. Yet, their adoption in industry
and with neurodiverse workers is constrained by the unwieldiness of
necessary technologies and limited interpretability [8]. The literature
survey highlights the need for novel, seamless, non-intrusive CL
assessment tools in industrial settings that are specifically designed
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Fig. 1. Overall framework.
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to accommodate neurodiverse workers, thereby boosting both pro-
ductivity and overall occupational well-being. In this respect, the CL
assessment methodology proposed here involves a fuzzy inference-
based data fusion method that converts simple input variables into
complex CL descriptors for industrial settings. The input variables
should be acquired by wearable and nearable sensing units to reduce
the intrusiveness. This analysis requires a diverse array of data,
encompassing task-specific details and broader environmental and
human health conditions. Process data accounts for assembly com-
plexity, tool usage, workstation design, number of components, and
information load. Workplace assessments include spatial configura-
tion and environmental factors like noise, lighting, and temperature.

Physiological metrics, essential for well-being and performance
assessment, monitor heart rate, respiratory rate, and body tempera-
ture. Behavioural monitoring, necessary for crisis prediction and
mental health oversight, uses non-intrusive camera tracking. Ethical
and legal considerations, beyond the scope of this study, are recog-
nised. The implementation phase must integrate data privacy proto-
cols and develop solutions that respect individual differences,
ensuring adaptability to evolving ethical and legal standards. The
acquired data is then subjected to a pre-processing and normalisation
procedure for all the variables belonging to the input categories: (i)
physiology, (ii) behaviour, (iii) workplace settings, and (iv) process
characteristics, where the raw data are converted to a common range
2 ½0;1� based on intervals suggested by relevant literature and guide-
lines. Subsequently, the analytical procedure evaluates the dynamic
interactions amongst the aforementioned variables. Each fusion step
uses a fuzzy logic methodology [9], which encompasses the fuzzifica-
tion of the normalised variables into three designated membership
classes (low, medium, and high). This categorisation is followed by
the application of a set of fuzzy inference rules, leading to a defuzzifi-
cation process that results in a normalised output value, again within
the range of [0,1]. The ensemble of these processes forms a layered,
hierarchical structure, iteratively synthesising the input data into six
distinct CL descriptors: (i) attention, (ii) memory, (iii) language, (iv)
math, (v) logic, and (vi) reading [8]. These descriptors are chosen to
cover a wide range of occupational mental stressors that affect psy-
chological well-being. The whole fusion process is underpinned by
expert knowledge in occupational health, neurodiversity and process
engineering translated into fuzzy inference rules, as detailed in the
Supplementary material. The output of this procedure is a set of
dynamic charts that display fluctuations in each CL component over
time, aligned with the corresponding assembly task, providing a tem-
poral visualisation of the cognitive demands placed on the operator
by the manufacturing environment.

2.2. ML-based decision-making on the status of the operator

The inputs from the fuzzy-based CL assessment are then proc-
essed to quantify the CLs across the six dimensions, which are
Please cite this article as: A. Simeone et al., Inclusive manufacturing: A
learning, CIRP Annals - Manufacturing Technology (2024), https://doi.org
evaluated against predetermined CL thresholds established by medi-
cal assessments (integrating guidelines and expert medical knowl-
edge [10]). Such evaluation is required to label the normalised and
defuzzified CL outputs. Subsequently, the module utilises Machine
Learning (ML) algorithms for pattern classification. The module relies
on a classifier pre-trained on labelled CL data using techniques such
as Support Vector Machines, Neural Networks, and Decision Trees, all
of which are recognised for their effectiveness and robustness in clas-
sification tasks [11]. This setup ensures the accurate and consistent
classification of new CL instances in real time. Specifically, the classi-
fication process of the Decision-Making module stratifies CL status of
the operator into three categories: (i) a Suitability class, in which
operators are considered capable of performing the tasks without
restrictions; (ii) a Medical Aid class, which requires the intervention
of healthcare professionals; and (iii) a Technological Support class,
which prompts the selection of appropriate support strategies.

In the case of a Technological Support classification, the module
guides the selection of CL mitigation strategies. These are tailored to
the assessed needs of the individual and may include workplace
design optimisations, such as adjusting lighting levels or reconfigur-
ing the layout to reduce cognitive strain [8]. In addition, multimedia
support strategies are considered, including the deployment of aug-
mented reality and virtual reality-based tools, as well as the delivery
of instructions through monitors or auditory devices to improve task
comprehension and execution [12].
2.3. Mitigation strategy � reciprocal learning

To narrow the research scope and fill the identified gaps, this
study focuses on the implementation of RL strategies, an approach
which incorporates iterative feedback mechanisms and peer-to-peer
learning opportunities, that have been shown to effectively reduce CL
and improve task performance [13]. Within a Human-Robot Collabo-
ration (HRC) assembly system, an RL approach is used for CL reduc-
tion, as illustrated in Fig. 2. This strategy integrates an ML model, a
collaborative robot, and the human operator to facilitate human-
machine RL [14]. The system is based on two primary loops: Human
in the Loop (HITL), where humans provide feedback on the machine
outputs (e.g., object recognition and manipulation), and Machine in
the Loop (MITL), where the machine offers real-time feedback to
humans (e.g., on assembly tasks sequence errors). Such loops are
here combined for optimal learning and efficiency. This synergy in
human-machine RL leverages the strengths of both humans and
machines, enhancing task efficiency and reducing weaknesses in the
HRC system. As regards the human-machine communication proto-
cols, various techniques could be adopted, from standard interfaces
to tailored solutions like vocal synthesis, audio instructions, and
visual aids, to address specific neurodiversity challenges such as writ-
ing, reading, attention, language, and logic issues.
contribution to assembly processes with human-machine reciprocal
/10.1016/j.cirp.2024.03.005
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Fig. 4. Assembly sequence.

Table 1
Assembly time per task.

Phase Step Task ts (s)

Phase 1 1 Screw unit #1 assembly 15
2 Screw unit #2 assembly 15
3 Gear unit #45 assembly 19
4 Gear unit #40 assembly 19

Phase 2 5 Base positioning 10
6 Top-right screw unit #1 installation 16
7 Placement of gear unit #45 in position 27
8 Bottom-left screw unit #2 installation 16
9 Placement of gear unit #40 in position 10
10 Top screw assembly and gear integration 31

Fig. 2. RL paradigm adapted to the research framework.
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3. Case study

To validate the applicability of the proposed framework, a case
study is reported in this section. An assembly process was considered
because it is a typical example of human-machine interaction and a
potential source of stress for operators, as it involves repetitive oper-
ations with tight and predetermined timing. To simulate relevant
neurodiversity conditions, the CL assessment was artificially forced
to provide different scenarios with warning values for the memory
components for specific assembly tasks. In addition to recording
physiological data in the field (using commercially available smart-
watches), the actual task duration was artificially delayed relative to
the nominal duration to simulate memory problems, sometimes
resulting in induced assembly errors. Given the simplified case study,
behavioural and work environment data were set to produce non-
warning CL values. The decision-making process suggests that the CL
profile is suitable for technological support, and the subsequent strat-
egy identification leads to the adoption of the RL approach as a miti-
gating measure. Fig. 3 shows the experimental setup, based on an
OMRON TM5-900 robot, assisting the human operator. A camera
streams real-time activity to the HRC system for analysis. An adjust-
able fixed light ensures that the camera captures detailed images of
industrial components. A control box manages the robot operations,
including motion and system monitoring. Lastly, TMflowTM software
enables graphical programming of robot tasks. The joystick controls
the robot functions and emergency protocols. Two screws, two gears
(labelled as unit #45 and unit #40), and six nuts are assembled on a
base unit. The assembly process is divided into two phases: Phase 1,
which is entirely manual, and Phase 2, which is partially assisted by
the robot, according to the sequence in Fig. 4. Table 1 lists the assem-
bly steps and the related standard times. To apply the proposed
framework, a series of memory-related manufacturing task errors
have been introduced during the assembly process: (i) Error 1: in
step #2, the operator uses the wrong part, which has not been identi-
fied by the system, and (ii) Error 2: in step #6, the operator performs
the wrong sequence. The case study examines three scenarios, i.e., (a)
no error, (b) error with manual correction, and (c) error with RL
correction:
Fig. 3. Experimental setup.

Please cite this article as: A. Simeone et al., Inclusive manufacturing: A c
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� Scenario (a) represents a baseline for benchmarking, where the
operator makes no errors and the time required to complete the
tasks corresponds to the nominal values. Here, each step time ts
from Table 1 includes a constant object selection time to = 5 s and
a constant (manual) inspection time after each step ti = 3 s;

� In Scenario (b), when an error occurs, this is identified by the operator
within 5 s after the beginning of the next step, hence, this manual
error detection time is ted = 5 s. After the error is detected, the operator
calls the supervisor for a check, with a supervisor inspection time
tsi = 10 s (this time includes the error diagnosis and correction instruc-
tions). The time required to reverse the error occurred in the task is
given by: trev = ts � to � ti. Then, the operator has to re-perform the
assembly task correctly, assuming trework = trev;

� In Scenario (c), the object detection time tod = 1 s, the step time
for Phase 1 is ts1(RL) = ts � ti + tod, while the step time for Phase 2 is
ts2(RL) = ts � to � ti + tod due to the robot handling object selection.
For the robot-assisted tasks, the robot picks up the component
and places it in the working area; tr = 3 s is assigned to this task.

On the MITL side of RL, YOLOv7, a convolutional neural network,
was used for the object detection, configuring the task into a classifi-
cation problem. It predicts target boundary box positions and catego-
ries in a single forward pass [15]. The training dataset for Phase 1
contained 270 images of each component. The training dataset for
Phase 2 contained 300 images across 6 categories, representing dif-
ferent assembly steps. Both datasets were divided into 82% samples
for training and 18% for validation and testing, respectively. The mod-
els were trained for 300 epochs (� 2 h in total), with a batch size of 16
and image size of 640 £ 640 px.

4. Results and discussion

This section presents and discusses the experimental outcomes in
terms of CL and temporal efficiency to assess the MITL, while ML per-
formance is used to evaluate the HITL. Specifically, the analysis is lim-
ited to the memory-related component of the CL, among all the CL
components, due to its relevance. With reference to Fig. 5, the plotted
data compare CL in assembly tasks across the scenarios. Normalised
Memory Cognitive Load (NMCL) values were calculated following the
procedure illustrated in Section 2.1 (and further detailed in the
ontribution to assembly processes with human-machine reciprocal
/10.1016/j.cirp.2024.03.005
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Fig. 5. Normalised Memory Cognitive Load vs Assembly time, in baseline (a),
error + manual check (b), and error + RL (c) scenarios.
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Supplementary material). Specifically, for each task reported in Table 1,
the fuzzy-based fusion was applied taking into account the following
manufacturing process variables: number of sub-tasks, task difficulty,
number of items to be assembled, nominal and actual execution time for
the sub-task. The physiological variables were the heart rate, body tem-
perature and blood pressure, while the working environment was char-
acterised by temperature and noise. The warning range for the NMCL
was defined as [0.6�0.8] in this research. Scenario (a) shows the baseline
NMCL indicating error-free task flow and reference cognitive demand
(blue). Scenario (b) features a significant increase in the NMCL after error
encounter (red) upon detection (yellow), followed by a sustained but
reduced increase during error correction (green), suggesting a higher CL
for error management than for routine tasks. The NMCL returns to base-
line after error resolution, indicating recovery. Scenario (c), implement-
ing RL, exhibits a less pronounced increase in NMCL during error
detection and correction, demonstrating the effectiveness of the tech-
nique in reducing cognitive load. The quick return to baseline NMCL after
correction proves efficient error management with minimal cognitive
disruption. In terms of time, taking Scenario (a) as a reference, Scenario
(b) shows that traditional error identification and correctionmethods are
time consuming and cognitively demanding, while Scenario (c) demon-
strates reduced time even compared to the baseline scenario due to the
benefit of RL and collaborative robot in enhancing task efficiency and
operator productivity. The results argue for proactive systems that reduce
CL and improve operational efficiency, highlighting the importance of
intelligent feedback in optimisingmanufacturing processes.

Regarding the results of the object classification using YOLOv7, for
Phase 1, 100% recognition rates were achieved for most components,
with the exception of a 9% error rate for the gear unit #40, which was
confused with gear unit #45, due to their geometrical differences
that are more easily detected by humans than by machines. The
model achieved a confidence level of 0.837. Phase 2 training achieved
100% recognition rate and a confidence level of 0.985. The model clas-
sification performance was then improved using the HITL mecha-
nism. After operator-induced labelling, the correctly labelled images
were added to the training set, and after 6 epochs of re-training (�
2.5 min in total), the classification error of gear unit #40 was reduced
to 3%. This procedure improved the overall accuracy of the model.

5. Conclusions

The proposed framework and case study highlight the effectiveness
of RL in reducing CL, particularly in error handling scenarios, suggesting
potential for broader inclusion of neurodiverse workers by customising
Please cite this article as: A. Simeone et al., Inclusive manufacturing: A
learning, CIRP Annals - Manufacturing Technology (2024), https://doi.org
RL to each CL dimension. However, challenges remain in applying these
technologies in diverse assembly environments and in capturing real
data from neurodiverse operators. The CL assessment model, through
its data fusion structure, is designed to indirectly detect fatigue once a
steady state is achieved via system calibration and tuning. The study
also highlights the need to refine the task complexity evaluation to bet-
ter integrate operator skills. In addition, the study outlines strategies to
reduce the operator learning effects in the experimental tests, recognis-
ing their complete elimination as a limitation. Future directions should
include refining RL algorithms and enhancing system adaptability to
support a wider range of neurodiverse conditions, contributing to a
more sustainable and inclusive manufacturing ecosystem.
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