Abstract

At first glance, the two topics addressed in each Part of the present PhD
thesis may seem orthogonal: indeed, generative models and linear response the-
ory appear to have little overlap. However, many interesting research topic are
linked by common themes after a deep analysis. In the present case, the cen-
tral narrative thread revolves around Nonequilibrium Statistical Physics. The
first fundamental tool from that field that has been used in the present work
is Jarzynski identity (C. Jarzynski, 1997); it provides a connection between mi-
croscale and macroscale, relating microscopic work along trajectories and free
energy, respectively. On the other hand, Onsager reciprocal relations (ORR)
represent a milestone in that area (L. Onsager, 1931): they serve as a bridge
between a microscopic property (time reversal symmetry) and a macroscopic
one (response tensors).

In the first Part, we show how recent theoretical results in Statistical Physics
can be very instrumental in state-of-the-art applications; generative model rep-
resent a substantial research challenge since they are already used in everyday
life, even if we are far from having a complete theoretical picture about them.
In a nutshell, we propose a novel training algorithm for Energy-Based Models
(EBMs), which is a class of diffusion generative models strongly inspired by
Statistical Physics, namely by Boltzmann-Gibbs ensemble; in light of this rela-
tion, a key strength of EBMs compared to other models is their interpretability.
Standard procedures, such as those based on Constrastive Divergence, heavily
relies on approximations of the real loss objective already in an ideal setup. Be-
cause of that, the practical implementation of such methods usually requires a
lot of empirical tricks, often not theoretically justified. In contrast, our proposal
is exact; furthermore, no extra bias is introduced by discretization in time and
the algorithm provides for free additional information on the trained EBM (i.e.
the normalization constant of the trained probabilistic model). Our contribu-
tion is based on Jarzynski identity in continuous time and Annealed Importance
Sampling in discrete time.

To provide insights into the structure, this section is organized into four chap-
ters. The first chapter offers a historical introduction to generative models,
focusing on Energy-Based Models (EBMs) in relation to Statistical Physics and
Data Science. The second chapter covers essential technical preliminaries nec-
essary for contextualizing our work. This includes defining EBMs and exploring
their purpose, as well as their relationship with other state-of-the-art gener-
ative models such as Variational Auto-Encoders, Generative Adversarial Net-



works, Diffusion-Based Models, and Normalizing Flows. We aim for a unifying
approach to highlight similarities and differences between these unsupervised
models. The third chapter delves into the relationship between EBMs and the
sampling problem. Given that EBM training relies on the ability to sample
from a Boltzmann-Gibbs ensemble, we discuss key sampling routines such as
the Metropolis-Hastings Algorithm, Unadjusted Langevin Algorithms (ULA),
and Metropolis Adjusted Langevin Algorithms (MALA). In the final section, we
emphasize the connection between EBMs and Statistical Physics. This serves to
justify the adoption of the Boltzmann-Gibbs ensemble and provides important
context for utilizing the Jarzynski identity in the main result of this thesis.
The third chapter contains the main novel theoretical result we propose about
EBM training. The core idea is the use of nonequilibrium sampling, that is
sequential Monte Carlo in discrete time, to efficiently compute the gradient
of cross-entropy. Such quantity is necessary to perform KL divergence mini-
mization, or equivalently maximization of log-likelihood, which is the standard
approach in statistical learning. We present continuous and discrete time ver-
sions of our algorithm, as well as algorithmic aspects having particular relevancy
in practical applications. In the last chapter we present experimental result to
validate our theoretical findings; we investigate our training routine as opposed
to standard procedures like Contrastive Divergence (CD) algorithm. We show
as already for Gaussian Mixture Model, our proposal evidently outperforms CD.
Similar results are obtained for real image datasets as MNIST and CIFAR-10.
In the second Part, we show that established theoretical findings in Statistical
Physics can be still object of refinements. ORRs basically provide information
on the structure response tensors; the main request for such relations to hold is
canonical time reversal symmetry, i.e. the invariance of the equations of motion
under the inversion of velocities. Our work demonstrates how we can relax this
condition by expanding upon the definition of time reversal symmetry. This ex-
pansion enables us to prove that the set of symmetries leading to time reversal
invariance is broader. The experimental validity of ORRs has been proven in
many contexts where canonical time reversal seems to not hold. Thus, our re-
sult contributes to explain some of these examples. Regarding the organization
of the treatment, we present the two published papers on the topic, being the
second a substantial extension of the first preliminary work.



