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Abstract

GPUs are important hardware accelerators for modern applications, particularly
AI-based ones. They offer a high degree of parallelism, allowing multiple data to
be processed simultaneously in a single chip. This is made possible by continuous
technology scaling, resulting in higher transistor densities (e.g., 80 billion transis-
tors for NVIDIA Hopper GPUs and 100 billion transistors for Intel GPUs). GPU
devices offer great computational performance but can suffer from reliability issues
associated with modern semiconductor technologies. As technology scales, several
threats, such as accelerated wear-out, premature degradation, and high-temperature
conditions, can increase the risk of hardware defects that lead to permanent faults.
GPUs are now used in critical applications such as autonomous driving systems,
aerospace, and avionics, among others. The reliability of GPUs is paramount, espe-
cially when used in such scenarios where they are required to operate correctly for
longer lifetimes than typical consumer applications.

The reliability of GPU devices can be improved by implementing functional
safety mechanisms (hardware or software) that can detect faults before they produce
critical failures. These methods can ultimately reduce the probability of failure to
acceptable levels. Unfortunately, hardware-based approaches require the addition
of extra hardware structures to the device, which can increase costs, impact perfor-
mance, or affect power consumption. Alternatively, the software-based self-testing
(SBST) strategy is a flexible and noninvasive approach that offers in-field at-speed
fault detection capabilities without hardware costs, leveraging the application’s
idle times to execute test procedures. Recently, several works have successfully
demonstrated the feasibility of SBST for the development of Software Test Libraries
(STLs), exploiting the inherent parallelism of GPUs for testing purposes and targeting
functional units, memory modules, and control units.
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Typically, the development of STLs for GPUs usually resorts to assembly lan-
guages, only. High-level programming languages (HLLs) for GPUs, such as CUDA
C++ or OpenCL, simplify programming and are often the best, and sometimes
the only, way to develop and encode applications. However, there are still several
challenges and open questions when it comes to using HLLs for the development of
STLs.

In this regard, this PhD thesis makes two main contributions. Firstly, it employs
high-level (e.g., CUDA C++) or intermediate (e.g., CUDA PTX) programming lan-
guages to develop or map SBST strategies that are designed to test specific hardware
components in GPUs. Secondly, it devises alternative strategies for compacting
test programs, which help to reduce their memory footprint and speed up their test
duration when used for in-field testing purposes.

On the other hand, techniques to identify permanent faults that can produce errors
during the device’s operative life are strongly required, since the typical simulation-
based approaches result in prohibitive evaluation time. Additionally, these fault
evaluations are crucial for two main reasons: first, they allow the identification of
vulnerabilities in GPU’s application regarding permanent faults, contributing to the
development of effective software-based hardening strategies. Second, they can be
used to assess the effectiveness of any software-based fault countermeasure against
errors caused by permanent faults in GPUs.

Accordingly, this Ph.D. thesis proposes a method for evaluating the reliability of
GPU applications in the presence of Silent Data Errors (SDEs) caused by permanent
faults. The proposed method involves multi-level fault evaluations, which provide a
better trade-off between accuracy (which is typically higher when we move closer to
the hardware) and fast fault evaluations compared to other methods.

In conclusion, the thesis work proposes methods that aim to enhance the reliabil-
ity of GPUs, taking a step forward from the current state-of-the-art. These methods
include strategies for generating and compacting SBST for in-field GPU testing,
as well as assessing the impact of permanent faults on GPU workloads. The effec-
tiveness and limitations of these methods were evaluated through experiments on a
set of representative benchmarks and compared with alternative solutions currently
available.
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Chapter 1

Introduction

The modern landscape of applications powered by Artificial Intelligence (AI) is
rapidly spreading into multiple domains, such as automotive, healthcare, and robotics,
among others. Indeed, the remarkable innovations in AI algorithms and applications
started to accelerate the transition of the modern world to the automation era. Indeed,
the capabilities of modern generative AI models can be applied for generating auto-
mated applications such as virtual assistants for customer services [8, 9], multimedia
and video production assistance [10, 11], software development automation [12, 13],
and applications to robotics and autonomous systems [14, 15].

Recently, the rise of AI has led to a higher demand for advanced electronic
devices that can handle the computational requirements of today’s systems, such as
cloud computing, autonomous systems, and Internet of Things (IoT). As a result, the
global semiconductor market is predicted to grow significantly in the upcoming years,
with an expected value of one trillion dollars by 2030, as shown in figure 1.1 [1]. It
is estimated that approximately 70% of this growth will be driven by three sectors:
computation and data storage, automotive electronics, and wireless communications.
For example, the usage of supercomputing systems has increased due to the compu-
tational burden of cloud computing applications such as AI acceleration, IoT, and
banking, among others [16, 17]. Similarly, as the automotive industry moves towards
the autonomous age, vehicles need to integrate high-performance system-on-chips
(SoCs) to support their onboard functionalities such as infotainment, self-driving
assistance, or full autonomous capabilities [18, 19].
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Fig. 1.1 Global Semiconductor Market (source McKinsey & Company [1]).

Undoubtedly, the semiconductor industry has brought innovations in silicon
technologies, manufacturing processes, and computer architectures applied to the
design of smaller, faster, and more energy-efficient electronic devices. Nonetheless,
these technology improvements also introduce challenges regarding the dependability
and security of applications that rely on electronic devices. In fact, cutting-edge
semiconductor technologies must face crucial aspects such as reliability, security,
and safety to guarantee the correct operation of modern applications, especially those
considered safety-critical systems, such as autonomous driving systems, robotics, or
health care equipment [20].

The advancements in the semiconductor industry have drastically improved the
computing performance of modern electronic devices, leading to significant progress
in a wide spectrum of application domains such as communication systems, machine
learning, and hundreds of other technologies that are shaping our world [20].

Graphic Processing Units (GPUs) have become popular with the rise of AI, and
nowadays, they are increasingly adopted in multiple application domains, including
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high-performance computing (HPC), autonomous robots, automotive, and aerospace
applications. In fact, as presented in figure 1.2, the global GPUs market was valued
at 40 billion U.S. dollars in 2022, with forecasts suggesting that by 2032, this is
likely to rise to 400 billion U.S. dollars, growing at a compound annual growth rate
(CAGR) of 25 percent from 2023 to 2032 [2]. The computational power of GPUs and
their flexibility in a wide range of applications has increased their demand in recent
years. For example, the Microsoft Azure supercomputing system includes more
than 30,000 GPU devices to handle the computational burden required by OpenAI
services like ChatGPT [21, 22]. In addition, GPUs have become the "Driving Force"
for self-driving vehicles, and they are incorporated in automobiles as specialized
SoCs with superior computational capabilities for supporting the processing of huge
amounts of data coming from sensors, cameras, and radars [18, 19]. Thus, the use of
GPUs in applications that wander off their traditional fields (gaming, multimedia,
and consumer market) has suddenly pushed the interest and posed questions about
their reliability [23].

Fig. 1.2 GPU market size worldwide 2022-2032 (source Statista [2]).
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Fig. 1.3 A general scheme of the internal organization of a GPU.

1.1 Architectural organization of GPUs

The reason why GPUs and CPUs have different capabilities is that they were designed
with different goals in mind. The CPU’s main function is to execute a sequence
of operations, also known as a thread, as quickly as possible, and it can execute a
few tens of these threads in parallel. On the other hand, the GPU’s main function
is to excel at executing thousands of threads in parallel, which allows it to achieve
greater throughput by amortizing the slower single-thread performance. An applica-
tion usually contains both parallel and sequential parts, and therefore, systems are
designed with a combination of GPUs and CPUs to ensure high overall performance.
In scenarios where an application has a significant amount of parallelism, the GPU
can be utilized to exploit its massively parallel nature, resulting in better performance
compared to the CPU [24].

GPUs are special-purpose processors designed to exploit hardware parallelism
and provide high throughput in the execution of applications. Currently, modern
GPU designs are mainly composed of a set of homogeneous cores organized in
a hierarchical fashion, including Graphics Processing Clusters (GPCs), Texture
Processing Clusters (TPCs), and Streaming Multiprocessors (SMs), or SIMD En-
gines [25, 26, 24], as shown in Figure 1.3.

An SM is the main operative core inside modern GPUs, and it implements the
Single-Instruction Multiple-Data (SIMD) paradigm or variations, such as Single-
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Fig. 1.4 Internal components distribution of a Parallel Processing Block (PPB) of an SM.

Instruction Multiple-Thread (SIMT). The SMs are usually partitioned into 2 to 4
Parallel Processing Blocks (PPBs). Figure 1.4 illustrates the typical organization of
a PPB inside an SM. In detail, each PPB handles a set of parallel functional units
(known as Streaming Processors, or SPs cores), which are used to execute the same
operation in parallel for several threads. These SP cores (in the following, we will
refer to them as SPs for simplicity) in the NVIDIA terminology are also known as
CUDA cores [25, 26, 24].

The number of SPs (from 8 to 32) directly depends on the GPU architecture
and the number of parallel threads to be processed simultaneously. The SP-Cores
incorporate computational support using different data and formats, such as Floating-
Point Units of different widths (FP16/FP32/FP64) and Integer cores (INT32). In
addition, every PPB also includes further special computational units, such as the
Special Function Units (SFUs) and Tensor Core Units (TCUs), to perform specific
operations and support multimedia and artificial intelligence applications [25, 26, 24].

The SFUs are specialized floating point cores that perform fast approximation of
transcendental operations, such as sin(x), cos(x), 1√

x , log2(x), 2x, 1
x ,
√

x. SFUs are
fundamental cores in the acceleration of scientific and machine learning operations.
In fact, the division and module operation in a GPU is supported by the fast approx-
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imation of the reciprocal operation 1
x implemented by the SFU core. In fact, the

acceleration of normalization layers in DNNs is supported by the SFU computation
in the GPU [25, 26, 24].

TCUs are specialized hardware arrays of Dot-Product-Units (DPUs) to improve
performance in the execution of General Matrix Multiplication (GEMM) operations
in Machine Learning domains. DPUs comprise Multiply-and-Add (MAC) cores
that enable GPUs to compute Matrix Multiplication (MM) on a small matrix in one
instruction cycle. For example, TCUs can perform a 4× 4× 4 MM in the form
D = AB+C efficiently [27–29]. Moreover, TCUs are reused to compute large matrix
tiles (e.g., 16×16×16) by accumulating partial results.

The GPU architecture also includes a memory hierarchy mainly used to reduce
latency during the kernel execution. The memory resources include a ‘General
Purpose Register File’ (GPRF), a shared memory, a local memory, a constant memory,
and an external global/main memory. The Load/Store (LD/ST) units of every PPB
guarantee access to the data in the memory hierarchy of the GPU; typically, several of
these units allow to have memory access to several execution threads in parallel [25,
26, 24].

Finally, the workload distribution of the SM is ruled by a general scheduler inside
each SM that statically distributes the tasks in a group of threads (called Warps in
NVIDIA terminology and wavefronts for AMD GPUs) among the PPB cores. Every
PPB includes a Warp Scheduler Controller (WSC), a fetch unit, and an instruction
decoder unit to manage parallelism and submit, distribute, and track warps into the
available cores [30, 24, 31, 25].

The programming model of a GPU consists of parallel programs, i.e., programs
that run on multiple threads. These programs are called Kernels when designed or
executed on GPUs. A kernel composed of multiple threads is divided into thread
blocks that operate separately from one another. Figure 1.5 illustrates the thread
hierarchy used by CUDA for NVIDIA GPUs. The threads in the kernel can be
arranged into a one-dimensional, two-dimensional, or three-dimensional grid of
thread blocks. The number of thread blocks in a grid is usually determined by the
size of the data being processed, which generally surpasses the number of SMs in
the system. There is a restriction on the number of threads per block because all
threads of a block are meant to be located on the same streaming multiprocessor core
and, therefore, must share the core’s limited memory resources. Presently, GPUs
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Block(0,0) Block(1,0) Block(2,0)

Block(0,1) Block(1,1) Block(2,1)

Grid

Block(1,1)

Thread(0,0) Thread(1,0) Thread(2,0) Thread(3,0) Thread(4,0) Thread(5,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1) Thread(4,1) Thread(5,1)
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Fig. 1.5 Thread hierarchy in CUDA programming.

allow a thread block to have a maximum of 1,024 threads. Nonetheless, a kernel can
be run by multiple thread blocks having the same shape, so that the total number of
threads is equivalent to the number of threads per block multiplied by the number of
blocks [24].

The thread blocks in kernels, also known as Cooperative-Thread-Arrays or
(CTAs), are distributed among the SMs using efficient scheduling policies [32, 24].
In general, the scheduler takes all CTAs and issues their execution into waves of
CTAs [33]. The size of a wave depends on the number of SMs on a GPU and the
kernel’s Theoretical Occupancy (i.e., number of CTAs concurrently executed per SM).
For example, in a hypothetical GPU device composed of four SMs with an assumed
occupancy of two CTAs per SM, the wave size corresponds to eight CTAs. Therefore,
the full workload execution of a kernel composed of 12 CTAs is two waves; the first
one is composed of 8 CTAs distributed among all the SMs in parallel, and the second
wave is composed of only four CTAs that will be executed once the resources of
an SM are available [24]. This design allows GPUs with more multiprocessors to
complete the program faster than GPUs with fewer multiprocessors.
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Fig. 1.6 Thread scheduling under the SIMT warp execution model of Volta NVIDIA GPUs.

Finally, each SM executes CTAs following Single-Instruction Multiple-Threads/Data
(SIMT/SIMD) paradigms by running a group of threads (32 threads or a warp) in par-
allel [25, 26]. When a CTA is assigned to an SM for execution, it divides them into
warps, which are then scheduled by a warp scheduler for execution. The partitioning
of a block into warps always follows the same pattern, with each warp consisting
of threads having consecutive, increasing thread IDs, and the first warp containing
thread 0. The relationship between thread IDs and thread indices in the block is
described by the Thread Hierarchy depicted in Figure 1.5.

A warp can achieve full efficiency only when all of its 32 threads follow the same
execution path, executing a single common instruction at a time. In case threads
within a warp diverge by a data-dependent condition, the warp will execute each
branch path taken, while disabling threads that are not on that path. It is important to
note that branch divergence occurs only within a warp, while different warps execute
independently, regardless of whether they are running common or disjoint code paths.
Figure 1.6 illustrates the effect of the thread divergence of the SIMT execution model
of a volta GPU architecture. In this example, the "if" statement decides what every
thread executes based on their identifiers so that when the thread ID is lower than
6, those threads will execute A, then B, and finally Z. On the other hand, the other
threads will execute X , Y , and Z. In the end, all threads need a synchronization or
convergence (sync) in order to continue the parallel execution of the CTA in the
SM [24–26].
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1.2 Hardware faults and GPU’s reliability

The amount of hardware incorporated in a GPU device in order to support the
massive parallelism and computation capabilities also involves the incorporation of
high transistor densities on a single chip (e.g., 80B transistors for NVIDIA Hoper
GPUs [34, 35] and > 100B transistors for Intel GPUs [36]). Such technological
evolution also raises reliability concerns when used in safety-critical applications
with long operative conditions. These reliability concerns about GPUs are mainly
connected with their lifespan, which does not exceed two years in the consumer
electronic market. However, GPUs employed in automotive, aerospace, and military
applications are expected to be operational for many years. Additionally, typical
operative conditions of HPC-grade GPUs, such as over-stress, high temperature,
high frequency of operation, and technology node shrinking, have been shown to
accelerate aging [37, 20], which accelerate the rise of faults in the device.

In general, the advancements in semiconductor technologies have enabled the
creation of smaller, faster, and more energy-efficient electronic devices, including
GPUs. However, the continuous miniaturization of these technologies (e.g., 7nm and
below) has also led to reliability concerns as they are more susceptible to faults caused
by aging, over-stress, environmental harshness, or potential manufacturing defects.
In fact, this technology scaling contributes to make modern devices vulnerable to
permanent faults even induced by terrestrial radiation [38]. Several studies have
demonstrated that the failure rate grows as technology scales [39, 40, 20], where the
constant failure rate (CFR) increases with possible wear-out failures occurring earlier
than expected, as depicted in Figure 1.7. This accelerated failure rate of modern
silicon technologies, also used to manufacture GPU devices, can seriously reduce
the lifespan of devices and affect the reliability of a vast amount of applications
nowadays.

The relationship between the increased failure rate and the technology scaling can
be attributed to changes in manufacturing methods used to improve the performance
of modern devices as scaling slows down. This has resulted in the introduction
of new materials, transistor architectures, and a shift towards 3D chip design [20].
Unfortunately, all these changes can produce silicon defects corresponding to per-
manent faults that can appear during the operative life of a GPU device, ultimately
leading to serious problems such as system failures [41–43]. A tangible sign of
the occurrence of permanent faults in GPUs is given by field tests/reports from
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Fig. 1.7 Product failure rate increases as the technology scales. The constant failure rate
(CFR) increases with wear-out failures occurring earlier than expected (source NASA [40]).

large-scale server operations from Google [42], Facebook [41], and ORNL [44]. For
instance, premature aging on the GPUs of the Titan supercomputing system was
found, on average, every 2.8 years, requiring the replacement of 9,500 GPUs [45].

The high sensitivity of GPUs to permanent faults can have an unacceptable impact
on critical applications, especially when they arise during the in-field operation.
Indeed, Silent Data Errors (SDEs) have become a major reliability concern in cutting-
edge semiconductor technologies used in critical applications such as data centers
for cloud computing, space, or automotive. In fact, not all permanent defects in a
computer system produce a failure of the application, such as a crash or hang, but they
may propagate silently, as SDEs, during the application execution and potentially
lead to a system failure [41–43, 46]. Hence, functional safety mechanisms must
be developed or adopted in order to detect possible faults and prevent catastrophic
effects caused by those faults.

1.2.1 Reliability enhancement of GPUs

The development of functional safety mechanisms for GPU devices allows to enhance
their reliability against hardware defects. These mechanisms may resort to either
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hardware, software, or a combination of both strategies that allow to detect and
repair (or counteract) the impact of a fault during the in-field operation of the device,
minimizing the effect of the final application, such as preventing catastrophic results.

The hardware-based hardening solutions mandate the introduction of additional
hardware structures during the initial design stages of a device. These structures are
designed to detect a high number of faults and meet the functional safety standards
requirements. Among the most popular functional safety mechanisms in GPUs,
we can find the improvement of memory cells design [47], adding error-correcting
codes (ECC) [48], hardware redundancy [49, 50] or hardware structures for fault
detection [51]. These solutions can detect and possibly correct a very high percentage
of faults [52]. However, using such specialized hardware solutions for safety-critical
applications may result in a significant increase in cost compared to "normal" devices.
This solution may also have an impact on performance, power consumption, and
ease of use. Alternatively, adopting in-field testing solutions may allow the detection
of faults before they produce critical failures, thus lowering the failure probability
to acceptable values. In this regard, Sofware-Based Self-Testing (SBST) provides
a suitable solution, since it does not require adding extra hardware to the device,
allowing the application of functional testing during the operation of the device

On the other hand, several studies have proposed software-based techniques to
ensure the correct operation of systems in the presence of faults. These include
software checksums [53], multi-threading redundancy [54], diverse redundancy [55,
56], or Algorithm-Based Fault-Tolerance (ABFT) solutions [57, 58]. While these
methods have been effective in mitigating transient faults, it is unknown whether they
can effectively prevent permanent faults that can lead to Silent Data Errors during a
GPU’s lifespan. In fact, modern Graphics Processing Units demand life expectancy
extended to many years, exposing the hardware to aging (i.e., permanent faults
arising after the end-of-manufacturing test). Hence, techniques to assess permanent
faults that can produce SDEs during the device’s operative life are strongly required,
especially in safety-critical domains. These fault evaluations are crucial for two
main reasons: first, the fault evaluation allows the identification of vulnerabilities
in GPU’s application regarding permanent faults. Consequently, fault evaluations
contribute to the development of effective software-based hardening strategies to
counteract the impact of such faults during the operative life of the device. On the
other hand, fault evaluations allow the assessment of the effectiveness of any fault
countermeasure against SDEs caused by permanent faults on GPUs, allowing the



12 Introduction

enhancement of the reliability of the whole system using GPU acceleration, (e.g.,
improving the DNNs resilience in automotive applications).

1.3 In-field testing of GPUs

In-field testing consists of strategies that can identify faults arising during the opera-
tional phase before they lead to critical failures, ultimately reducing the probability
of failure to acceptable levels.

The in-field testing techniques for fault detection in GPUs can be classified into
three main categories. The first category corresponds to Design for Testability (DfT)
methods, which focus on including special hardware structures during the design
stage. The second category corresponds to hybrid approaches, which involve a
combination of hardware structures embedded in the device with reconfigurable
capabilities and software routines that can increase fault detection capabilities. The
third category corresponds to software-based self-test (SBST) solutions.

DfT methods, such as Logic and Memory Built-In Self-Test (BIST), are com-
monly used to test devices such as GPUs at the end of production [59, 60]. Therefore,
their usage for in-field testing can be limited to the "power-on/off mode" of the
devices or systems when timing constraints are more relaxed, and the testing can be
applied to every hardware structure without affecting the application functionality.
Nonetheless, the usage of DfT methods for fault detection while the device (i.e.,
the GPU) is already in operation can be challenging, since the application may not
have time slots to apply the test (i.e., "Mission Continuous mode"), or the available
time slots during the application execution are limited or constraint (i.e., "Mission
Periodic mode"). Moreover, the protocol to activate the DfT mechanisms and retrieve
the test results should be passed by the manufacturing company to the system com-
pany. Typically, manufacturing companies are reluctant to do so for confidentiality
reasons. In other situations, the DfT requires the introduction of additional hardware
structures that may result in useless hardware when the same device is not used in
safety-critical applications [61]. Therefore, alternative solutions need to be explored
to cover as much of the in-field operation modes of the device as possible.

The hybrid solutions (hardware/software) that involve adding or using available
structures (such as performance counters) to increase the fault observability of a
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module must be incorporated into the design phases. This is done by modifying
the hardware-software interface to provide instruction-based control of the included
structures. Jagannadha et al. [62] have proposed an in-system test architecture that
combines DfT methods and hybrid structures to detect faults and provide diagnosis
features during the in-field operation of system-on-chips (SoCs) and GPUs. Also,
Guerrero-Balaguera et al. [63] proposed to take advantage of the GPU’s performance
counters in combination with software instructions that allow the detection of faults
in the Warp Scheduler and divergence stack memory of a GPU. Moreover, in some
cases, the cost of implementing DfT solutions may be too high, or the application
safety requirements may demand more frequent in-field testing that could potentially
use the idle time slots left by the application.

On the other hand, the software-based self-testing strategy is a flexible and
noninvasive approach to performing functional in-field tests of processor-based
systems [60, 61, 64], and it has been successfully applied to GPU testing as well [65].

1.3.1 Software-Based Self-Testing

The SBST strategy offers in-field at-speed fault detection capabilities without hard-
ware costs, leveraging the idle times of the application to execute test procedures [64].
The SBST strategy consists of developing Test Programs (TPs) by the device develop-
er/manufacturer that can achieve a given Fault Coverage (FC) with respect to selected
structural fault models, determined through Fault Simulation (F-sim) [66]. A group
of TPs composes a Self-Test Library (STL) [66], which is then integrated by the
system company into the application code and activated with the required frequency.
This strategy is widely used in the industry, and several semiconductor manufac-
turers currently develop and offer STLs for their processor-based products [67–70]
to support their usage in safety-critical applications. Furthermore, several works
successfully demonstrated the feasibility of STL development exploiting the inherent
parallelism of GPUs for testing purposes targeting functional units [71, 72], memory
modules [73–75], and control units [73, 76].

1.3.1.1 Related works

In parallel architectures, such as GPUs, the SBST strategy can also be adopted to
develop Parallel Test Programs (PTPs). Each PTP is built employing the available
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Instruction-Set Architecture (ISA) of a target GPU. Each instruction in the PTPs
is intended to apply one or more test patterns to one or several target modules in
parallel. These instructions compose routines aiming at exciting, propagating, and
detecting faults when operating warps in an SM.

In general, the main structure of a PTP for GPU testing comprises three main
parts: i) thread registers load, ii) parallel operation execution, and iii) propagation of
the result to an observable point.

In principle, these steps are repeated for each thread in the program. However, it
is also possible that divergences could be present, so only a portion of the threads
execute a given operation. Meanwhile, missing threads can be skipped or performed
using different procedures. This divergence behavior is commonly used to excite
control modules but may affect the test quality on functional units and regular
structures in the GPU. In these parallel architectures, the fault detection of a PTP is
commonly performed using exceptions and thread signatures [77] out of the values
on any observation point or memory output of the GPU. A comprehensive overview
of the main issues (and possible solutions) to be faced when generating STLs in an
industrial environment can be found in [78].

Concerning the development of STLs for GPUs, so far, these software-based
testing approaches have been developed at the machine level (e.g., using assembly
languages also known as, Low-Level Programming Languages, or LLLs) [66]. This
approach requires significant engineering effort, development time, and deep archi-
tecture knowledge of the target device, and it is characterized by limited re-usability.
In fact, the ISA architecture among different GPU devices significantly constrains
the portability of STLs developed in LLLs among devices of the same vendor.

In contrast, High-Level Programming Languages (HLLs) for GPUs, such as
CUDA or OpenCL, simplify programming and are often the best, and sometimes
the only, way to develop and encode applications. HLLs also offer programming
scalability and flexibility, which can encourage test specialists to use them for
the development of STLs for GPU devices [79]. However, there are still several
challenges and open questions when it comes to using HLLs for the development of
STLs [79].
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1.3.1.2 Main contributions

This Ph.D. thesis proposes a methodology for developing STLs for GPUs using high-
level languages [80, 3]. The aim of this method is to reduce the inherent complexity
in the development flow of STLs that use assembly languages. In addition, this
thesis presents the advantages and limitations of developing TPs using different
software abstraction levels: HLLs, LLLs, or a combination of both. The method is
validated using a microarchitectural open-source GPU model (FlexGripPlus [81])
and two GPU devices (NVIDIA Jetson Nano and Nvidia GeForce GTX 960M). The
experimental results show that regular units, such as functional units and register
files, in a GPU can be tested using HLL TPs. However, the compiler optimizations,
observability constraints, and architectural features in other modules, such as hidden
units, require the combination of different abstraction levels (resorting to both LLLs
and HLLs) or the explicit development of TPs at the assembly level only. Although
this work uses NVIDIA terminology and refers to the NVIDIA GPU architecture,
most of the ideas can be generalized to other GPUs.

1.3.2 Compaction of STLs for GPU testing

Although the SBST approach allows for the successful development of test programs
and STLs for testing modern devices like GPUs, it may also occupy a significant
amount of memory (e.g., program and data) and spend non-negligible execution
testing time. In addition, the STLs and test programs can be developed by using
high-level programming languages (HLLs) that increase the programmer’s produc-
tivity and development time, but they might also impact the memory footprint and
execution time obtained after the compilation stages [80, 3]. In addition, the in-field
operational constraints can impose restrictions related to the maximum size and
duration that a given STL can afford when used concurrently with a given operation.

In such situations, the test compaction applied to STLs and test programs is
a paramount aspect in guaranteeing the in-field testing constraints. However, the
algorithm complexity and the programming abstraction levels (e.g., using HLLs for
STL development) make the compression of an STL a challenging task. Although
compaction method approaches using evolutionary techniques or instruction reorder-
ing strategies, have been proposed, most of them require a high computational effort
to analyze and compact a few test programs in STLs.
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1.3.2.1 Related works

Several works have proposed methods to compact Test Programs (TPs) for processor-
based systems. These methods effectively reduce the size and duration of a given
TP while maintaining the same fault coverage [82–84]. In [85], the authors split
TPs into subroutines and removed individual instructions after analyzing the fault
coverage contribution of each sub-routine. Authors in [86] exploited reordering
techniques among different pieces of a TP to maintain the fault coverage and reduce
the length of the TP. In both cases, a high computational effort is required to analyze
and compact a given TP. In fact, the compaction process is based on the production
of compacted TP candidates from the original TP, which are then fault simulated to
assess the new fault coverage. However, the required time and computational costs
for the compaction of an individual TP are exceptionally high. It is worth noticing
that none of the reported techniques in the literature face the compaction of PTPs
and STLs for GPUs, and some of them can hardly be extended from CPUs to GPUs.

1.3.2.2 Main contributions

This Ph.D. thesis proposes a method to automatically compact the test programs of a
given STL [4, 5]. The method was first developed to reduce the size, and the test dura-
tion of STLS developed for CPUs [4]. Then, the method was effectively extended to
the compaction of STLs for GPUs [5]. The proposed method combines a multi-level
abstraction analysis resorting to logic simulation to extract the microarchitectural
operations triggered by the test program and the information about the thread-level
activity of each instruction and to fault simulation to know its ability to propagate
faults to an observable point. The main advantage of the proposed method is that it
requires a single fault simulation to perform the compaction. The effectiveness of
the proposed approach was evaluated, resorting to several test programs developed
for an open-source GPU model (FlexGripPlus) compatible with NVIDIA GPUs. The
results show that the method can compact test programs by up to 98.64% in code
size and by up to 98.42% in terms of duration, with minimum effects on the achieved
fault coverage.
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1.4 Reliability evaluation of GPUs with respect to per-
manent faults

The reliability evaluation of GPUs concerning transient faults has already been
evaluated through microarchitectural and low-level fault simulation [87, 81, 88],
software-based fault injection [89–93], and beam experiments [94–98]. Since GPUs
execute several processes in parallel, it has also been shown that a transient corruption
in the warp scheduler or a single error in shared resources of the GPU affects various
output elements [95, 53, 97, 99, 98]. Nonetheless, the evaluation of permanent faults
that potentially produce SDEs in GPUs is still an open research topic, especially
given the reliability concerns exposed by [42, 41, 43], showing that cutting-edge
semiconductor technologies accelerate aging and other phenomena that end up into
permanent faults causing catastrophic results at the application level. Moreover, the
impact of a permanent fault is not always constant and can vary depending on the
affected hardware units, the functionality of the faulty unit within the device, and the
workload being executed on the system. Consequently, the workloads can produce
input patterns that activate permanent faults in a GPU’s hardware units, resulting
in miscellaneous SDE effects that can spread throughout the application execution.
These errors may ultimately affect the final result and lead to undesirable outcomes.
Therefore, it is crucial to adopt effective fault evaluations that can accurately assess
the impact of these faults on different types of parallel workloads.

Among all the methodologies used for assessing the resilience of applications
regarding permanent faults affecting different devices, the Fault Simulation ap-
proach using RT- or gate-level description is the one that provides more realistic
evaluations. In fact, fault-simulation approaches provide accurate evaluation re-
sults, since they simulate different fault effects using the target device’s hardware
at functional [100, 101], RT/gate description [102, 81], or functional levels. Un-
fortunately, these fault evaluation approaches result in unfeasible solutions to carry
out the evaluation of permanent faults in GPUs, given the hardware and software
complexity of GPUs and their applications. For example, considering an RT-level
GPU model, one fault simulation campaign requires about eight days to evaluate a
32X32 matrix multiplication (MM). Thus, the complete evaluation of a DNN, such
as LeNet5, which incorporates hundreds of MM operations plus further max-pooling
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and activation operations, would require unacceptable simulation times (> 10,000
days!) [7, 6].

Other fault evaluation approaches resort to Emulation-Based Fault Injections that
reduce the evaluation time using FPGAs to implement the target circuits, including
corruption mechanisms either inserting saboteurs inside the device’s RTL model
or by corrupting the FPGA bit-stream [103]. Although the evaluations at this level
provide accurate evaluations close to reality, this fault evaluation technique requires
synthesizable GPU models in Hardware Description Languages (HDLs), costly
FPGA devices or clusters of FPGAs, and non-negligible development time.

Recently, other fault evaluation approaches have adopted Hardware Injection
Through Program Transformation (HITPT), mainly to study the impact of transient
faults on GPU workloads [104]. The HITPT approach is a software-based error
injection that mimics the behavior of hardware faults by inserting saboteur routines
on the original application at the assembly level, such that the faults are activated
during the program execution [104]. This approach offers faster evaluation times
compared to simulation-based methods, and its speed is par with or slightly slower
than emulation-based strategies. On the other hand, there are limited studies adopting
HITP evaluation of permanent faults on GPU’s workloads. Guerrero-Balaguera et
al. [105–107] have proposed to use of HITPT approaches to assess the resilience of
DNN applications concerning the impact of permanent faults on GPU devices. Their
works are limited to model and injecting stuck-at-fault models only on the visible
hardware structures at the software level (e.g., register files, arithmetic cores, and
memory resources). Unfortunately, they do not consider other units, such as parallel
control management or more sophisticated error models that can describe in a more
realistic way the effects of faults in the circuit (i.e., gate-level description) and the
corruption of the executed instructions for a particular GPU workload. In this regard,
it is crucial to adopt a more realistic fault evaluation approach that combines the
accuracy of the fault simulations with the speed of the instruction-level propagation
of errors. Consequently, modeling silent data errors (SDEs) at the software level (i.e.,
corrupting the instructions of the GPU) that describe the effects of permanent faults
is a promising solution that allows for fast and realistic evaluations of a wide range
of workloads.



1.4 Reliability evaluation of GPUs with respect to permanent faults 19

1.4.1 Related works

In the literature, multiple works propose methods to identify and evaluate the impact
of hardware faults on different hardware and applications. Some authors use error
propagation models [108, 109] (by changing the instruction’s parameters) to repre-
sent faults at higher levels and speed up the evaluation in complex systems, such as
DNN applications [110] and cryptosystems [111].

On the other hand, most of the methods in the literature for GPUs address the
error propagation from instructions to the software- and system-levels ([112], [104],
[93]), which are commonly performed on special frameworks instrumenting the
application’s code with instructions to model errors. However, in most cases, there is
not a clear link between hardware faults and the modeled errors, so it is also possible
to use unrealistic effects or miss the evaluation of some real effects of the lack of
correlation.

Other works emphasized the significance of fine-grained, low-level, and cross-
layer resilience evaluations[113]. They also point out the limitations of relying solely
on software error propagation methods. In fact, these multi-level evaluation methods
strike the best balance between evaluation accuracy, which means more realistic fault
evaluations, and the time required to perform such evaluations. There is significant
research available regarding fault evaluation in CPUs using multi-level or cross-layer
approaches combining low-level fault simulation of individual components in the
device and then using high-level error propagation at the system of application
levels [114, 115, 89, 116]. Similarly, several works have exploited the multi-level
fault evaluation approaches to provide fine-grain and accurate characterization of
transient faults for GPU structures and propagate errors at instruction [117], and
application levels (e.g., DNN workloads) [118]. However, these characterizations
are limited to a few units (functional units), or restricted to a limited number of
instructions or applications. Also, a complete characterization of the impact of
permanent faults in some critical units of GPUs is still missing, and there are no
available frameworks that allow a straightforward evaluation of permanent faults in
these complex contexts.
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1.4.2 Main contributions

This thesis proposes a multi-level methodology that combines the accuracy of gate-
level fault simulation with the speed and flexibility of software-level error injection
to evaluate the effects of permanent hardware faults affecting a GPU [7, 6]. The
proposed method comprises three main phases. First, a selection of GPU workloads
is profiled to extract the input patterns generated at the inputs of the target GPU
unit to be evaluated. Then, the results of a gate-level fault simulation are used
to characterize the effects of permanent faults at the outputs of the targeted core.
These fault effects are transformed into instruction-level errors that are later used
for instruction-level error propagation on a real GPU device using state-of-the-art
binary instrumentation tools such as NVBIT [119]. This dissertation presents two
variations of this multi-level fault evaluation methodology. The first version consists
of evaluating the impact of permanent faults on integer and floating point GPU’s
cores while executing Deep Neural Network (DNN) workloads. The method allows
for the first time to estimate the percentage of permanent faults leading the DNNs to
produce wrong results. The second methodology variation evaluates permanent faults
in the GPU’s Parallel Management Units (PMUs) (i.e., warp scheduler, instruction
fetch, and instruction decoder units) while executing different parallel workloads.
It is worth mentioning that the proposed method reduces the computational effort
for fault evaluation by several orders of magnitude compared with simulation-based
fault evaluation approaches.

1.5 Thesis contributions summary

The specific contributions of the research work summarized in this PhD thesis are
the following:

• A method for describing STLs using high-level programming languages (i.e.,
CUDA C++ or CUDA PTX) to perform functional tests of GPU devices;

• A novel strategy for compaction of STLs using an instruction removal-insertion
approach by combining only ONE RTL and gate-level simulations;

• A multilevel method for modeling and evaluating instruction-level errors
caused by permanent faults on the functional units of GPU devices. This
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method uses gate-level fault simulations to generate syndrome tables used at
the instruction level of the GPU. This evaluation approach effectively allows
the realistic evaluation of complex workloads like DNN, regarding permanent
faults;

• A multilevel approach for modeling and evaluating instruction-level errors
caused by permanent faults on the Parallel Management Units (PMUs) of GPU
devices (i.e., instruction fetch, decoder, and warp schedulers). This approach
uses gate-level fault simulation results to generate errors at the instruction
level, corrupting thread indexing registers, predicate registers, or instruction
replacements, among others;

• A new fault injection framework (called "NVBitPERfi1") that allows the mod-
eling of errors at the instruction level produced by permanent faults on several
GPU units. NVBitPERfi is an instrumentation tool that inserts and propagates
the errors at the assembly level, allowing the assessment of permanent error
effects in real GPU’ workloads;

• A set of results reporting for the first time the effects of permanent faults in a
GPU executing a DNN.

1.6 Thesis organization

The remainder of this thesis is structured as follows:

Chapter 2 describes the methodology and the main findings about the development
of STLs for GPUs and the adoption of high-level programming languages

Chapter 3 describes the proposed method and the main finding for the compaction
of STLs first on processor-based systems and then on GPU devices

Chapter 4 describes the proposed methodology for modeling Silent Data Errors
(SDEs) at the instruction level on GPUs with respect to permanent faults on
key cores of the device. This chapter also reports the main findings when
evaluating such SDEs on different parallel GPU workloads

1https://github.com/divadnauj-GB/nvbitPERfi

https://github.com/divadnauj-GB/nvbitPERfi
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Chapter 5 provides the conclusion of the dissertation and highlights some possible
future works on the topic.



Chapter 2

STLs for GPUs using high-level
programming languages

This chapter introduces a comprehensive methodology for generating STLs (Soft-
ware Test Libraries) for in-field GPU testing, resorting to high-level programming
languages (HLLs). This methodology aims to simplify the development of STLs
for GPUs by using flexible programming languages like CUDA C++ or OpenCL.
Additionally, the chapter explores the advantages and disadvantages of using Inter-
mediate programming languages (ILs) (e.g., CUDA PTX (Parallel Thread Execution)
or AMD IL (Intermediate Language)) to complement the development of HLSTLs
(High-Level STLs). Finally, the chapter describes and analyzes the main advantages
and constraints connected to the development of test programs by adopting high-
level, low-level, and intermediate-level programming languages or a combination of
them when required. The main contributions can be summarized as follows:

• The description of a method to develop suitable STLs targeting the detection of
permanent faults in selected GPU units resorting to high-level and intermediate
programming languages.

• The identification of challenges and constraints when developing test programs
and STLs using high-level programming languages for GPU testing.

• The coding guidelines to tame the main limitations when adopting HLLs and
ILs to develop TPs and STLs for GPUs.
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The methodology described in this chapter was developed and validated using
NVIDIA’s concepts and tools. Nevertheless, the techniques can be modified and
adapted to fit other GPU architectures. It is worth clarifying that part of the work
described in this chapter about the generation of STLs using High-Level languages
has been previously published by the author of this thesis in [80] and [3]

2.1 Background

The programming flexibility of Graphic Processing Units (GPUs) and their ability
to deliver high performance has made them popular in a wide range of applications
(e.g., self-driving cars, aerospace, computing & data storage) where reliability is
a crucial aspect to guarantee the minimum operational functionality of the system
during its operational life, preventing catastrophic results. In fact, reliability and
safety are crucial factors in safety-critical domains, particularly when dealing with
cutting-edge technology-scaling nodes that might be affected by permanent faults
due to premature aging or wear-out during the operational phase [120]. Therefore, it
is essential to incorporate effective testing mechanisms that are able to detect faults
arising during in-field operations of GPUs. These in-field testing mechanisms are
crucial to detect any device malfunction and promptly take action, thus avoiding any
catastrophic result during the operational life of the system.

Software-Based Self-Test (SBST) is a flexible and non-invasive testing strategy
that offers in-field testing capabilities while demanding zero hardware costs [78].
This testing strategy is based on the development of specialized routines (Test
Programs, or TPs) specially designed to excite the internal faults and propagate their
effects to visible locations for detection purposes. A collection of TPs creates a Self-
Test Library (STL) [78]. Currently, several Intellectual Property (IP) core vendors
and device developers/manufacturers offer STL solutions for their processor-based
products and support their usage in safety-critical applications [66]. These STLs
are integrated by the system company in the application code and activated with
the required frequency. On the other hand, several works already demonstrated that
STLs can also be effectively developed for GPUs, targeting functional units, memory
modules, and scheduler controllers [65, 72, 121].

So far, the STLs development has been dependent on assembly languages, or
i.e., on the machine Instruction Set Architecture (mISA), considered as low-level
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language (LLL)[66]. For GPU devices, developing STLs using the device’s assembly
languages or their mISA (e.g., Shader ASSembly (SASS) for NVIDIA GPUs) can
be a challenging task, requiring extensive engineering effort, development time, and
in-depth knowledge of the device’s architecture. Additionally, STLs developed using
pure assembly-level coding have limited reusability.

Developing STLs using Low-level languages is a complex task for GPUs because
of the challenges involved in dealing with implicit parallelism at a fine-grain level.
As a result, it is crucial to carefully design, implement, and validate test programs for
GPUs, given the limited information available about the ISA. This process can take
a long time, even with the help of specialized tools. Additionally, the differences in
structure and ISA among GPU products make it difficult to ensure the portability
of Low-Level STLs. Conversely, high-level languages (HLLs), such as CUDA
C++ or OpenCL, simplify the programming process and are often the best or only
option for developing and encoding applications for GPUs. In addition, the GPU’s
manufacturers also provide programming support using intermediate languages
(ILLs) named virtual Instruction Set Architecture (vISA), providing most of the
control of assembly languages but is highly portable among different devices of the
same GPU family. Some examples of ILLs are CUDA Parallel Thread Execution
(PTX) from NVIDIA, or the Intermediate Languages (IL) of advanced micro devices
(AMD).

In fact, adopting high-level languages instead of low-level languages has been
shown to increase a programmer’s productivity by three to ten times, depending
on the target platform [122, 123]. Furthermore, HLLs can handle the increasing
complexity of modern GPUs, making the maintenance process simpler [79]. The
scalability and flexibility of HLLs also make them appealing to test specialists for the
development of STLs. However, there are still numerous challenges and unanswered
questions surrounding the use of either HLLs or ILLs for the development of high-
level test programs and high-level self-test libraries.

2.1.1 Related works

In the past, some authors developed STLs for GPUs using high-level programming
languages such as CUDA C++, and OpenCL.
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In [72], the authors created a method to detect permanent faults in functional
units and the register file of an NVIDIA Fermi GPU by combining CUDA C++
with the virtual assembly vISA (CUDA PTX). To validate this approach, profiling
information was used to determine the effects of the proposed Self-Test Libraries
on the GPU. However, due to fault observability constraints, it was not possible to
quantitatively measure the fault coverage metrics for the proposed STLs.

In [121], researchers utilized various microbenchmarks, which they described in
OpenCL, to recognize intermittent faults that were caused by temperature changes
or stress in the device. However, the proposed solution was limited to coarse-
grain modules (i.e., streaming multiprocessors or SMs) due to the lack of fault
coverage metrics and the assumptions made for fault detection. Unfortunately, these
works failed to take into account other significant modules inside the GPU, such as
schedulers, embedded memories, pipeline registers, and other controllers.

2.2 A Method to develop parallel STLs using high-
level languages

The proposed methodology here utilizes the divide-and-conquer technique to break
down the structure of a GPU into various modules. Then, individual STLs are
created using high-level languages and intermediate-level languages. The flow of the
proposed method is illustrated in Figure 2.1, and it comprises three primary steps: 1)
Modular test generation, 2) Programming language mapping, and 3) Test program
evaluation.

2.2.1 Modular test generation

This phase assesses the following attributes: i) the functional features of the unit
(such as control, arithmetic, or storage), ii) the architecture specifications within
the GPU (including data path or control path units), and iii) the constraints related
to controllability and observability, which means how the program instructions
can activate the unit and propagate their results to an observable point. These
characteristics are essential for determining the appropriate testing methods, such as
automatic, deterministic, or custom, as well as their practicality for implementation
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as high-level test programs or intermediate-level test programs. To facilitate testing,
each module can be categorized as one of the following three types: 1) Regular, 2)
GPU’s distinctive, and 3) Hidden structures.

In the first case, the regular modules correspond to replicated units inside the
GPU, which perform the same functionality in parallel, such as functional units and
register files [74, 71, 3]. These structures, which are typically part of the data path
of the device, are also considered visible resources of the GPU. Because of this, any
test data can be applied at the unit’s input, resulting in high controllability, and the
results can be observed after issuing an operation, resulting in high observability.
There exist Automated and Deterministic methods for developing STLs to test these
regular units, as described in [78].

The GPU’s distinctive modules correspond to particular hardware structures
specific to GPUs, such as schedulers, divergence controllers, and decoders, which
are located both in the data path and control path of the GPUs. It is worth noting that
the functional features and complex organization of these particular GPU modules
impose testing restrictions such as low controllability or observability. For example,
creating suitable input test patterns at the inputs of the scheduler capable of activating
and propagating a fault requires complex combinations of instructions and workload
configurations that are not trivial to find even by using an Automated Test Pattern
Generator (ATPG). The functional constraints of these units demand additional
efforts to generate and apply the test data as well as to guarantee the propagation of
the fault effects up to an observable point. Consequently, combinations of automated,
deterministic, and custom methods are suitable testing solutions for these units [65,
73, 76]

Finally, the third unit type corresponds to hardware structures inside the GPU
denoted as hidden modules. This category includes hardware structures that are
not visible to the programmer, such as embedded controllers and pipeline registers.
Due to their inherent complexity, the testing algorithms and methods need to be
customized, and elaborated strategies have to be developed [65, 77].

2.2.2 Programming language mapping

When utilizing high-level constructs, mapping the specifications of a given test
program into high-level programming languages may be fast and simple. These
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constructs, such as nested "for" loops or "if" statements, can effectively describe
most of the complex specifications with a reduced engineering effort. However,
effectively mapping the testing algorithms for a given GPU hardware structure into
HLLs or ILs can lead to challenging tasks. This is because the compilation stages
apply optimizations that prioritize the maximum execution performance and security
of the code on the target device. Such compiler optimizations can be contrary to the
goals of testing, as they limit the control of the programmer. Nonetheless, adequate
coding styles and compilation settings can be adopted to avoid or diminish these
compiler constraints for testing purposes.

The method proposed in this chapter involves a bottom-up approach that assesses
and interprets the test program specifications as one or a series of test routines
described in a chosen programming language HLL (e.g., CUDA C++), ILL (e.g.,
CUDA PTX), or LLL (e.g., Shader ASSembly - SASS). This generation process can
require multiple iterations to ensure and verify the testing features of the generated
high-level test programs (HLTPs).

In detail, the specifications of a given test program are meticulously transformed
into an HLL or ILL while ensuring the following three main considerations: i)
Operand allocation, ii) Test algorithm implementation, and iii) Update of the signa-
ture per thread.

First, the location of operands is defined according to the test program specifica-
tions and can be allocated in the main, shared, or constant memories. It is important
to note that some operands can be defined as literals included in the code for HLL
mapping, or immediate operands in the case of ILL mapping.

In the second part, the test algorithm is transformed into a sequence of statements
according to the selected programming language. For example, "if" statements
can be used to induce divergences when using CUDA C++, allowing the testing
of the divergence stack memory or the warp scheduler. Similar behaviors can be
described using ILLs by implementing a combination of control-flow PTX instruc-
tions (i.e., comparison instructions, branch instructions, and predicated instructions).
Further details about different mapping strategies of testing algorithms for the most
representative GPU cores are described in section 2.3 of this chapter.

Finally, the algorithm updates a signature-per-thread (SpT) after every iteration
of the algorithm by implementing a simple counter or a more sophisticated routine,



30 STLs for GPUs using high-level programming languages

such as a software-based Multiple Input Signature Register (MISR), as described
in [77, 71].

2.2.3 Test program evaluation

This step validates the functionality of a test program or a complete STL (as a binary
executable). This validation is divided into three stages: i) Compilation results
checking, ii) Test Program validation, and iii) Test program refinement, as depicted
in Fig. 2.1. The first stage verifies the compilation results by checking the content of
an Executable and Linkable Format (ELF) file. This file contains information about
the device’s resource usage that allows identifying significant compiler optimizations
for a TP or STL, which may lead to removing, compaction, or replacing testing
features (i.e., conditional statements generating test patterns (Tpats) or different data
allocation).

In addition, this step considers further checks to programming structures and
mISA instruction formats (i.e., call to routines, miscellaneous instructions, etc).
When the initial checking does not succeed, the TP requires improvements through a
refinement process.

The second stage (Test program validation) is divided into two sub-stages: logic
simulation and fault simulation. The logic simulation verifies the correct functional
execution of a TP using an RTL GPU model. Firstly, the ELF file is transformed
into a GPU model-compliant Test-Bench containing the TP’s information. Secondly,
the GPU model executes the TP and captures the Signature per Thread (SpT) that
indicates the fault-free status of the GPU and, in turn, serves to verify the program’s
correct operation. The fault simulation resorts to a customized simulation environ-
ment that takes the GPU’s RT-level model and evaluates the Test Programs, targeting
one GPU module and injecting stuck-at-faults (SAFs), one at a time. The fault
simulation considers a fault as detected when at least one mismatch exists between
the fault-free and the faulty SpT.

Finally, a given TP is considered valid if it is compliant with the TP specifications
and fulfills minimum fault detection capabilities. Otherwise, the refinement step
is used to improve fault coverage by making changes to the algorithm, described
functions, or compiler settings.
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2.2.4 Defeating compiler and architectural constraints for testing
purposes

Developing STLs using HLLs or ILs presents challenges related to the constraints
imposed by the compiler and the structural features of certain GPU modules. In
order to solve such mapping constraints, several techniques can be applied to reduce
or bypass the compiler optimization’s effects and preserve testing capabilities in a TP.
A first strategy requires the adoption of adequate coding styles to force the compiler
to preserve test functionalities. These techniques include the efficient use of ‘device
intrinsic functions’ from libraries (e.g., math.h). For example, High-Level STLs for
SFUs cores require intrinsic functions (e.g., __log2f() or __exp2()) to guarantee the
generation of machine mISA instructions (i.e., SASS) addressing the modules and
applying the desired test patterns (TPats). Fortunately, in the case of IL instructions
for the SFU, these are directly mapped as vISA ones.

Other techniques manipulate the arguments (inputs/outputs of a kernel) to pre-
serve instructions or routines targeting the GPU module. e.g., testing the GPRF
requires several individual arguments (from 3 to 127) to force the compiler to allocate
and address all possible registers per thread. Then, these arguments are loaded with
external patterns. Similarly, testing the Scalar-Processors (SPs) includes additional
arguments to generate most mISA formats and preserve TPats. Moreover, reducing
the use of local variables and augmenting the input arguments in a kernel help
suppress the replacement of instructions and the out-of-order organization of HLTPs.
Alternatively, including explicit references to memory (e.g., global or shared) in
at least one of the HLL’s or ILL’s operands prevents the compiler from optimizing
the usage of immediate operands. In addition, the manipulation of variables in the
shared memory reduces the compression, replacement, and reordering of instructions
during compilation.

Other strategies require the creation of data dependencies between consecutive
operations/instructions, the usage of the global memory to store partial results, and
barrier synchronizations force the compiler to remove instructions to ensure that
processed values are available for the next instructions. It is worth noting that these
strategies can be used individually or in combination with mapping test specifications
such as HLTPs and Intermediate-Level-Test-Programs ILTPs.
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2.3 HLL’s mapping of test algorithms for representa-
tive GPU units

This subsection targets several modules in the GPU and applies the methodology to
develop test programs and STLs using high-level programming languages. Table 2.1
introduces the main mapping strategies that can be adopted to implement different
test methods into HLLs and ILLs for a given GPU module. The reported information
covers diverse modules and test strategies organized by unit type, GPU module, test
method, detailed test strategy, HLL mapping strategy, and ILL mapping strategy.

It is worth noting that this work followed state-of-the-art test procedures, origi-
nally devised for implementation at the assembly level (SASS) only, and conceived
their implementation as STLs using HLLs and ILLs. In the following, we introduce
the main procedures that successfully allow the implementation of a test algorithm
into a high-level programming language able to test the main building blocks of a
GPU, providing insights about their possible limitations and solutions in comparison
with direct assembly implementations

2.3.1 Functional Units and Register File

These modules are regular structures in the GPU, and several units are available
and used by different threads of an active warp. More in detail, modern GPU
architectures allow each thread to address the functional units statically, simplifying
the management of the implicit parallelism of a program. Moreover, in these modules,
the instructions addressing the functional units employ any user-accessible memory
resources, allowing direct application of test patterns as input operands. Similarly,
the results are always stored inside the register file, so the fault observability of a
fault does not represent an issue.

The combination of the structural organization and the direct controllability and
observability allows the adoption of automated methods as described in [78], which
resort to using pseudorandom approaches or ATPG tools to generate the input test
patterns for a given unit (e.g., Floating Point Units, or Special Function Units).
Then, these patterns can be transformed into equivalent test routines. For the HLL
mapping procedure (e.g., using CUDA C++), the test programs are developed using
three steps: i) test pattern identification, ii) pattern grouping, and iii) fine-grain TP
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description. Firstly, the definition of the test patterns uses one of two automatic
approaches (pseudorandom or ATPG-based). Then, the pattern grouping consists of
each pattern’s organization according to the operations to be issued and the operand’s
size. In this case, there is the option of employing any of the memory resources
in the GPU (i.e., global or shared memories) to store the patterns and load them
during the execution of the test program. The option of using immediate operands
is discarded by the lack of fine-grain control in high-level operations at the CUDA
C++ level. Finally, the test program description uses functions to ensure that each
pattern is replicated and applied to the functional units, ensuring the test’s coherence
on these modules.

2.3.2 Embedded Memories

These memories (Predicate Register File or PRF and Address Register File or ARF)
are regular structures used by each active thread in a warp. However, the main
constraints of both modules are their controllability and observability features. In
fact, the PRF can only be addressed indirectly (as the product of other operations).
Similarly, the ARF is used to address other memory resources, so TPs for these
modules require additional routines to deal with these constraints. The method to
test these memories is based on the generation of the indirect conditions to address
and excite each part of the modules.

Authors in [74] proposed low-level test programs to detect permanent faults in
both modules. In the case of the PRF, the test programs generated a sequence of
conditional operations, so individual predicate flags were activated in the PRF, and
the effect was observed by conditioning the operation of an SpT on the state of the
target predicate. Similarly, the ARF was tested using specialized instructions able
to provide any test patterns inside the module. At HLL, the mapping procedure is
applied to each module independently. On the one hand, for PRF, an embarrassingly
parallel test program is developed, so each thread addresses the assigned set of
registers in the PRF in parallel. The test program consists of a sequence of operations
forcing the activation of individual predicates on the PRF. Then, after each operation,
one conditional statement is used to detect the activation of a target predicate.

Finally, updating and saving a signature-per-thread (SpT) allows for the detection
of any fault. On the other hand, there are no methods to map or design a test program
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for the ARF using an HLL. Unfortunately, this mapping is not possible because there
are no methods or functions to explicitly address the ARF. In fact, CUDA C++ or
PTX do not provide a method to state the used memory space or explicitly select the
memory address [124], so during the compilation process, the addresses are assigned,
thus compromising the application of a given test pattern. For this case, the use of
a low-level programming language (e.g., Shader ASSembly or (SASS)) is the only
alternative.

2.3.3 Warp Scheduler Memory

The warp scheduler memory is a specific module in a GPU. Thus, the development
of TPs for this module requires a combination of deterministic and custom methods
to address the operational and observability restrictions. Authors in [76] proposed
two strategies to activate and detect faults in the warp scheduler: 1) divergence
management and 2) routine placement.

The Divergence management strategy induces divergencies per thread, such as
forcing the active and inactive threads field of a given warp, so exciting a target
number of locations in the scheduler’s memory. on the other hand, the Routine
placement strategy allocates routines in different address locations seeking to excite
additional locations in the warp scheduler memory, such as the warp program counter
field. In both cases, an SpT is updated to propagate any fault effect to an observable
point.

The divergence management algorithm can directly be mapped to HLL (e.g.,
CUDA C++) as a consecutive set of conditional statements “if”, employing the
thread indices as comparison elements according to the snippet code presented in
Figure 2.2. The same idea applies to describing this testing algorithm into ILL (e.g.,
CUDA PTX) but, in this case, explicitly using the predicate instructions for compare
and jump as described in Figure 2.2. An alternative feature includes the use of
implicit parallelism to describe the divergence management at the warp level so that
each warp evaluates different conditions. In this case, software mechanisms such as
semaphores, shared variables, and events are used to pause the execution of a given
warp and force the operation of a selected one.

Unfortunately, the explicit placement strategy can not be implemented at the
CUDA C++ level, and there is no method to map this functionality at such level nor
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using CUDA PTX. Thus, in this case, the combination of HLL and LLL (e.g., SASS)
is required to maintain the fault coverage in the test program.

1 __global__ void Divergence_Stack_T(int* SpT, int* vars){
2 ...
3 int Tid = blockDim.x * blockIdx.x + threadIdx.x;
4 ...
5 if (Tid == vars[0]) {
6 . . . } ⇐ SpT_update(fault-free value);
7 else{
8 . . . } ⇐ SpT_update(fault value);
9 . . .
10 if (Tid == vars[n]) {
11 . . . } ⇐ SpT_update(fault-free value);
12 else{
13 . . . } ⇐ SpT_update(fault value);
14 }

(a)
1 .entry Divergence_Stack_T(.param, .u64 SpT .param .u64 vars){
2 ... 18 <SpT_update_fault_free_path_ops>
3 cvt.u32.u16 %r1, %tid.x; 19 continue:
4 mov.u16 %rh1, %ctaid.x; 20 ...
5 mov.u16 %rh2, %ntid.x; 21 add.u64 %rd4, %rd4, N;
6 mul.wide.u16 %r2, %rh1, %rh2; 22 ld.global.u32 %r5, [%rd4+0];
7 add.u32 %r3, %r1, %r2; 23 setp.eq.u32 p, %r3, %r5;
8 mul.wide.s32 %rd2, %r3, 4; 24 @p bra SpT_update_FF;
9 ... 25 <SpT_update_faulty_path_ops>
10 ld.param.u64 %rd3, [vars]; 26 bra continue;
11 add.u64 %rd4, %rd3, %rd2; 27 SpT_update_FF:
12 ld.global.u32 %r5, [%rd4+0]; 28 <SpT_update_fault_free_path_ops>
13 setp.eq.u32 p, %r3, %r5; 29 continue:
14 @p bra SpT_update_FF; 30 ...
15 <SpT_update_faulty_path_ops> 31 }
16 bra continue;
17 SpT_update_FF:

(b)

Fig. 2.2 An example of mapping the test strategies for the Divergence Stack into HLLs and
ILLs. (a) CUDA C++ implementation (b) CUDA PTX implementation (adapted from [3]).

2.3.4 Divergence Stack Memory

This specific module in the GPU requires a functional test method based on the
management of control-flow operations to address each location in the divergence
stack. In [73], the authors proposed two testing strategies by resorting to assembly
instructions: Nesting and syncTrick.

The Nesting strategy uses conditional branches, controlled divergences, and
nested divergences, allowing the stack pointer to move through the divergence stack
memory. On the other hand, the syncTrick exploits the functionality of the SSY
instruction to force the Divergence Management Unit (DMU) to change the stack
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pointer. This method allocates SSY operations in strategically selected locations in
the test program to create an input pattern in a new stack line.

The first strategy (Nesting) can be partially mapped into the high-level description
or intermediate language. In such cases, the procedure requires four steps: i) stack
addressing, ii) active threads management, iii) warp management, and iv) fault
propagation. The stack addressing consists of generating divergence or calling
sub-functions, so forcing the compiler to address a new line in the stack. Fig. 2.2
shows a CUDA C++ and CUDA PTX snippet sample code of conditional statements
that describe the active thread management using controlled divergences. Warp
management consists of locating the routines in selected places of the memory, so
patterns generated by the warp program counters are indirectly applied. In this case,
compiler constraints force the use of assembly instructions to locate the routines
in carefully selected locations. Finally, the fault propagation is based on an SpT
mechanism that can be directly described at a high level for each thread and performs
an arithmetic operation to identify the presence or absence of faults in the module.

Unfortunately, the mapping of the syncTrick strategy is not feasible at HLL (not
even using CUDA PTX!). The explicit use of some control-flow instructions to
optimize the stack addressing is not allowed at a high level.

2.3.5 Pipeline Registers

There exist multiple units in GPUs that are not visible to programmers. However, if
any of these units experience a malfunction, it can lead to the failure of an application
or the GPU’s operation. The pipeline registers are one such group of units that fall
under this category. These registers are spread across the GPU and store sensitive
information for the operation of the GPU core. The design of test programs for
pipeline registers requires a combination of multiple strategies, making it a complex
unit to be tested through STLs.

In [77], the authors proposed a multi-kernel approach to address the test of the
pipeline registers. One interesting aspect is that the kernels can be created at a high
level. In certain cases, the description mixes automatic and deterministic approaches.
However, due to the limitations of the HLL (e.g., CUDA C++), it is necessary
to provide a detailed description of the test program at the assembly level (e.g.,
SASS) since some locations in the pipeline registers require the evaluation of most
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instructions and formats from the ISA, which is not feasible at high-level. Hence,
in order to keep high fault coverage features, this unit requires the combination of
high-level and low-level test programs for a complete implementation of the devised
test approach.

2.3.6 Decoder Unit

Testing this unit requires executing various instructions and valid formats in the ISA.
Hence, the test engineer should have in-depth knowledge of the ISA’s specification
details. The process can be broken down into multiple stages to test the decode
unit [3]. The first stage includes logic, integer, and floating-point instructions using
different operational arguments such as immediate, register, or memory. The second
stage includes branch, control flow, and miscellaneous instructions. Each group of
instructions can have one specific test program designed by automated methods [78].

There are several limitations when it comes to describing and implementing
the proposed solution from an HLL perspective. While it is possible to generate
most instructions and formats from high-level descriptions, the instructions used
in a kernel are reduced and simplified during the compilation process to maximize
performance. This may result in limited input test patterns to the units, which in turn
affects the maximum fault coverage achievable by the test program. Unfortunately,
the compiler does not allow a straightforward mapping of the code at the CUDA C++
level to the assembly level in a fully predictable way. Additionally, the use of explicit
instructions at the PTX level does not allow for the implementation of all possible
GPU instructions either. As a result, the testing of this unit from HLL can only
be carried out using a limited number of logic, integer, floating-point, and branch
instructions. In order to keep high fault coverage, the group of instructions composed
of miscellaneous, immediate, branches, and memory addressing instructions has to
be manually added at the SASS level later.

2.4 Experimental results

The FlexGripPlus GPU model was used to validate the proposed approach, and
several ‘High-Level-Test-Programs’ HLTPs and Intermediate-Level-Test-Programs
ILTPs were developed targeting different modules inside this GPU model. The
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effectiveness of the developed STLs has been evaluated through fault simulation
experiments resorting to commercial EDA tools and considering the stuck-at-fault
(SAF) model. These fault simulation campaigns were performed on a workstation
with two AMD EPYC 7301 16-core processors running at 2.2GHz and equipped
with 128 GB of RAM memory. The FlexGripPlus GPU was configured with one
SM, 8 SPs, and 2 SFUs. The GPU model was synthesized using the 15nm NanGate
OCL synthesis library [125].

Table 2.2 GPU modules features and their STL development approach (adapted from [3]).

Unit
Type Module Num of

cells (*)
Test

Method
STL Mapping

CUDA C++ CUDA PTX SASS

Regular

Streaming Processor (SP) 206,824 A F F F
Special Function Units (SFU) 90,982 A F F F
General-Purpose Reg File (GPRF) 524,288 D F F F
Predicate Reg File (PRF) 16,384 D P P F
Address Reg File (ARF) 131,072 D - - F

Specific
Warp Scheduler mem (WSm) 5,118 D P P F
Divergence Stack mem (DSM) 273,600 D P P F

Decoder Unit (DU) 1,896
A
D P P F

Others Pipeline Regs (PRs) 2,382 C P P F
(*) Combinational and sequential cells using the synthesis library 15nm NanGate OCL
(F) Test algorithm fully mapped into the target programming language
(P) Test algorithm Partially mapped into the target programming language
(-) Test algorithm not mapped into the target programming language
A: Automated; D: Deterministic; C: Custom

The HLTPs and ILTPs were written in CUDA C++ and CUDA PTX, respectively.
These test programs were compiled using CUDA toolkit SDK 5.0 with a Compute
Capability 1.0 for FlexGripPlus GPU. Additionally, the test programs were imple-
mented on two additional GPUs (NVIDIA Jetson Nano and GeForce GTX 960M)
that were employed to evaluate the TP’s execution and observe the compilation
impact of various coding styles in different environments (CUDA SDK 11.2 and CC
5.3, and CUDA SDK 5.0 and CC 5.1).

Table 2.2 summarizes the most important features of the fundamental hardware
modules inside a GPU and the most important characteristics considered for devel-
oping STLs for testing such units. More in detail, the table reports the type of unit
(i.e., regular, GPU’ specific, or others), the specific target module (e.g., Streaming
Processor, register files), and the size of the hardware unit in terms of the number
of cells. In addition, the table indicates the test method used to develop a given
test program and the main aspects of mapping such test program specifications into
HLLs, ILLs, or LLLs.
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Table 2.3 Main features of the implemented STLs for regular units and embedded memories
of the GPU (adapted from [3]).

GPU
Module

HLSTLs (CUDA C++) ILSTLs (CUDA PTX) LLSTLs (SASS)
Duration

(cc)
Size

(instr)
FC
(%)

Duration
(cc)

Size
(instr)

FC
(%)

Duration
(cc)

Size
(instr)

FC
(%)

SP 5,366,208 76,513 86.95 5,922,414 1079 81.94 4,881,855 74,604 87.20
SFU 1,331,200 16,856 94.30 212,914 117 94.30 212,914 117 94.30

GPRF 3,256,058 698 100.00 - - - 108,958 82 100.00
ARF - - - - - - 338,240 122 100.00

On the other hand, Table 2.3 reports the implementation details and the Fault
Coverage (FC) results of the developed and implemented STLs for regular units, only.
The results show that the development of STLs using HLLs and ILs can effectively
achieve equivalent fault coverage to the ones developed using LLL description
(e.g., using SASS implementations). In fact, the effectiveness of STLs is valid for
hardware structures that are fully controllable and observable; in other words, they
are hardware structures visible to the programmer (e.g., SPs, SFUs, and GPRF).
In the case of the embedded memory ARF, the specific test algorithm reported in
section 2.3 cannot be implemented at HLL or ILL, so there is no guarantee of getting
acceptable fault coverage when relying on STLs developed in such programming
levels.

Moreover, the test duration, in clock cycles, for the high-level STLs (i.e., CUDA
C++ STLs) is longer than its equivalent LLSTL (SASS STLs) versions (from 1.1 to
6 times for SPs and SFUs). This cost can be explained by the explicit global memory
operations (reading and writing) in the HLTPs to prevent compiler optimizations.
Moreover, the test patterns must be replicated inside each block of threads to produce
the necessary redundancy in the operations inside the SM, avoiding the scheduling
intervention during the test of these units.

Similarly, the duration of Intermediate-Level STLs is longer than the equivalent
Low-Level STL developed to test the ‘Scalar-Processors’ SPs. However, the required
number of instructions in Intermediate-Level STLs is significantly reduced since the
test program description in CUDA PTX allows more friendly fine-grain management
than mISA (i.e., SASS) descriptions, allowing a flexible allocation of operands
in memory as well as embedded in the instructions as immediate constants. This
memory management also increases the degree of parallelism in CUDA PTX, helping
the reduction of test programs. In the case of STLs for SFUs, the description of the
Intermediate-Level test program is more straightforward, permitting the generation
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of a test program remarkably similar to the equivalent directly developed using
Low-Level languages.

Notably, the FC achieved in high-level test programs and intermediate-level
test programs for testing the SP cores can sometimes be moderately lower than
the FC achieved by the equivalent test programs developed using device assembly
directly (e.g., SASS). The main reason behind this slight FC reduction is the SpT
computation, which uses logic/arithmetic instructions in the SPs. Although the
SpT algorithms encoded in high-level and intermediate-level test programs are
functionally equivalent, the compiler produces different SpT versions compared to
those at the low level using SASS. Consequently, the FC capabilities of these test
programs vary (the patterns produced by the SpT on SPs strongly depend on the
mISA instructions used for that purpose).

Table 2.4 Main features of the implemented STLs for the special units of a GPU (adapted
from [3]).

GPU
Module

CUDA C++ CUDA PTX SASS
Duration

(cc)
Size

(instr)
FC
(%)

Duration
(cc)

Size
(instr)

FC
(%)

Duration
(cc)

Size
(instr)

FC
(%)

WSm 98,480 276 38.20 - - - 112,200 392 100.00
DU 2,150,612 12,354 68.75 1,589,678 12,116 73.74 6,125,561 65,653 80.10

DSM 987,526 875,422 35.10 - - - 1,030,473 12,524* 98.40
PRF 1,750,023 392 28.00 - - - 1,890,106 434 100.00
PRs 649,400 22,292 80.20 - - - 1,204,097 27,492 95.10

(*) The use of SASS instructions allowed a significant reduction in the total size of a TP

Table 2.4 reports the main features results of the test programs developed for the
distinctive GPU’s units (i.e., warp scheduler, divergence stack, and decoder units),
predicate registers, and pipeline registers. As the reader can notice, the high-level
test programs have limited testing capabilities (about 28% to 68.75% FC) due to
the partial mapping of the evaluated test algorithms into HLLs (i.e., CUDA C++)
combined with the compilation impact. Indeed, the test of these modules resorts to
specific algorithms, which are functionally characterized by low performance. Thus,
the compiler modifies the code, following unavoidable optimization philosophies
that affect the achieved FC. In fact, the compiler takes the high-level test programs
and produces an optimized version of it, maintaining the functional equivalence, but
it removes or changes the execution order of operations, so affecting the FC and
producing a negative impact on the testing capabilities of the high-level test program.
Consequently, to guarantee fault detection capabilities, it is necessary to adopt hybrid
approaches, which means combining portions of the test program using high-level
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languages with portions added manually using assembly instructions. In fact, these
hybrid strategies were applied to the PRFs units and DSM units, allowing the test
programs to reach an FC of 100% and 98.41%, respectively.

It is worth noting that such additional assembly instructions in the hybrid test
programs are required to inject additional test patterns by addressing a module in
specific conditions (i.e., addressing memory locations or addressing different stack
lines in the DSM). It is important to mention that for the DSM, the final insertion
of assembly instructions also reduced the routine complexity, so compacting the
test program. Nonetheless, the test engineer decides when such manual addition of
instructions is justified considering the tradeoff between productivity, the effort for
the test program generation, and the test coverage improvement.

On the other hand, the Intermediate-Level test programs to test the WSm, DSM,
PRF, and PRs produced identical results in terms of duration, size, and FC obtained
from the equivalent ones developed using high-level languages. This characteristic
behavior is mainly due to the deterministic nature of the test methods used to test
such modules, (e.g., based on specific operations, such as conditional statements
to induce controlled divergence). However, the Intermediate-Level test program
for the DU reaches higher coverage (73.74%) than equivalent ones using high-level
languages that reach only 68.75%. In fact, the direct usage of some miscellaneous
and control-flow instructions at the CUDA PTX level provides fine-grain control to
produce test patterns, which cannot be generated using CUDA C++.

Finally, the test programs implemented using only high-level or intermediate-
level languages can test around 50.6% out of the GPU’s faults, and represent 9.3%
of the size of the STLs. Moreover, hybrid STLs, improved by additional mISA
instructions, can test 45% of the faults and occupy 90.6% of the size of the STLs.
Additionally, based on our experience, the adoption of High-Level languages for
STL’s development decreases the development time by about two orders of magnitude
(for the functional units), and one order of magnitude (for other modules), resorting
to the combination of CUDA C++ and SASS. Actually, this development time
reduction is aligned with the statements presented by [122, 123] regarding improving
programmer’s productivity when adopting High-Level languages for application
development, so demonstrating that this productivity improvement is achievable
also when developing STL for GPUs as well. On the other hand, the adoption of
intermediate-level languages for the development of STLs offers higher flexibility,
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reducing the development effort by around 30% with respect to the direct use of
assembly language for the development of the same test programs or STLs.

2.5 Final remarks

This chapter introduced a methodology for adopting high-level and intermediate-
level programming languages for developing test programs and software test libraries
(STLs) applied to the in-field testing of GPUs under the Software-Based Self-Test
(SBST) approach. The proposed method leverages the divide-and-conquer strategy
to create test programs targeting individual GPU hardware modules, simplifying the
development process. This modular approach allows the adaptation or generation
of test procedures, especially tailor-made for each of the GPU units. The selected
test procedures are then mapped into test programs using high-level languages,
paying special attention to suitable coding styles to either accurately describe the
test algorithms or prevent compiler optimizations.

The experimental evaluation shows that high-level or intermediate-level pro-
gramming languages can be effectively used to detect permanent faults in GPUs
when test programs are developed to test regular units in the GPU (e.g., functional
units or register files), since those hardware structures are visible resources to the
programmer, providing high controllability over test patterns and fault observability.
On the other hand, the fault detection capabilities are limited when targeting more
complex units such as schedulers and controllers. In such cases, the test programs
need to be enhanced after the compilation with some specific instructions removed
or not included by the compiler.

In general, developing STLs for GPUs using high-level or intermediate-level
programming languages is a good solution when the GPU ISA specifications are re-
stricted, or the documentation is not fully available. Nonetheless, there are constraints
and challenges in the development of STLs using such programming abstractions
as pattern controllability and fault observability. In addition, compiler intervention
plays a crucial role in the generation of the final test program and its fault-detection
capabilities.

Although STLs provide acceptable fault detection capabilities, combining them
with other in-field test strategies is necessary to achieve maximum coverage. For
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example, in a given safety-critical system like an autonomous vehicle, the power-
on and power-off test can be applied using built-in self-test solutions (e.g., BIST,
MBIST, among others). On the other hand, the STLs can be embedded in the
system’s software to apply periodic tests during the system operation, leveraging
the idle states of the GPU to detect any malfunction. In addition, the STLs have the
potential to detect different fault models besides stuck-at faults, such as delay and
cell-aware faults. Nonetheless, the fault coverage capabilities can be significantly
limited, requiring additional test pattern sequences or algorithm improvements that
are not covered in the present thesis, opening further research fronts in the future.



Chapter 3

Compaction of STLs for GPUs

This chapter introduces for the first time a time-efficient compaction method, which
aims to reduce the size and duration of self-test libraries (STLs) used for testing
CPUs or GPUs. This novel test compaction approach was previously published by
the author of this thesis in [4] and [5]. This method is based on the knowledge
of the structure of most test programs, which consist of a sequence of instructions
grouped in blocks, also known as basic blocks [126]. The basic block structure is
common in test programs that are created by converting test patterns generated by
combinational Automatic Test Pattern Generators (ATPGs), evolutionary approaches,
or pseudorandom approaches.

This basic block structure allows for easy identification of portions of code that
do not detect faults so that we can remove them from the test program, making
it more compact and efficient in terms of size and duration. More in detail, the
novel compaction approach presented in this chapter employs different abstraction
levels (i.e., software, RT level, and gate level) to perform only ONE logic simulation
and ONE fault simulation, thus significantly reducing the required time to obtain a
compacted version of the test programs and having minimum impact on the FC with
respect to the original one.

In both logic and fault simulations, several parameters are collected and extracted
to support the compaction of test programs and STLs. Firstly, a logic simulation
using the RT-level model of a given device (CPU or GPU) is used to gather detailed
tracing information about the executed test program in every clock cycle. Secondly,
a fault simulation is performed using the gate-level version of the circuit or target
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core. This fault simulation also records the number of faults detected at each clock
cycle. The results obtained in both simulations are used to identify those instructions
at the software level (i.e., basic blocks) that are unable to stimulate or propagate fault
effects in a target module, so they are listed as candidates for elimination.

The main contributions can be summarized as follows:

• Elaboration of the main concept of the proposed compaction methodology for
STLs in CPU cores

• Extension of the proposed compaction methodology from the CPU concept to
GPU scenarios, considering the parallelism and operational characteristics of
such devices.

3.1 Background

Safety-critical applications increasingly employ CPUs and GPUs as the main workhorse
to perform complex operations and process large amounts of information (e.g., for
artificial intelligence and sensor fusion operations). However, in this domain, ef-
fective methods to identify possible permanent faults arising in such devices and to
face their effects are crucial goals set by functional safety standards. Software-based
self-testing (SBST) is an effective testing approach developed for processors and
GPUs through the generation of a set of Test Programs (TPs) known as Self Test
Libraries, as described in chapter 1.

When working with STLs, it is important to keep in mind that each Test Program
requires a specific amount of time to be executed. However, there may be various
application constraints that limit the available execution time. To overcome this
challenge, it is ideal to have shorter and faster test programs that can be easily
adapted to the available time slots during in-field tests. One way to achieve this is by
using compaction methods, which can optimize the test programs and STLs in terms
of size (i.e., memory footprint) and duration (i.e., amount of clock cycles). However,
the compaction of any test program can be a challenging task, since identifying and
reducing portions of test programs that are not capable of detecting faults depends on
several aspects, such as the type of hardware (e.g., CPU or GPU), the test program
generation method (e.g., custom, ATPG-based, pseudorandom, deterministic), and
the required time to make the compaction.
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3.1.1 Related works

Several works have proposed methods to compact test programs targeting processor-
based systems. These techniques reduce the size and duration of a test program
without affecting the Fault Coverage features. Most of these techniques are based
on complex evolutionary algorithms, instruction classification, and removal, or a
combination of both.

Authors in [127] proposed a compaction method based on an evolutionary ap-
proach. This method transforms a TP into several small segments (or spores). Each
spore program detects a portion of faults from the original program and, once
combined, detects the same number of faults as the original program. Then, an evo-
lutionary procedure is performed to get a subset of spores that allow the same fault
coverage as the original test program. It is important to mention that the compaction
cost of this method is significantly, high since hundreds or thousands of iterations
are required in order to obtain acceptable results.

In [85], authors introduced another compaction evolutionary technique to com-
pact test programs developed for CPUs. The authors propose a technique called
genetic programming that removes redundant instructions in the final test program
that do not contribute to any fault detection capabilities. In addition, the authors
demonstrate that their genetic programming method shows equivalent fault coverage
than classical approaches using manual and random test program generation. In
addition, they demonstrate that the genetic programming technique significantly
reduces the size and duration of the generated test programs in comparison with
other test program generation strategies.

In [84], authors presented a static compaction technique for test programs de-
veloped for CPU testing. This compaction approach considers the availability of
a collection of test programs or a Self-Test Library (STL) designed to test several
units of a CPU. In this regard, it is possible that some test programs designed for a
given hardware structure A are also capable of testing or detecting faults on another
hardware unit B. Under this reasoning, they propose to remove those test programs
from the STLs, so that their fault detection capabilities can be covered by other test
programs. In this case, only a subset of test programs are considered fundamental
for testing the whole CPU, which also reduces the test time and maintains the same
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global Fault Coverage. Nonetheless, their approach is not capable of reducing further
instructions or portions of the test programs that are not capable of detecting faults.

Authors in [128, 83] presented two compacting methods based on the removal
of instructions from a given test program. The first method is called compaction by
instruction removal (A0). This compaction approach takes the original test program
and creates a new one by removing one instruction at a time. For every new test
program (A0), a complete fault simulation is performed to observe the effect of
the instruction removal in terms of fault coverage. If the instruction removal leads
to a fault coverage reduction, then such instruction is reinserted in the program.
Otherwise, the instruction is deleted permanently from the test program. This
procedure is repeated iteratively for all available instructions in a test program.

The second compaction method proposed by the authors is called Restoration-
based Algorithm (A1xx). This algorithm initially splits the test program into small
blocks of instructions. Then, one block of instructions is removed, and each instruc-
tion is individually added to the main program to reach the original fault coverage.
If one instruction inside the block does not increase the fault detection capabilities, it
is removed permanently from the block of instructions.

Finally, authors in [82] described a compaction mechanism for test programs for
MIPS processors. The method is composed of two stages. The first stage identifies
redundant instructions using dependency data graph techniques. This graph analysis
permits the identification of the data dependency among instructions in order to
determine the group of instructions that directly interact in the detection of a fault of
a set of faults, preventing the removal of individual instructions that are essential for
the test. The second stage reuses the A1xx idea and exploits optimization approaches
to reduce the computational cost when executing the compaction algorithm.

Most previous research on the compaction of test programs for in-field test
mainly resorts to complex optimization algorithms (e.g., evolutionary algorithms) or
iterative approaches that significantly increase the compaction cost. Moreover, these
compaction methods usually require a high number of fault simulations proportional
to the length of the original test programs (i.e., in terms of the number of instructions),
which exacerbates the compaction costs. It is worth noticing that none of the reported
techniques in the literature face the compaction of test programs and STLs for GPUs,
and some of them can hardly be extended from CPUs to GPUs either.
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In order to face the complexity and compaction cost presented by other ap-
proaches, this thesis introduces a novel compaction approach that relies on three
main aspects: software description, logic simulation, and fault simulation. The logic
simulation extracts the microarchitectural status of the circuit by generating a tracing
report during the execution of the test program on the target device. Then, ONE fault
simulation creates a report of detected faults per test pattern on the target unit. The
information from these two simulations allows us to identify the relationship between
the fault detection capabilities of each instruction in a test program. This correla-
tion enables the identification of the main candidate’s instructions for compaction.
Moreover, the compacting approach exploits the microarchitecture-instruction-fault
relation to reduce test program size and duration with minimal impact on the final
fault coverage.

3.2 Compaction of STLs for CPUs: main concept

3.2.1 Proposed methodology

The proposed approach assumes that a Self-Test Library for a given CPU processor
is available and can be divided into test programs. Each test program is composed
of a given number of instructions, lasting for a certain amount of clock cycles, and
achieving a certain fault coverage with respect to a given fault model. Moreover,
those test programs can be split into sets of instructions called Basic Blocks or (BBs),
each corresponding to a consecutive group of instructions, which are always executed
in sequence (no branches or jumps in/out the BB) [126].

More in detail, the structure of a BB in a typical test program comprises instruc-
tions to perform three main actions:

1. One or several instructions devoted to loading test data into registers

2. One or several instructions using these loaded values to stimulate some target
module

3. One or several instructions dedicated to making the results produced by the
target module visible on some observable point.
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Fig. 3.1 A general scheme of the proposed compaction approach applied to STLs developed
for in-field testing of CPUs (adapted from [4]).

The proposed compaction approach introduced in this chapter resorts to BB
removal without restoration, combining logic tracing information of the test program
with fault simulation results. More in detail, this compaction approach comprises
five consecutive stages: 1 Test program partitioning, 2 Logic tracing, 3 Fault
detection analysis and instruction labeling, 4 Program reduction, and 5 Test pro-
gram reassembling. Figure 3.1 depicts the steps and the main flow of the proposed
compaction approach.

In the first stage, the program partitioning stage, Figure 3.1 1 , the test programs
or STLs are analyzed to select or identify the portions or regions of the original
test program that are candidates for the compaction. Such portions of test programs
are characterized by including at least one unconditioned BB, i.e., a BB that is
executed only once and does not depend on any condition to be executed. Thus,
this compaction approach considers those regions in a test program (composed of
unconditioned BBs, only) as admissible regions [86], while the other parts are not
candidates for compaction and remain unaffected. This partitioning process can be
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easily automated. Moreover, the other stages only consider the admissible regions of
each test program.

The logic tracing stage, Figure 3.1 2 , aims to collect information during the
execution of the test program on the microarchitectural level of the processor in
order to later identify the relationship between each instruction inside each BB and
its effects in terms of fault detection capabilities. In this stage, each test program is
analyzed using one RTL logic simulation and one gate-level (GL) logic simulation.

On the one hand, the RTL logic simulation provides the main execution infor-
mation, per clock cycle, about the test program with respect to the target device.
This simulation produces one tracing report that captures the detailed information
of the HW-SW interface. The tracing report contains the following information: i)
the program counter value, ii) the decoded instruction (i.e., mnemonic), and iii) the
clock cycle. In order to generate this tracing report, one hardware monitor must be
included in the RTL model of the device that generates the report and captures the
status information in the execution pipeline stage. This instrumentation of the RTL
design enables flexibility, such as the results of the executed instructions, which can
be observed in the memory bus system or in any other observation point inside the
pipeline. Therefore, any malfunction caused by a fault can be identified at any of
these points without tracing each pipeline stage.

On the other hand, the GL logic simulation runs each test program and generates
the input sequence of logic values per clock cycle, also known as test patterns.
In other words, These test patterns are extracted as I/O switching activity for the
target processor or component inside the processor and are employed by the fault
simulation in the next stage.

The fault detection analysis stage, Figure 3.1 3 , is divided into two steps: (1)
fault simulation and (2) instruction labeling. In the first step, ONE fault simulation is
performed on the gate-level description. This fault simulation employs, as inputs, the
test patterns generated by the GL logic simulation in the previous stage. Moreover,
the fault observation point is restricted to the memory bus system. During the
fault simulation, one fault is detected when there is a difference between the fault-
free system and the current faulty system at any clock cycle. The fault simulation
generates a report containing the list of all test patterns and the number of faults
activated and detected by each test pattern. It is worth noting that the proposed
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compaction method only requires ONE fault simulation for each test program under
analysis.

Algorithm 1 Instruction labeling algorithm (adapted from [4]).
Input: Test program TP, Tracing clock cycle report CC, Tracing program counter report PC, Tracing
decoded instruction report DI, Fault sim test patterns report FSR
Output: Labeled test program TPL
1: for each clock cycle k in CC do
2: if FSR(k) detects faults then
3: if DI(k) matches TP(PC(k)) then
4: TPLk:= (essential, TP(PC(k))
5: end if
6: else
7: TPLk:= (not essential, TP(PC(k))
8: end if
9: end for

The second step (instruction labeling) correlates the fault simulation report and
the collected trace information from the RTL logic simulation. The Algorithm 1
provides deeper insights into this instruction labeling procedure. first, the labeling
procedure requires five inputs: i) the test program source codes in assembly language
(TP), ii) the tracing clock cycle report (CC), iii) the tracing program counter (PC)
on every clock cycle, iv) the tracing instruction opcodes or decoded mnemonics
(DI) per clock cycle, and v) the fault simulation report per test pattern (FSR). Then,
the labeling algorithm generates a new test program version (TPLk) where every
instruction has one out of two labels "essential" or "not essential" according to the
fault detection capabilities. Finally, in order to identify whether an instruction is
"essential" or not, the labeling algorithm iterates over every clock cycle k in the
CC report and identifies the test patterns FSR(k) associated with the instruction in
the same clock cycle k. This instruction matching takes the executed instructions,
which are registered in the tracing report on a given clock cycle (k), and crosschecks
the number of faults detected by the equivalent test pattern in the fault simulation
in the same clock cycle k (i.e., lines 2 to 3). If the fault simulation reports that
the test pattern FSR(k) provides fault detection capabilities on such k clock cycle,
the associated instruction is then backtracked in the source code and consequently
labeled as “essential.” Otherwise, the instruction is labeled as “not essential,” and it
becomes a candidate instruction that needs to be removed from the program since it
does not contribute to the detection of any fault.
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Algorithm 2 Reduction algorithm applied to test programs used to remove basic blocks (adapted
from [4]).
Input: Labeled Test program TL with I instructions divided into m consecutive BBs (BB1, BB2,
BB3, . . ., BBm);
Output: Compacted test program TC
1: for each basic bloc BBx in TL do
2: for each instruction in BBx do
3: if label of instruction is essential then
4: TC: append (BBx)
5: continue to next basic block
6: end if
7: end for
8: end for

The fourth stage (Program reduction in Figure 3.1 4 ) analyzes and reduces the
labeled test programs by removing not essential BBs. The Algorithm 2 describes
the reduction algorithm used in the compaction approach presented in this thesis.
The reduction procedure requires inputs from the labeled test program obtained
from the previous stage, which must be divided into consecutive basic blocks. Then,
the reduction algorithm examines instruction by instruction, each BB in a given
labeled test program (TL). When at least one instruction inside the BB is marked
as “essential,”, the entire BB cannot be removed from the test program because
that means that all instructions in the BB collectively contribute to detecting faults
on the target core. Therefore, such essential BB is added to the final compacted
test program (TC). This procedure effectively discards only those BBs in which all
instructions are labeled as “not essential.”

Finally, the last stage of the compaction strategy (Reassembling in Figure 3.1 5 )
replaces the original version of the test programs using the new one obtained from
the compaction procedure. Finally, an additional fault simulation can be used to
validate the fault coverage obtained after the compaction of the test programs or the
complete STL. This last step permits the assessment of the quality of the compaction
in terms of test duration, memory footprint, and fault coverage.
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3.2.2 Study cases

This section showcases the case studies of STLs and test programs that were em-
ployed to evaluate the effectiveness of the compaction strategy proposed. The first
group of STLs and test programs were selected to analyze the efficiency of the
proposed compaction approach on the RI5CY processor core of the Parallel Ultra
Low Power (PULP) platform. It is noteworthy that the suggested compaction method
can be customized to suit any other CPUs.

Table 3.1 Number of faults per module in the RISCY processor (adapted from [4]).

Module in the CPU Number of faults
Instruction Fetch 24,148

Instruction Decode 50,340
Execute 63,878

LSU 4,442
CS Registers 6,958

Frontend 11,270
Full CPU 161,036

This research work selected a RI5CY processor and its test programs and STLs
in order to assess the effectiveness of the proposed compaction strategy. The RI5CY
is a pipeline 4-stage RISC-V processor core that belongs to the open-source PULP
platform [129]. For the purpose of this work, the processor was synthesized using
the 45nm Nangate OpenCell library [130]. Table 3.1 reports the list of the main
modules that compose the RI5CY processor with the number of stuck-at faults for
each fault.

This work resorts to five STLs specially designed to test stuck-at faults on the
RI5CY core processor. The selected STLs were developed using different approaches
(i.e., random and deterministic [78]) targeting the main components of the CPU
(Execute unit, Registers File, Instruction decode, Instruction fetch, and Load Store
Unit). The STLs include test programs whose admissible region for compaction
(ARC) reaches 100%. These test programs correspond to those specially designed to
test the Execution unit (TEx) of the processor.

Table 3.2 reports the main features of the selected STLs and their TEx. More in
detail, the table includes the size, the duration in clock cycles (cc), the fault coverage,
and the percentage of the test program cataloged as admissible region as explained
in section 3.2.1. From the table, we can notice that variation in the test program
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Table 3.2 Main features of the considered test programs (adapted from [4]).

Benchmark Size (instructions) Admissible region (%) Duration (cc) FC (%)
STL1 13,845 41.75% 126,706 82.97
STL2 64,390 97.04% 374,138 85.04
STL3 91,623 82.87% 977,012 85.04
STL4 218,467 98.16% 601,966 86.59
TE1 5,780 100% 8,589 88.14
TE2 33,034 100% 79,152 91.68
TE3 60,594 100% 84,580 94.93
TE4 206,306 100% 439,954 95.84

construction significantly changes the admissible region for compaction. Thus, the
compaction can be applied to 100% of the TEx. Nonetheless, when analyzing full
STLs, some of the test programs are described using complex structures or deter-
ministic algorithms that are not necessarily suitable for compaction. For example,
41.75% of the source code of STL1 can be considered a candidate for compaction,
significantly limiting the compaction capabilities of the proposed method.

In the following, further details about the main characteristics of every STL are
provided.

The STL1 is composed of three main test programs, each test program target-
ing individual modules in the CPU. The first test program implements the March
algorithm specially developed to test the register files and the control and status
registers of the processor [131]. The second test program targets the execution
units of the processor TE1. This test program comprises instructions that target the
individual test of internal units such as the ALU, Dot Product Unit, Multiplier Unit,
and Divider Unit. Each instruction in TE1 was generated using an ATPG tool. Then,
every ATPG-generated test pattern was transformed into one or a short sequence of
instructions that perform three main steps: i) loading the test pattern into registers,
ii) issuing the instruction that activates the target unit under test, and iii) propagating
the obtained results to an observable point to check if the results correspond with
the expected ones. The last test program consists of several deterministic routines
specially developed to test processor control units, such as load/store units and
decoder fetch, among others.

The STL2 comprises several test routines combined in seven independent test
programs. The test programs created to test the register file and the execute unit
were developed using procedures similar to those presented in STL1. One March-C
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algorithm targets the test of the register files, and ATPG-generated test patterns target
the execution units (TE2). Some additional test programs use nested loop-based
algorithms to take advantage of the CPU’s hardware loop features. Those loops use
multiply and divide instructions and contribute to the increment of the fault coverage
of the execute unit. Finally, a subset of test programs implements control flow
instructions in combination with deterministic algorithms in order to increase the
fault coverage in control units of the processor, such as fetch, decoder, and load/store
units of the processor.

The STL3 corresponds to a collection of six independent test programs. This
STL also resorts to the March-C algorithm to test the register file in the CPU, as
introduced in STL1 and STL2. The test programs developed for testing the execution
unit resort to pseudorandom instructions. In fact, a special instruction generation tool
automatically generates test programs (TE3) composed of sequences of instructions
targeting all operations in the execution unit of the processor. More in detail, the TE3
is built using a fixed basic block (BB) structure and size. Each BB contains three
parts: i) register initialization using random data, ii) instruction selection (selecting
one random instruction taken from the available ISA of the CPU). In this case, branch
and control-flow instructions are discarded, and iii) fault propagation, using one
store instruction to propagate any fault effect to one of the available observation
points. Each instruction’s source and destination registers are selected randomly, and
each register can only be used once. Additionally, one test program tests faults on
the hardware loop core, which incorporates multiplications and division operations.
Thus, this test program also contributes to increasing the fault detection in the
multiplier and the divider cores, following a similar procedure to the one presented
in STL1 and STL2.

Finally, the STL4 is divided into two main independent test programs: one
specially designed for the test of the execution unit (TE4) and another one composed
of multiple routines designed to test the other modules of the processor. The TE4
follows a similar construction approach as TE3, but in this case, every BB has a
random length that varies from 2 to 10 instructions. In STL4, the other test programs
use loop-based algorithms to read test data from memory and then apply such test
patterns in an interactive process. The test data stored in memory was previously
generated using a pseudorandom tool. Finally, STL4 includes some additional
routines, which were added manually, to test the load-store unit of the processor.
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3.2.3 Experimental results

The proposed compaction approach was implemented as a tool written in Python
language. This tool interacts with one commercial logic simulator and one commer-
cial fault injector simulator, composing an environment to analyze and compact the
selected STLs. Both simulators (logic and fault injector) can handle the RTL and
GL description of the selected hardware models. The RI5CY processor was taken
from the PULP platform, using a special testbench to simulate both the RTL and
gate-level simulations.

For the experiments, the RI5CY processor was synthesized using the 45nm
Nangate OpenCell library [130]. During the fault simulation experiments, around
262,000 faults were evaluated.

The simulation reports employed during the compaction process are generated as
text files. The test patterns employed in the fault simulation of the target modules
employ the extended Value Change Dump (VCDE) format. The compaction proce-
dures and experiments were performed on a workstation with two AMD EPYC 7301
16-core processors running at 2.2GHz and equipped with 128 GB of RAM memory.

Table 3.3 reports the main results of the compaction approach applied to each test
program (TEx), considering only faults in the execute unit of the RI5CY processor.
According to the results, the proposed compaction approach can greatly reduce
both the size (up to 93.9%) and the duration (up to 95.08%) for the evaluated test
programs (TEx).

Table 3.3 The compaction results in the test programs for the Execute unit (adapted from [4]).

Test
Program

Compaction
Size Duration Diff FC (%) Compaction time (min)(instr) (%) (cc) (%)

TE1 3,864 -33.15 5,860 -31.77 -0.07 5.32
TE2 5,806 -82.42 10,915 -86.21 -0.40 7.05
TE3 4,999 -91.75 7,299 -91.37 -0.11 10.52
TE4 12,581 -93.90 21,660 -95.08 -0.06 15.35

In principle, the observed compaction effects are directly related to the descrip-
tion style of the test programs and the capacity of each instruction to propagate
any possible fault effect to one of the available observation points. In fact, the
style of description defines the granularity of the basic blocks (few to hundreds of
instructions). A deep analysis of the test programs revealed that all of them (TEx)
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use a few instructions per basic block without control-flow instructions (the basic
blocks in TE1 and TE2 are in the range of 6 to 8 instructions. TE3 has a size from
13 to 60, and TE4 has basic blocks with 3 to 6 instructions), so allowing fine grain
compaction by evaluating and possibly removing each basic block.

TE1 has the shortest size among the analyzed test programs. Interestingly, the
compaction strategy was able to remove 1,916 ineffective instructions. Furthermore,
the size of TE2, TE3, and TE4 was reduced by 82%, 91%, and 93%, respectively.
Although TE1 and TE2 were created by resorting to an ATPG, the compaction
technique demonstrates a good capacity for removing a significant number of unnec-
essary instructions included during the parsing step that transforms test patterns into
instructions.

A deep analysis of the larger test programs (TE2, TE3, and TE4) revealed that
the initial set of basic blocks contains the test patterns (or instructions) able to detect
a significant amount of faults, so the removal of those basic blocks is not possible,
given the characteristics of the compaction method. In contrast, the basic blocks
in the middle and at the end of the test programs contain redundant test patterns
with less fault detection capabilities. This test pattern redundancy also favors the
removal of useless instructions, enabling the test program compaction both in test
duration and size, as observed in Table 3.3. Finally, the compaction also contributes
to reducing the memory footprint of each test program by an identical percentage.

According to the results, there is a proportional relation between the percentage
of reduced size and compacted duration of each test program. In fact, the high
percentage of fine-grain basic blocks in all test programs (100.0%) allows compaction
with a similar percentage of reduction for both (size and duration). The proposed
compaction method can reduce up to 95.05% of the duration for the longest analyzed
test program TE4. As explained above, several instructions produce redundant test
patterns, which are weak in detecting faults from the execution unit. Then, those
“redundant and weak” instructions are removed with minimal effect on the fault
coverage. This can be observed in the minimal fault coverage difference (Diff)
between the baseline test program and its compacted version reported in Table 3.3).

The results demonstrate that the proposed compaction method provides outstand-
ing compaction capabilities for all of the test programs analyzed. In fact, there was a
significant reduction in size and duration. It is worth noting that the test program
compaction approach maintains a fault coverage with similar detection capabilities
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as the original test program versions. Moreover, the results show that the fault cov-
erage of each test program is reduced by a small percentage (from 0.01% to 0.4%).
Although the fault coverage reductions were minimal, it is important to mention
that the compaction method eventually can remove basic blocks involved in data
dependencies with other consecutive basic blocks. This behavior appears when a
basic block requires input data from a previous basic block eliminated from the test
program since the compaction approach labeled it as not essential, so the missing
basic block does not perform the required operations that are fundamental for the
“essential” basic blocks. A deep analysis of the test programs showed that this fault
detection degradation due to basic block elimination was less frequent than 1% of all
basic blocks.

On the other hand, additional evaluations were performed considering the com-
plete STLs. First, the STLs were analyzed by considering only the admissible region
for compaction (ARC) to assess the proposed method’s compaction capabilities.
More in detail, the admissible region of every STL was extracted and reduced ac-
cording to the strategy presented in this chapter in total: two test programs for STL1,
thirteen for STL2 and STL3, and five for STL4.

Table 3.4 The compaction process results of each STL in the admissible region (adapted
from [4]).

Benchmark
Compaction of the admissible region of each STL

Size Duration Diff FC (%) Compaction Time
(instr) (%) (cc) (%) (hours)

STL1 3,864 -33.15 5,860 -31.77 -0.07 0.28
STL2 33,706 -46.06 182,456 -32.95 +0.08 7.16
STL3 18,939 -75.06 76,745 -82.82 -0.11 8.04
STL4 16,263 -92.42 25,436 -84.95 -0.29 4.18

The results reported in Table 3.4 show that the compaction of the ARC only
shows minimal impact on the fault coverage (<0.29%) when considering all sets of
test programs per STL. Interestingly, in STL2, the fault coverage slightly increased
by 0.08%; this happens due to the data dependencies between a removed basic block
and the one that is still essential for testing a given unit. As explained before, the
elimination of a basic block creates either an essential or redundant test pattern
that, in this case, contributes to detecting additional faults. On the other hand, the
compaction approach reduced the size of the admissible region of the STLs in the
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range from 33.15% to 92.42%, and the duration was reduced in the range of 31.77%
to 84.95%.

According to the results in the admissible region, the percentage of the reduction
in size and duration is slightly lower with respect to the reduction of only TEx. This
difference is caused by a bigger granularity in the basic blocks in other test programs
targeting other units in the processor, e.g., decoder or controller units. In such cases,
larger basic blocks with at least one essential instruction must be preserved in the
test program; in consequence, the reduction is limited by such granularity in some of
the STLS. For example, the STL2 contains several test programs composed of basic
blocks that include between 60 to 135 instructions, making it difficult to reduce the
number of instructions in a finer grain.

Table 3.5 Results showing the compaction impact on the entire STL (adapted from [4]).

Benchmark
Compaction STLs

Size Duration Diff FC (%) Compaction Time
instr (%) (cc) (%) (hours)

STL1 11,929 -13.84 123,977 -2.15 -0.07 0.28
STL2 37,513 -41.74 287,967 -23.03 +0.08 7.16
STL3 50,322 -45.08 884,973 -9.42 -0.11 8.04
STL4 24,314 -88.87 178,985 -70.27 -0.29 4.18

Finally, Table 3.5 reports the main compaction features when considering the
complete STLs. The results indicate that the STL4 has an outstanding compaction
rate in terms of test duration (70.27%) and size (88.87%). In contrast, the compaction
method achieves a moderated size reduction for STL1, STL2, and STL3 in the range
of 13% to 45%. Unfortunately, the reduction of the test duration achieved for STL1
and STL3 is low (<10%) and moderate for STL2 (23.03%). It is worth noting that
these results can be explained due to the composition of the STLs, where less than
50% of STL1 and STL3 can be considered admissible regions for the compaction.
This characteristic in the STLs limits the capabilities of the proposed compaction
approach to provide higher levels of compaction for those STLs.

It is crucial to underline that the compaction time required by the proposed
compaction strategy relies only on one fault simulation campaign per test program.
In detail, the compaction procedure applied to the test programs targeting the faults in
the CPU’s execution units takes 5 to 12 minutes. On the other hand, the compaction
time of complete STLs varies due to factors like the number of test programs, the size
of every test program, and the required time to perform a complete fault simulation
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campaign with all the faults in the CPU. In this work, the experiments showed that
the maximum required time for the completion of a complete STL reaches 8.04
hours.

Despite the fact that every test program analyzed in the experiments contained
thousands of instructions and the target processor accounts for more than a hundred
thousand faults, the proposed compaction approach demonstrated outstanding com-
paction capabilities by resorting to only one logic and one fault simulation campaign.
These characteristics significantly reduce the complexity and effort with respect
to those required by other techniques presented in the state-of-the-art to provide
similar compaction results. In fact, several works [127, 85, 78, 83, 82, 86] have
developed techniques that can reduce the size and the test duration of both STLs and
test programs using procedures that require as many fault simulations as the number
of instructions in the test programs. In the end, for those methods, the required
compaction time is proportional to the number of fault simulations, usually in the
order of hundreds or thousands of fault simulations. Thus, the results obtained in the
context of CPUs make the proposed compaction approach an excellent candidate for
compact, more complex STLs in the GPU domain.

3.3 Compaction of STLs for GPUs

3.3.1 Proposed metodology

The main concept of the compaction strategies applied to STLs for CPUs can also
be adapted to STLs and test programs developed for GPU testing. In this case,
additional aspects related to the particular characteristics of parallelism and test
programs must be considered. In the first place, the proposed compaction method
assumes the availability of a Self-Test Library (STL) for a particular module or the
entire GPU. Such STLs are composed of Parallel Test Programs (PTPs) generated
by different methods, even using high-level programming languages such as CUDA
C++ or OpenCL, as introduced previously in chapter 2. It is worth noting that the
STLs or test programs for the compaction must be available at the assembly level
using the machine ISA (i.e., Shader ASSembly for NVIDIA GPUs). In the end,
every PTP is composed of a given number of GPU’s instructions and targets a given
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fault model with a required execution time (clock cycles or ccs) and a fault coverage
per target module in the GPU.
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Fig. 3.2 A general scheme of the proposed compaction approach for functional TPs in GPUs
(adapted from [5]).

The compaction method applied to STLs for GPUs follows an identical proce-
dure to the one developed for the compaction of STLs for CPUs introduced in the
previous subsection. Figure 3.2 illustrates the compaction flow of STL for GPUs,
which comprises five main stages: 1 STL partitioning, 2 Logic tracing, 3 Fault
detection analysis and instruction labeling, 4 Test program reduction, and 5 STL
reassembling.

The program partitioning stage ( 1 in Figure 3.2) analyzes all test programs in
the STLs and selects those ones that are candidates for the compaction. This analysis
consists of the identification of the portions of the test programs called Admissible
Regions for Compaction (ARCs). The identification of these ARCs follows three
steps. The first step defines and finds the Basic Blocks (BBs) of each parallel test
program. One BB for a GPU program is a group of instructions or embarrassingly
parallel plain sequences of SIMD or SIMT instructions [24] that are always executed
in sequence (no in/out jumps or branches allowed). The second step analyzes the
control flow graph of the test program and labels BBs as ARC except those BBs
involved in parametric loops whose iterative parameter is calculated by any BB
inside or outside the loop. Once the ARCs are identified and chosen, the third step
of the first stage of the compaction method extracts these regions from the test
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programs. In contrast, other regions of the test programs are discarded as candidates
for compaction and remain unaffected during the compaction process.

The logic tracing stage ( 2 in Figure 3.2) generates two logic simulation reports
(one RTL and one GL) containing information about the GPU status during the test
program execution, targeting specific cores inside the Streaming Multiprocessor.
These reports are crucial during the following stages in order to identify the relation-
ship between each instruction in the BBs and its effects in terms of fault detection
per warp.

The RTL logic simulation generates fine-grain information per clock cycle (cc)
about the HW-SW interaction of the test programs inside the GPU. One hardware
monitor is incorporated inside the SM of the GPU, which does not affect the func-
tional operation of the test program. This monitor captures the instruction opcodes
coming from the fetch stage and traces the execution of the instructions in the GPU,
generating a report for the hardware module under analysis. The tracing report
contains the following information for each clock cycle: the decoded instruction (i.e.,
Nemonic), the program counter value, the executed instruction per warp, the warp
identifier, and the clock cycle value.

On the other hand, the GL logic simulation extracts the sequence of test patterns
per clock cycle during the test program’s execution. More in detail, those test patterns
(binary values) are implicitly generated by each instruction on the specific module
under test in the GPU. The sequence of test patterns is extracted by observing the I/O
switching activity in the target module under analysis. In the end, one test pattern
report is generated and used in the subsequent stage.

The third stage ( 3 in Figure 3.2) comprises two steps: i) the fault simulation and
ii) the instruction labeling. The first step carry out an optimized GL fault simulation
in order to analyze the fault detection effectiveness of each instruction in the target
module. The proposed fault simulation strategy isolates the target module under
evaluation instead of fault-simulating the complete GPU. This approach significantly
reduces the unmanageable fault simulation effort required when dealing with complex
designs.

This optimized simulation strategy takes advantage of the fact that test patterns
unable to propagate fault effects to the outputs of a module are also unable to propa-
gate these effects to the output of the complete GPU or a selected observation point of
a test program (i.e., the memory bus system in a GPU). Thus, the fault observability
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resorts to the outputs of the module (module-level fault observability [132]). The
optimized fault simulation uses the test patterns report (generated in the previous
step) as input. Moreover, one fault is detected when there is a discrepancy in the
execution between the fault-free and the faulty versions of the module since the
selected observability point allows the trace of each propagated fault per cc.

In addition, a fault-dropping mechanism can increase the compaction rate when
more than one test program is available to test the same GPU hardware module. This
additional compaction optimization requires a fault list report that can support the
compaction process by resorting to the following steps. First, the fault list report
initially includes all faults of a target module. Then, after each fault simulation (one
per test program), the fault list is updated, and those detected faults are removed
from the report, so subsequent fault simulations and test programs applied to the
same module of the GPU only target those missing undetected faults. In the end,
the fault simulation generates a detailed report (Fault sim report) containing a list of
patterns applied to the input’s units, the number of activated faults per pattern, and
the number of detected faults per pattern.

On the other hand, the instructions labeling marks the instructions of a test
program according to the observed fault detection capabilities reported during the
fault simulation step. This labeling procedure tags each instruction as "essential"
or "unessential" according to the analysis of the Tracing and Fault Sim reports
generated in the previous stages.

Algorithm 3 describes the detailed procedure of instruction labeling of the test
programs. This instruction labeling uses the source code of the test program, the
fault simulation report (FSR), and the RTL tracing report. This algorithm assumes
that the parallel test program (PTP) meets the ARC definition and is composed of N
instructions. Also, the tracing report must contain per clock cycle (QQ), the warp
identifier (W), the decoded instruction (DI), and the program counter (PC).

The labeling procedure iterates over all instructions in the PTP. Initially, every
instruction I in the PTP is labeled as unessential. Then, the instructions must be
labeled according to their fault detection capabilities, considering the parallel execu-
tion of a GPU according to the Single Instruction Multiple Tread (SIMT) paradigm
as described in chapter 1. The SIMT execution of the GPU issues one instruction of
the PTP in several groups of threads called warps. Thus, for every executed jth warp
in a TreadBlock (Wjth), an instruction matching procedure crosschecks the instruction
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Algorithm 3 Pseudocode of the instruction labeling algorithm of a test program for GPUs (adapted
from [5]).
Input: PTP composed of N instructions, Tracing clock cycle report QQ, Tracing program counter-
report PC, tracing decoded instruction report DI, Warp identifier W, Fault sim test patterns report FSR
Output: Labeled parallel test program (LPTP)
1: for each instruction I in PTP do
2: LPTPI:= Label I as ’unessential’
3: for each warp Wjth in a ThreadBlock, do
4: CCs=matches(I, PC, DI, QQ, Wjth )
5: for each clock cycle kth in CCs do
6: if FSR[QQkth ] detects faults then
7: LPTPI:= Label I as ’essential’
8: go to next instruction
9: end if

10: end for
11: end for
12: end for

I in the source code with the tracing report per warp Wjth , matching the program
counter PC and the decoded instruction DI. This matching procedure identifies the
temporal life (start/end in ccs) of each instruction CCs within the executed warp.
Thus, there should be a test pattern correspondence between the kth clock cycle QQkth

and a given test pattern from the fault simulation report FSR[QQkth]. Therefore, the
instruction I gets the "essential" label when its execution and its associated test
pattern FSR[QQkth] detect faults in at least one of the executed warps. Otherwise,
the instruction I keeps the "unessential," label, becoming a candidate instruction to
be removed in the next stage of the compaction method.

Algorithm 4 Pseudocode of the reduction algorithm to remove SBs from a labeled test program
(adapted from [5]).
Input: : Labeled Test program LPTP with N instructions divided into M consecutive BBs, and each
BB is segmented in SBs (SB1, SB2, SB3, . . ., SBm)
Output: Compacted Parallel Test Program CPTP
1: for each SB in LPTP do
2: for each instruction I in SB do
3: if the label of I is ‘essential,’ then
4: append SB to CPTP
5: end if
6: end for
7: end for



66 Compaction of STLs for GPUs

The fourth stage test program reduction ( 4 in Figure 3.2) processes and reduces
the labeled test program obtained from the previous stage. Algorithm 4 illustrates
the reduction procedure employed to remove nonessential instructions from the
test program. This procedure follows the same philosophy adopted from the test
program reduction developed for CPUs. Firstly, the labeled test programs (LPTP)
are segmented into basic blocks as defined in the first stage. Each basis block is then
further divided into Small Blocks (SBs), each composed of a sequence of instructions
that load test operands into the registers, execute a given operation, and propagate the
result to an observable point. Then, each SB is analyzed instruction by instruction.
When all instructions inside one SB are labeled as "unessential", the SB is removed
from the test program since there are no instructions that contribute to increasing
the fault coverage of the test. On the other hand, the SBs containing at least one
"essential" instruction stay untouched for the final Compacted test program (CPTP).
It is worth noting that removing an SB may also imply the additional removal and
relocation of associated input data from the main memory, which depends on the
parallel kernel parameters and the location of the SB within the PTP.

Finally, the reassembling step ( 5 in Figure 3.2) replaces the original test pro-
grams with the STLs using the final compacted test program version. In this stage, a
final fault simulation evaluates the quality of the compaction, considering aspects
like the fault coverage, the test duration in clock cycles, and the memory footprint.
Indeed, comparing the fault coverage of the test programs before and after the com-
paction facilitates the decision of whether the compacted version of the original test
program fulfills the minimum testing capabilities. If the fault coverage is significantly
reduced (e.g., by more than 5%), there are two paths that can be adopted: discard
the compacted program and keep the original one, or apply a further compaction
procedure targeting smaller parts of the test program.

3.3.2 Study case

The proposed compaction approach was assessed and verified using one available
STL for GPUs [65]. The selected STLs are designed to detect faults on several units
of the FlexGripPlus GPU model. The STL comprises several parallel test programs
targeting diverse units inside the GPU, such as control units, memory modules, and
functional units. In the STL, the test programs devoted to testing the Decoder Unit
(DU) and the parallel functional units occupy around 90.69% (157,113 instructions
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out of 173,241) of the program size and 75.70% (12 million out of 16 million ccs)
of the test duration in the whole STL. Thus, any compaction in those test programs
represents a noteworthy reduction in the size and duration of the overall STL.

Additionally, the programming structure employed to develop those test pro-
grams fits the Admissible Region for Compaction (ARC) definition explained in
section 3.2.1. It is worth noticing that 47.60% of faults of the overall GPU belong to
the DU and the parallel functional units (or SPs). Then, the test programs targeting
these units in the GPU are good candidates to apply the compaction methodology
devised in this work because they contain the most considerable size and duration of
the whole STL and target a significant number of faults of the GPU. The other set
of test programs is excluded from the compaction since they have been developed
carefully to test control units, and any instruction removal breaks the devised test
algorithm. For example, the algorithms used to test the warp scheduler or the diver-
gency stack memory resort to a sequence of "if" or control flow statements specially
designed to induce divergencies during the GPU execution (i.e., syncTrick [73]).
Thus, any instruction removal in the algorithm will corrupt the proper execution of
the test program or affect the fault detection capabilities.

Table 3.6 Main features of the evaluated parallel Test Programs (PTPs) for the GPU (adapted
from [5]).

Target Module PTP Size (instructions) ARC (%) Duration (ccs) FC (%)

Decoder Unit

IMM 32,736 100.0 2,229,225 71.13
MEM 32,581 100.0 3,186,236 76.59

CNTRL 336 90.0 710,100 71.18
IMM+MEM+CNTRL 65,653 99.0 6,125,561 80.15

SP
TPGEN 19,604 100.0 1,447,620 84.07
RAND 55,000 100.0 3,434,235 83.99

TPGEN+RAND 74,604 100.0 4,881,855 87.22
SFU SFU_IMM 16,856 100.0 1,200,034 90.75

In this regard, three different sets of test programs are selected as candidates for
applying the compaction of STLs in GPU testing contexts. Table 3.6 reports the main
features of every test program considered for the compaction of STLs for GPUs. The
first column reports the type of unit that the test programs are targeting. The second
column reports the name of every test program. The third column reports the size of
the test program in terms of the number of instructions. The fourth column provides
information about the percentage of the test program considered as ARC. It must be
noted that more than 90% of the test programs are suitable for compaction. Finally,
the last two columns report the test duration of every test program in clock cycles
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and the fault coverage. In the following, a detailed description of every test program
is provided.

The first set of test programs comprises three main test programs specially de-
signed to detect faults in the Decoder Unit. These test programs are called IMM,
MEM, and CNTRL. The IMM test program targets the execution of all instruction
formats using at least one immediate operand. This test program also includes
the register-based instructions for the GPU. Similarly, the MEM test program is
composed of instructions that perform memory accesses (global memory and shared
memory). Finally, The CNTRL test program uses immediate-based instructions,
memory-addressing instructions, and register-based instructions to generate special
conditions to be used by the control flow instructions. The IMM and MEM test
programs are configured for parallel operation as one block and 32 threads per block.
On the other hand, the CNTRL test program is configured as one block and 1024
threads per block. The test program generation resorts to a pseudorandom approach
using all instruction formats of the supported assembly language (Streaming AS-
Sembler language or SASS) of the FlexGripPlus GPU. The individual execution of
IMM, MEM, and CNTRL allows the detection of 71.73%, 76.59%, and 71.18% of
the faults in the DU unit, respectively. When them all (IMM+MEM+CNTRL) are
combined, the fault coverage reaches 80.15%.

The second set of test programs targets the Scalar Processors of the GPU. The
first test program (called TPGEN) resorts to ATPG-generated patterns that are later
implemented in a sequence of operations to activate every functional unit of the SP.
More in detail, a parser tool converts the ATPG test patterns into valid instructions for
the GPU. It is worth noting that some test patterns are converted partially since not all
of them can be mapped into valid instructions or operations inside the GPU. TPGEN
loads from memory to the registers of each of the test operands per thread, and then
a SIMT instruction issues the target operation in the SPs. Immediately, a routine
updates a signature per thread (SpT). At the end of the test program execution, the
SpT is stored in memory, where a final checking process allows the identification of
any malfunction when comparing the obtained signature with the baseline. As some
of the ATPG-generated patterns couldn’t be implemented, a second test program
(called RAND) increased the detection capabilities of any fault on the SP core.
RAND is a pseudorandom-generated test program that combines all computational
instructions, and data types to activate all the functional units in the SPs. This test
program also included a SpT mechanism similar to the one developed for TPGEN.
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The fault coverage of individual execution of TPGEN and RAND guarantees a fault
coverage of around 84% that, in combination with both test programs, the fault
coverage increases by 87%.

Finally, the last test program (called SFU_IMM) provides fault detection capabil-
ities for the Special Function Units of the GPU device. This test program employs
an ATPG tool for the test pattern generation. Then, a parser tool converts those test
patterns into GPU instructions, as described in TPGEN. The kernel configuration
of each test program is one block and 32 threads per block. The fault coverage
capabilities of this test program reach 90.75%, and around 4% of faults are function-
ally untestable due to the impossibility of converting some test patterns into valid
instructions to activate such faults.

3.3.3 Experimental results

The proposed compaction approach was implemented as a tool written in Python
language. This tool interacts with one commercial logic simulator and one com-
mercial fault injector simulator, composing an environment to analyze and compact
the selected STLs. Both simulators (logic and fault injector) can handle the RTL
and GL description of the selected hardware models. The FlexGripPlus GPU was
configured with one SM, 8 SP cores, and 2 SFUs. The GPU simulation model is
compatible with the CUDA toolkit SDK 5.0 with a Compute Capability 1.0, allowing
the programming of the GPU device at different levels: CUDA C++, CUDA PTX,
and SASS.

For the experiments, the analyzed modules in the FlexGripPlus GPU (i.e., De-
coder Unit, Scalar Processors, and Special Function Units) were synthesized using
the 15nm Nangate OpenCell library [125]. During the fault simulation experiments,
around 12,834, 191,616, and 180,540 faults were injected into the decode unit, the
scalar processors, and special function units, respectively.

The simulation reports employed during the compaction process are generated as
text files. The test patterns employed in the fault simulation of the target modules
employ the extended Value Change Dump (VCDE) format. The compaction proce-
dures and experiments were performed on a workstation with two AMD EPYC 7301
16-core processors running at 2.2GHz and equipped with 128 GB of RAM memory.
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Table 3.7 The compaction results in the test programs for the Decoder unit (adapted from [5]).

PTP
Compaction

Size Duration Diff FC (%) Compaction
time (hours)(instr) (%) (ccs) (%)

IMM 884 -97.30 92,423 -95.85 +0.06 2.28
MEM 442 -98.64 50,144 -98.42 -1.79 2.62

CNTRL 89 -73.51 447,689 -36.95 -0.00 0.91
IMM+MEM+CNTRL 1,415 -97.84 590,256 -90.36 -0.05 5.81

Tables 3.7 and 3.8 report the results after applying the proposed compaction
approach to the selected parallel test programs for the GPU. In both tables, the
second column reports the final size for the compacted version of each test program.
Moreover, the third column reports the compaction percentage obtained for each
compacted test program in comparison with their original length. Similarly, the
fourth and fifth columns show the test duration results after the compaction of the
test programs. Finally, the sixth column provides the difference in the fault coverage
between the fault detection of the baseline test program and the compacted one. The
last column reports the required time to perform the compaction.

The results reported in Table 3.7 show that the compaction approach can consid-
erably reduce the size of the test programs by up to 90.36% and their duration by up
to 97.84% for the evaluated set of test programs targeting the Decoder Units.

An analysis of each test program of the Decoder Units shows that IMM, MEM,
and CNTRL are composed of a regular structure of Basic Blocks, composed of a few
instructions (15 to 18). Interestingly, the IMM and MEM test programs have similar
size and test duration features; nonetheless, MEM got around 2% higher compaction
rate than IMM. This behavior can be explained by the fault-dropping mechanism that
removes the faults detected by the first set of instructions or test programs. In this
regard, the compaction order of the test programs rules the compaction of the test
programs, so the first set of test programs will detect a significant amount of faults.
This also means that multiple basic blocks in the first test program are fundamental
for fault detection. Thus, subsequent test programs only have to keep the basic
blocks that are able to detect faults that the previous test programs cannot. In other
words, those faults already detected by IMM are dropped from the fault list, such
that during the compaction of MEM, only new faults are considered. Therefore,
the proposed compaction strategy keeps only those essential instructions that can
produce suitable patterns and yield additional fault detection in the decode unit.
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In contrast, the compaction results for the CNTRL test program were slightly
lower than for IMM and MEM. This moderate compaction difference among test
programs is mainly caused by the limited number of instructions (around 300)
available in the original test program, combined with an inadmissible region for
compaction that contains conditional and control-flow instructions that cannot be
reduced.

Regarding the fault coverage results, the compacted test programs targeting the
DU (IMM+MEM+CNTRL) have a negligible impact on their capabilities to detect
faults with a small reduction of 0.05% with respect to the fault coverage of the
original test programs. It is worth noting that the fault coverage sometimes can be
improved. For example, the compacted version of the IMM test program showed
an increment of +0.06% of fault coverage. Those fault coverage results respond to
the effects of removing a sequence of Small Blocks (SBs), which, due to the data
dependencies broken, may produce still favorable test sequences, leaving a fault
coverage increment or an adverse sequence that can decrease the fault coverage
capabilities of the compacted test program.

Table 3.8 The compaction results in the test programs for the Scalar Processors and Special
Function Units (adapted from [5]).

PTP
Compaction

Size Duration Diff FC (%) Compaction
time (hours)(instr) (%) (ccs) (%)

TPGEN 4,742 -75.81 452,401 -68.75 -1.31 0.28
RAND 1,215 -97.79 112,030 -96.74 -17.07 1.12

TPGEN+RAND 5,957 -92.02 564,431 -88.44 -3.13 1.40
SFU IMM 9,910 -41.20 662,524 -44.79 0.0 0.31

The results in Table 3.8 show the main features of the compacted test programs
developed for testing the SP cores of the GPU and the SFU of the GPU. The results
show that the compacted test programs exhibit outstanding reduction sizes of up to
97.79%. likewise, the test duration of those compacted test programs achieved up to
96.74%.

It is important to underline that the proposed compaction method successfully
reduced (the size and duration) of test programs generated by parsing test patterns
ATP-generated into instructions. Indeed, the compacted version of TPGEN achieves
75.81% less amount of instructions and 68.75% less test duration than the original
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version of TPGEN. Similarly, the compacted version of SFU_IMM exhibited a
41.20% reduction in a number of instructions, which also implied a test duration
reduction of 44.79% regarding the original version. These compaction results in the
case of the SFU_IMM were obtained by applying the test patterns in reverse order
during the fault simulation of stage 3 in the proposed compaction approach. The
overall compaction result considering the whole STL for the GPU provides 80.71%
size reduction and 64.43% test duration reduction rates.

A stand-alone analysis of the compacted version of the RAND test program
indicates that the fault coverage drops by around 17.07%. The reason for this figure
is due to the fault dropping performed during the previous compaction of the TPGEN
test program. This means that several instructions in the RAND test program detect
some faults that TPGEN also detects; therefore, these instructions are redundant and
can be removed during the compaction of the RAND test program. When evaluating
the complete set of compacted test programs for the SP cores of the GPU (TPGEN
+ RAND), the results indicate that the fault coverage drops by only 3.13%. This
fault coverage difference is caused by changes in the computation of the signature-
per-thread (SpT) due to the removal of some basic blocks. In fact, the SpT is also
computed by the SP cores, which apply an MISR-like algorithm and take each test
operation’s result. This SpT procedure contributes to detecting additional faults in
the SPs that the main test patterns were not able to detect during the generation of
the test program. Therefore, due to the compaction, the result value of one missing
SB changes the SpT calculation for subsequent SBs, restricting the ability to detect
the faults that were previously detected. Despite these circumstances, it is worth
noting that the compaction strategy is still able to achieve significant fault detection
capabilities for the test programs for the SP cores after the compaction. Furthermore,
the missing detected faults can be covered by an additional refinement resorting to
the generation of new Random-based test programs that, once compacted, can only
contain the fundamental instructions able to increase the fault coverage.

In contrast, the results show that the compacted version of the SFU_IMM test
program does not show fault coverage dropping. In this case, the SpT does not
have any impact on the fault detection capabilities of the test program since the
SpT is calculated on the SP cores side, so the test patterns applied to the SFU are
not affected after removing some small blocks from the test program. Clearly, this
happens because the SFU unit only performs transcendent floating-point operations.
Consequently, removing a non-essential small block from the SFU_IMM does not
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affect the fault detection capabilities of the other small blocks since there is no data
dependence among small blocks. It is worth noting that these excellent compaction
results respond to the regular structure of the SFU_IMM test programs, where the
test patterns are embedded in the code as immediate values, facilitating the removal
of blocks of code with no impact on the test functionalities

The compaction time required to transform the original test programs into reduced
versions varies from some minutes to hours, depending on the size of the test
programs and the simulation complexities. In the case of the test programs that test
the Decoder Unit, the compaction CNTRL, IMM, and MEM required 0.91, 2.18,
and 2.62 hours, respectively. In contrast, the required time to apply the compaction
method to test programs that test the SP cores and the Special Function Units TPGEN,
RAND, and SFU_IMM reached only 1.71 hours in total. This demonstrates the
effectiveness of the test compaction method that quickly takes an input test program,
generating a compacted version with quite similar fault detection capabilities to the
original test program. Also, the results demonstrate that the method effectively can
be used to perform test compaction of STLs developed for complex systems like
GPUs.

Finally, it is important to underline that the proposed compaction method only
requires a fraction of the time to analyze and process the compaction on test programs
of an STL for GPUs in comparison with state-of-the-art proposals. In the experiments
performed, the test programs included thousands of instructions with durations in
the order of millions of clock cycles. Moreover, the evaluated GPU’s modules are
significantly large, containing more than a hundred thousand faults per hardware unit,
which is a similar amount of faults to the complete RI5CY core. These complexity
characteristics of GPUs and their test programs were successfully addressed by the
proposed test compaction approach, making it suitable for both CPUs and GPUs.
As presented in the previous subsection, several works in the literature [82–85]
addressed the compaction for test programs in CPUs contexts only, using techniques
that require as many fault simulations as the number of instructions in the test
programs. None of such works provides compaction methods or results resorting to
test compaction of a test program in the GPU’s contexts. This work, for the first time,
proposes an effective test compaction method able to significantly reduce the size
of the test programs and the test duration of test programs and STLs developed for
CPUs and GPUs. Moreover, the results demonstrated that the compaction method
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requires from some minutes to a couple of hours for the compaction of complete
STLs.

3.4 Final remarks

This chapter introduced a time-efficient compaction method, which aims to reduce
the size and duration of self-test libraries (STLs) used for in-field testing of CPUs and
GPUs. The devised method resorts to an instruction removal approach by selecting a
group of instructions (basic blocks) that do not contribute to fault detection in the
test program. More in detail, the compaction approach uses a multi-level strategy
that analyses the software and hardware interaction at the instruction level to identify
essential instructions based on their fault detection capabilities. It must be noticed
that the compaction strategy performs only one logic and fault simulation per test
program under compaction, speeding the compaction procedure several orders of
magnitude in comparison with state-of-the-art approaches that resort to heuristic or
evolutionary approaches.

The experiments demonstrate that the method applied to several test programs
and STLs developed for CPUs and GPUs achieves an outstanding compaction ratio
of about 90% in terms of size and test duration. These results indicate that the
proposed method is a suitable solution for performing test compression of STLs
and test programs developed using pseudo-random approaches or, even better, for
improving those test programs developed using high-level programming languages.



Chapter 4

Modeling and evaluating error effects
due to permanent faults on GPUs

As the technology scales, modern semiconductor technologies become more prone
to faults. Such hardware defects eventually induce errors at the software level
that silently propagate throughout the application execution and potentially cause
system failures. These silent data errors can affect GPUs as many other hardware
accelerators, treating the reliability of the overall application [43]. In this regard, it
is crucial to assess the reliability of any GPU application regarding errors induced
by permanent faults in the underlying hardware. These fault evaluations are crucial
to designing effective software-based hardening solutions at the application level.
Also, it is crucial to count on tools that allow us to assess the effectiveness of any
software-based hardening solution against permanent faults affecting GPU devices.

This chapter introduces a combined fault injection strategy that enables a detailed
and efficient evaluation of the effects of permanent faults in GPUs executing parallel
workloads. The proposed evaluation strategy evaluates the effects of permanent faults
in the functional units (i.e., SP cores of the GPU) and in the Parallel Management
Units (PMUs) (i.e., Warp Scheduler (WSC), Instruction Fetch, and Instruction
Decoder). To track the effect of a permanent fault, the proposed method combines
the fault injection in two different abstraction levels (hardware and software). It is
worth clarifying that this proposed evaluation method was previously published by
the author of this thesis in [7, 6].
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For the purpose of the experiments done to assess the effectiveness and limitations
of the proposed approach, the low-level microarchitectural hardware effect of a
permanent fault is determined using an open-source model of the hardware of
an NVIDIA GPU (FlexGripPlus [81]). The impact of the permanent faults on the
execution of each machine instruction is evaluated and classified, identifying software
error models to propagate in a real GPU. Then, the observed effects targeting specific
hardware units are used to generate instruction-level errors.

At the software level, the errors are injected and propagated in a real GPU device.
This approach reduces the prohibitively high execution times of low-level microar-
chitectural hardware simulations for complex algorithms (e.g., DNN workloads) by
several orders of magnitude while still allowing an accurate (i.e., realistic evaluations)
and detailed permanent fault analysis.

It is important to mention that the software-level error propagation resorts to
a dedicated software-based error injection framework (NVBitPERfi), specially de-
signed to handle the error instrumentation of the GPU’s kernels automatically. The
framework is able to apply the observed SDEs from the low-level fault evaluations
and to properly corrupt particular instructions in multiple threads and/or warps. The
proposed frameworks, the gate-level analyses, the software-level reports, and the
new NVBitPERfi tool are available in a public repository [133].

The main contributions of the work reported in this chapter are:

• A method to identify the effects of permanent faults in terms of errors at the
instruction level for GPU’s SP cores and PMUs;

• The development of syndrome tables as error models of the permanent fault
effects on the SP cores considering the input activation and propagation
operands;

• The formalization of 13 categories of instruction errors (error models) based
on the effects of the permanent faults in the GPU’s warp scheduler controller,
instruction fetch, and instruction decoder unit;

• A new fault injection framework (NVBitPERfi) built on top of NVBit, to map
the error models in software, instrument the code, and evaluate the permanent
error effects in real GPU’ workloads;
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• A detailed evaluation of the effects of permanent faults in the SP cores and
their impact on the operation of DNN workloads;

• An accurate understanding of why and how permanent faults in the GPU
parallelism management units affect the execution of different workloads.

4.1 Background

GPUs have been adopted in applications (such as automotive, robotics, aerospace,
and health care) in which the device life expectancy is in the order of 5 to 10 years.
This life expectation is much longer than the typical 1-2 years for GPUs used in
consumer applications and poses novel challenges in the GPU reliability evaluation.
In fact, typical operative conditions of GPUs, such as over-stress, high temperature,
high frequency of operation, and technology node shrinking, are shown to accelerate
aging [37]. These technological phenomena can lead to permanent hardware faults
in the GPUs, which may induce Silent Data Errors (SDEs) at the instruction level
and potentially can produce unacceptable critical effects when the GPU is used in
safety-critical domains or high-performance computing applications.

In fact, several companies like Google and Meta have raised concerns about
the increasing presence of SDE effects during the operation of high-performance
computing applications [42, 41, 43]. These SDEs significantly affect cutting-edge
semiconductor devices like AI accelerators or GPU devices, which are crucial for a
wide range of application domains nowadays. Therefore, it is crucial to assess the
reliability of parallel workloads concerning SDEs produced by hardware defects.

It is worth noting that most of the available research on GPU’s reliability targets
transient faults and their effects as software errors [94, 89, 95–97, 90, 98, 91, 93, 89,
104, 72, 98], leaving permanent faults largely unexplored.

Unfortunately, there are very limited research results available to estimate how
frequently a permanent fault affecting a GPU that runs a parallel workload may
produce a critical failure (e.g., a failure that produces a misclassification of a DNN).
The probability of a (permanent) fault producing a critical failure depends not only
on the architecture of the underlying GPU but also on the workload behavior that
can activate the fault and propagate its effects to the final result. In this regard, it is
crucial to adopt effective fault evaluations that enable an effective assessment of the
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impact of those faults on different kinds of parallel workloads. Furthermore, such
evaluations contribute to the assessment of the effectiveness of any software-based
fault tolerance solution against permanent faults and their SDEs effects.

An exhaustive gate-level fault simulation is impractical for this purpose due to
the unacceptably high computational requirements. In fact, the parallel nature of
GPU architecture, the huge number of possible faults due to the number of gates
(millions of them for a GPU core), and the complexity of the software workload
implementation (e.g., the evaluation of a small DNN like LeNet5 can take more than
10,000 hours using RTL fault simulations) makes the permanent fault effect evalua-
tion extremely challenging. Therefore, a novel, accurate, and efficient approach is
required. In this regard, this chapter illustrates a multi-level strategy that combines
the speed of high-level software fault injections with the detailed analysis supported
by gate-level fault simulation.

4.1.1 Related works

Several works performed extensive analyses of possible sources of permanent faults
in processor-based systems [141, 142]. Other studies wisely focused on identifying
error models at higher abstraction levels to simplify the analysis [134]. Table 4.1
reports different fault evaluation strategies reported in the literature striving for the
reliability evaluation of hardware faults on different digital systems. These method-
ologies wander from fine-grain approaches, using fault simulations or emulation
platforms, to high-level abstraction approaches using software-level corruptions.

In [113], the authors emphasize the importance of fine-grain low-level and
cross-layer resilience evaluations, highlighting the weakness of purely software
error propagation approaches. In this regard, the adoption of multi-level evaluation
approaches provides the best trade-off between the accuracy (i.e., more realistic fault
evaluations) of the evaluation and the required time to perform such evaluations.
Typically, these multi-level approaches combine microarchitectural simulation and
physical emulation [135], or software fault injection [92]. The latter approach has
been successfully used in CPUs.

In [115], the authors exploit context switching between RT-level and Gate-level
abstractions to combine high-level fault simulation speed and accuracy in CPUs.
Similarly, Other work [102] proposed a hybrid fault injector approach integrating
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Table 4.1 Evaluation strategies for reliability assessment concerning hardware faults on
digital systems

Fault evaluation method Fault model Evaluation level Device Target Units BenchmarksP T O

Fsim vs SWFI [113] x
• Architectural F-sim
• IR simulation

CPU

ARM Mem./Regs MiBench suite apps

SWFI [134] x • IR FI CPU Mem./ALU/Regs(*) Various benchmarks

Hybrid FI [135] x x x
• RTL F-sim
• FPGA FI DP32 core

Bubble Sort
Inverse Matrix

SWFI [92] x
• Assembly-level FI
• IR FI Assembly vs. IR

SPEC CPU 2006 suite
SPLASH-2 suite

Hybrid FI [115] x x
• Gate-level F-sim
• RTL sim. VLIW core

WCET suite
Powerstone suite

Multi-Level FI [102] x
• RTL F-sim
• SW management RISC core 6-layer CNN CIFAR10

Emulation FI [136] x • FPGA FI RISCV Regs
Sum of vectors
CCSDS-123
Coremark benchmark

Cross-layer evaluation
Error emulation [137] x x

• Gate-level delay modeling
• FPGA FI OR1200 core SPEC benchmarks

Co-simulation [114] x
• SW simulation
• RTL F-sim OpenSPARC / flip-flops

SPLASH-2
PARSEC-2.1
Phoenix MapReduce

Emulation FI
Beam experiments [138] x

• FPGA FI
• Radiation tests LEON2 / (SRAM FPGA Mem.) Tripe DES alg.

Multi-Level FI [139] x
• Gate-level F-sim
• RTL simulation AES core Internal components -

SWFI [89, 116] x • Assembly-level FI

GPU

FUs Various (***)

Physical Stress [121] x • Temperature stress -
Rodinia
SHOCK
PARBOIL

Application-Level FI
Beam experiments [140] x x

• App-level FI
• Beam experiments - Custom DNN Obj. Detect.

SWFI [104] x(-) x • Assembly-level FI FUs/Regs SpecACCEL
SWFI [106] x(-) • Assembly-level FI Regs 4 CNNs

Low level error modeling
SW error propagation [117] x

• Gate-level F-sim
• RTL simulation
• SW error propagation

SM (**) Rodinia

Low Level error modeling
SW error propagation [118] x

• Gate-level F-sim
• RTL simulation
• SW error propagation

WSC/ Pipeline Regs 4 layer CNN

This Thesis x
• Gate-level F-sim
• RTL simulation
• SW error propagation

GPU SM(**)
Rodinia
CNNs

FU: Functional Units, IR: Intermediate Representation, P: Permanent, T: Transient, O: Others.
(-) Pin-level like fault injections.
(*) Instructions associated with the target hardware unit.
(**) Functional and control units inside the GPU’s SM.
(***) GPU benchmarks from PARBOIL, CUDA SDK, Rodinia, Totem, and other suites.



80 Modeling and evaluating error effects due to permanent faults on GPUs

software application and RT-level abstractions boosted with pipeline-type stages to
accelerate the evaluation of DNNs in CPUs. However, these techniques can hardly
used in dense and complex GPU workloads such as DNN applications.

In CPUs, the approaches to evaluate the effect of permanent faults consider
architectural simulation, software fault injection [136], and microarchitectural simu-
lation and emulation. Other studies wisely focused on identifying error models at
higher abstraction levels to simplify the analysis [134]. These methods are applicable
only for small and medium designs and could require the combination of different
strategies when dealing with large CPU designs [143].

Some works [89, 116] proposed multi-level approaches combining high-level
architectural simulation and error propagation in real GPUs with the purpose of
evaluating transient fault effects [117]. Nevertheless, the adoption of this multi-level
philosophy for the evaluation of permanent faults has not been fully explored in
GPUs. It is worth noting that, even in CPUs, the permanent fault evaluation can be
so complex that most studies limit the evaluation to memories [138].

Only a few preliminary studies evaluate the incidence of permanent fault effects
in GPUs. In [121], the authors investigate the effect of permanent faults in GPUs by
increasing the temperature and accelerating the aging process. Other works propose
to evaluate GPU memory permanent faults by corrupting at the software level the
weights of DNN applications [140].

Some permanent fault injectors have also been proposed. In [104], the authors
proposed the NVBitFI framework. NVBitFI is a software-based fault injection
framework that is able to assess the effects of transient faults on GPU workloads.
NVBitFI also includes a basic error modeling of permanent faults for functional units
on GPUs by injecting single bit-flips on every executed instance of a target instruction
during the GPU workload execution. In addition, authors in [106] proposed a
customized software-based error injector based on NVBitFI to evaluate the effect of
permanent faults on the register files and functional units for evaluating the reliability
of DNNs workloads. Unfortunately, in all the available permanent fault injectors, the
proposed error models are limited only to stuck-at or bit-flip models applied to the
register files of the GPU, without considering more realistic fault effect injections.

This thesis presents a two-level fault injection concept to address the evaluation of
permanent fault effects in GPUs. This evaluation methodology takes inspiration from
other works in the field [114, 118, 139, 117, 137, 115] that evaluate CPUs systems
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or transient faults evaluations only. The proposed approach selects the software
instructions mapped on a specific hardware unit and identifies the inputs that activate
the fault. Then, the permanent fault effects are modeled as errors at the instruction
level that are later injected and propagated in software using a real GPU. To the
best of our knowledge, this is the first work proposing a multi-level framework to
evaluate permanent fault effects in GPUs, considering the fault behavior in low-level
circuit descriptions, propagated as errors at the software level.

4.2 Proposed multi-level evaluation methodology: main
idea

The proposed multi-level fault injection approach allows us to overcome the limita-
tion of completely low-level fault simulations using RT or gate-level fault injection
while executing GPU workloads. The low-level evaluation exploits the accuracy
of gate-level simulation to classify fault effects in terms of instruction errors. The
high-level part employs a time-efficient software-based fault injector on real GPUs
to assess the effect of permanent faults on complete applications. More in detail,
the method first identifies, through software profiling, the machine instructions (and
their inputs/output) that compose the kernels of the target GPU workload (e.g., the
implementation of a DNN). Then, this information is used to perform gate-level
micro-architectural simulations (exclusively on the target unit of the GPU perform-
ing a targeted instruction) with the purpose of evaluating the impact of permanent
faults and their propagation to the output of the operation. This simulation injects a
permanent fault (stuck-at-0/1) in each site of a target hardware, applying the patterns
generated by the instruction previously obtained from software/hardware profiling.
This procedure allows the identification of all inputs that activate a fault and the
effect on the outputs of an instruction. Then, the results of the fault simulation can
be used to evaluate the propagation effects induced by the injected faults in order
to generate instruction-level errors that can be used later to asses complete GPU
workloads. Finally, the method propagates, at the software level, the observed errors
during the execution of the code in a real GPU in order to mimic the propagation of
permanent faults and to asses their impact at the application level.



82 Modeling and evaluating error effects due to permanent faults on GPUs

More in detail, the proposed method comprises five steps: 1 software/hardware
profiling, 2 gate-level fault injection, 3 error identification and classification, 4

code instrumentation and instruction-level error propagation, and 5 application
evaluation and failure classification.

The following sections provide further details on applying the proposed evalua-
tion methodology to different GPU hardware components under different scenarios.
The section 4.3 provides a detailed description of the evaluation methodology used
to assess the effects of permanent faults in the SP cores of the GPU while executing
DNN workloads. In addition, section 4.4 presents the detailed steps to model SDEs
produced by permanent faults on the Parallel Management units of the GPU (i.e.,
Warp Scheduler Unit, Instruction Fetch Unit, and Instruction Decoder Unit).

4.3 Evaluation of permanent faults on GPU’s SP cores

4.3.1 Proposed methodology

This section describes the details of every stage of the proposed methodology to eval-
uate the effects of permanent faults affecting the functional units (i.e., SP cores) of a
GPU when executing parallel applications, especially for DNN workload evaluation.
Figure 4.1 illustrates the main stages of the proposed fault-error-failure evaluation
strategy.
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Fig. 4.1 A general scheme of the proposed multi-level method to evaluate permanent faults
in GPUs. The application profiling identifies the instructions (and their inputs) that are
mapped to a target hardware module. The gate-level simulation performs the permanent fault
injection, identifying the inputs that activate each fault and reporting its effects on the output.
Then, a software fault injection propagates fault error effects for all the instructions executed
on the target unit (adapted from [7]).
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4.3.1.1 Software/Hardware profiling

This step aims to collect and trace all the executed instructions from the kernels of
the GPU workload (e.g., a DNN application). The main target is to use the collected
information to identify the relation between the executed instructions and the SP cores
of the GPU (e.g., FADD and FFMA in the Floating Point Unit (FPU), and IADD
in the INT core). Moreover, the software profiling provides fine-grain and detailed
information concerning the execution of each instruction. This information includes
the distribution of each instruction among the GPU resources. These resources
are described in terms of software parameters (Blocks, Warps, and Threads) and
hardware parameters (Streaming multiprocessor cores or SMs, and CUDA cores or
Lanes), so providing virtual (software) and physical (hardware) identification of each
executed instruction in the system. Both sets of parameters (software and hardware)
are later used to propagate any fault effect in the software-level fault propagation.

The software profiling step provides a complete report (Golden profile report) of
the application executed on a real device and includes all executed instructions in
the GPU. The report incorporates (for each instruction), the input operands (from
the register file or memories), the software configuration parameters (thread_ID,
warp_ID, and Block_ID), and the hardware core used (lane_ID, and SM_ID).

A data processing stage takes the Golden profile report and extracts a sub-set of
executed instructions (e.g., IADD, or FFMA) as main candidates for evaluation in
the gate-level fault injection campaigns. This sampled profile report (containing only
the sub-set of instructions for evaluation) is divided into two reports: 1) the Patterns
Report and 2) the Intermediate Report, as depicted in Figure 4.1. The Patterns
Report contains only the input operands and the mnemonic of the instruction for the
gate-level microarchitectural fault simulation. On the other hand, the Intermediate
Report holds complementary information for each instruction (e.g., the lane_ID, and
SM_ID), which is later used in the software-level fault propagation step to localize
targets for error injection. It is worth noting that redundant input patterns from the
same instruction are not included in the patterns report.

4.3.1.2 Gate-level fault simulation

The main target of the gate-level fault simulation step is the accurate study of
hardware fault effects on the output of an instruction (e.g., IADD or FFMA). For
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this purpose, rather than simulating a fault in a given instruction in the complete
micro-architecture of a GPU, the proposed method only focuses on the gate-level
microarchitectural fault simulation of the specific functional unit. Since these units
are part of the data path and are directly connected to the memory hierarchy in the
GPU (register file and memories), the specific gate-level fault simulation propagates
any permanent fault impact from the functional units exactly as a complete micro-
architectural simulation. In other words, emulating the whole GPU would just
increase the simulation time while not improving accuracy.

The targeted instruction is fault-freely executed at the microarchitectural level.
For this purpose, the RT-level description of the GPU model is crafted to include the
gate-level description of the target GPU’s SP core. This mixed description of the GPU
model (RT and gate-level) provides the accuracy of the gate-level execution inside the
functional unit under evaluation with a reduced simulation time, removing the details
of the other units unused in the evaluation. In this step, the input operands from the
patterns report are used to obtain the golden outputs of the instruction, which are
then stored as a complete report ("wave report") and later used in the fault simulation
campaigns. More in detail, the wave report works as a hardware unit profiling report,
which contains the switching activity information of the input/output ports to the
evaluated SP core. Moreover, this report is used to carry out the procedures for
comparing and classifying the fault effects.

A set of gate-level fault injection campaigns is performed exclusively using the
gate-level description of the GPU’s SP cores, applying to the inputs the obtained
wave report from the previous step. These campaigns provide fine-grain control
of all possible faults in the unit, providing exhaustive or focused fault injection
configurations (i.e., subsets of faults in flip-flops or ports).

The fault injection campaign starts with the placement of one permanent hardware
fault (stuck-at) inside the GPU’s SP core while computing the target operation. In
addition, one group of input operands from the wave report is applied in sequence
for simulation (i.e., the values of R1 and R2 in IADD R3, R1, R2). Then, the obtained
outputs are stored for later analysis. Finally, the fault simulation restarts with the
placement of a new permanent fault and the injection of all groups of input operands.
This procedure is repeated for all faults inside the SP core under evaluation.
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4.3.1.3 Error identification and classification

A post-processing step identifies the propagated fault effects from the collected
results by comparing the collected results of the fault simulation against the golden
ones in the wave report. In case of a mismatch, the result is stored as propagated
faulty results indicating an error. Otherwise, the results, free of fault effects, are
discarded.

When the fault injection is completed, the identified faulty results (those contain-
ing any fault effect from a permanent fault) are merged with the information stored
in the intermediate report. This merged report (see Figure 4.1) is useful to identify
at the software level the locations and the instruction related to the propagation
of a permanent hardware fault, since this report contains the identification of the
permanent fault in the unit, input operands, the golden output result, the faulty result,
the mnemonic of the instruction and the parallel configuration parameters.

As the first step, the merged report is divided according to the identified hardware
faults during the gate-level simulations. Thus, the software-based fault injection
propagates (each time) the equivalent micro-architectural fault effects in a given
instruction (as an instruction error) affected by a hardware fault. The propagation (of
instruction errors as an equivalent fault effect) is based on Fault Syndromes, which
are built from the bit-wise comparison between the golden and faulty values from
the gate-level fault simulation. Each Fault Syndrome contains the output effect of a
hardware fault affecting an instruction, so the error effects are propagated across the
application during the software-based fault injection in the next stage.

4.3.1.4 Instruction-level error propagation

In this step, the collected hardware fault effects are propagated as instruction er-
rors in the software application. For this purpose, the code of the application is
instrumented (off-line) with flexible functions to inject and propagate the effects
of permanent hardware faults across the GPU application as errors in the instruc-
tions (fault syndrome). This error propagation was implemented in a customized
binary instrumentation tool (NVBitPERfi [133]) built over the NVBit framework
[119] to propagate the instruction-level error through the application software. To
implement the syndrome error propagation at the ISA level, NVBitPERfi adopts the
Hardware-Injection through Program Transformation (HITPT) technique [104].
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Algorithm 5 outlines the proposed method that performs the instrumentation
process of the GPU’s source code in order to insert the corruption routines necessary
to propagate error effects at the instruction level through the GPU application.

In order to mimic the permanent effect of a fault on a given functional unit of
the GPU (i.e., SP core operation). The fault injection tool instruments all instances
of the target instruction (e.g., FADD) propagating errors on a specific functional
unit in the GPU (i.e., a combination of SM, PPB and Lane) resorting to ’Syndrome
Tables’, which are a collection of fault syndromes. Each input pattern applied to the
evaluated functional unit can excite one permanent fault differently; thus, one fault
may produce multiple error syndromes during the execution of the application.

Algorithm 5 Propagation algorithm of instruction error effects (adapted from [7]).
Input: Syndrome table for fault Fi; Faulty location in the GPU (SM, PPB, and Lane); Target
opcode instruction OPt

Output: Fault classification for Fi (DUE, SDC, Masked)
1: load syndrome table for Fi

2: for each kernel Ki in the GPU’s workload do
3: for each instruction I j in Ki do
4: Inspection(I j)
5: if I j matches the target OPt then
6: Insert instrumentation function before I j ▷ Load Syndrome
7: Instruction I j

8: Insert instrumentation function after I j ▷ Apply Syndrome
9: end if

10: end for
11: Just-In-Time compilation
12: Launch the GPU execution of the instrumented kernel
13: end for
14: Assign failure classification category to Fi

Thus, one syndromes’ table is available per injected fault at the gate level during
the execution of the GPU’s application in order to support the code instrumentation.
The selection and propagation of a syndrome (from the Syndrome Table) follows
three main steps during the run-time application on the GPU: i) retrieval of the fault
syndrome (Load_syndrome), ii) execution of the instruction, iii) propagation of the
error syndrome (Apply_syndrome), as shown in Algorithm 5. First, in the retrieval
step, a matching procedure searches the specific instruction and identifies, from the
syndrome table, the feasible syndrome representing the fault effect. Two parameters
(inputs and instruction type) are used to search inside the syndrome table. Then,
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during the propagation step, the output value of the instruction is processed with the
fault syndrome to produce the error effect. Finally, the error is injected by replacing
the original output value with the affected one, and the application resumes.

It is worth noting that propagating permanent fault effects as instruction errors is
a challenging task, since the effect of a permanent fault must remain active across
the application, but only for those instructions executed on an affected hardware
unit (i.e., the combination of a given SM, PPB, and Lane). For this purpose, the
syndrome tables are used as a highly flexible mechanism to inject error effects from
the gate-level results, i.e., acting as a database mechanism. These tables contain all
possible fault effects from an instruction, so it is possible to use the two conditional
functions (load_syndrome and apply_syndrome) to inject and evaluate fault effects
(on the GPU’s structures) every time the target instruction is identified, as illustrated
in Figure 4.2. Moreover, the mechanism of tables of syndromes can be used for any
number of instructions, and it is independent of the application.

1 · · ·
2 / * * Load Syndrome p a t t e r n * /
3 M1⇐ SyndromeTable[Rsx,Rsy,Rsz][Lane,Wx]
4 / * * T a r g e t SASS i n s t r u c t i o n * /
5 IMAD Rd , Rsx , Rsy , Rsz
6 / * * Apply Syndrome P a t t e r n * /
7 Rd[Lane,Wx]← Rd[Lane,Wx]⊕M1

8 · · ·

Fig. 4.2 Description of Syndrome Table implementation.

The first function, called Load Syndrome Pattern, retrieves the content of the
operand values present in the registers [Rsx,Rsy,Rsz] before the instruction is ex-
ecuted. The retrieved values are then used to look up the syndrome table for the
corruption mask SyndromeTable[Rsx,Rsy,Rsz]. If the syndrome table does not con-
tain the operand values, it means that such values do not activate at the gate level
of the fault; therefore, there is nothing to propagate at the application level. The
obtained corruption mask is then stored in memory (global or shared), denoted as M.
The second function, called Apply Syndrome Pattern, retrieves the corruption masks
stored previously in M and applies an XOR operation ⊕ between the result of the
executed instruction and the corruption mask. It is important to mention that this
error injection procedure only affects operation in runtime-specific threads and warps

1M indicates a global memory location used for temporary data storage.
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executed by the GPU only in the target SM, PPB, and Lane; denoted in Figure 4.2
as [Lane,Wx].

4.3.1.5 Applications evaluation

The final step of the proposed methodology is the identification of the effects of the
propagated errors in the application output. The output reports from the software-
based propagation experiments are analyzed in search of critical effects in the final
application.

For this purpose, the output results are classified as follows:

• Masked: The injected error does not produce any effect on the application’s
outputs;

• Detected Unrecoverable Error (DUE): The error propagation hangs or
crashes the GPU operation, stopping the application’s proper execution. There-
fore, the application does not produce any valid output data;

• Silent Data Corruption (SDC): Error effects propagate at the application’s
output, inducing at least one difference with respect to the fault-free version of
the application.

4.3.2 Experimental results

A DNN model was used as a study case to validate the proposed permanent fault
evaluation methodology on the SP cores operations of a GPU. The selected DNN
model corresponds to the six-layer LeNet5 DNN [144] built over the Darknet frame-
work [145]. Thus, the selected DNN passes through a profiling tool on a real GPU
device in order to extract the information about the executed instructions and the
data operations executed by every instruction in the SP cores.

4.3.2.1 Software profiling of SP cores instructions

A preliminary software profiling of the LeNet DNN provided the total instruction
count revealing that more than 65.9% of the executed instructions (11,536,325 out
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of 17,505,804) use either the Floating-point unit (FP32) or the Integer core (INT). In
particular, 45.88% of the total instructions use the Floating-point unit, and 20.01%
use the Integer core (INT). The remaining 34.1% instructions are memory movement,
control flow, and miscellaneous instruction. Then, a data processing of the profiling
report extracts those instructions (65.9% of the total) that employ the FP32s (FADD,
FMUL, and FFMA) and INT cores (IADD3, IMAD). For each of these instructions,
an additional report contained all the input values used as operands during their
execution on the GPU, as described in Section 4.3.1.1.

4.3.2.2 Gate-level micro-architecture fault simulations results

In order to handle the huge volumes of data during the fault simulation campaigns.
The extracted data obtained from the profiling is further segmented per GPU kernel
that the DNN executes on the GPU. Thus, a fault simulation campaign was performed
for each kernel that contained at least one of the selected instructions and data
operands. 141 fault campaigns out of 160 possible gate-level fault injections on
the FlexGripPlus GPU model were performed on the 32 kernels of the LeNet5.
For each kernel, the evaluations focused on the FPU and INT units and evaluated
the instructions listed in the profiling report (FADD, FMUL, FFMA, IADD3, and
IMAD). Each fault simulation campaign was also divided into up to 25 parts to
speed up, through multi-threading, the fault simulations. These experiments were
conducted on a server powered by an Intel Xeon CPU running at 2.5 GHz, equipped
with 12 cores and 256 GB of RAM.

The fault simulations considered permanent stuck-at faults in all sites (gate-level
cells and flip-flops) of the gate-level model of the FP32 and INT cores (22,044
faults in total). In addition, every fault simulation employed an average of 1,485,126
input vectors per instruction on the SP cores. That is, more than 1.54x1010 effects
of permanent faults per input vectors are evaluated in the FP32 and INT cores per
instruction.

The evaluation of the fault simulations was performed per each atomic instruction,
in other words, per SP core operation (FADD, FFMA, IADD, etc.). Table 4.2 reports
the SDC fault rate. This table also reports the percentage of input patterns that were
able to activate and propagate the effects of permanent faults (on the primary outputs
of a unit) for each evaluated operation in the SP cores of the GPU.
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Table 4.2 Fault rate and percentage of input patterns exciting a permanent fault in the FP32
and INT cores (adapted from [7]).

Instruction SDCs fault rate (%) Input patterns exciting permanent faults (%)
FADD 9.84 7.24
FFMA 18.72 20.0
FMUL 13.82 10.42
IADD3 4.76 27.1
IMAD 8.46 10.8

This experimental evaluation shows that each evaluated instruction is affected
differently by permanent hardware faults. A small percentage of permanent faults
(from 9.8% to 18.7%) is propagated to the primary outputs of the FP32 unit and
corrupts the result of the floating-point (FP) instructions. A surprisingly lower
percentage of permanent faults in the INT core (about 4.7% to 8.4%) were activated
and propagated across the unit.

The percentage of input patterns (instruction’s operands from the DNN profiling)
activating at least one permanent fault is small for the INT core (IADD with 27.1%,
and IMAD with 10.8%). The fault rate in both instructions (IADD and IMAD)
shows that input patterns recurrently activate a limited group of faults inside the core.
Thus, some internal structures of the units are not activated by the input patterns.
Furthermore, the percentage of patterns activating faults inside the FP32 core (FADD
with 7.24%, FMUL with 10.42%, and FFMA with 20.0%) implies that each set
of patterns per instruction excites different regions of the Floating-Point (FP) core.
These relatively low fault rates (see Table 4.2) depend on the input patterns from the
application and the operational capabilities of a functional unit.

The input patterns include two special subsets: i) those identical, and ii) the
partially identical. The identical patterns share the same values of input operands
and are easily removed for the evaluation. However, the second group (partially
ones) includes partially shared operands (i.e., only one or two operands are identical).
However, these cannot be discarded since the missing input patterns are different.
Thus, this group of patterns is prone to activate an exclusive set of faults inside a
unit. Finally, both hardware operations of the SP cores (FP32 and INT) are used to
operate several instructions, so that all faults cannot be excited by a limited number
of instructions.

A deeper analysis of the output results shows that about 90% of the fault effects
induced the corruption of just one bit (single-bit flip) in the output results of the
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FADD, FFMA, and FMUL instructions. In this case, the exponent bits of the result
showed a higher probability of fault propagation (>25%) in comparison to those
in the mantissa. Interestingly, the lower bits in the mantissa are also prone to
propagating the effect of a permanent fault on the primary outputs of the unit. This
is probably happening since most DNN’s operands are in the range from -1.0 to 1.0.
For the INT core, one bit in the output was mainly affected in most of the cases
(75.88%). Interestingly, there is no clear tendency for the most commonly affected
locations in the outputs. In most of the cases, any of the affected bit sites of the
output is located among the least significant 23 bits of the result. This suggests
that the permanent fault effects in GPUs are not trivial and should be accurately
studied. These gate-level results can be employed to model error effects into higher
abstraction levels, allowing a more accurate fault injection and error propagation in
the applications running on GPUs.

4.3.2.3 Syndrome tables as instruction-level errors

The gate-level fault simulation campaigns are used to build a set of syndromes’ tables
(for each hardware fault and each evaluated instruction). These syndromes are the
permanent fault effects that need to be propagated by the software-level instructions
of the DNN kernels. In the experiments, all DNN kernels were evaluated on the
software injection framework using the syndromes’ tables.

The table of syndromes includes only the set of error syndromes generated
by a specific hardware fault. Therefore, error propagation at the application level
implements at the instruction level the equivalent effects of a hardware fault in
the GPU’s SPcore. Since each hardware fault produces different errors during the
execution of the same instruction in the function of the input operand values, each
table is composed of a different number of error syndromes. This error propagation
approach allows evaluation of the individual impact of each hardware fault on the
application execution and contributes to identifying the hardware faults that are most
likely to modify the application results.

Table 4.3 reports the number of propagated faults and the number of syndromes
generated per operation at the gate-level SP core. Interestingly, the number of
propagated faults affecting the INT instructions is about twice the number of the
FP ones. From the microarchitectural results in Table 4.2, it is important to notice
that a percentage of hardware faults caused identical error effects in the outputs
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Table 4.3 Main features of the error syndromes generated by permanent faults on the evaluated
instructions (adapted from [7]).

Instruction Propagated
gate-level faults

Error syndromes
(size of syndrome tables)
Min Max

IMAD 1,563 4 913,752
IADD3 880 4 599,355
FADD 352 1 86,583
FMUL 494 23 15,741
FFMA 637 1 143,591

of the instructions independently of the applied input operands (0.36% for FADD,
71.65% for FMUL, 31.39% for FFMA, 45.56% for IADD, and 50.41% in IMAD).
Furthermore, these identical output effects caused a few error syndromes (from 1 to
23 in Table 4.3). However, other subsets of hardware faults, produced up to 599,355
syndromes. This variation in the number of error syndromes indicates that permanent
faults in functional units (INT or FP32) can produce either identical error effects or
specific errors (syndromes) depending on the input operands of instruction in the
evaluated DNN workload.

4.3.2.4 Error propagation results on SP cores

The software-based injection experiments have been performed on a workstation
with an Intel i9-10900 CPU with 10 CPU cores, 32 GB of RAM, and one NVIDIA
Ampere 3070ti GPU.

For the software error propagation experiments at the software level, the NVBit-
PERfi was configured to target three different CUDA cores (SP cores) inside two
representative execution cores in the GPU (SM0 and SM37). The software level
evaluation was limited to these two SM cores since the GPU architecture is highly
homogeneous, and an exhaustive evaluation of the error propagation in each CUDA
core (4,864 cores in 38 SMs for Ampere) would be unfeasible due to the long sim-
ulation time to propagate error syndromes, especially for those faults producing a
considerable amount of error syndromes. The two targeted SMs (0 and 37) were
selected after several profiling trials on the DNN and the Ampere GPU. These trials
show that the GPU’s SM usage is unbalanced. In particular, SM0 executes more
threads than other SMs, whereas SM37 executes a minimal set of threads. The unbal-
anced use of the SMs relies on two reasons: block occupancy and block distribution,
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which affect the dynamic dispatching policy in the schedulers and cause unbalanced
behavior. From the SM0 two SP cores were selected ( SP7 and SP8 inside PPB1), and
the SP8 inside the PPB3 from the SM37. The error propagation experiments were
performed on every characterized instruction: IMAD, IADD3, FADD, FFMA, and
FMUL.
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Fig. 4.3 Average results of the error propagation of permanent fault effects on the instructions
of a DNN. Error bars show the maximum and the minimum changes in the error classification
among the evaluated CUDA cores (caused by the operation of the scheduling controllers)
(adapted from [7]).

Figure 4.3 reports the average error rate results for the evaluated instructions of
the DNN in the selected SP cores according to the proposed classification 4.3.1.5. It
is important to mention that Silent Data Corruption (SDCs) results can be further
classified into types: i) safe SDCs and ii) critical SDCs. In the first case (safe SDC),
the propagation effect of the injected errors causes a mismatch in the output results
of the DNN. However, the error effect is not enough to produce an error in the
classification outcome. In the second case, a critical SDC is identified when the
propagation of the fault effects produces changes in the classification by the DNN.

The error bars depicted in Figure 4.3 show the maximum and minimum values
obtained in the evaluated cores. Some faults are classified as potentially propagated,
which differs from the Masked ones since, during the run-time error propagation,
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the input operands do not create the right conditions to generate syndromes and
propagate error effects. However, those faults in other cores of the GPU could
potentially be activated and propagated through the DNN computation. The model of
thread execution in the GPU elucidates this behavior since all parallel cores (CUDA
cores in the SMs) work together, performing calculations related to different threads.
Therefore, the thread execution model also interacts with the error propagation by
distributing different threads (instructions and input operands) among the CUDA
cores of an SM, which are mainly defined by a scheduling policy, so potentially
missing the injection and propagation of error effects on a specific CUDA core. In
any case, those potentially propagated errors could generate SDCs or DUE effects
in the DNN when evaluated in other cores.

The results show that INT instructions are highly vulnerable to permanent fault
effects and mainly collapse the operation of the application in the GPU (from 81.8%
to 97.5% of faults lead to a DUE). This high sensitivity should not cause a surprise
since INT instructions are mainly used in the DNN to calculate thread identifiers and
memory addresses. Thus, errors in these instructions are likely to produce failures,
such as memory misalignment or illegal access, which then halt the execution of the
kernel in the GPU.

Most propagated faults on the FP instructions (82.4% in FADD, 81.8% in FMUL,
and 65.7% in FFMA) caused minimal changes (Safe SDC or Masked faults) in the
output of the DNN. However, some errors (from 2.0% to 15.5%) can jeopardize
the application and change the output classification of the DNN. Since the FP
instructions mainly process inputs, weights, and bias values from a DNN, most errors
directly affect the DNN’s classification. These experimental results demonstrate that
permanent faults in an FPU are alone the main cause of Silent Data Errors (SDEs)
that can produce important error effects in the classification of a DNN (more than
15%), so these faults can be more critical in comparison with other error effects, such
as those produced by single bit-flip transient faults [117].

Interestingly, the dynamic dispatching policy in the scheduling controller seems
to affect the error propagation results for the three evaluated CUDA cores in two SMs
in the GPU (see error bars in Figure 4.3). These results indicate that the scheduling
policy in the controllers can affect (or benefit) the propagation of permanent hardware
effects from the SP cores to the evaluated application. The results in the most used
(and the most affected by faults) core in the GPU (SM0) provided a higher percentage
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of error effects (SDCs and DUEs), in comparison to the less used cores (SM37),
which takes advantage of the dispatching policy and propagates a lower percentage
of errors.

Table 4.4 Execution performance of the implemented method for permanent fault evaluation
of DNNs (adapted from [7]).

Step Time (h)
Profiling (0.5−2)

Target Selection (2.7x10−3−4)
Gate-level Microarchitectural Simulation (1.5−1,180.0)

Software-based error propagation (2.1−207.4)
Classification (0.1−0.5)

Finally, Table 4.4 reports the performance of the method. Two factors determine
the time costs in the gate-level fault simulations (up to 1,180 hours): i) the number
of faults (determined by the gate-level structure of the unit and the used technology
library), and ii) the number of input patterns (directly connected with the application
and the number of processed instructions). Furthermore, the software error prop-
agation time (about 207 hours) depends on: i) the number of syndromes per table
(generated during the gate-level evaluation and dependent on the number of input
patterns), and ii) the number of syndrome’s tables (strictly related to the number of
faults activated by a given input pattern in a unit during the gate-level evaluation).
Since the software error propagation step requires time to search for errors in the
tables, the larger the number of syndromes per table, the longer its simulation time.
Thus, the proposed method can be easily adjusted (e.g., by modifying the number
of patterns per fault and the size of the syndrome table) to trade-off accuracy with
computational effort, allowing for even more complex DNNs to be scaled.

Despite the long simulation times, our multi-level method of permanent fault
evaluation can reduce by several orders of magnitude in comparison to fully mi-
croarchitectural approaches the time required to evaluate dense applications, such
as DNNs. Our method maintains the same accuracy of the microarchitectural fault
analysis at the instruction level by propagating error effects at the output of each
operation.



96 Modeling and evaluating error effects due to permanent faults on GPUs

4.4 Evaluation of permanent faults on GPU’s parallel
management units

4.4.1 Proposed methodology

This section describes the details of the method adopted to evaluate the impact of
permanent faults on the Warp Scheduler controller, instruction fetch, and instruction
decoder units in GPUs. Figure 4.4 illustrates the proposed evaluation flow.
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Fig. 4.4 A general scheme of the method to characterize fault effects in parallelism manage-
ment units of GPUs (adapted from [6]).

4.4.1.1 Hardware unit profiling

In this step, the unit profiling resorts to the characterization of each instruction from
several representative parallel workloads. In particular, every dynamic instruction is
executed on the GPU, collecting the accurate golden (fault-free) operation from the
targeted hardware units (WSC, fetch, and decoder). This stage uses at the gate-level
the unit under analysis, while the rest of the GPU is simulated at the Register Transfer
Level (RTL). The GPU mixed implementation (gate level for the units of interest,
RTL for the rest) allows to collect and trace per-cycle information on the tested
unit at the gate level and keep the interaction with the other units at RTL. This step
provides the golden copy of all the unit signals, including the input patterns.

To do so, a profiling hardware mechanism tool was developed in order to instru-
ment the GPU model and profile the hardware unit utilization. For each instruction,
the profiling tool collects structural and operational information from the unit, in-
cluding (i) the status of primary inputs and outputs, (ii) the timing information for
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the instruction, (iii) the instruction’s type, and (iv) the time intervals (start and end)
of each performed operation.

4.4.1.2 Gate-level fault simulation

This stage characterizes permanent stuck-at faults on each possible fault site in
a targeted unit. Exhaustive gate-level fault injection campaigns are essential to
determine if a fault is activated or propagated and how it possibly manifests as
an error at the output of the evaluated component. The simulation complexity
would explode the case of considering all possible stimuli combinations for each
fault characterization and instruction. Therefore, as mentioned in the previous
stage, a selected group of instructions with different variations are extracted from
representative GPU workloads in order to generate the necessary stimuli (patterns)
produced by every individual instruction.

The effect of a permanent fault can manifest at any point in time, depending on
the executed instructions (stimuli). Thus, it is necessary to exhaustively evaluate the
individual execution of every instruction and the activation and propagation of each
individual fault. To track the propagation of any possible effect on the outputs of the
unit, the fault simulation results are compared with the fault-free outputs obtained in
the profiling stage. Thus, all the observed effects obtained from the fault simulation
are collected in combination with the hardware profiling information that later serves
to identify instruction-level corruption effects per every fault. It is worth noting
that the effects produced by faults in the PMUs of the GPU cannot be modeled as
syndrome tables as in the SP cores case. Instead, every effect can be categorized as
masking, hanging, and latent (inactive) effects, considering the effect of the fault on
the GPU execution.

4.4.1.3 Error identification and classification

In this step, deep evaluation analysis of the fault simulation reports in combination
with the hardware profiling allows us to identify hardware fault effects in terms of
visible instruction errors (e.g., change of operand or incorrect addressing to memory),
making it feasible their modeling at the software level. This stage generates a
list of possible instruction errors caused by the injected permanent faults. The
error models from the low-level fault injections are classified according to the
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corrupted functionality and effects on the software’s visible state of every instruction.
For example, a fault may corrupt the opcode field in the fetch stage, changing
the mnemonic of the instruction from IMAD to FMAD. Thus, the error models
represent the mapping of hardware faults as instruction-level errors. Given the
parallel architecture of GPUs, a fault might corrupt the instruction execution in one
or multiple threads, and in one or multiple warps.

4.4.1.4 Instruction-level error propagation

Once the permanent hardware fault effect has been characterized as a visible software
error effect, the next stage consists of propagating such errors through representa-
tive applications using fast software-based error injection in real GPUs. This error
implementation requires a software error function for each permanent error model
obtained in the error identification and classification experiments (step 3). These
error functions are inserted in the application’s SASS using instrumentation code to
implement the permanent error effect during the application’s execution, mimicking
in software the equivalent effect of a permanent fault in the GPU unit. This instru-
mentation procedure extends the capabilities of the NVBitPERfi tool that performs
an instruction-level instrumentation of the GPU’s source code in order to inject
the error effects produced during the fault simulation campaigns at the gate-level
descriptions. The instrumentation process follows the same philosophy exposed by
the Algorihtm 5 in the section 4.3.1.4. Moreover, NVBitPERfi mimics the behavior
of a permanent error during the application’s execution considering: i) the error
model specifications, ii) the GPU architecture details, and iii) the instrumentation
mechanisms offered by NVBit [119].

The incorporation of the PMU errors in NVBitPERfi requires handling two main
challenges. (1) The corruption of a target hardware unit can impact one or multiple
threads in one or multiple warps. (2) Since this work considers permanent faults,
each instruction mapped to the corrupted hardware unit must be corrupted every
time it is executed. Thus, we need to identify all the instructions activating the fault.
It is crucial to have detailed hardware error specifications to identify how many
threads/warps need to be affected by the permanent hardware fault. An error, for
instance, may disable/enable one or multiple threads by interchanging their execution
with a set of threads from the same warp or different warps (e.g., < T hread0,Warp0 >
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issues the < T hread17,Warp8 >, and this produces the skipping execution of the
< T hread0 Warp0 >).

For the identification of instructions mapped to the corrupted hardware, NVBit-
PERfi considers the GPU’s architectural details that denote the parallelism speci-
fications, such as the maximum number of resident warps/threads per Streaming
Multiprocessor (SM) and the number of sub-partitions that every SM contains. Us-
ing these architectural functionalities, NVBitPERfi defines an error descriptor that
links the physical defects of hardware units under analysis and the portions of the
parallel application where the error will take effect. Consequently, the PMU error
implementation in NVBitPERfi considers the following fields: i) the SM identifier
number, ii) the sub-partition identifier (PPB), iii) the set of warps associated with
the sub-partition, iv) the target threads inside the selected warps, and v) additional
parameters related to the specific error model, such as targeted operands, opcodes,
error bit-masks, etc.

4.4.1.5 Applications evaluation

Once the permanent fault effect has been characterized as software error models and
the procedures to corrupt thread(s)/warps(s) in a real GPU have been implemented,
we can effectively evaluate the impact of permanent faults on real workloads by using
the NVBitPERfi framework implementing the HITPT technique. This methodology
reduces the simulation times by several orders of magnitude compared to the classical
logic simulation approach. For example, an entire fault injection campaign for all
the error models using our methodology for the GEMM code can be performed
in less than 24h, while using only low-level fault injections, the same campaign
would take 60,000 hours (i.e., more than 6 years). Thus, the evaluation of any GPU
workload regarding PMU instruction error models can be easily performed using
the NVBitPERfi tool, and the effects of such error outcomes are characterized in
one of the three classes (i.e., Masked, SDC, or DUE), as described previously in
section 4.3.1.5.

4.4.2 Fault characterization results

This section presents the results of the gate-level permanent fault injection experi-
ments and error characterization performed for the SP cores and parallelism manage-
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ment units of GPUs using the RTL description of the freely available FlexGripPlus
GPU model. FlexGripPlus was configured with one PPB per SM cluster and 32
SP cores per PPB. The gate-level implementations of the evaluated GPU units are
obtained using a 15nms Open Cell Library [125].

Table 4.5 Tested units area and utilization percentage w.r.t. a FP32 functional unit (adapted
from [6]).

Unit Area (nm2) FP32 core (%) Utilization (%)
WSC 11,854.4 114.3 100.0

Decoder 760.8 7.3 100.0
Fetch 708.2 6.8 100.0

FP32 unit 10,367.8 100.0 ∼(10.0 - 40.0)

Table 4.5 reports the percentage of area occupied by each PPU unit, compared to
one FP32 functional unit core, and their utilization percentage, taken from profiling
several workloads (described below). Despite the relatively low area of the fetch and
decoder units, these units are of paramount importance in the execution of instruc-
tions since they are continuously stimulated by every instruction (while the FP32 unit
is stressed, on average, only by 10% to 40% of instructions), thus accelerating aging.
Despite the relatively small area of the evaluated units, their continuous operation
and their failure criticality motivate their evaluation against permanent faults.

The low-level evaluation starts with the golden unit hardware profiling of the
WSC, fetch, and decoder. In this case, we identify the signals of interest and the
golden (fault-free) unit outputs. We use all the dynamic instructions (more than
25,200 in the real code) from 14 representative parallel workloads from Rodinia and
NVIDIA SDK benchmarks (Sort, Vector_Add, FFT, Tiled Matrix Multiplication,
Naïve Matrix Multiplication, Reduction, Gray_Filter, Sobel, Scalar Vector Multiply,
Nn, Scan_3D, Transpose, Euler_3D, and Back Propagation).

Then, the fault evaluation resorts to 42 localized fault injection campaigns (one
per benchmark for each of the three units) on an industrial-grade logic simulator
(ZOIX by Synopsis) to evaluate the execution of every individual dynamic instruction
from the workloads (i.e., the equivalent exciting pattern activating a unit) and identify
the fault propagation effects. This procedure evaluates 708,808 permanent faults
(i.e., the whole stuck-at-fault list) from the WSC (426,092), fetch (130,480), and
decoder (152,236) units, respectively. The hardware profiling and the fault injection
campaigns are performed on a server machine, which includes 12 Intel Xeon CPUs
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running at 2.5 GHz and with 256 GB of RAM. It is worth noting that extensive
multi-threading schemes (from 10 up to 40 parallel processes) are used to speed up
the fault evaluation campaigns.

Table 4.6 Percentage of faults that are uncontrollable, masked, cause hangs or instruction-
level errors (adapted from [6]).

Unit Total Uncontrol-
lable

HW
Masked

HW
Hang

SW
errors

WSC 29,850 35.9% 30.0% 3.6% 30.5%
Fetch 9,320 26.9% 24.5% 1.2% 47.4%

Decoder 10,874 26.0% 22.2% 2.5% 49.3%

Table 4.6 first reports the total number of considered stuck-at faults for each unit
and classifies faults in the following categories:

• Uncontrollable faults (125,808), i.e., those permanent faults that are never
activated or propagated by any input stimuli.

• Hardware Masked faults, i.e., faults that are activated by the input stimuli but
whose effect never reaches the unit outputs (30.0% in the WSC, 24.5% in the
fetch, and 22.2% in the decoder) in any of the executed instructions. These
faults are thus innocuous and can be discarded from our analysis.

• Permanent faults that cause a hardware hang, so the GPU stops responding, or
the unit’s ports are corrupted, e.g., high-impedance. Only 1.2% to 3.5% of the
faults caused a hang. A detailed analysis shows that most hang sources handle
control signals (e.g., state machine control signals) or synchronization signals
among the units (e.g., pipeline).

• Software errors: faults that reach one or more unit’s outputs and can corrupt
the software. These faults are highly likely, being 30.5% of injections for the
WSC, 47.39% for the fetch, and 49.29% for the decoder unit. These faults
corrupt the unit’s outputs handling or selecting instruction’s parameters, such
as the memory type or the thread(s)/warps(s) status.

To further categorize the faults in the last category, i.e., those that produce
instruction-level errors on any instruction from the real code, it is necessary to
analyze the hardware profiles, the fault injection campaign results, and the structural
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information of the GPU. From such analysis, it was possible to identify four main
error groups (i) operation, ii) control-flow, iii) parallel management, and iv) resource
management errors), which are further divided into 13 types of errors affecting any
software instruction, as follows.

• Operation errors

– Incorrect Operation Code Error (IOC): The operational code of an
instruction is modified and still valid, but the executed instruction type
(or its parameters) is different.

– Invalid Operation Code Error (IVOC): The opcode of the instruction
is modified and not valid.

– Incorrect Register Addressed Error (IRA): An incorrect (yet valid)
register is addressed, affecting the instruction.

– Invalid Register Addressed Error (IVRA): an incorrect and not valid
register is addressed (i.e., a register outside the limit of registers per
thread).

– Incorrect Immediate Operand Error (IIO): the immediate operand is
corrupted.

• Control-flow errors

– Work-flow Violation Error (WV): The workflow of an instruction is
modified by corrupting the predicate conditions.

• Parallel management errors

– Incorrect Parallel Parameter Error (IPP): incorrect addressing of
resources shared among the warp, such as the shared memory and register
files regions.

– Incorrect Active Thread Error (IAT): unauthorized enable or disable
of threads in a warp.

– Incorrect Active Warp Error (IAW): incorrect detention, assignation,
or unauthorized submission of a warp.

– Incorrect Active CTA Error (IAC): incorrect detention, assignation, or
unauthorized submission of a CTA (cooperative thread array) in the GPU
core.
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• Resource management errors

– Incorrect Active Lane Error (IAL): unauthorized enable or disable
lanes in a GPU core.

– Incorrect Memory Source Error (IMS): incorrect assignation of a
memory resource for operand loading.

– Incorrect Memory Destination Error (IMD): incorrect assignation of
a memory resource for result’s storing.

It is important to mention that the error classification proposed in this thesis
differentiates errors that cause an incorrect operand from those that cause an invalid
operation or action. While both types of errors modify the same instruction field (e.g.,
both IOC and IVOC modify the opcode), the former is likely to induce a data error
since a (wrong) instruction is executed or a (wrong) memory value is read/written,
while the latter blocks the execution. It is worth noting that most errors affect the
thread management units and the parallelism in the GPU. Thus, most error types
(IOC, IVOC, IRA, IVRA, IPP, IAW) affect all threads in a warp, while others (IIO,
WV, IAT, IAC, IMS, and IMD) mainly corrupt one or a few threads per warp. The
information about multiple threads/warps corruption is used in Section 4.4.3.1 to
map the effects into instruction-level errors.

Figure 4.5 shows the Fault Activation and Propagation Rate (FAPR), i.e., the
probability for a hardware permanent fault to be activated and to propagate to a
software visible state. The figure discriminates the FAPR of permanent faults injected
in each of the three units to cause one or more of the identified error types. The
most common instruction error models are IVRA, IMS, and IMD in the decoder
unit, IVOC in the fetch unit, and IOC for all units. On the contrary, some instruction
error classes are highly unlikely to occur (e.g., from 0.48% of IAC in WSC to
7.53% of IAW in the fetch unit). The low percentage of IAC errors (i.e., wrong
block scheduling) is explained by noticing that the considered WSC, the fetch, and
the decoder units handle finer-grain parallel management (operation of threads and
warps), instead of coarse-grain (CTAs) parallel management. Interestingly, faults in
the decoder unit cause a wider spectrum of possible instruction effects (11 out of 13
error categories). This is due to the fact that the decoder directly interacts with the
machine code of the instructions.
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Fig. 4.5 Fault Activation and Propagation Rate (FAPR) for the identified faults as SW errors
in the WSC, fetch, and decoder units. Faults are grouped by error types (adapted from [6]).

Additionally, the results allow the identification of some single permanent faults
causing more than one error type. This is unsurprising since the permanent faults
can be activated differently based on the applied stimuli from different executed
instructions. The results show that (a) the same permanent fault may produce
different types of software errors (from 1.28% to 14.9% for the WSC, about 1.98%
in the fetch, and less than 0.25% in the decoder unit, depending on the executed
instruction), and (b) the same permanent fault may simultaneously produce two
or more types of software errors during the operation of a single instruction (less
than 18.4% of faults). The intermediate reports, including the instruction opcode
and input stimuli that activated the permanent fault, are used to correlate the error
model to be injected at the software level (Section 4.4.3.1) with the instruction being
executed. This information allows the accurate propagation of the hardware fault
effects in software and enables an understanding of the probability for a permanent
fault to be activated in a realistic application.

4.4.3 Software-based error propagation results

This section describes the implementation details of NVBitPERfi developed to
analyze the error propagation at the software level. This section also presents and
discusses the main results using several realistic GPU workloads.
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4.4.3.1 Errors implementation/propagation

The permanent error models derived from the fine-grain circuit-level analysis are
implemented in NVBitPERfi to mimic in detail each error according to their specifi-
cations. The proposed implementation follows a similar strategy proposed on the
NVBitFI framework. This procedure was described in the section 4.3.1.4 by means
of the Algorithm 5. It is worth mentioning that the error models are implemented
by resorting to special corruption routines inserted in the instruction-level source
code of the evaluated application. In detail, those error routines are inserted in the
assembly source code of the GPU kernels during the instrumentation stage [119].
Then, the error is injected, propagated, and evaluated (at speed) once the faulty kernel
is issued on the device.

It must be noted that some error models require only one instrumentation function
right before or after the targeted assembly instruction in the application program.
Nonetheless, other error models are more complex when modeled at this level since
they require modifying an operand before the actual instruction execution and then
restoring its content after the execution. In the end, these models are implemented
with two instrumentation functions, plus a global memory storage mechanism to
keep temporary data that allows communication between both functions during the
runtime error propagation.

The software-level implementation details for each error model are described be-
low. The descriptions are grouped based on their technical similarities and highlight
their peculiarities.

IRA and IVRA

Incorrect/Invalid Register Addressed Error models select a wrong register address
in one of the operands fields for all instructions issued by the GPU. IRA selects an
address that points to a valid wrong register (i.e., within the maximum number of
registers per thread). IVRA selects registers outside of these boundaries as one of
the operands. The implementation of IRA and IVRA uses two different approaches;
one is used when the corrupted register address represents the source operand, and
the other when the destination address is the one corrupted. The error descriptor for
IRA and IVRA includes the parameters introduced in the section 4.4.1.4 (instruction,
thread(s), warp(s) affected) plus additional parameters: bitErrMask, and errOperloc.
The bitErrMask is the bit level mask that modifies the target operand register number,
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and errOperLoc is the operand position inside the instruction (0 means destination
operand Rd, and 1, 2, or 3 one of the source operands R<sx,sy,sz>).

1 · · ·
2 / * * E r r o r f u n c t i o n : P a r t I * /
3 M1⇐ Rd[Tx,Wx]

2

4 / * * T a r g e t SASS i n s t r u c t i o n * /
5 IMAD Rd , Rsx , Rsy , Rsz
6 / * * E r r o r f u n c t i o n : P a r t I I * /
7 RIR

5← Rd4⊕bitErrMask3

8 RIR[Tx,Wx]⇐ Rd[Tx,Wx]
9 Rd[Tx,Wx]⇐M

10 · · ·
a) Destination operand field case

1 · · ·
2 / * * E r r o r f u n c t i o n : P a r t I * /
3 RIR← R < sx,sy,sz > 6⊕bitErrMask
4 M⇐ R < sx,sy,sz > [Tx,Wx]
5 R < sx,sy,sz > [Tx,Wx]⇐ RIR[Tx,Wx]

6 / * * T a r g e t SASS i n s t r u c t i o n * /
7 IMAD Rd , Rsx , Rsy , Rsz
8 / * * E r r o r f u n c t i o n : P a r t I I * /
9 R < sx,sy,sz > [Tx,Wx]⇐M

10 · · ·
b) Source operand field case

Fig. 4.6 Description of IRA/IVRA error models (adapted from [6]).

Fig. 4.6 shows the implementation of the two operation modes of IRA/IVRA.
The first mode refers to the error that targets the destination operands, thus the error
function stores the content of the destination register Rd into M before the instruction
is executed. Then, after launching the target instruction, the second instrumentation
function copies into the target error register (RIR) the result of the operation stored in
Rd; then, the Rd content is restored.

In the case of an error affecting the source operands, a function (issued before the
instruction’s execution) uses a memory location M to store the content of the source

2The [Tx,Wx] indicates the set of threads Tx on selected warps Wx where the error takes effect.
3bitErrMask denotes the bits mask used to induce the index error to overwrite value.
4Rd corresponds to the destination register.
5RIR represents the incorrect or invalid register to be accessed obtained from applying the

bitErrMask field to the original register number.
6R < sx,sy,sz > denotes one of the source registers Rsx, Rsy, or Rsz.
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register R<sx,sy,sz> before performing any data modifications. Then, the targeted
register operand R<sx,sy,sz> takes the content of the error-accessed register IIR. A
second function, executed after the execution of the target instruction, restores the
original source register R<sx,sy,sz> content.

IAT, IAW, and IAC

Incorrect Active Thread/Warp/CTA error models disable/enable or wrongly as-
sign threads, warps, or CTA. To implement this behavior at the software level, we
disable the execution of a set of threads on the selected warp(s) by replacing their
identifiers with different (wrong) ones, pointing threads to the same or different
warps. For example, for disabling thread0 in warp0, the index associated with the
thread changes to the index of another thread (e.g., thread8 in warp0). Thus, the
register that contains indexes for all threads will not contain the index of the disabled
thread, producing the error effect during the execution by skipping the execution of
thread0 in warp0.

1 · · ·
2 / * * T a r g e t SASS i n s t r u c t i o n * /
3 S2R Rd, SpecialRegisterID<x,y,z>

7

4 / * * E r r o r f u n c t i o n * /
5 Rd[Tx,Wx]⇐ Rd[Tx,Wx]

2⊕bitErrMask[Tx,Wx]
6 · · ·

Fig. 4.7 Description of IAT/IAW/IAC error models (adapted from [6]).

Figure 4.7 presents the modeling concept of IAT, IAW, and IAC. This procedure
is applied to the desired number of threads on selected target warp(s) [Tx,Wx] issued
on a specific SM sub-partition. It implements one instrumentation function after
the instructions that copy the content of a special register SpecialRegisterID<x,y,z>

into a destination register Rd. In the case of IAT or IAW, the instrumentation
function affects only the instructions that take the content of SR_T ID for one of
the x, y, or z dimensions of the parallel thread indexing of the application. The IAT
(thread) error model keeps at least one thread active in the warp for its execution,
whereas the IAW (warp) error model forces all indexes inside a warp to change,
producing a full substitution of a particular warp for another. For IAC (CTA) error,
the instrumentation function modifies the destination register Rd of the instructions

7SpecialRegisterID<x,y,z> refers to the special register SR_TID or SR_CTAID in any of the
dimensions x, y or z
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reading the SR_CTAID special register of one of the thread’s three dimensions x,
y, or z indexing registers. In this case, when the index of the block changes, the
obtained effect leads to incorrect block thread execution.

IAL

The software-level implementation of Incorrect Active Lane error requires two
different approaches. The first one, the unauthorized inactive lane (Figure. 4.8.a),
ignores the result of all instructions executed on a specific functional unit in one or
several lanes (e.g., Integer or floating point cores). This functionality can be achieved
by replacing the result of such instructions with the content of the destination register
captured before executing the instructions.

1 · · ·
2 / * * E r r o r f u n c t i o n : P a r t I * /
3 M⇐ Rd[Lane,Wx]
4 / * * T a r g e t SASS i n s t r u c t i o n * /
5 IMAD Rd , Rx , Ry , Rz
6 / * * E r r o r f u n c t i o n : P a r t I I * /
7 Rd[Lane,Wx]⇐ M
8 · · ·

a) Disable lane execution

1 · · ·
2 / * * E r r o r f u n c t i o n * /
3 if Pr[Lane,Wx] == disabled then
4 Pr[Lane,Wx]← enable
5 end if
6 / * * T a r g e t SASS i n s t r u c t i o n * /
7 < Pr > IMAD Rd , SrcOp_x , SrcOp_y , SrcOp_z
8 · · ·

b) Enable lane execution

Fig. 4.8 Description of IAL error models (adapted from [6]).

The second approach (Figure. 4.8.b) forces the execution of all predicated instruc-
tions associated with the Integer or Floating Point Lane where the error is injected.
An instrumentation function is inserted before the target instruction to check the
predicate register status. Hence, if the predicate register disables an instruction’s
execution, then the function changes its status to enabled, forcing the execution of
an instruction that was not supposed to be executed.

IIO, IMS, IMD, WV, and IOC
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1 · · ·
2 / * * T a r g e t SASS i n s t r u c t i o n * /
3 IADD Rd , SrcOp_x , SrcOp_y
4 / * * E r r o r f u n c t i o n * /
5 Rd[Tx,Wx]⇐ SrcOpx[Tx,Wx] ReplOp SrcOpy[Tx,Wx]

6 · · ·
a) IOC

1 · · ·
2 / * * T a r g e t SASS i n s t r u c t i o n * /
3 IMAD Rd , SrcOp_x , SrcOp_y , SrcOp_z
4 / * * E r r o r f u n c t i o n * /
5 Rd[Tx,Wx]⇐ Rd[Tx,Wx]⊕bitErrMask[Tx,Wx]
6 · · ·

b) IIO/IMS

1 · · ·
2 / * * E r r o r f u n c t i o n * /
3 R<s,a>[Tx,Wx]⇐ R<s,a>[Tx,Wx]⊕bitErrMask[Tx,Wx]
4 / * * T a r g e t SASS i n s t r u c t i o n * /
5 STS [ Ra ] , Rs
6 · · ·

c) IMD

1 · · ·
2 / * * T a r g e t SASS i n s t r u c t i o n * /
3 ISETP Pr , Rx , Ry , Rz
4 / * * E r r o r f u n c t i o n * /
5 Pr[Tx,Wx]⇐ Pr[Tx,Wx]⊕bitErrMask[Tx,Wx]
6 · · ·

d) WV

Fig. 4.9 Description of IOC/IIO/IMS/IMD/WV error models (adapted from [6]).

All these errors modify a field in the executed instruction(s) ISA. These errors
can be implemented by modifying the destination register of a selected group of
instructions either with a random value or with a different operation, using the
same instruction operands (see Figure. 4.9). The instruction’s group subject of the
instrumentation and/or error injection is determined by the error type. Incorrect
Immediate Operand (IIO) applies an error mask in the destination register for all
instructions containing at least one reference to immediate operands. Incorrect
Memory Source (IMS) inserts an error mask in all instructions containing at least
one operand reference to constant or shared memory. Work-flow Violation (WV)
selects and inserts an error mask in all instructions that write to a selected predicate
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register, affecting the application’s control flow. Incorrect Memory Destination
(IMD) targets all the instructions with shared memory as a destination reference
by inserting an error bitErrMask either into the data register to be stored or in the
register that addresses the shared memory. Finally, Incorrect Operation Code (IOC)
targets all instructions issued by the integer or floating point cores by taking the input
operands and replacing them with any other operation.

IPP and IVOC

Incorrect Parallel Parameter (IPP) error has several ways of affecting the GPU
operation, but most of them lay into two main categories i) the wrong resource
addressing hardware resources (i.e., registers or shared memory modeled by IRA,
IVRA, IMS, and IMD), and ii) by generating an incorrect threat execution modeled
by IAT or IAW. On the contrary, an Invalid Operation Code (IVOC) represents
an invalid opcode operation that generates an invalid instruction exception at the
software level, leading to a Device Unrecoverable Error (DUE) in all cases where
the error is injected.

4.4.3.2 Error injection and propagation results

This section presents the results of injecting and propagating instruction-level errors
using NVBitPERfi on several real GPU workloads. 15 realistic workloads were
selected (listed in Table 4.7) to evaluate the error models for the PMU implemented
on NVBitPERfi. In order to demonstrate that the proposed evaluation methodology
can be applied to any application, the selected workloads correspond to various
domains, including Deep Learning, Linear algebra, N-body simulation, and Graphs.

The software-based injection experiments have been performed on a workstation
with an Intel i9-10900 CPU with 10 Cores, 32 GB of RAM, and one NVIDIA
Ampere 3070ti GPU.

This section presents the evaluation results of error injection and propagation
on 15 real applications. The experiments were performed by injecting 1,000 errors
per application per error model. In addition, the NVBitPERfi was configured to
target the error injections on one sub-partition (PPB0) of SM0. Overall, the complete
evaluation resorted to more than 165,000 errors that took 300 hours of real GPU
simulation for all the applications.
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Table 4.7 Codes used for the software-level error injections (adapted from [6]).

Data type Domain Suite
vectoradd FP32 Linear algebra CUDA SDK

lava FP32 N-body Rodinia
mxm FP32 Linear algebra CUDA SDK
gemm FP32 Linear algebra CUDA SDK

hotspot FP32 Structured Grid Rodinia
gaussian FP32 Linear algebra Rodinia

bfs INT32 Graphs Rodinia
lud FP32 Linear algebra Rodinia
accl INT32 Graphs NUPAR
nw INT32 Dyn. Programming Rodinia
cfd FP32 Unstructured Grid Rodinia

quicksort INT32 Sorting CUDA SDK
mergesort INT32 Sorting CUDA SDK

lenet FP32 Deep Learning Darknet
yolov3 FP32 Deep Learning Darknet

Figure 4.10 reports, for the 15 applications, the Error Propagation Rate (EPR),
i.e., the probability for an error (produced by a fault that was activated and corrupted
one or more of the unit outputs) to propagate to the software output. The figure
shows the EPR for SDC, DUEs, and Masked outcomes. It must be noticed that the
results in the figure are grouped per error model, as discussed in Section 4.4.1.3.
Figure 4.10 reports the results for 11 error models grouped by the four main error
groups (i.e., Operation Errors, Control-flow Errors, Parallel Management Errors,
and Resource Management Errors).

The error models IPP and IVOC are not reported since IPP can be implemented
by any of the other error representations (IRA, IVRA, IAT, IAW, IMS, or IMD), and
IVOC always generates DUEs at the low-level injections.

An interesting result from Figure 4.10 is the very high EPR for all error models
and applications (the average EPR is 84.2%). The applications that are either
compute-intensive (i.g., yolov3, lava, or LeNet) or the ones that use many kernels
during the execution (i.g., bfs, mergesort, and quicksort) present, for most of the
error models, an EPR equal or close to 100%. It is worth noting that permanent
faults, by definition, are less likely to be masked compared to transient faults, as the
resources are permanently damaged.
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Moreover, the results indicate that the code’s characteristics can significantly
impact the EPR. This is particularly evident in two error models, WV (work-flow)
and IMD (incorrect memory destination). For the WV error model, codes with many
control flow blocks or thread indexing limitations that, once modified, can impact a
significant amount of data (i.e., vectoradd, mxm, gemm, hotspot, bfs, and gaussian)
show a high SDC EPR. Additionally, applications that can impact the memory
addressing or block synchronization (i.e., lud, nw, and mergesort) show a high DUE
EPR. The EPR changes similarly for the IMD error model. For many codes, the
error model IMD has no impact on the execution (i.e., vectoradd, gaussian, bfs, and
cfd). The IMD error model affects instructions that operate on shared memories by
changing the register, which is the source or destination of an instruction that loads
or stores on shared memory. Consequently, codes that do not use shared memories
will have 100% of the injected faults masked.

0%

20%

40%

60%

80%

100%

IOC IRA IVRA IIO WV IAT IAW IAC IAL IMS IMD

A
ve

ra
ge

 E
rr

o
r 

P
ro

p
ag

at
io

n
 R

at
e

SDC DUE Masked

Operation C.F. Parallel Management Resource ManagementError group:

Fig. 4.11 Average EPR among the 15 tested applications (adapted from [7]).

Figure 4.11 summarizes the main findings for the 11 evaluated error models
by showing the Average EPR between all evaluated applications. Interestingly, the
group of Operation Errors shows a predominance of DUEs for all error models.
On average, the percentage of IOC, IRA, IVRA, and IIO injections that generate a
DUE is 87%, 90%, 95%, and 92%, respectively. The Operation Errors, as discussed
in Section 4.4.1.4, have a particular characteristic of modifying the behavior of all
or many instructions in one or all threads within a warp or multiple warps. When
many instructions are modified due to a permanent fault, the expected outcome is to
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have at least one thread, or many threads, performing illegal instructions, accessing
incorrect memory accesses, or operating with registers outside the thread register
bounds, which leads to a DUE. In fact, the percentage of incorrect memory addresses
and illegal instructions generated by IOC, IRA, IVRA, and IIO error models are, on
average, 99.05%, 99.76%, 100%, and 98.29% of the total DUEs.

On the contrary, most of the error models that belong to the Control-flow and
Parallel Management groups (WV, IAT, and IAW) have a high SDC EPR which
is, on average, 38%, 61%, and 54%, respectively. The combination of the error
model and the executing code significantly changes these injections’ outcomes. For
example, when single or multiple threads are disabled due to the IAT error model,
the output that would be expected from that thread will not be produced, generating
an SDC. This is the case of codes like vectoradd, gaussian, cfd, and bfs, where the
IAT error model enables/disables threads on the execution, and the code is able to
finish (i.e., due to low interdependencies of the threads) but generates, most of the
time, SDCs. Similar behavior is observed for IAW and WV error models, but in
these cases, there is a slightly higher incidence of DUEs than for IAT. In fact, these
error models affect multiple threads or warps simultaneously, which can lead to the
corruption of multiple output elements.

The errors from the Parallel Management group mostly induce SDCs in the
applications. The only error model with an average DUE EPR higher than the SDC
EPR is IAC (SDC EPR is 34% and DUE EPR is 57%). This happens because IAC
is an error model that causes an incorrect execution (i.e., detention, assignation, or
unauthorized submission) of an entire CTA (thread block) in the kernel execution,
increasing the probability of DUEs. As with the other error models from the Parallel
Management group, the EPR will change according to how the code uses the GPU
resources. For instance, when the IAC error model is injected, applications such
as lava, hotspot, gaussian, accl, and quicksort have most of the injections leading
to SDC, i.e., the SDC EPR is 69%, 97%, 98%, 51%, and 99% respectively. This
happens because those applications schedule many independent parallel CTAs, then
an incorrectly assigned block may still finish and produce an incorrect output.

For the error models from the Resource Management Errors group, the EPR
shows a strong dependence between the injection outcome and the code, where, for
example, in the case of IMD, the use of shared memory can determine if the error
will be masked or not. Similar behavior also can be observed for the IAL and IMS
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error models. However, as IAL and IMS affect resources used for all the codes (by
disabling GPU lanes or causing an incorrect assignation of a memory resource for
the result’s storing), we can see that both error models impact all codes, increasing
their average EPR.

Finally, the required time to perform the evaluations is significantly faster than
simulation-based fault injection approaches and more realistic than error injections
at the application levels (e.g., corrupting parameters in DNNs). In fact, the proposed
evaluation methodology required only 20.5 hours for profiling, 178.1 hours for
low-level characterization, 4.2 hours for error analysis, and ≈ 300 hours of software-
level error propagation for all workloads and targeted units (502.8 h in total), so
speeding up the simulation of more than four orders of magnitude in comparison with
gate-level fault simulations. In addition, the flexibility of the proposed method and
the developed simulation framework NVBitPERfi, allows its adaptation/extension
for the evaluation of other units and the development of additional fault models.
The low-level micro-architecture characterization just requires the adaptation of the
hardware profiling tool, according to the specifications of the new target unit or fault
model, to identify the stimuli.

4.5 Final remarks

This chapter introduced a multi-level fault evaluation approach to evaluate the impact
produced by permanent faults on GPU applications. The proposed methodology re-
sorts to modular evaluation targeting low-level fault simulations on a GPU hardware
unit. These evaluations allow the characterization of the fault effects considering
representative profile information of realistic workloads using software and hard-
ware profiling information. The fault simulation results are then transformed into
instruction-level errors describing the propagation effect of permanent faults on the
evaluated unit. Later, the modeled errors are propagated at the software level during
the execution of a realistic GPU workload to assess the application’s resilience
regarding such errors.

This fault evaluation approach significantly speeds up the evaluation of permanent
faults in GPUs by up to four orders of magnitude compared with pure fault simulation
strategies. Moreover, this fault assessment strategy provides the best balance between
the fault evaluation time and the accuracy of the evaluation (i.e., closer to reality).
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The multi-level fault evaluation can be scaled to a wide variety of complex application
domains, including deep learning, linear algebra, N-body simulation, and graphs.
It is worth noting that this methodology allows for the first time to obtain realistic
results regarding the resilience of complex GPU workloads (e.g., DNNs) regarding
permanent faults in GPUs rather than state-of-the-art approaches that perform fault
evaluation using hardware-agnostic approaches (e.g., corrupting DNN parameters) [7,
106, 105, 107].

It is important to mention that the DNNs chosen for this thesis, such as LeNet5
and Yolov3, are relatively small. However, the proposed methodology can be easily
adapted to assess larger DNN models. Initially, application profiling and gate-level
fault simulations are carried out to generate syndrome masks for functional units
or instruction errors in the case of parallel management units. Subsequently, the
low-level characterization is utilized at the software level as needed by the reliability
engineer, who can reuse them for similar workloads without resorting to low-level
evaluations again.

The syndrome tables can be reused as they contain fault effects related to input
operands, which are commonly found in multiple DNN workloads. For instance,
floating point operations typically fall within the range of [0,1], given the typical
characteristics of DNNs. Additionally, from our experimental assessments, we
noticed that some syndrome tables contain corruption masks that affect the least
significant bits of target operations. Removing these "benign corruption masks"
significantly reduces the required time for software-level error propagation, thus
speeding up the evaluations

On the other hand, the instruction-level errors, that represent fault effects in the
GPU’s PMU, do not significantly impact the execution of applications. This means
that different applications, including larger DNN models, can be evaluated without
a lot of extra work. It is important to note that NVBitPERfi offers a user-friendly
framework that allows users to evaluate other applications by making minor modifi-
cations to the setup. However, performing low-level evaluations still requires some
engineering effort, as it depends on the available RTL GPU model and knowledge of
industrial tools for circuit-level simulations.



Chapter 5

Conclusions

This thesis addresses the reliability enhancement of GPU devices using software-
based approaches from two different perspectives. First, this work tackles the
effective generation and compaction of Software Test Libraries developed under the
SBST concept applied to in-field test scenarios. It is important to mention that the
main contributions of this aspect include i) the adoption of high-level (e.g., CUDA
C++) or intermediate (e.g., CUDA PTX) programming languages to develop or map
SBST strategies devised for testing specific hardware components in GPUs, and ii)
the devising of alternative test program compaction strategies to reduce their memory
footprint and their test duration when adopted in the in-field test.

On the other hand, this work proposes multi-level fault evaluations for effective
reliability evaluations of GPU applications concerning Silent Data Errors caused
by permanent faults. The proposed method provides the best trade-off between
accuracy (i.e., closer to reality) and fast fault evaluations compared to other evaluation
methods. In addition, these evaluations are crucial for devising effective software-
based hardening solutions for GPU applications. Likewise, the proposed multi-
level fault evaluation allows the assessment of software-based hardening solutions
regarding their capabilities to minimize the impact of permanent faults on different
GPU-based applications (e.g., DNN workloads in safety-critical systems).

In chapter 2, we introduced a method to develop STLs aimed at testing GPUs
during in-field operations using High-level or Intermediate-level programming lan-
guages. The proposed method employs a divide-and-conquer approach to target
individual modules in a GPU and apply test patterns or test algorithms that can
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later be mapped into high-level functions. The methodology was applied by using
state-of-the-art test procedures designed to test the FlexGripPlus GPU model for the
experiments. The experimental evaluation demonstrates that HLLs or ILL program-
ming levels can be used to detect permanent faults effectively when test programs
are described in the regular structures of the GPU (e.g., functional units). In fact,
these hardware structures are also visible resources to the programs providing high
test-pattern controllability and fault observability. On the other hand, using HLLs
for the development of test programs for more complex modules (i.e., scheduler
units, divergence management units, and embedded memories) exhibits limited
fault detection capabilities (from 28% to 68% of fault coverage). In fact, the test
algorithms or procedures can not be fully implemented in HLLs due to language
restrictions or compilation optimizations. Nonetheless, we found that the usage of
ILLs provides better fault detection capabilities for these GPU cores. In addition,
when combining HLL and assembly languages (e.g., SASS), the fault coverage
results are equivalent to the test programs developed only using assembly languages.
On the other hand, using HLLs for describing STLs for fault detection on regular
units of the GPU significantly increases the program size and the test duration with
respect to assembly level only, whereas using ILLs can produce equivalent program
sizes than the assembly ones but slightly increasing the test duration.

In general, developing STLs for GPUs using HLLs or ILLs is a good solution
when the GPU ISA specifications are restricted, or the documentation is not fully
available. Nonetheless, there are constraints and challenges in the development
of STLs using such programming abstractions as pattern controllability and fault
observability. In addition, compiler intervention plays a crucial role in the generation
of the final test program. More specifically, compiler features must be faced using
strict coding styles or combining several abstraction levels to develop effective
STLs. Finally, the adoption of HLLs when developing STLs for GPUs also plays an
important role in finding the best trade-off between the development time, the fault
coverage, the program size, and the test duration of the STL.

In chapter 3, we presented a novel approach to perform test program compaction,
reducing the size and duration of STLs and functional test programs described
using the SBST strategy. The proposed strategy was successfully applied to test
programs developed to compact STLs and test programs developed for CPUs and
GPU cores. The compaction approach addresses test programs with a regular
structure of consecutive instructions or basic blocks. The proposed method greatly
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reduces the required compaction time by exploiting only one fault simulation per test
program. The compaction method uses different levels of abstraction by combining
one RTL logic simulation and one GL fault simulation to extract, trace, and label the
portions of a test program that can be removed. Then, after identifying the essential
instructions per basic block, these non-essential instructions are removed from a
given test program. The proposed approach was validated by using five different
STLs developed to test stuck-at faults on a state-of-the-art pipelined microprocessor
(RI5CY) and several Parallel Test programs developed to test stuck-at faults on an
open-source GPU model (FlexGripPlus).

In the context of STLs for CPUs, the results showed that the method could reduce
the size by up to 93.9% and the duration by up to 95.08% of the test programs
developed to test the execution units, only. On the other hand, the method achieved
up to 88.87% reduction in size and 70.27%, respectively, for STLs developed to
test the entire CPU. It must be noticed that the compaction method has a negligible
impact on the fault coverage (<0.4%), while we also observed cases where the fault
coverage slightly increased.

On the other hand, when targeting the test programs developed for the GPU,
the compaction strategy reaches a high compaction ratio: up to 98.64% in terms
of size and up to 98.42% in terms of duration when compacting PTPs with regular
structures, excluding those regions with parametric loops. The compaction method
showed a minimal impact on the achieved fault coverage for the evaluated PTPs.
The compaction of the selected PTPs implies 80.71% size and 64.43% duration
compaction rates for the complete STL analyzed.

It must be highlighted that the main advantage of the proposed compaction
method is the limited computational time required in comparison with heuristic or
evolutionary compaction strategies. This outstanding improvement is the result of the
reduced number of logic and fault simulations required to perform the compaction in
comparison with the state-of-the-art methods. In detail, the proposed compaction
approach only uses one RTL logic simulation to trace the behavior of a target test
program and one GL fault simulation to identify helpful instructions for detecting
and propagating faults.

Finally, in chapter 4, we introduced a multi-level approach that combines accurate
gate-level simulations with efficient software-based error propagation to assess the
resilience of GPU workloads regarding permanent faults. The purpose of this
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method is to generate instruction-level errors that depict the effects of permanent
faults on individual components or hardware structures of the GPU through fault
simulations. These instruction-level errors are then propagated during the runtime of
the application by corrupting the source code of the application through the insertion
of corruption routines at the assembly level. The methodology has been adapted
to assess the impact of permanent faults on the compute cores of the GPU (i.e.,
SP-Cores or CUDA cores), then a variation of the method has been used to study the
parallel management units of the GPU (i.e., Warp Scheduler, Instruction Fetch and
Instruction Decoder units). Regarding the instruction error modeling, we propose
the adoption of syndrome tables based on the fault simulation of the functional units,
and regarding the PPU units, we have identified from gate-level fault simulation four
main groups of errors: (i) Operation, ii) Control-flow, iii) Parallel management, and
iv) Resource management errors), corresponding to 13 instruction error categories.
The error propagation at the software level resorts to an error injector (NVBitPERfi)
developed to implement and propagate the instruction-level error effects obtained
from the gate-level fault simulations. For the error propagation analysis, several
realistic workloads were used by performing error injection through NVBitPERfi.
The evaluation of permanent faults affecting the functional units was evaluated
using a DNN workload, whereas similar evaluations on the PMUs were conducted
in 15 real parallel applications in different domains, including machine learning
applications.

This methodology allows for the first time to obtain realistic results regarding
the resilience of DNNs regarding permanent faults on the functional units in GPUs
rather than the hardware-agnostic evaluations available in the state-of-the-art. Indeed,
the results indicate that faults at the hardware level corrupt a fraction of the evaluated
data, inducing different syndrome errors at the instruction outputs (7.24% for FADD,
10.42% for FMUL, 20.0% for FFMA, 27.1% for IADD, and 10.8% for IMAD).
When propagating the syndrome error at the application level, the results unveil
that permanent faults in functional units are highly critical for DNN workloads.
Such permanent faults can affect the execution of a DNN, degrading the accuracy by
15.5% when targeting floating point hardware, whereas faults on the integer hardware
collapse the device’s operation (i.e., crash or hang) in 97.5% of the cases.

On the other hand, the experimental evaluations regarding permanent faults on the
GPU’s PMU show that the permanent fault effect depends on the corrupted unit and
the executed instruction. Faults in the fetch unit mainly (66.80% of the cases) lead to
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Operation errors, faults in the Decoder unit lead to operation (44.32%) and resource
management (38.35%) errors and faults in the scheduler lead to parallel management
errors (54.87%). The software-level propagation of the observed error categories
shows that parallel management errors (mainly generated within the Warp scheduler)
generate a high amount of silent data corruption (20% to 60%), whereas faults in
the Fetch and Decoder units mainly lead to DUEs (> 90% and 70%, respectively).
However, in the case of the Decoder, there is a non-negligible 20% of SDCs that
jeopardizes the application execution.

Lastly, the fault evaluation strategy dramatically reduces the time complexity
required for the evaluation of permanent faults in GPU, allowing an accurate error
characterization at the gate level and a practical propagation of errors at the applica-
tion level. A similar evaluation using only low-level hardware descriptions would be
simply unfeasible. In fact, the simulation of a complete GPU at gate level takes, in
our server, ≈14.5 hours for characterizing one permanent fault in one application.
If we scale the simulation time for all workloads (15 applications) and all fault
locations (50,044) we tested, we would reach a theoretical simulation time of around
14.5×50,044×15 hours, that is 10.8×106 hours: ≈ 1,242 years! In contrast, our
approach required only 20.5 hours for profiling, 178.1 hours for low-level char-
acterization, 4.2 hours for error analysis, and ≈ 300 hours of software-level error
propagation for all workloads and targeted units (502.8 h in total), so speeding up
the simulation by more than four orders of magnitude.

In conclusion, software-based approaches can be effectively adopted to enhance
the reliability of complex computational accelerators like GPUs. This thesis shows
that test programs and software test libraries can be effectively developed for testing
regular structures by adopting high-level or intermediate programming languages.
Nonetheless, it is crucial to adopt adequate coding styles to prevent compiler op-
timizations and to include intrinsic functions that enable the activation of specific
hardware units during the test. On the other hand, the generation of test programs,
either using high-level programming languages or assembly levels, might contain
instructions that do not contribute to the fault detection of faults during the exe-
cution of the test program. In that case, the compaction of test programs can be
effectively accomplished by using only one RTL and one gate-level fault simulation
to significantly reduce the size of test programs developed either for CPUs or GPU
devices. Alternatively, the adoption of multi-level fault evaluations contributes to the
development of effective software-based hardening solutions to counteract the impact
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of permanent faults on GPU’s workloads. Moreover, such evaluations offer the best
tradeoff between the accuracy and the evaluation time required by the evaluations.

Future directions

The work presented in this thesis paves the way for the development of new investi-
gations or extensions that can be applied to other hardware devices or accelerators.
Specifically, regarding the Software-Based Self-Testing resorting to high-level lan-
guages (chapter 2), there are still several directions regarding their exploration and
application in the development of test programs to test other fault models, such as
transition delay fault models or cell-aware fault models, either for CPU or GPU
devices. In addition, the mapping of test strategies into high-level programming
languages has limitations regarding the programming language specifications as
well as the compiler intervention. Therefore, it is crucial to develop guidelines
that mitigate the impact of the compilation process on the effectiveness of the fault
coverage of a given STL.

Regarding the compaction of test programs (chapter 3), it is crucial to extend the
capabilities to the method to compact more complex programming structures used to
develop test programs such as conditional or loop statements. Among the possible
extensions to face such contains, it is worth exploring the preprocessing stages of
the test programs, such as loop unrolling and data dependency analysis, in order to
provide more flexibility and compaction capabilities to the proposed compaction
approach.

Finally, when it comes to reliability evaluation techniques regarding permanent
faults (chapter 4), the future directions drive toward the development of additional
instruction-level errors to be included in the NVBitPERfi error evaluation tool. For
example, an instruction-level error can be generated that describes the effects of
permanent faults on the Tensor Core Units or the Special Function Units in GPUs in
order to assess machine learning applications. Additionally, the proposed evaluation
approach can be used to assess different hardening techniques developed at the
application level to increase the robustness of DNN models.
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