
Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Communications Engineering

(36thcycle)

Machine Learning for Perception
and Autonomous Navigation of

Service Mobile Robots

Mauro Martini

Supervisor:
Prof. Marcello Chiaberge

Politecnico di Torino

2024

Declaration

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text may
be reproduced for non-commercial purposes, provided that credit is given to the
original author.

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Mauro Martini
Torino, 2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

www.creativecommons.org

Abstract

Autonomous service robots are expected to revolutionize multiple industries and
social contexts in the following decades. Service robots perform helpful tasks for hu-
mans or equipment, excluding industrial automation applications. Potential contexts
that can benefit from adopting service robots include precision agriculture, search and
rescue, indoor cleaning, social assistance, inspection, and exploration of hazardous
environments. In the last years, research has significantly investigated mobile robots’
robust perception and autonomous navigation capabilities to address complex service
tasks in dynamic environments. In particular, perception refers to the ability of a
robot to acquire, process, and understand information from its surroundings, such as
images, sounds, and tactile sensory data. Autonomous navigation refers to the ability
of a robot to plan and execute its motion, achieving its target goal without collisions
or failures. In this context, the most recent data-driven approaches can empower
service mobile robots with these required capabilities. Machine learning and Deep
Learning are successful branches of Artificial Intelligence (AI) that have been widely
applied to various complex tasks such as Pattern Recognition, Computer Vision, and
Natural Language Processing, outperforming classical methods. Robotics represents
another challenging application field for Machine Learning, as it involves complex
and dynamic environments and high-dimensional and multimodal sensory inputs
to solve a wide range of diverse and interactive tasks. This thesis aims to study
novel methodologies to efficiently integrate AI in service robotics perception and
autonomous navigation tasks. Precision agriculture and social indoor assistance are
the applicative contexts for all the methods discussed in this dissertation. A com-
plete Deep Learning pipeline for robot navigation in row-based crops is presented,
combining different low-cost visual controller solutions with a way-point generator
for global path construction. Various methodologies have been developed for indoor
social assistance tasks, from online odometry correction to omnidirectional person
following and monitoring. Consistent simulation and synthetic data adoption have

iv

enabled fast data collection to train the models, analyzing and mitigating the deriving
sim-to-real gap with new techniques. Generalization is a fundamental aspect of
robust AI-based perception in the real world, and a great focus has been devoted to
investigating it from different perspectives. Domain Adaptation and Domain Gener-
alization methodologies have been applied to image classification and segmentation
tasks in the agricultural field, as well as a general study of backbone generaliza-
tion properties. Extensive experiments and results obtained are presented for each
presented methodology, together with a theoretical description of the methods and
a complete review of related works. Moreover, a great endeavor has been spent
to study and optimize the inference time of Deep Learning models on constrained
resource hardware, such as the onboard computational units of mobile robots. Differ-
ent approaches have been considered to allow for real-time prediction performances
required by the robotic tasks. Overall, this dissertation aims to advance the efficient
integration of AI and mobile robots, paving the way for further improvements in this
rapidly evolving research field.

Contents

Introduction 1
Service robotics . 1
Contributions . 3
Thesis organization . 4

I Fundamentals 6

1 Basics of Machine Learning 8
1.1 Artificial Neural Networks . 9

1.1.1 The artificial neuron . 10
1.1.2 Multi-layer perceptron . 11
1.1.3 Activation functions . 11
1.1.4 Training Artificial Neural Networks 15
1.1.5 Stochastic Gradient Descent 18
1.1.6 The backpropagation algorithm 18
1.1.7 Adam optimizer . 21
1.1.8 Regularization methods 23
1.1.9 Convolutional Neural Networks 27
1.1.10 Self-attention and Vision Transformer 29

1.2 Optimized execution of ANN at the Edge 31

2 Deep Reinforcement Learning 34
2.1 Introduction to Reinforcement Learning 34

2.1.1 Markov Decision Process 37
2.2 Tabular methods . 41

2.2.1 Dynamic programming . 41

vi Contents

2.2.2 Monte Carlo Methods . 42
2.2.3 Temporal-Difference Learning 45
2.2.4 SARSA: on-policy TD method 46
2.2.5 Q-Learning: off-policy TD method 47

2.3 Deep Reinforcement Learning . 47
2.3.1 Deep Q-Learning algorithm 49
2.3.2 Actor-Critic architecture 51
2.3.3 Deep Deterministic Policy Gradient 52
2.3.4 TD3 . 54
2.3.5 Soft Actor-Critic . 57

3 Autonomous Navigation of Mobile Robots 59
3.1 Autonomous navigation: localization, planning and control 59
3.2 Localization Approaches . 61

3.2.1 Kalman Filter Localization 61
3.2.2 Robot model . 65

3.3 Local Planning: Dynamic Window Approach 67
3.3.1 Velocity search space . 67
3.3.2 Optimization . 68

II Autonomous Robots for Indoor Social Assistance 70

4 Adaptive social navigation with Deep Reinforcement Learning 72
4.1 Methodology . 74

4.1.1 Social Force Window Planner 74
4.1.2 Deep Reinforcement Learning framework 75
4.1.3 SFM Adaptive Cost Approach 76
4.1.4 Reward function . 77
4.1.5 Policy Neural Network and Training Design 79

4.2 Experiments and Results . 81
4.2.1 Experimental settings . 81
4.2.2 Results . 82

5 Online Learning of Wheel Odometry Correction for Mobile Robots with
Attention-based Neural Network 87
5.1 Methodology . 89

Contents vii

5.1.1 Problem Formulation . 89
5.1.2 Neural Network Architecture 91
5.1.3 Training Procedure . 91

5.2 Experiments and Results . 92
5.2.1 Experimental Setting . 93
5.2.2 Evaluation Metrics . 95
5.2.3 Quantitative Results . 96
5.2.4 Latency Evaluation . 98

6 Domestic assistance with an omidirectional service robot 99
6.1 Assistive Service Robots . 101
6.2 Marvin robot design . 103

6.2.1 Sensors and computational resources 105
6.3 Visual Perception for Person Monitoring 107
6.4 Navigation System . 108

6.4.1 Omnidirectional Motion Planner and Obstacle Avoidance . . 110
6.4.2 Person-focused Orientation Control 110

6.5 Vocal Human-Robot Interface . 112
6.6 Navigation Experiments and Results 115

6.6.1 Person-centered navigation 116
6.6.2 Person following . 121

6.7 Experimental Demo . 122

III Autonomous Navigation for Precision Agriculture 124

7 A Deep Learning Pipeline for Autonomous Navigation in Row-based
Crops 126
7.1 Semantic Segmentation-based control 129

7.1.1 Methodology . 129
7.1.2 Experiments and Results 134

7.2 Position-agnostic controller with Deep Reinforcement Learning . . 144
7.2.1 Task Formulation . 145
7.2.2 DRL agent experiments 150

8 Waypoint Generation in Row-based Crops with Deep Learning and
Contrastive Clustering 156

viii Contents

8.1 Methodology . 157
8.1.1 Backbone Design . 158
8.1.2 Waypoint Estimation . 160
8.1.3 Contrastive Clustering . 161

8.2 Experimental Setting . 163
8.2.1 Dataset Description . 163
8.2.2 Network Training . 164

8.3 Results . 165
8.3.1 Waypoint Estimation . 166
8.3.2 Waypoint Clustering . 166
8.3.3 Qualitative Results . 169

IV Generalization and Optimization of Deep Learning Mod-
els 170

9 Back-to-Bones: a Domain Generalization Benchmark for Backbones 172
9.1 Problem Framework . 174
9.2 Back-to-Bones . 175

9.2.1 Baseline Benchmark . 179
9.2.2 Model Introspection . 181
9.2.3 Domain Generalization Algorithms 186

10 Crop Segmentation with Knowledge Distillation: Domain Generalization
on the AgriSeg dataset 187
10.1 Methodology . 189

10.1.1 Knowledge Distillation . 189
10.1.2 Ensemble Distillation . 190

10.2 Experimental Setting . 192
10.2.1 Dataset . 192
10.2.2 Training . 194

10.3 Results . 196
10.3.1 DG Benchmark . 196
10.3.2 Ablation Study . 199

11 Domain-Adversarial Vision Transformer for Land Crop Classification
with Multi-Temporal Satellite Imagery 202

Contents ix

11.1 Study Area and Data . 206
11.2 Methodology . 207

11.2.1 Domain-Adversarial Neural Networks 208
11.2.2 Classification of Multi-Spectral Time Series with Self-Attention211
11.2.3 DANN for Land Cover and Crop Classification 212

11.3 Experiments and Discussion . 214
11.3.1 Experimental Settings . 215
11.3.2 Maximum Mean Discrepancy 217
11.3.3 Results and Applicability Study 219

12 Optimized Single-Image Super-Resolution at the Edge with Knowledge
Distillation 226
12.1 Methodology . 229

12.1.1 Network Architecture . 230
12.1.2 Training Methodology . 230
12.1.3 Knowledge Distillation . 232
12.1.4 Model Interpolation . 234
12.1.5 Model Quantization . 234

12.2 Experiments . 235
12.2.1 Experimental Setting . 235
12.2.2 Real-time Performance . 237
12.2.3 Super-Resolution Results 239
12.2.4 Application: Image Transmission for Mobile Robotics . . . 243

Conclusions 248
Future Works . 249

References 251

Introduction

Service robotics

Service robots, defined as "semi-automatic or fully automatic machines that per-
form tasks beneficial to humans", are spreading across various domains, offering
innovative solutions to everyday challenges. Nowadays, the field of service robotics
stands at the forefront of innovation and represents a dynamic sector that intersects
advanced technology from many disciplines and conveys them to practical applica-
tions. The market has witnessed substantial growth in the last years, with projections
indicating an increase from USD 19.08 billion in 2023 to USD 62.35 billion by
2030, reflecting a compound annual growth rate (CAGR) of 18.4% [1, 2]. The recent
expansion of the market sector is also fueled by the integration of Artificial Intelli-
gence (AI) and big data analytics, enhancing the capabilities of robots to perform a
myriad of tasks ranging from domestic to industrial applications. Among the most
promising fields we find industrial inspection [3], search and rescue [4], cultural [5]
and environmental [6] heritage protection, planetary exploration [7], and logistics
[8].

In this thesis, we seek for a genuine integration between Deep Learning and service
robotics applications, focusing on the specific contexts of precision agriculture and
indoor well-being. In precision agriculture, service robots are revolutionizing tradi-
tional farming practices, offering solutions that boost efficiency and sustainability
[9]. The integration of advanced sensors and data analytics enables these robots
to perform tasks such as crop monitoring, harvesting, soil analysis, and targeted
pesticide application with unprecedented precision. This not only optimizes resource
management but also opens a new era where farmers make decisions based on data
and environmental awareness.

2 Contents

(a) (b)

Fig. 1 Service robotics solutions: Marvin prototype (a) while monitoring a patient in a
domestic environment, and Husky rover (b) navigating through a vineyard.

Indoor well-being applications of service robots are also rapidly evolving, particularly
in healthcare and domestic settings [10]. Autonomous robots can assist the elderly
or isolated individuals with disabilities and enhance patient care through continuous
monitoring and interaction inside hospitals. These applications underscore the
potential of service robots to improve the everyday quality of life and support
independent living. Indoor robots can also support cleaning and transport activities
in vast environments like airports, hospitals, and offices.

However, the deployment of service robots is challenging, particularly in the realm of
autonomous navigation [11]. Navigating diverse and dynamic environments requires
sophisticated algorithms capable of real-time decision-making and obstacle avoid-
ance. Integrating Machine Learning (ML) is pivotal in addressing these challenges,
enabling robots to learn from experience, adapt to new scenarios, and execute tasks
with greater autonomy and flexibility. Hence, the advancement of AI and ML for
service robotics paves the way for the evolution of collaborative robots that enhance
human capabilities in our everyday lives. As research advances, the potential appli-
cations and benefits of service robots will probably expand, stepping towards more
innovative and more reliable technology.

The research conducted in the thesis spans from the improvement of the underlying
technologies and algorithms for robot localization, perception, and navigation to
almost complete solutions. For example, a prototype for indoor social assistance
and smart home management is presented, grounding all the intelligence required
for person detection, interaction, and motion control in a unique platform. Then,

Contents 3

an algorithmic pipeline for navigating row-based crops like vineyards and orchards
is also presented. Figure 1 shows the Marvin prototype for indoor assistance (left)
while checking the user’s status on the bed and the Husky rover in a vineyard row.

Contributions

This doctoral thesis focuses on the investigation of Machine Learning solutions to
enhance autonomous robots in service applications. The project focuses on different
problems and applications of AI in mobile robots, from perception in real-world
contexts to control and planning tasks. A particular focus is devoted to mobile robot
navigation aspects. Besides, relevant challenges related to adopting Deep Learning
methods in real-world tasks are considered and tackled, analyzing both generalization
and optimization of Artificial Neural Network execution. The overall contributions
of this dissertation can be therefore summarized in the following aspects:

• A study on autonomous navigation and control of indoor social-assistive robots
is discussed in Part II. An advanced method mixing classic local planning
and Deep Reinforcement Learning is first presented to tackle adaptive social
navigation [12]. A position-tracking problem with wheeled robots is then
analyzed, and an online learning method to mitigate it is introduced [13].
Finally, an omnidirectional platform and human-aware control are presented
as a practical application case study [14–16].

• A Deep Learning pipeline for row-based crops autonomous navigation is pre-
sented in Part III. The complete solution extensively explores Deep Learning
solutions to enable a low-cost, flexible navigation approach in vineyards and
orchards, tackling practical problems such as poor localization signals and
expensive sensors [17]. Deep semantic segmentation and Deep Reinforcement
Learning are used to generate position-agnostic commands inside the rows of
crops [18–21]. A global waypoint generator is also presented [22].

• Generalization and optimization of Deep Learning models have been further
investigated in Part IV for their usage in real-world problems. The ability
of Deep Neural Networks to adapt to unseen conditions have been deeply
explored firstly considering the role of the backbone in standard multi-domain
datasets for image classification [23]. Then, a great focus has been devoted to
Computer Vision tasks in the agricultural context, such as crop classification

4 Contents

and segmentation, proposing methods to obtain reliable performance in real-
world settings [24, 25]. Moreover, novel inference optimization methods have
been explored for a Single Image Super Resolution task on low-power edge
devices [26].

This dissertation aggregates the research I conducted during my PhD at PIC4SeR
(Politecnico di Torino Interdepartmental Center for Service Robotics). The thesis
gathers the studies and the projects I have carried out as principal investigator
[24, 19, 18, 27, 12], together with the ones I conducted in a joint effort with other
PhD students and researchers at PIC4SeR. Most of the works presented have been
published in both peer-reviewed journals [24, 14, 15, 26, 23] and conferences [27,
18, 19, 12, 13, 22, 25, 16]. Nonetheless, some side projects have not been included
in the thesis [28, 29]. Many research studies presented in the chapters still leave
open challenges and unsolved problems to be investigated in future works. Certainly,
all of them contributed significantly to my doctoral path.

Thesis organization

The thesis is structured in four main parts, with the aim of aggregating the diverse
contents according to the application context or research problem.

Part I contains all the theoretical foundations of the methodologies adopted in the
thesis. Hence, Chapter 1 opens the thesis introducing Machine Learning and Deep
Learning principal concepts and algorithms, spanning from the definition of Artificial
Neural Networks to the most recent architectures and optimization practices. Chapter
2 continues framing the Deep Reinforcement Learning paradigm and describing
the main algorithms used in the thesis. Chapter 3 instead briefly summarizes the
architecture of a mobile robot autonomous navigation system and the most popular
localization and local planning algorithms.

Part II contains the studies that enhances indoor social context. Chapter 4 discuss
the findings of my latest study on social navigation: how to efficiently mix up
standard controllers and reinforcement learning for crowded environments. Then,
Chapter 5 considers a Machine Learning approach to mitigate the position tracking
error accumulated by wheels encoders, the most popular sensor for indoor platforms
positioning. Finally, Chapter 6 concludes this part of the thesis describing the
concepts behind the realization of Marvin: a prototype for domestic assistance .

Contents 5

Part III aggregates the diverse studies conducted to realize a navigation pipeline for
vineyards and orchards. Chapter 7 introduces and describe the overall pipeline, and
then focuses on local controller techniques to traverse the rows of the crop without a
reliable localization of the robot, using only a camera. The approaches investigated
consist in Semantic Segmentation and Deep Reinforcement Learning. Experimental
results in simulation and on the field are reported. As complementary module of
the navigation pipeline, Chapter 8 describes the waypoints generator conceived to
estimate and cluster each starting/ending point of the crop field.

Part IV presents insights and deeper analyses on adopting Deep Learning solutions
for practical perception tasks, sometimes isolated from a specific robotics application.
The keywords of this section of the thesis are generalization and optimization: the
two main problems faced to deploy AI algorithms in real-world settings. Chap-
ter 9, 10 and 11 are devoted to define the Domain Generalization and Adaptation
problems and propose meaningful analyses and solutions to obtain robust models
to out-of-distribution data. Chapter 9 investigates the properties of most recent
backbone architectures in a Domain Generalization framework for image classifica-
tion, introducing a novel rigorous benchmark to compare models and algorithms on
popular datasets. In similar problem settings, Chapter 10 proposes instead a novel
method to boost the generalization properties of a lightweight model for the crop
segmentation task. This findings aims to mitigate the challenges encountered during
the experimental sessions on the field with the robot (Chapter 7). A multi-crop
robust model is the learning goal of the study, which also leverages a new realistic
synthetic crops dataset (AgriSeg). Chapter 11 applies a different method for the
restricted problem of Domain Adaptation, this time considering a separate task in
precision agriculture: land crop classification from satellite multi-spectral imagery.
In this case, the multi-temporal satellite data perfectly fits with the promising Vision
Transformer architecture analysed in Chapter 9. To conclude, an isolated study on
Deep Learning model optimization for real-time execution at the edge is proposed
in Chapter 12, targeting the Single-Image Super-Resolution task, useful for many
robotics applications including image efficient transmission.

Part I

Fundamentals

Chapter 1

Basics of Machine Learning

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that provides
systems the ability to automatically learn patterns and extract information from data
without being explicitly programmed. In this chapter a thorough introduction to ML
foundational concepts is provided to favour an easier understanding of Part II, III and
IV. Firstly, the rich landscape of ML research can be framed based on the possible
categories of ML algorithms. Different paradigms of ML have been developed so
far:

• supervised learning: the model is trained on a labeled dataset, i.e. each sample
in the training dataset is paired with the correct output value for the task of
interest. The model learns to map inputs to outputs and can be used to predict
the output for unseen inputs after successful training.

• unsupervised learning: unlike supervised learning, the model is trained on an
unlabeled dataset. The model learns the inherent structure of the data without
any guidance, only leveraging inner structures or patterns in the data.

• semi-supervised learning: refer to those cases when labeled data are only
partially available or human supervision is injected in the learning process also
without a fully labeled dataset.

• self-supervised learning: this paradigm is usually adopted when the goal is
learning the structure, a vectorial representation of the data, regardless of a
specific task. In this case, supervision is directly taken from the data, trying to

1.1 Artificial Neural Networks 9

teach the models how to recompose the original structure or extract meaningful
knowledge from the data without labels.

• reinforcement learning: reinforcement learning is a special paradigm in which
an agent learns a decision-making policy by acting in an environment, with
the aim of maximizing a reward signal.

Besides, a taxonomy of ML based on the specific task to solve can also be built. ML
can now be used to solve a wide range of tasks. Here the most relevant ones are
reported:

• classification: the model predicts discrete variables as output, identifying a set
of categories in the input data.

• regression: in this task the model predicts instead a continuous output variable
that can assume any specific meaning according to the data and application at
hand.

• clustering: it is an unsupervised learning task where the model groups similar
instances together.

In this chapter, ML concepts are exposed starting from the basic working principles
of Artificial Neural Networks in Section 1.1 to the most recent architectures. A
short overview of optimization techniques and typical hardware devices for networks
execution at the edge is then proposed in Section 1.2.

1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) have become an essential part of the current
technological landscape, driving advancements in many areas of computer science:
computer vision, natural language processing, autonomous vehicles and cybersecu-
rity [30–35]. Their ability to learn complex patterns from data makes them incredibly
powerful tools for tackling intricate tasks and problems in a wide range of contexts.
ANNs are complex models originally inspired by the biological neurons that consti-
tute animal brains. In the last years, after decades of research, the fast advancement
of computational devices and the collection of huge datasets [36, 37] have favoured
the rise of Deep Learning [38], a further subfield of ML characterized by deep
networks architectures with multiple layers. In this section a brief introduction to
ANNs elements is provided, explaining the principles behind ANN basic models

10 Basics of Machine Learning

and training, finally illustrating successful architectures such Convolutional Neural
Networks [39] and Transformers [40].

1.1.1 The artificial neuron

ANNs are parametric models used to approximate a generic function y = f (x), being
x the input variable and y the output. The atomic element of ANNs is the artificial
neuron. A first model of an artificial neuron was studied by McCulloch and Pitts
in 1943 [41]. Clearly, it was inspired by a biological neuron, trying to model the
passage of electrical signal through neural cells, axons and synapses.

1

Fig. 1.1 Artificial neuron schematic model.

A simple artificial neuron model is shown in Fig. 1.1. The neuron receives an
array of input signals x and process them through a weighted sum and a non-linear
activation function σ(·) to obtain the output signal y. The complete mathematical
operation it performs consists in:

y = σ(wx+b) = σ(
N

∑
i=0

wixi +b) = σ(z) (1.1)

Where w is the vector of weights of the neuron and b the bias term of the neuron.
Weights and biases are the parameters of an ANNs, that regulate the importance of
each input component to obtain the desired output. In general, an artificial neuron
presents N +1 parameters, with N being the dimension of the input signal. σ(·) is a
generic activation function used to introduce non-linearity in the model, similarly to
what happen in biologic neurons.

1.1 Artificial Neural Networks 11

1.1.2 Multi-layer perceptron

The passage from the artificial neuron to ANNs is quite straightforward. It is
sufficient to stack multiple neurons in layers and connect layers among them. In
the Fully Connected (FC) or Dense layer architecture each neuron receives in input
all the output signals of the neurons in the previous layer. This layered architecture
composes the Multi-Layer Perceptron (MLP), originally proposed in the study [42].
In a MLP, the signal flows from the left (input layer) to the right (output layer). Fig.
1.2 shows a schematic example of a MLP with two intermediate or hidden dense
layers H1 and H2 that process the input vector x of dimension M to obtain the output
y of size P. This architecture is generally known as Feed-forward Neural Network
(FNN), the most basic version of a ANN. The number of hidden layers and neurons
in each layer is a design choice of the network, according to the complexity of the
function to approximate, while the input and the output sizes are dictated by the task
to solve. The overall mathematics of a FC layer can be expressed in a matrix form

y = σ(Wx+b) = σ(z) (1.2)

with W = [w1,w2, ...,wK]
T and b = (b1,b2, ...,bK) the matrix of the weights and

bias vector for a layer with K neurons.

MLPs can theoretically approximate whatever non-linear function f (x) [43]. How-
ever, in practice they are not the best option to efficiently approach any ML tasks.
For this reasons, different architectures have been intensively studied, as discussed
in the following part of the chapter.

1.1.3 Activation functions

The learning process of a neural network consists in the adaptation of its weights and
bias. Activation functions play a crucial role in the learning process of a complex non-
linear function, being responsible of introducing the non-linearity in each neuron’s
operation. However, using an activation function with binary output, as done in the
perceptron with a step function, lead small changes of the parameters to significantly
modify the output. In other words, the output can switch from 0 (or -1 according to
the activation function used) to 1, with a small variation of the weights.

12 Basics of Machine Learning

Input
layer I

Hidden
layer H1

Hidden
layer H2

Output
layer O

Fig. 1.2 Multi-layer perceptron schematic model with M inputs, P outputs and two hidden
layers. The signal x enters from the input layer and flows to the right until the output y is
obtained.

Sigmoid function The solution to overcome this limitation is the introduction of a
smoother activation trend, the sigmoid function.

σ(z) =
1

1+ e−z (1.3)

A more specific formulation for neurons will be:

σ(wx+b) =
1

1+ exp(−
n

∑
i=1

wixi−b)
(1.4)

It provides a smoother variation of the output with respect to modification of the
parameters. This mitigates the learning process with respect to a binary step functions.
Nonetheless, the output still remain bounded in a limited range.

Linear activation function A linear activation function of the form σ(z) = cz,
produces an output proportional to the input. Graphically, it results in a simple line

1.1 Artificial Neural Networks 13

Fig. 1.3 On the left a step activation function: the output is binary as in the perceptron due
to the sharp variation from 0 to 1. On the right the sigmoid activation function showing its
smooth trend in the same interval.

passing for the origin. Although the output is not binary, it produces some problems
in neural network’s training. In fact, in a network having linear activation in all
neurons the output signal will merely be a linear signal as well, making possible to
replace multiple layers with just an equivalent one. Hence, linear activation function
is generally adopted in the output neurons of regression tasks, when there are no
strict signal bounds.

Tanh activation function The hyperbolic tangent activation function presents a
behaviour similar to sigmoid functions. The main difference between the two of
them is the range of the output values. tanh(z) presents an output bounded within -1
and 1. The hyperbolic tangent can be preferred to the sigmoid for reasons strictly
related to the specific application. The expression of the function is reported below,
whilst its graphical representation is shown on the left in Fig. 1.4.

tanh(z) =
ez− e−z

ez + e−z (1.5)

The expression for the activation function of the neurons considering tanh(wx+b)
can be formulated with:

tanh(z) =
1+ tanh(z/2)

2
(1.6)

14 Basics of Machine Learning

Fig. 1.4 On the left the tanh activation function: it presents a smooth shape in the output
range (-1,1). On the right the ReLU activation function.

Rectified Linear Unit (ReLU) The Rectified Linear Unit (ReLU) [44, 45] fuction
is defined according to the expression:

σ(z) = max(0,z) (1.7)

Its output signal will be a classic ramp for positive inputs, 0 otherwise. Although
it seems very similar to a linear unit activation function, ReLU presents several
advantages. First of all, its non-linearity gives it good approximation properties,
differently from the simple linear unit. Moreover, due to its nature, it allows to a
restricted part of neurons to fire and let the signal pass. In this way the network is
lighter from a computational point of view, since ReLU is an easier mathematical
operation compared to sigmoid like functions. ReLU is probably the most popular
activation function in Deep Learning, not only for the already mentioned benefits. It
resulted to be an effective solution for more complex issues such as the vanishing
or exploding gradient. Many variants of ReLU have been developed to further
improve its performance. Among them, Leaky ReLU [46] allows small negative
signal passage with an additional linear trend with reduced slope. Other variants like
the Exponential Linear Unit (ELU) [47] and the Gaussian Error Linear Unit (GELU)
[48] focuses on make ReLU continuous in z = 0 and smoother.

Softmax activation function The softmax function, also known as normalized
exponential function, is a widely used activation unit. It is especially chosen for
the output layer of neural networks for classification tasks. The standard softmax

1.1 Artificial Neural Networks 15

expression is:

σ(z j) =
ez j

∑
k

ezk
(1.8)

The main property of softmax function is that the resulting signal can be interpreted
as a probability distribution. In other words, the output of the network tells us which
is the probability of a sample to be classified with the label of a certain category.
This becomes clear by looking at the expression of the function: the exponential of
each component of the vector z is divided by the sum of all the exponentials.

∑
j

σ(z j) =
ez j

∑
k

ezk
= 1 (1.9)

Moreover, it provides a confidence score related to the network’s prediction, which
is a precious information about its performance.

1.1.4 Training Artificial Neural Networks

At this point, it is possible to explain the main concepts about the learning process
of ANNs. Training an ANNs means to obtain the optimal set of weights and bias
for the model that provide the desired output, according to the task. Thus, a cost
expression is needed to set up the optimization problem and to evaluate how the
network is adapting its weights. For this purpose a cost function, that in ML domain
is usually called loss function is introduced.

L(w,b) = ||y− ŷ||l =
d

∑
j=1

(|y j− ŷ j|l)1/l (1.10)

In the expression above, w and b are the weights and bias of the network. With y we
refer to the desired output and with ŷ to the output prediction of the ANN. The loss
function reported in the equation above is an l-norm loss function, usually adopted
in regression tasks with continuous numerical output variables. For l = 1 we have a
Mean Absolute Error (MAE) loss, while for l = 2 we have a Mean Squared Error
(MSE) loss. Since the number of variables involved in an ANN is huge, an iterative
algorithm called Gradient Descent is therefore used for the optimization. A generic
n-dimensional input vector v is considered. For small variations of each variables v j

16 Basics of Machine Learning

it is possible to express the variation of the loss function in the following way:

∆L ≈ ∂L
∂v1

∆v1 +
∂L
∂v2

∆v2 + ...+
∂L
∂v j

∆v j + ...+
∂L
∂vn

∆vn (1.11)

A more compact form of the expression above can be rewritten by exploiting the
concept of gradient of L:

∇L=

(
∂L
∂v1

,
∂L
∂v2

)T

∆L ≈ ∇L·∆v (1.12)

where ∆v is the vector representation of the variations of v.

Fig. 1.5 Gradient descent visualization on a 3D surface. Image from [49].

The gradient’s notation is useful because it directly relates the variations of v with the
ones of L(v). At this point, we are interested in finding a set of ∆v such that ∆L is
negative. The reason behind that can be easily explained with a visual metaphor. It it
sufficient to imagine the loss function as a deep valley. Starting from a random point
on its surface, the goal of the process is to reach its bottom (see Fig. 1.5). Hence, it
is necessary to choose the appropriate movements ∆v to go down correctly, which
corresponds to a negative ∆L. This concept can be expressed with the following,
considering also a small positive parameter called learning rate:

∆v = v′−v =−η∇L (1.13)

The representative equation of gradient descent can be obtained by combining the
last two equations:

∆L ≈−η∇L·∇L=−η ||∇L||2 (1.14)

1.1 Artificial Neural Networks 17

Therefore, an update rule for the parameters v is provided by the algorithm:

v→ v′ = v−η∇L (1.15)

To sum up, by choosing a suitable set of changes in the parameters, it is possible to
minimize a loss function L(v) with gradient descent. A correct choice of the learning
rate is also crucial to tune the process. It has to be small enough to guarantee a good
approximation of ∆L especially in the final steps of the algorithm, when the goal is
close and fine adjustments are needed. On the other hand, when the global minimum
of the loss function is still far, it should not speed down the process too much. For
this reasons it is often modified during the process according to an update rule.

Finally, it is possible to express the update rule provided by the gradient descent
algorithm using the weights and biases of a neural network. This formulation
describes how ANNs are actually trained. For a jth weight w j and bias b j it looks
like

w j→ w′j = w j−η
∂L
∂w j

(1.16)

b j→ b′j = b j−η
∂L
∂b j

Other Loss functions

The l-norm loss described above is usually adopted for regression tasks with continu-
ous outputs. A popular loss function for classification task is instead the cross-entropy
loss function.

For the binary case, when we have only two classes in the dataset, the binary cross-
entropy loss is defined as:

L=−(y log(ŷ)+(1− y) log(1− ŷ)) (1.17)

In the case of K different classes in the dataset, the cross-entropy loss expression can
be generalized as:

L=−
K

∑
c=1

y log(ŷ) (1.18)

18 Basics of Machine Learning

1.1.5 Stochastic Gradient Descent

The basic gradient descent can be improved to train ANNs. The loss function
L= 1/n∑xLx is an average over all the cost contribution Lx of each training input
x, with Lx = ||y(x)− a||2/2. This means we need to compute gradients ∇Lx for
each training input, resulting in a slow convergence of the algorithm. To speed
it up, a modified version is usually chosen. It is known as Stochastic Gradient
Descent (SGD) and it consists in considering a limited subset of m out of n samples
to compute the gradient ∇L.

∇L=
1
n ∑

x
∇Lx ≈

1
m ∑

j
∇L j (1.19)

The small subset of m samples is usually called mini-batch. It is possible to express
the update rule of each ith weight and bias taking care of this.

wi→ w′i = wi−
η

m
∂L
∂wi

(1.20)

bi→ b′i = bi−
η

m
∂L
∂bi

The stochastic gradient descent selects in a random way a mini-batch from the
training data for each iteration of the algorithm. When all have been used once, a
training epoch is finished and a new cycle is started. The number of epochs required
to finish a training process depends on the specific network’s size and on the other
parameters influencing the process, such as the learning rate and the dimension of
the mini-batches.

1.1.6 The backpropagation algorithm

The SGD method allows to find a suitable set of weights and biases. However,
computing the gradients to update each parameter of a deep multi-layer ANN can
represent a computational bottleneck of the training process. The backpropagation
algorithm [42] has been introduced to boost the efficiency of the gradient computation
for the entire network’s model, and today the approach is a pillar of Deep Learning’s
success. It merely consists in computing partial derivatives of the loss function L
with respect to all the parameters of the network. As the name suggests, it works

1.1 Artificial Neural Networks 19

starting from the output layer going backwards to the first layer of the model. Given
the operation performed by a generic neuron of the last layer L of the ANN:

aL
j = σ(zL

j) = σ(wx+b) = σ

(
n

∑
i=1

wixi +b

)
(1.21)

where aL
j is the output of the activation function σ(·), whereas zL

j is the result of the
weighted sum over the n inputs received by the neuron, before the activation. It is
possible to define the quantity δ L

j as

δ
L
j =

∂L
∂aL

j
(1.22)

The partial derivative δ L
j can be used to define the dependence of the overall loss from

the error committed by the single jth neuron in layer L in computing the activation
signal aL

j . The chain rule allows to concatenate the partial derivatives and compute
the gradient of the loss with respect to each neuron’s weight wL

i, j and bias bL
i, j:

∂L
∂wL

i, j
=

∂L
∂aL

j

∂aL
j

∂wi, j
= δ

L
j

∂aL
j

∂ zL
j

∂ zL
j

∂wL
i, j

(1.23)

∂L
∂bL

i, j
=

∂L
∂aL

j

∂aL
j

∂bi, j
= δ

L
j

∂aL
j

∂ zL
j

∂ zL
j

∂bL
i, j

(1.24)

Following the chain rule, we can easily express the derivative of whatever parameter
of the ANN. For example, considering the previous layer l−1

δ
l−1
j =

∂L
∂al−1

j
=

∂L
∂al

j

∂al
j

∂al−1
j

= δ
l
j

∂al
j

∂al−1
j

(1.25)

In this way, we save computation using previously computed partial derivatives.
Moreover, the activation function can also be a different one for each layer. Finally,
a schematic summary of a training epoch is reported below. It shows how a SGD
optimization algorithm works in combination with backpropagation, with a mini-
batch of m training samples for a single training epoch.

20 Basics of Machine Learning

Algorithm 1 A training epoch with SGD optimizer.
Input: a feed-forward ANN with parameters w, b and L layers, with input layer
l = 0 and output layer l = L, a mini-batch size m, a learning rate η .

1: Randomly split the training dataset in mini-batches of size m.
2: for each mini-batch in the training set do
3: for each input x in the mini-batch do
4: Feed-forward: x passes from the input through all the hidden layers.
5: for each hidden layer l = 1,2, ...,L do

zx,l = wlax,l−1 +bl

ax,l = σ(zx,l)

6: end for
7: Output error δ x,L: compute the error in the output layer

δ
L
j =

∂L
∂aL

j

8: Backpropagate the error computing the partial derivatives for each pa-
rameter

9: for each layer l = L−1,L−2, ...,1 do

∂L
∂wL

i, j
=

∂L
∂aL

j

∂aL
j

∂wi, j
= δ

L
j

∂aL
j

∂ zL
j

∂ zL
j

∂wL
i, j

∂L
∂bL

i, j
=

∂L
∂aL

j

∂aL
j

∂bi, j
= δ

L
j

∂aL
j

∂ zL
j

∂ zL
j

∂bL
i, j

10: end for
11: Update: update the weights and biases with SGD rule.
12: for each parameter in the layer l = L,L−1, ...,2 do

wl
i → wl

i−
η

m
∂L
∂wl

i

bl
i → bl

i−
η

m
∂L
∂bl

i

13: end for
14: end for
15: end for

1.1 Artificial Neural Networks 21

This is the basic algorithm to train a generic ANN. Further interventions can be
thought when the learning process does not work properly. A selected list of possible
actions and methods to improve the training of an ANN are briefly discussed in the
following section.

1.1.7 Adam optimizer

Beside Stochastic Gradient Descent (SGD), many different algorithm have been
developed to solve the optimization problem in the ANNs learning process. Among
them, the Adaptive moment estimation (Adam) [50] optimizer algorithm deserves a
greater focus due to its popularity and advantages. Adam is an adaptive learning rate
method. In other words, learning rates are modulated specifically for each different
parameter during the update step. This is done by estimating the first and the second
moments of the gradient. Before looking at the entire algorithm, it is convenient
to introduce the concept of moment. It can be defined as the expected value of a
random variable to the power of n.

mn = E [Xn] (1.26)

Hence, the first moment of a random variable is equal to its mean, whilst the second
one is the uncentered variance. For the estimation of such quantities for the gradient,
Adam makes use of exponentially moving averages m and v computed with the
gradient obtained from the current mini-batch:

mt = β1mt−1 +(1−β1)gtvt = β2vt−1 +(1−β2)g2
t (1.27)

Where g is the gradient on the the mini-batch, β1,β2 constant hyper-parameters
usually fixed at 0.9 and 0.999. These estimators are biased, hence they need a proper
correction. The final expression for the estimator results to be:

m̂t =
mt

1−β t
1

v̂t =
vt

1−β t
2

(1.28)

Therefore, the update rule for the weight during training will be:

wt = wt−1−η
m̂t√
v̂t + ε

(1.29)

22 Basics of Machine Learning

Where η is the step size and ε is necessary for numerical stability. According to
the definition given by Kingma and Ba in the original paper of 2015 [50], Adam
algorithm is reported below.

Algorithm 2 Adam optimizer algorithm. Default values for the constants are η =
0.001,β1 = 0.9,β2 = 0.999,ε = 10−8.
Input: stepsize η , ε for numerical stability, β1,β2 ∈ [0,1) exponential decay rates
for the moment estimates, f (θ) the stochastic objective function, the initial vector of
parameters θ0.
Output: Resulting parameters θt .

1: m0← 0 ▷ First moment estimate vector set to 0
2: v0← 0 ▷ Second moment estimate vector set to 0
3: t← 0 ▷ Timestep set to 0
4: while θt not converged do
5: t← t +1
6: Compute gradient w.r.t parameters θ : gt ← ∇θ f (θt−1)

7: Update of first-moment and second-moment estimates, biased

mt ← β1 ·mt−1 +(1−β1) ·gt

vt ← β2 · vt−1 +(1−β2) ·g2
t

8: Bias-correction of estimates

m̂t ←
mt

1−β t
1

v̂t ←
vt

1−β t
2

9: Update parameters

θt ← θt−1−η
m̂t√
v̂t + ε

10: end while

Weights initialization

The initial value assigned to weights and biases in the layers plays a fundamental role
in the learning process [51]. A simple common practice consists in initializing the
weights with a normal probability distribution with 0 mean and standard deviation

1.1 Artificial Neural Networks 23

equal to 1√
ni

, where ni is the number of input connections. A popular initialization
strategy has been developed by Xavier Glorot and Yoshua Bengio, known as Xavier
initialization or Glorot initialization [52]. According to this theory, the values for
weights are picked from a random uniform distribution bounded between ±

√
6√

ni+ni+1
,

where ni is the number of input connections and ni+1 the number of output con-
nections. A good initialization is usually necessary to mitigate training slowdown
issues.

1.1.8 Regularization methods

Overfitting

Overfitting is a well known issue affecting the performance of data-driven models
such as ANNs. It occurs when a model is designed to fit extremely well on some
data, increasing its level of specificity. It is common to incur in overfitting when
using models with a high number of parameters such as ANNs. Overfitting must be
strongly avoided in ML, since an ANN is useless if provides good results only using
data contained in the training set. On the other hand, the model should be complex
enough to correctly fit the data and avoid bias errors (underfitting). The ability to
generalize the performance of ANNs on different data can be improved with several
methods.

Splitting data

A fist possible method to reduce overfitting is to split the available data in three
different subsets. The training set usually includes only a subgroup of the original
amount of data and it is used for the proper learning process, together with a
validation set to monitor the performance of the network at the end of each epoch.
This is a key procedure, overfitting can be detected by looking at the loss gap
between the training and the validation set. The K-fold cross-validation is a simple
regularizing practice to avoid bias errors [53, 38]. This is especially true for non-
parametric algorithms in ML such as K-nearest neighbours, which do not explicitly
make use of a loss function. Validation is also helpful to select the best model found
over the training time. If the number of training epochs is not accurately chosen,
we could pick up the model that reaches the best metrics score on the validation
set. Finally, the selected model can be run on a test set. A grid-search procedure
is often adopted to look for a suitable combination of the the hyper-parameters:

24 Basics of Machine Learning

learning rate, mini-batch size, number of epochs, learning rate’s decay policy. A
simple strategy called early stopping consists in interrupting the training when the
loss in the validation set becomes stable or starts to increase.

Data augmentation

The availability of a rich dataset is not always guaranteed in real-world applications
of Deep Learning. An accurate tuning of the hyper-parameters sometimes is not
enough to avoid overfitting. Data augmentation is a particular strategy developed for
these purposes. In the specific case of image classification, it allows to expand the
training dataset at runtime with artificial samples. A set of different transformation
such as rotation, cropping, flipping or filtering can be applied to images in order to
artificially create new ones. This is particularly useful when the number of samples
for each class in the training set is strongly unbalanced, often because some kind of
data is more difficult to collect.

Lp Regularization

Overfitting and model’s generalization can be also tackled acting directly on the
loss function. The Lp regularization methods aims at constraining the values of the
parameters in allows boundaries to forbid them to capture fluctuations of the training
data distribution. The two most popular methods of Lp regularization are known as
L1 and L2 regularization. The key concept of both methods is to add a penalty or
term to the loss function used in the training process. For example, a cross-entropy
loss function can be considered. With the L2 regularization the loss function assumes
the following shape:

L= L0 +
λ

2

n

∑
i=1

w2
i (1.30)

As shown, the regularization term for the L2 method is composed of the sum of the
squared weights and of a multiplicative factor. It is responsible of reducing the value
of the selected variables. Basically, during the learning process the network has to
choose certain weights such that a good trade-off between the two terms of the new
loss function is found. To highlight the concept better, it is possible to rewrite the
expression using the notation L0 to indicate the original loss function.

The role of λ , which is a positive regularization parameter, is central to make things
work. According to its value the relevance of the second term with respect to the

1.1 Artificial Neural Networks 25

first one can be tuned. A small λ makes the regularization term negligible, a large λ

increases the importance of learning small weights. Considering a SGD optimization
algorithm, a new update rule for the weights can be computed with the L2 regularized
loss function.

w→ w′ = w
(

1− ηλ

n

)
−η

∂L0

∂w
(1.31)

Differently, in the L1 regularization technique the extra term contains the sum of the
absolute values of the weights in the networks and the regularized loss function is
expressed with

L= L0 +λ

n

∑
i=1
|wi|. (1.32)

In an analogue way, the resulting update rule will be:

w→ w′ = w
ηλ

n
sgn(w)−η

∂L0

∂w
(1.33)

Both L1 and L2 regularization techniques penalize large weights in the network.
However, in L1 regularization weights are reduced by a constant amount toward 0
value, whilst in L2 regularization the reduction is proportional to the weight’s value.
This means L2 is particularly effective with larger weights. On the contrary the
impact of L1 regularization is much bigger when |w| is very small, shrinking to 0
less important connections. The result is that it selects a selected group of important
features and connections.

Activation normalization

A regularization approach to control the evolution of the parameters value during
training consists in normalizing the activation signal. Batch Normalization (BN)
[54] is the most popular technique. BN performs the normalization channel-wise
on the mini-batch, and then uses a linear transformation to re-center and re-scale
the resulting activation signal. For each channel dimension of the input tensor x the
empirical mean µ(k) and standard deviation σ

(k)
B over the mini-batch B composed of

m samples are computed as:

µ
(k)
B =

1
m

m

∑
i=1

x(k)i , σ
(k)
B =

1
m

m

∑
i=1

(x(k)i −µ
(k)
B) ∀k ∈ 1, ...,C (1.34)

26 Basics of Machine Learning

where C is the number of total channels of the input tensor. The single input tensor x
is therefore normalized channel-wise:

x̂(k) =
x(k)i −µ

(k)
B√

(σ
(k)
B)2 + ε

∀k ∈ 1, ...,C (1.35)

The tensor is finally re-scaled and re-centered:

z(k) = γ
(k)x̂(k)+β

(k) ∀k ∈ 1, ...,C (1.36)

where γ and β are parameters learned during the training. Hence, each BN layer adds
a total of 2C learnable parameters and 2C non-learnable parameters, the empirical
mean and standard deviation. However, at inference time, usually there is not a batch
dimension in the input tensor. Hence, the empirical mean µ(k) and standard deviation
σ
(k)
B cannot be computed. For this reason, they are estimated with a running average

during the training to enable a deterministic inference at test time:

E[x(k)] = EB[µ
(k)
B], Var[x(k)] =

m
m−1

EB[
(

σ
(k)
B

)2
] (1.37)

The transformation performed by the BN layer in the inference step thus becomes a
linear transformation of the activation tensor:

z(k)in f = γ
(k) x(k)−E[x(k)]√

Var[x(k)]+ ε
+β

(k) ∀k ∈ 1, ...,C (1.38)

Dropout

Dropout [55, 56] is a totally different way of acting on the learning process to
regularize it. With respect to L1 and L2 regularization, it does not act on the loss
function. For each training step it randomly selects a certain percentage of neurons
contained in a layer and it turn them off, usually the 50%. For these neurons the
parameters will not be updated. Hence, only the remaining active neurons are
able to create connections with the neighboring layers. The dropout can be also
thought as an averaging process among different ANNs. In some sense, this peculiar
approach avoid the network to rely on a restricted number of connections, making
its performance more robust.

1.1 Artificial Neural Networks 27

1.1.9 Convolutional Neural Networks

In the previous sections, ANNs have been generally introduced. The described
architecture only includes FNNs with dense layers. In this case, each neuron inside a
hidden layer is connected to all the neurons of the next layer and of the previous one.
This architecture is not very efficient when dealing with high-dimensional input data
such as images. Dense layers become too computationally expensive with a huge
number of parameters to train, and, furthermore, the spatial structure of the image
is not considered in the operation performed by classic neurons. For this reason,
inspired by human vision system, Convolutional Neural Networks (CNNs) have been
studied [39]. The architecture of CNNs is optimized to process images extracting
meaningful features to efficiently solve computer vision tasks. The three pillars of
CNN can be identified in the following concepts:

• local receptive field;

• shared weights;

• pooling.

Fig. 1.6 A representative scheme of a convolutional layer. An input image with dimensions
32×32×3 is processed by the kernel and mapped to a new data volume with 5 feature maps.
The receptive field is represented by the smaller volume on the image tensor.

From a mathematical perspective, an image is a 3D tensor of shape [H,W,C], being
H the height, W the width in pixels, and C the number of channels. Colour images
usually have 3 channels (RGB). In order to avoid a full connection between input
pixels and neurons of a hidden layer, each neuron is associated to a small rectangular
region of the image of size Kh×Kw in the spatial dimension and C channels. For
example a 5× 5 receptive field covers a square region of 25 pixels on the image.

28 Basics of Machine Learning

This is called the local receptive field of the neuron. The convolutional layer learns a
weight for each connection and a general unique bias. The ensemble of weights and
bias identify a convolutional kernel or filter, which is shared among all the neurons
of the layers. This is a fundamental aspect of a convolutional layer. The operation
performed by the single neuron unit (i, j)l is the same weighted sum of MLP, being
σ(·) a generic activation function and using rectangular filter of size Kh×Kw:

al
j,k = σ

(
b+

Kh−1

∑
u=0

Kw−1

∑
v=0

wu,v al−1
i+u, j+v

)
(1.39)

The filter is then slided over the image by a quantity called stride [Sh,S−w]. This
operation is repeated horizontally and vertically until complete coverage of the image
tensor. The complete 3D output tensor of a given filter is called a feature map. The
number of feature maps F is a design parameter for the CNN that depend on the task
and on the data. Moreover, the spatial dimension of the output map will be:

H ′ =
H−Kh +2Ph

Sh
+1 , W ′ =

W −Kw +2Pw

Sw
+1 (1.40)

where [Ph,Pk] indicates the padding quantity. Padding consist in simmetrically adding
0 values to the border of the input tensor to compensate the reduction of spatial
resolution caused by non-unitary kernel’s size. Conversely, the stride is responsible
of a spatial sub-sampling operation, avoiding a piwel-wise sliding of the kernel. The
number of total parameters in a convolutional layer is given by Kh ·Kw ·C ·F +F
biases, that is much lower compared to a FC architecture, enabling a faster training
process.

Fig. 1.7 A typical pipeline of a CNN for image classification. Image from [57].

An additional operation of CNNs is pooling. With the same sliding mechanism
described for the convolution, pooling filters can be employed to simplify the in-

1.1 Artificial Neural Networks 29

formation contained in small regions of the image. For example, the max-pooling
operation can output the maximum activation values over a 2×2 input region. Pool-
ing allows to further reduce the number of neurons and parameters in the ANN.
To sum up, a basic complete architecture of a CNN is composed of a first stack of
convolutional and pooling layers devoted to extract meaningful features from the
image. This first part of the CNN is usually called backbone. The data volume is
squeezed all along this convolutional section. Extracted features are then flattened,
passed through FC layers and a final task-specific output layer, as shown in Fig. 1.7.
Optimizers such as SGD and Adam, together with backpropagation, work in the
same way for CNN.

This kind of overall network architecture has been adopted by a wide range of
successful models, from AlexNet [58] to ResNet [59]. Several methods have been
also studied to enhance deep CNN models with more advanced operations: residual
connections [59], inception blocks [60], depth-wise separable convolutions [61],
squeeze-and-excitation [62], channel and spatial attention [63].

1.1.10 Self-attention and Vision Transformer

The most recent architecture that has become a standard in Deep Learning is the
Transformer [40]. Originally thought for Natural Language Processing (NLP) prob-
lems with sequence data, in the last years it has reached state-of-the-art performance
in a wide variety of tasks. Hence, Transformer has been conceived for sequential
data processing, potentially evolving the already existing Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) networks [64–66]. However, they
have been adapted also to classic computer vision tasks such as image classification,
as explained below.

Multi-head self-attention

The Transformer is based on the key operation of self-attention computation, com-
puted with a multi-head encoder-decoder architecture inspired by autoencoders
[68]. Given the input sequence X with shape T ×dmodel , self-attention is computed
through a scaled dot-product attention operation, using h parallel independent heads
with dimensionality dh = dmodel/h. Firstly, three matrix representations of the input
sequence are computed using FC layers, namely query Q, key K and value V:

30 Basics of Machine Learning

Fig. 1.8 The Vision Transformer (ViT) schematic architecture. On the left, the data flow
of the model is depicted, on the right the Encoder residual scheme with MSA and MLP
modules is shown. Image from [67].

Qi = XWq
i , Ki = XWk

i , Vi = XWv
i ∀i ∈ 1, ...,h (1.41)

where Wq
i , Wk

i and Wv
i are the weights matrix of the FC layers with shape dmodel×h.

Then, the self-attention tensor Ai is computed for each head h of the Transformer
Encoder:

Ai = Self-Attention(Q,K,V) = so f tmax
(

QKT
√

dh

)
V (1.42)

where
√

dh is the dimension of the key vector K and query vector Q .

Finally, the multi-head output is obtained by concatenating the H heads and a linear
projecting with an output FC layer:

MSA(X) =Concat(A1, ...Ah)Wo (1.43)

where W o has shape dmodel×dmodel , since h ·dh = dmodel .

Vision Transformer

In this chapter, we introduced the most popular version of Transformer architecture
for computer vision applications, the Vision Transformer (ViT) [67]. ViT is based
on the key intuition that an image of resolution H ×W can be decomposed and
processed as a sequence of N patches P×P, such that N = HW/P2. Each patch

1.2 Optimized execution of ANN at the Edge 31

is flattened and projected into a latent space of dimensionality dmodel through FC
layers. A sequence is then obtained concatenating the embeddings of the patches.
A positional information is encoded into each patch. The positional encoding can
be learnable or made of constant geometric progressions. An extra learnable class
token embedding is also inserted at the beginning of the sequence. The obtained
sequence is then processed with a Transformer Encoder, composed of a stack of L
residual layers. Each layer subsequently computed the MSA and then re-project the
sequence vector with MLPs. A normalization layer is present before the MSA and
the MLP modules in each residual layer. A final classification head is used to predict
the output distribution. Fig. 1.8 shows the ViT model architecture and the schematic
operation flow of an Encoder layer.

1.2 Optimized execution of ANN at the Edge

This thesis is mainly devoted to the study and development of Deep Learning models
for service robotics tasks. Thus, the execution of ANNs directly on-board the
robotic platform is strongly preferred in this context, avoiding cloud-based servers
and only relying on the low-power computational hardware already present on the
robot. This setting offers competitive advantages for the final application of the
robot, improving latency and consumes, and, moreover, avoiding privacy issues and
connectivity requirements. In the core of this thesis, we find many examples where
ANNs are optimized for on-board off-line execution. Among the most representative
examples, Chapter 6 offers a complete case study in the sector of robotic domestic
assistance, while Chapter 12 deals with real-time requirements for image processing
and transmission processes. The specific set of techniques studied to deploy AI
algorithms on low-power-embedded devices is commonly titled Edge-AI [69].

• Pruning: it consists in removing the low-weights connections in the model’s
graph, that does not contribute significantly to the predicted outcome. Pruning
can be performed at the level of the single weights or removing entire neurons
or layers.

• Quantization: it reduces the numerical precision of the model’s parameters.
Quantization can be performed directly on the model post-training, or diversely
a quantization-aware training can be done considering the effect of reduced
precision already in the learning phase. For example, weights and activations

32 Basics of Machine Learning

can be quantized from 32-bit floating-point numbers to lower-precision formats
such as 16-bit floats or 8-bit integers, reducing the computational load required
by the feed-forward inference.

• Knowledge Distillation: it is a transfer learning techniques that aims to distill
the knowledge from a bigger model to a more compact model with reduced
size. The target small model, the student, is trained to match the output
distribution or feature representations of the teacher model.

In this thesis, we mainly adopt techniques of post-training quantization and knowl-
edge distillation. The principle of both of them are explained directly in Chapter 12.
The implementation of optimization and quantization methods is supported by the
TFLite library1. TFLite basic conversion already provides some advantages in the
memory allocation for the graph execution, mitigating the inference performance of
models on CPU. Then, it offers different level of quantization. Float16 quantization
halves the precision and memory requirement of weights and activations, allowing
for execution on both CPUs and GPUs. 8-bit weights quantization is another option,
limiting the execution on CPU, Edge TPU (Tensor Processing Unit), and Microcon-
trollers. The full quantization of the model reduce both the weights and outputs
to 8-bit precision. This final step can drastically boost the inference and memory
performance of the model, but also significantly reduce its accuracy. From the
hardware perspective, graphic processing units (GPUs) are the standard for parallel
matrix computation through ad-hoc libraries such as Nvidia CUDA. GPUs allows
for float-16 and float-32 precision, while CPUs only admit float-32 or 8-bit integer
operations. Beside classic CPUs, some ad-hoc computational devices have been
realized to boost fast inference at the edge. Among them, the most popular are the
Nvidia Jetson2 platforms (Nano, Xavier, Orin), the Intel Movidius VPU (Visual
Processing Unit)3 and the Google Coral Edge TPU4. Nvidia Jetson platforms are
single-board computers with dedicated embedded GPUs, with power consumption
going from 5-10 W for the Jetson Nano, and 10-30 W for the Xavier version. Differ-
ently, Coral Edge TPU and Intel Movidius VPU are tiny graphics accelerator, usually
bought as USB stick devices, for computer vision and AI models that consume up

1https://tensorflow.org/lite
2https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/
3https://www.intel.com/content/www/us/en/products/details/processors/

movidius-vpu/movidius-myriad-x/products.html
4https://coral.ai/

https://tensorflow.org/lite
https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x/products.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x/products.html
https://coral.ai/

1.2 Optimized execution of ANN at the Edge 33

to 2 W. Coral only allows for 8-bit integer operations, hence, for fully quantized
models. Most recently, the Intel Movidius Myriad X VPU have also been integrated
on camera devices for robotics like the OAK-D5, to directly provide practitioners
with a complete set-up for fast computer vision applications at the edge.

5https://shop.luxonis.com/products/oak-d

https://shop.luxonis.com/products/oak-d

Chapter 2

Deep Reinforcement Learning

In this section the Reinforcement Learning (RL) framework is explored, starting from
an introduction of the main concepts. The chapter is focused on Deep Reinforcement
Learning (DRL) algorithms that are used in the core of the thesis. Hence, DRL
concepts are gradually, briefly explained starting from tabular RL such as Dynamic
Programming and Monte Carlo methods, touching the idea of Temporal-Difference
learning and finally getting to approximate solution methods. Some examples of the
principal algorithms are also provided for a more comprehensive and clear analysis
of RL. In the last part of the chapter, approximate solution methods are treated
with a great focus on actor-critic paradigms, deepening the discussion for the Deep
Deterministic Policy Gradient and the Soft Actor-Critic methods. The whole chapter
is written extracting the RL concepts from the reference RL book [70] and specific
articles cited in the text.

2.1 Introduction to Reinforcement Learning

The foundational stone of many learning theories is that we learn through the
interaction with the environment where we are placed in, as represented in Fig. 2.1.
Many recurrent events during the childhood confirm this theory: a child continually
learn through a trial and error procedure, from walking to riding a bike. Framing
the problem in a more general scene, according to the action an agent chooses in a
certain condition, the environment gives it back a response, for example, the hurting
sensation perceived when falling. A good consciousness of the environment is

2.1 Introduction to Reinforcement Learning 35

necessary to successfully address a task, and more in depth, to be aware of the result
of a chosen action. This causal connection is effectively learnt through experience.
Reinforcement Learning (RL) can be defined as a computational approach focused

Take action
from state

Agent Environment

-Get reward r
-Sample new state

Fig. 2.1 The interaction between an agent and the environment in reinforcement learning.

on learning how to reach a task-specific desired behaviour by interacting with the
environment. More specifically, it is associated to the problem of how to map
situations to actions in order to maximize a numerical reward signal. The main
characteristics of RL can be identified in the following:

• it can be described as a closed-loop problem because the selected action
influence the successive inputs.

• the action is chosen by the learning agent according to a trial and error proce-
dure.

• choosing an action in a certain situation determine the immediate reward as
well as the consequent situations and rewards.

Due to these peculiar aspects, RL can be identified as a separate, different paradigm
in Machine Learning. The differences with supervised and unsupervised learning are
quite evident. In RL, no labeled dataset is exploited, and the process merely focuses
on maximizing the reward signal rather than in finding hidden structure in unlabeled
data.

As already explained, the agent and the environment play the two pivotal roles in RL.
Besides, it is possible to identify a set of elements that are present in almost every
RL system:

36 Deep Reinforcement Learning

The policy of a learning agent defines its behaviour, i.e. its way of selecting actions
at a given instant of time. It is therefore the core of a RL agent, since it defines
how the agent will tackle a given task. In other words, the policy is responsible of
the mapping from a state in the environment to a specific action to perform in that
situation. Generally speaking, a policy can be both stochastic or deterministic.

The reward signal defines the goodness of a certain event for the agent. At each
time step, the environment sends to the agent a numerical evaluation of its behaviour,
a reward. The agent tries to maximize the total reward over the entire training period.
This means the reward signal is responsible of guiding the agent to the desired
behaviour by indicating good and bad actions.

The value function can be roughly defined as a long-term advisor for the agent. It
associates to a state a value which is correlated to the total reward which is possible
to gain in the future starting from that state. Hence, if rewards give the agent an
indication of what is good to do in an immediate sense, values take care of the
potential development of taking a decision in a certain situation. This is certainly a
fundamental role in a RL system. For example, an agent can decide to move into
a new state gaining a low immediate reward. Nevertheless, this can still be a good
choice if it gives the agent the chance to reach next states that yield high rewards.
When selecting an action, it should be considered the one that allow to reach states
with the associated highest value, not the highest reward, because the total reward
accumulated over the long run will be much greater. Unfortunately, an efficient
estimation of the value function is not trivial. For this reason this task is a crucial
component of almost every RL algorithm.

A model of the environment can be defined as an approximation of the environ-
ment dynamics and it can be useful to make predictions about its future evolution for
planning purposes. Methods that exploits such model are referred as model-based;
on the contrary, model-free methods do not make use of any model and they are
based on a pure trial and error learning. In this thesis only model-free RL methods
are explained and used in the project.

2.1 Introduction to Reinforcement Learning 37

2.1.1 Markov Decision Process

RL aims to frame the problem of goal-based learning from interaction. The Markov
decision process (MDP) is a way to formally define this problem. As already
introduced in the previous section, RL is based on the interaction between:

• the agent: the learner and decision-maker;

• the environment: what is outside the agent and interact with it.

This continuous interaction can be formalized in a closed-loop dynamics as shown in
Fig. 2.2. At each discrete time step t = 0,1,2,3... the agent receives in input the state

Fig. 2.2 Markov Decision Process schematic.

of the environment st ∈ S, which should contain all relevant information about the
environment. The agent chooses an action at ∈A based on that. At the next time step
the environment sends back a new state st+1 and a reward rt+1 ∈R⊂ R. Therefore,
the process generates an alternated sequence of signals exchanged between the agent
and the environment as the following:

(s0),(a0),(r1,s1),(a1),(r2,s2),(a2), ...

A graphical representation can be useful to better understand a generic set of tran-
sitions. An example is reported in Fig. 2.3, where circles contains the states and
arrows represent the transition from a state to another one based on the selected
action. A generic response of the environment at time t +1 can be expressed by a
probability distribution that takes in consideration all the previous events:

Pr{rt+1 = r,st+1 = s′|s0,a0,R1, ...,st−1,At−1,rt ,st ,at}

38 Deep Reinforcement Learning

Fig. 2.3 Finite Markov Decision Process: a simplified transition schematic.

However, if the state contains all the relevant information about past transitions the
environment’s step at time t +1 depends only on the state and the action at time t.
When this is true, the state signal has the Markov property. In this case the previous
expression becomes:

p(s′,r|s,a) = Pr{st+1 = s′,rt+1 = r|st = s,at = a}

Moreover, the Markov property can be extended to the whole environment if the
previous assumption holds for every s′,r. This property has a tremendous relevance
for the whole RL conceptual framework. In fact, it means that given the actual state
and action, we are able to predict all future states and possible rewards. Markov
property is therefore extremely advantageous in RL to efficiently choose good actions.
Hence, it is possible to refer to a RL task as a Markov decision process whenever the
Markov property is satisfied. In the case of finite state and action spaces, the process
is called a finite Markov decision process.

Goals, Reward and Returns

As already introduced, a RL agent has the final goal of maximizing a numerical
signal called reward. At each time, the environment assign a reward to the agent.
For example, a robot can learn how to collect empty bottles for recycling simply by
assigning a +1 for each bottle collected and a -1 every time it collect a wrong object
or miss a bottle. A wide variety of rewards can be designed according to the specific

2.1 Introduction to Reinforcement Learning 39

application. The final amount of reward obtained can be formally called return and
it can be indicated as Gt . The mathematical expression of Gt depends on the specific
problem to tackle, a basic case could be the sum of all the rewards:

Gt = rt+1 + rt+2 + rt+3 + ...+ rT

A final time instant T concludes the sequence of rewards. A finite number of
agent-environment interaction steps makes the learning process evolve in separated
subsequences called episodes. This episodic interaction can be easily compared
to games levels that finishes with different scores. Differently, some processes
may need to be represented by a continuous agent-environment interaction. In this
scenario, it would be T = in f and the return could diverge. A discount factor is
therefore introduced to prioritize the latest steps performed in the training. In this
case, the expected discounted return will be:

Gt = rt+1 + γrt+2 + γ
2rt+3 + ...+=

inf

∑
k=0

γ
krt+k+1,

where the parameter γ is 0≤ γ ≤ 1 and it is called the discount rate. With γ = 1 the
result is unchanged with respect to the previous expression. When instead γ < 1 the
infinite sum will converge to a finite value, given all bounded reward contributions. A
peculiar case occurs with γ = 0, since the only immediate reward rt+1 is maximized.

Optimal Value Functions and Policies

A formal definition of value functions can be given at this point. In particular, it
possible to define different value functions for the RL framework. A state-value
function express how good is a certain state for the agent, according to the associated
expected return. In an analogue logic, a state-action pair value function can be
defined. This last function specifies how good an action is for the state in account.
The concept of policy can be formulated as the function that associate the states
to the probabilities of selecting the possible actions. Hence, the policy describes
agent’s behaviour also account for uncertainty in the action selection. According
to this definition, an agent which follows a policy π has the probability π(a|s) to
choose the action a in the state s. The value function under the policy π is indicated
with vπ(s). It expresses the expected return that the agent should get when starting

40 Deep Reinforcement Learning

from state s having a policy π . In a MDP this can be written as:

vπ(s) = Eπ [Gt |st = s] = Eπ

[
inf

∑
k=0

γ
kRt+k+1

∣∣∣∣st = s

]

where Eπ [·] is the expected value of a random variable given the policy π of the
agent. vπ is the state-value function for policy π .
In an analogue way the action-value function for policy π , qπ can be defined:

qπ(s,a) = Eπ [Gt |st = s,at = a] = Eπ

[
inf

∑
k=0

γ
kRt+k+1

∣∣∣∣st = s,at = a

]

Hence, qπ(s,a) formally expresses the value of choosing the action a in state s under
the policy π .

At this point it is easy to give a definition of optimal policy and optimal value
function. It can be said that a policy π is better than another policy π ′ if its expected
return is the greatest among the two of them, for all states:

π > π
′ ⇐⇒ vπ(s)> vπ ′(s),∀s ∈ S

A policy is said to be optimal if it is better than or equal to all other policies. An
optimal policy is usually denoted as π∗. There could be more than one optimal policy,
but all of them will share the optimal state-value function, v∗:

v∗(s) = max
π

vπ(s),∀s ∈ S,

as well as a optimal action-value function, q∗:

q∗(s,a) = max
π

vπ(s,a),∀s ∈ S,

Optimal policies and value functions cannot be found in non-finite MDPs due to
practical constraints in the implementation (such as the amount of available memory),
however useful approximations can be used.

2.2 Tabular methods 41

2.2 Tabular methods

In this section, a brief discussion about the simplest RL approaches is carried out.
These include tabular methods applied only considering finite MDPs. Dynamic
Programming and Monte Carlo methods are shortly introduced. Then, the key
concept of Temporal-Difference Learning will be explained.

2.2.1 Dynamic programming

Dynamic programming (DP) consists in a variety of algorithms used to compute
optimal policies. Usually, they can be implemented only when a perfect model of the
environment is given. In real control and robotics applications, a perfect environment
usually cannot be found and DP may result to be inappropriate or too computationally
expensive. Nonetheless, DP can be successfully used in the financial field.

Iterative policy evaluation is one of the possible method in DP literature. It allows
to obtain the state-value function vπ given an arbitrary policy π . This algorithm
exploits different results that can be obtained combining the equations described in
the previous section. Among them, the starting point for policy evaluation is the
Bellman equation, here used for computing vπ :

vπ = ∑
a

π(a|s)∑
s′,r

p(s′,r|s,a)[r+ γvπ(s′)], ∀s ∈ S.

In this equation, the term π(a|s) is the probability of choosing an action a in state
s under the policy π . For γ < 1 the existence and uniqueness of vπ are guaranteed.
However, an iterative computational procedure is more appropriate for the purposes
of RL. Hence, by considering an arbitrary initial v0, the state-value function can be
approximated through successive computational steps using the Bellman equation as
an update rule:

vk+1(s) = Eπ [rt+1 + γvk(st+1)|st = s]

= ∑
a

π(a|s)∑
s′,r

p(s′,r|s,a)
[
r+ γvk(s′)

]
, ∀s ∈ S

Once a value function vπ has been computed, looking for an optimal policy can be a
good advancement, since an arbitrary one has been used to compute vπ . The result
is a new greedy policy called π ′ that can be obtained combining equations already

42 Deep Reinforcement Learning

seen. Here it is directly reported without discussing the whole derivation. It can be
computed with:

π
′(s) = argmax

a
∑
s′,r

p(s′,r|s,a)[r+ γvπ(s′)]

The greedy policy takes the action that maximizes the action-value function in the
short-term. No further details are provided about further possible optimization of π

and vπ since the result is out of the scope of this thesis. A deeper analysis of DP can
be found at [38].

2.2.2 Monte Carlo Methods

With respect to DP algorithm, Monte Carlo methods are not strictly dependent on
the environment’s knowledge. In fact, they only require to know the transitions
composed of states, actions and rewards obtained through the interaction with a
real or a simulated environment. These samples are also called experience. An
approximate model of an environment is required to simulate the interaction and
obtain the sample transitions, but the associated probability distributions are not
requested as in DP. Only episodic tasks are considered for Monte Carlo methods.
This allows to have well-defined returns that can be easily averaged over all the
episodes of the task. Indeed, the approach used for RL problem consists in sampling
and averaging returns associated to state-actions pairs.

As first goal, we always aim to estimate the value function of a state s under the
policy π , vπ(s). A particular state can occur several times inside the same episode.
The term visit is usually used to refer to the occurrence of the state. Based on this
definition, it is possible to identify two main Monte Carlo methods:

• The first-visit MC method estimates vπ(s) averaging the returns coming after
the first visit to s.

• The every-visit MC method takes in account the returns following all visits to
s for the average.

Both the MC algorithms converge to the value function. The pseudo-code of first-
visit MC method is reported in Algorithm 3. The every-visit version is basically the
same except for the check of state st . Monte Carlo methods allow also to estimate
the state-action pair value function q(s,a). More in detail, this is particularly useful

2.2 Tabular methods 43

Algorithm 3 First-visit Monte Carlo method for the estimation of V ≈ vπ(s)
Input: a policy π , a positive number of episodes ne
Output: the estimated value function V

1: Initialization of returns R(s) = 0,∀s ∈ S
2: Initialization of N(s) = 0,∀s ∈ S
3: ▷ N is a counter of the number of visits to each state s
4: for episodes in ne do
5: Generate the sequence according to π: s0,a0,r1,s1,a1,r2, ..,sT−1,aT−1,rT
6: G← 0
7: for each time step of the episode t = T −1,T −2, ...,0 do
8: G← G+Rt+1
9: if state st is not present in the sequence s0, ...,st−1 then

10: R(st)← R(st)+Gt
11: N(st)← N(st)+1
12: end if
13: end for
14: end for
15: V (s)← R(s)

N(s) ,∀s ∈ S

when a model of the environment is not known. In this case the state values are not
sufficient to determine the actions associated with highest rewards. It is possible
to talk about a visit of a state-action pair when the agent takes the action a when
it is in the state s. The Monte Carlo methods illustrated before work in the very
same way and they can estimate the expected values with an increasing number of
visits. However, a problem arises when using a deterministic policy π to choose
the actions. In this case many state-action pairs will never be visited. This means
that the agent will not choose among all the possible actions associated to a state,
which is the basic purpose of learning action values. In other words, we need to
keep a sufficient rate of exploration in the policy for a better learning process. A
possible approach for this problem is called exploring starts. It consists in starting
the episode from a specific state-action pair and then assign a non-null probability to
each possible action. It guarantees a complete exploration of state-action pairs in an
infinite number of episodes but it could be practically not feasible.

At this point it is possible to briefly describe how Monte Carlo methods are able to
approximate optimal policy for control purposes. The main idea of the procedure
is very similar to DP, i.e. the generalized policy iteration (GPI) is followed. As
graphically shown in Fig. 2.4 the iterative process consists in updating an approxi-

44 Deep Reinforcement Learning

Fig. 2.4 Policy improvement scheme.

mate value function for the current policy, and the policy is modified at each step
according to the value function. This adversarial behaviour results in an approximate
optimal policy. As seen before, with an action-value function no models are needed.
Policy improvement constructs each policy πk+1 as the greedy policy based on qπk .
This is a direct application of the policy improvement theorem, which state:

qπk(s,πk+1(s))≥ vπk(s)

Basically, whenever a better policy is found by considering its future returns through
the value function, the actions start to be chosen according to πk+1 instead of
following πk.

Practical considerations

Two basic assumptions have been considered so far for policy improvements: an
infinite number of episodes for the policy evaluation and the usage of exploring
starts. For a practical implementation of the method, these have to be removed.
Firstly, a limited number of steps is enough to guarantee a good approximation of
the solution within certain bounds. Secondly, when the exploring start is not feasible,
it is possible to use a particular exploration policy called ε−greedy policy:

π(a|s)≥ ε

|A(s)|

This means that a greedy action is usually picked up from the policy π such that
it maximizes the action-value. However, with a probability ε a random action is

2.2 Tabular methods 45

selected and it is used to explore non promising state-action pairs that would never
be visited otherwise. In practice, an exponential decrement of ε is usually adopted,
to decrease the level of random exploration along the learning process.

It is now convenient to introduce the concept of on-policy and off-policy methods.
Basically, on-policy methods aims to maintain and improve the policy used to make
decisions. On the contrary, off-policy methods tries to improve a different policy.
This difference will be useful to understand the following sections. The main idea
behind on-policy Monte Carlo methods are based on GPI. Differently, off-policy
methods focus on the usage of two different policies. The first one, that we improve
to become the optimal policy and it is called the target policy. On the other side, a
second policy will be mainly devoted to exploration and it is called behaviour policy.

2.2.3 Temporal-Difference Learning

Temporal-difference learning (TD) can be considered the central innovative idea
behind RL. TD presents some elements of both Monte Carlo and Dynamic Program-
ming methods. Indeed TD methods are able to learn without the need of a precise
model of the environment in the same way of MC. On the other hand, similarly to DP,
they bootstrap, i.e. they update estimates using also previously learned quantities.
We start introducing the problem of prediction, briefly illustrating how TD estimates
the value function vπ for a policy π . A basic every-visit MC uses the obtained return
of the visit as target for V (st), according to

V (st)←V (st)+α [Gt−V (st)] ,

where Gt is the actual return and α is a constant. Differently, TD simplest method
makes the update waiting only for the next time step using the obtained reward rt+1

and the estimate V (st+1):

V (st)←V (st)+α [rt+1 + γV (st+1)−V (st)]

This method is called TD(0) or also one-step TD. The quantity rt+1 + γV (st+1)

represents the target for TD. Moreover, it is possible to define the TD error as
follows:

δ = rt+1 + γV (st+1)−V (st)

46 Deep Reinforcement Learning

The advantages of TD with respect to DP and MC are easy to be noticed. The
combination of bootstrapping and independence from a model are precious charac-
teristics especially with long episodes. Convergence is usually guaranteed with TD,
making these methods convenient in the majority of the situations. Here, the main
TD method are introduced and briefly discussed.

2.2.4 SARSA: on-policy TD method

SARSA algorithm takes its name from the quintuple composed by the state-action
pair transition sequence st ,at ,rt+1,st+1,at+1. Being an on-policy control method, in
SARSA the action-value function qπ(s,a) is continually estimated for the unique
policy π , pushing it toward greediness. The assumption of an infinite number of
visits for all state-action pairs ensures the convergence of SARSA algorithm. The
pseudo-code of SARSA algorithm is shown below in Algorithm 4.

Algorithm 4 SARSA algorithm for estimating Q≈ q∗
Input: a small ε > 0 for ε-greedy policy π , step size α ∈ (0,1]
Output: the estimated action-value function Q

1: Initialize arbitrarily Q(s,a),∀s ∈ S+,a ∈ A(s),except Q(terminalstate,) = 0
2: for each episode do
3: Initialize s
4: Choose a from s using ε-greedy policy
5: for each time step of the episode do
6: Take action a, observe r,s′

7: Choose a′ from s′ using ε-greedy policy
8: Q(s,a)← Q(s,a)+α [r+ γQ(s′,a′)−Q(s,a)]
9: s← s′; a← a′;

10: if s is terminal then
11: break loop
12: end if
13: end for
14: end for

2.3 Deep Reinforcement Learning 47

2.2.5 Q-Learning: off-policy TD method

Q-learning is an off-policy TD control method. It can be considered a real innovation
in RL. In Q-Learning, the optimal action-value function q∗ is approximated by
directly learning Q according to:

Q(st ,at)← Q(st ,at)+α

[
rt+1 + γ max

a
Q(st+1,a)−Q(st ,at)

]
In such a way, the algorithm results to be immediate, as shown in pseudo-code in
Algorithm 5.

Algorithm 5 Q-learning algorithm for estimating π ≈ π∗
Input: a small ε > 0 for ε-greedy policy π , step size α ∈ (0,1]
Output: the estimated action-value function Q

1: Initialize arbitrarily Q(s,a),∀s ∈ S+,a ∈ A(s),except Q(terminalstate,) = 0
2: for each episode do
3: Initialize s
4: for each time step of the episode do
5: Choose a from s using ε-greedy policy
6: Take action a, observe r,s′

7: Choose a′ from s′

8: Q(s,a)← Q(s,a)+α

[
r+ γ max

a′
Q(s′,a′)−Q(s,a)

]
9: s← s′;

10: if s is terminal then
11: break loop
12: end if
13: end for
14: end for

2.3 Deep Reinforcement Learning

The general framework of RL has been introduced in this chapter, and principal RL
methods such as Dynamic Programming, Monte Carlo, and Temporal Difference
learning have been briefly discussed. To make a further step towards the algorithms
employed in the core of the thesis, we need to consider that state spaces can be
frequently huge according to the specific task. Hence, tabular methods present strong

48 Deep Reinforcement Learning

limitations due to the cost of updating accurately tables with data in the required time.
In this scenario an optimal policy and an optimal value function cannot be found and
approximate solutions must be considered according to the available computational
resources. What usually happens is that many encountered states will be totally
new, and the algorithm should be able to generalize the knowledge that has already
learnt in order to make sensible decisions. In practice, it has to learn how to behave
correctly on a wide number of situations, experiencing a much smaller subset. The
desired function to approximate is usually a value function.

The Deep Reinforcement Learning (DRL) framework is considered at this point.
Although several methods exist for function approximation, in this thesis only solu-
tions based on artificial neural networks will be explained. An essential difference
in this new framework is that value functions are no more represented using tables.
Instead, they are shaped with a parametric functional form. For ANNs the parameters
coincide with the weights of the network w(w ∈ Rd). Since both the state-value and
the action-value functions are now dependent on the vector w, they can be written as
v̂(s,w)≈ vπ(s) and q̂(s,a,w)≈ q∗(s,a).

Experience Replay

A popular practice in DRL is the method of experience replay. It has been initially
studied by Lin in 1992. However, its recent success is mainly related to its application
in the DQN algorithm proposed by Mnih et al. [71] (2013) to learn playing ATARI
games with DRL. The DQN algorithm will be described later, here we briefly focus
on experience replay. The method is based on saving in a memory buffer called
replay memory, at each time step, the tuple (st ,at ,rt+1,st+1). It contains all the
information about the transition of the agent from a state st to the next one, choosing
a certain action at and receiving a reward rt . Once the replay memory reaches a
sufficient number of stored transitions, mini-batches can be sampled uniformly at
random. Hence, experience is directly used to train the ANN controlling the agent.
Experience replay provides several advantages. First of all, it increases the data
efficiency of the algorithm, since an experienced event can be used to update the
agent’s weights multiple times. Another fundamental effect of experience replay
is to remove the instability in the learning process caused by temporally correlated
training samples. Consecutive samples should be always avoided in RL.

2.3 Deep Reinforcement Learning 49

Prioritized Experience Replay

In 2015 Schaul et al. [72] have introduced a new formulation of the experience
memory replay buffer which is called Prioritized Experience Replay buffer (PER). It
is based on the theory that some experiences are more instructive than others. For
example, situations in which the agent made a significant error or received a large
reward may be more instructive than other events. The agent can learn faster if
certain events receive priority in the learning process. PER can be put into practice
by giving each experience a priority value determined by an index of relevance. One
way to measure relevance is to look at the TD-error or the absolute error between the
target Q-value and the estimated Q-value. During the learning phase, experiences
with higher priority values are more likely to be sampled. PER has the potential to
significantly boost RL algorithms’ sample-efficiency. It has been demonstrated that
it can improve the agent’s overall performance and accelerate learning’s convergence
and stability, especially with sparse reward and dynamic environments.

2.3.1 Deep Q-Learning algorithm

Deep Q-Learning algorithm is an advanced version of Q-learning method. Similarly,
this method focuses on the approximation of the optimal action-value function
Q∗(s,a). The definition of optimal action-value function remains the same:

Q∗(s,a) = max
π

E[rt |st = s,at = a,π]

As explained in the previous sections, it can be exactly computed thanks to the
Bellman equation for action-value function:

Q∗(s,a) = E
[

rt+1 + γ max
a′

Q∗(s′,a′)|s,a
]

Practically, an ANN is used as non-linear function approximator to obtain Q(s,a;θ)≈
Q∗(s,a), where θ is used to indicate the weights of the network. In this particular
case, the neural network is often called Q-networks or Deep Q-network (DQN), due
to its purpose. The Q-network is usually trained with stochastic gradient descent over
a set of transitions (s,a,r,s′) collected in the replay buffer D. The training process
aims to minimize the loss function LQ(θ) at each time step:

LQ(θ) = Es,a∼ρ(·)
[
(yi−Q(s,a,θi))

2)],

50 Deep Reinforcement Learning

where yi is the target at step i

yi = Es′∼P

[
r+ γ max

a′
Q(s′,a′;θ)|s,a

]
(2.1)

and ρ(s,a) is the probability distribution over the action given the state, i.e. the
distribution of the behaviour policy used to sample the action, and P is the transition
probability of the environment. This loss is basically a mean-squared Bellman
error (MSBE) function, which indicates how close the predicted Q-value Q(s,a,θi)

satisfies the Bellman equation. The action is then obtained by the trained DQN
selecting the one that maximizes the estimated maximum Q-value:

a = argmax
a∈A

Q(s,a;θ) (2.2)

The pseudo-code of the algorithm is reported below in Algorithm 6. Deep Q-learning
is a model-free algorithm, since it does not need to know the probability distribution
of the environment dynamics. Moreover, it is an off-policy method, because it uses
a target greedy policy for the optimization of the action-value function, together
with an ε-greedy policy for the behaviour distribution ρ(s,a). It also exploits the
experience replay, training the networks with mini-batches sampled from the a total
of N transitions stored in the memory buffer D. The replay buffer should be defined
large enough to contain various previous experience and avoid overfitting on most
recent transitions, balancing the its size at the cost of learning speed.

2.3 Deep Reinforcement Learning 51

Algorithm 6 Deep Q-learning algorithm with experience replay
Input: a small ε > 0 for exploratory ε-greedy policy, replay memory D
Output: the function approximator of the action-value function Q

1: Initialize the replay memory D
2: Initialize the Q function approximator with random weights
3: for each episode do
4: Initialize s
5: for each time step t = 1,T do
6: Generate a random number 0≤ h≤ 1
7: if h≤ ε then
8: Pick a random action at
9: else

10: Select at = argmax
a

Q(st ,a;θ)

11: end if
12: Perform selected action in the environment and observe rt ,st+1
13: Set next state st+1 = st
14: Store experience transition (st ,at ,rt ,st+1) in replay memory D
15: Sample mini-batch of transitions (s,a,r,s′) from replay memory D

16: Set target: y =

{
r if final state
r+ γ maxa′Q(s′,a′;θ) otherwise

17: Perform a gradient descent step on loss (y−Q(s,a,θ))2

18: end for
19: end for

Target Network

A problematic source of instability is that the expression of the target yi depends
on the same network’s parameters θ we are trying to optimize. This makes the loss
minimization unstable. For this reason, Mnih et al. [71] suggested to use another
network called target network to break the dependence of the target expression on
the weights θ . The target network is updated with a certain delay with respect to the
original one. This improves convergence of the algorithm when using TD-error.

2.3.2 Actor-Critic architecture

A key concept for the algorithms used in this thesis is the actor-critic architecture.
Differently from the classic MDP agent, this DRL framework involves the usage
of two separate entities. The actor is responsible of selecting the action, hence it
represents the function approximator of the policy. The critic evaluates the goodness

52 Deep Reinforcement Learning

of what the actor has decided to do. For this reason, it usually approximates an
action-value function Q(s,a,θ) using the TD error. The critic loss is therefore
based on the TD error, while the actor network will be updated according to Policy
Gradient algorithm, i.e. exploiting a gradient computed from the critic’s prediction.
In practice, the critic tries to indicate to the actor which are good or bad choices.
A schematic is reported in Fig. 2.5 for a better visualization. During the training
process, both the actor and critic networks are updated. However, the actor will be
the only entity employed in the desired task, the presence of the critic is limited to
the training phase.

Fig. 2.5 Actor-Critic architecture scheme.

2.3.3 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is a model-free off-policy actor-critic
algorithm. The DDPG algorithm was originally proposed by Lillicrap et al. in 2015
[73], mixing the principle of Deterministic Policy Gradient (DPG) [74] methods with
Deep Q-learning. From a broader perspective, DDPG can be considered an extension
of DQN from discrete to continuous action space. This is not a trivial passage
considering how to compute the maximum Q-value over actions maxa Q∗(s,a). With
discrete action space, it is easy to compute the Q-value for each action in the set and
compare them directly. Instead, DDPG deals with the continuous space leveraging the
actor-critic architecture to directly approximate maxa Q∗(s,a)≈ Q(s,µ(s)), where
µ(s) is the deterministic policy to be learned. Hence, a gradient-based rule is
derived directly relating the function Q∗(s,a) to the action predicted. The actor-critic

2.3 Deep Reinforcement Learning 53

architecture enables this mechanism training two networks concurrently: the actor
network approximates the deterministic policy µθ with weights θ , and the critic one
the Q∗(s,a) with Qφ . Similarly to DQN, experience replay and target networks are
used also in DDPG, hence we will have target networks µθtarg and Qφtarg for both
actor and critic.

Critic update: training the critic represents the Deep Q-learning nature of DDPG.
The loss function is indeed defined with a mean-squared Bellman error (MSBE)
computed over a batch B of transitions sampled from the replay buffer D:

L(Qφ) = E(s,a,r,s′)∼D
[
(Qφ (st ,at)− yt)

2] (2.3)

where yt is the target computed with actor’s prediction,

yt = r(st ,at)+ γQφtarg(st+1,µθtarg(st+1)) (2.4)

The critic Q-network is updated with a gradient descent step using the gradient
obtained differentiating the MSBE over the weights φ .

Actor update: the goal of the actor training is to maximize the Q-function esti-
mated by the critic. The gradient to update the deterministic policy network can be
obtained differentiating the Q-value with respect to the actor’s weights θ ,

∇θ

1
|B| ∑s∈B

Qφ (s,µθ (s)) (2.5)

The actor’s θ weights are then updated with a gradient ascent step. A soft update
is then performed as follows for the two target networks using τ as temperature
parameter:

φtarg← τφ +(1− τ)φtarg

θtarg← τθ +(1− τ)θtarg

Moreover, in the original implementation of the paper by Lillicrap et al., exploration
is carried out by adding to the actor policy a noise N , generated with a particular
process (Ornstein-Uhlenbeck). A detailed explanation is avoided here, the resulting

54 Deep Reinforcement Learning

expression of the policy is shown below.

µ(st) = µθ (st |θ)+N

The resulting action value is then clipped in the allowed ranges [amin,amax].

2.3.4 TD3

The Twin Delayed Deep Deterministic Policy Gradient (TD3) [75] is a more re-
cent extension of DDPG designed to improve the stability and performance of the
actor-critic algorithm. Indeed, DDPG results to be brittle with respect to hyperpa-
rameters and tuning process. A typical issue in the DDPG convergence is caused
by the overestimation of the Q-value. Similar to DDPG, TD3 trains an actor policy
network µθ (s) and its target copy. However, TD3 employs some tricks to boost the
convergence of the learning:

• Clipped Double-Q Learning: TD3 uses two "twins" critic networks Qφ1(s,a)
and Qφ2(s,a), and it picks up the minimum of the two estimated Q-values to
compute the targets in the Bellman error loss;

• Delayed Policy Updates: TD3 updates the policy and the target networks less
frequently than the Q-function;

• Target policy smoothing: TD3 adds noise to the target action used to compute
the Q-learning target, to regularize the learning of the algorithm.

Critic Update: The critic loss is the same MSBE computed for the two Q-functions
using a unique minimum target

yt = r(st ,at)+ γ min
i=1,2

Qφi,targ(st+1, µ̃θtarg(st+1)) (2.6)

L(Qφi) = E(s,a,r,s′)∼D
[
(Qφi(st ,at)− yt)

2] (2.7)

Notice that in the target computation TD3 adopts a noisy target policy

µ̃θtarg = µθtarg(st+1)+Nt (2.8)

2.3 Deep Reinforcement Learning 55

Nt is the clipped target policy smoothing noise. The resulting action is also clipped
in the allowed ranges [amin,amax]. The noise is applied to regularize the algorithm
preventing overestimation of the Q-function.

Actor Update: TD3 updates the actor in the same way of DDPG, computing a
gradient using the first critic Q-value Qφ1:

∇θ

1
|B| ∑s∈B

Qφ1(s,µθ (s)) (2.9)

The actor parameters θ are updated by performing gradient ascent on L(θ). However,
TD3 updates the actor policy and the target networks less frequently than the Q-
functions. This acts as a further regularization action preventing continuous sudden
changes of the target due to policy updates. The pseudo-code of TD3 is reported in
Algorithm 7.

56 Deep Reinforcement Learning

Algorithm 7 Twin Delayed Deep Deterministic Policy (TD3)
1: Initialize actor network µθ and two Q-networks Qφ1 , Qφ2

2: Initialize target networks Q1targ , Q2targ , and µtarg with the same weights
3: Initialize target policy smoothing noise ε ∼N (0,σ)

4: Initialize replay buffer D
5: for each episode do
6: Initialize state s
7: for each step in the episode do
8: Select action a from the current policy with noise: a = clip(µ(s) +

ε,amin,amax)

9: Execute action a, observe reward r and next state s′

10: Store (s,a,r,s′) in D
11: if update step then
12: for number of updates do
13: Sample a mini-batch of transitions (s,a,r,s′) from D
14: Compute target actions with policy smoothing noise:
15: ã = clip((µθtarg(s

′)+ clip(ε,−c,c),amin,amax))

16: Compute target Q-values:
17: y = r(s,a)+ γ min

i=1,2
Qφi,targ(s

′, ã)

18: Update Q-networks minimizing the loss:
19: L(Qφi) = E(s,a,r,s′)∼D

[
(Qφi(s,a)− y)2]

20: if policy update step then
21: Update the actor network with gradient ascent step:
22: ∇θ

1
|B| ∑

s∈B
Qφ1(s,µθ (s))

23: Update target networks with soft updates:
24: φQ1targ

= τφ1 +(1− τ)φQ1targ

25: φQ2targ
= τφ2 +(1− τ)φQ2targ

26: θtarg = τθ +(1− τ)θtarg

27: end if
28: end for
29: end if
30: end for
31: end for

2.3 Deep Reinforcement Learning 57

2.3.5 Soft Actor-Critic

Soft Actor-Critic (SAC) is a model-free off-policy DRL algorithm that optimizes
a stochastic policy. The core concept of SAC is entropy regularization, it finds an
optimal trade-off between entropy of the policy and expected cumulative return.
Entropy H(P) = Ex∼P[− logP(x)] is a way to measure the randomness of the policy.
In this case, we have a natural regulation of exploration and exploitation without
adding externally generated noise into actions. SAC was introduced by [76], here
the version for continuous action spaces is presented. SAC maintains a stochastic
policy πθ (a|s) and two value functions: Qφ1(s,a) and Qφ2(s,a). Hence, SAC adopts
the same clipped double Q-value of TD3, with some small differences in the target
computation and policy update. In an entropy-regularized RL setting, the optimal
policy π∗

θ
is obtained maximizing a discounted term which also includes the entropy

term H(π(·|st)):

π
∗
θ = argmax

π

E
∞

∑
t=0

γ
t [rt +αH(π(·|st))] (2.10)

Where α is the temperature parameter which regulates the trade-off between return
optimization and policy stochasticity. The stochastic policy is approximated in SAC
algorithm with a neural network regressor through a reparametrization trick. To
do so, the output of the network are the the mean µθ and standard deviation σθ

parameters of a Gaussian that we use to sample actions. Then, action are squashed
with a tanh function to bound it in a finite range.

ãθ (s,ξ) = tanh(µθ (s)+σθ (s)⊙ξ), ξ ∼N (0, I). (2.11)

Critic Update: The critic networks are updated to minimize the mean squared
Bellman error

L(Qφi) = E(s,a,r,s′)∼D
[
(Qφi(st ,at)− yt)

2] , (2.12)

with the entropy-regularized target Q-value given by

yt = r(st ,at)+γ

(
min
i=1,2

Qφi,targ(st+1, ãt+1)−α logπθ (ãt+1|st+1)

)
, ãt+1∼ πθ (·|st+1)

(2.13)

58 Deep Reinforcement Learning

Actor Update: The actor is trained to maximize both expected return and entropy,
encouraging exploration. The objective function for the actor is:

L(θ) = Est∼D

[
Eat∼π(·|st)

[
min
i=1,2

Qφi(st ,at)−α log(πθ (at |st))

]]
(2.14)

where the temperature parameter α can be a static value, or fine tuned with an update
rule along the course of the training. Differently from TD3, SAC uses the minimum
Q-value instead of the first one in the actor loss. Algorithm 8 report the pseudo-code
of SAC.

Algorithm 8 Soft Actor-Critic (SAC)
1: Initialize critic networks Qφ1 , Qφ2 , and actor network πθ with random weights
2: Initialize target networks Qφ1,targ , Qφ2,targ , and πθtarg with same weights
3: Initialize replay buffer D and temperature parameter α

4: for each episode do
5: Initialize state s
6: for each step in the episode do
7: Select action a from the current policy: a∼ πθ (·|s)
8: Execute action a, observe reward r and next state s′

9: Store (s,a,r,s′) in D
10: if update step then
11: for number of updates do
12: Sample a mini-batch B of transitions (s,a,r,s′) from D
13: Compute target Q-values:
14: y = r+γ min j=1,2 Qφi,targ(s

′, ã′)−α log(π(ã′|s′)), ã′ ∼ πθ (·|s′)
15: Update critic networks by minimizing the mean squared loss:
16: L(Qφi) = E(s,a,r,s′)∼D

[
(Qφi(s,a)− y)2]

17: Update the actor network:
18:

∇φ

1
|B| ∑s∈B

(
min
i=1,2

Qφi(s, ã)−α logπθ (ã|s)
)

19: Update target networks with soft updates:
20: φ1targ = τφ1 +(1− τ)φ1targ

21: φ2targ = τφ2 +(1− τ)φ2targ

22: end for
23: end if
24: end for
25: end for

Chapter 3

Autonomous Navigation of Mobile
Robots

3.1 Autonomous navigation: localization, planning
and control

In robotics, navigation describes the capability of mobile robots to move from the
starting point to a specified destination by choosing a viable path made up of a series
of configurations. Autonomous navigation in a given environment is a fundamental
and difficult robotics matter. Numerous methods have been created, which also
allows the systems that are now in place to be categorized based on their primary
characteristics. Generally, three primary components of a navigation system can be
identified:

1. a localization system to identify the robot position and orientation with respect
to a reference frame;

2. a path planner to compute a suitable sequence of configurations for the robot
to reach the goal in the map;

3. a motion controller to select the actions for the robot to make it follow the
desired computed trajectory. Commands are typically expressed as velocity
pairs, or throttle plus angle.

60 Autonomous Navigation of Mobile Robots

Given the target position, the robot should be able to localize itself and plan a
suitable path in the environment. Then, the motion controller, or local planner,
will be responsible of moving the robot generating commands that fit the points
on the global trajectory, and, at the same time, handle obstacles not present in
the map. Fig. 3.1 shows a schematic flow diagram of a navigation system with
pre-built map. Regarding this last point, navigation tasks can be classified as map-
based or mapless. Before completing the localization and path planning tasks,
most conventional approaches require mapping the environment where the robot
moves. Simultaneous Localization and Mapping (SLAM) [77, 78] is a fundamental
technique for localization that enables the concurrent construction of the environment
map. However, creating an accurate map is frequently difficult in a variety of
real-world situations. In addition, intricate settings with dynamic obstacles, most
notably people, remain a barrier for conventional local controller techniques. Two
important characteristics of an autonomous navigation system are computational
costs and flexibility, i.e. the ability to generalize the performance regardless of the
commands designed by the programmers. To this extent, learning methods and

Localization
system Path Planner Local Planner

/ Controller

Map
(pre-built)

Sensor data

Goal

Navigation system

Robot
pose

Global
path

Commands

Fig. 3.1 Schematic diagram of a navigation system.

AI-driven navigation systems could be an interesting mapless solution to increase
both flexibility and autonomy. In the next sections of the chapter a selection of
classic localization and local planning approaches is briefly explained, choosing the
ones that are directly used or heavily cited in the following chapters of the thesis.

3.2 Localization Approaches 61

3.2 Localization Approaches

Localization is the first necessary phase of autonomous navigation. In this step, the
robot needs to estimate its current position based on motion commands and sensor
data. The probabilistic estimate of the robot state in a time instant is usually indicated
as belief. Based on the initial conditions available for the robot, it is possible to
define the following taxonomy of the localization problem:

1. Local position tracking: the initial pose of the robot is known and the
robot has to track its position while moving in the map. The previous state,
commands and odometry data are usually enough to carry our position tracking.
However, uncertainty in the belief estimation may increase during time if other
sensor measurements are not used. The belief is modeled as a unimodal
Gaussian distribution in this case.

2. Global localization: the initial pose of the robot in the environment is not
known, hence a multimodal belief should be used since there exist multiple
possible poses of the robot. In this case, sensor data are necessary for solving
the state estimation problem.

3. Kidnapped robot: an extreme case of global localization in which the robot
may wrongly believe to be placed in a certain pose, this happen for example
when it is physically teleported to another position. Truly autonomous robots
should be able to recover from kidnap conditions using sensors for place
recognition in the map.

There exist many localization approaches in literature, ranging from probabilistic
algorithms to map-based and radio frequency identification (RFID) approaches [79].
In this dissertation we only make reference to position tracking problems, hence the
most common Extended Kalman Filter localization is briefly described.

3.2.1 Kalman Filter Localization

The Kalman Filter (KF) is one of the most popular mathematical tools for stochastic
estimation from noisy sensor measurements. The KF is essentially a set of mathe-
matical equations that implement a predictor-corrector type estimator. It is designed
to manage discrete-time controlled processes that are governed by linear stochastic
difference equations, with the further assumption of Gaussian belief distribution.

62 Autonomous Navigation of Mobile Robots

The multivariate normal distribution for k-dimensional random variables x can be
expressed as:

p(x) =
1

k
√

2π|
√

Σ|
exp
(
−1

2
(x−µ)T

Σ
−1(x−µ)

)
(3.1)

where µ is the mean vector and Σ the covariance matrix of the Gaussian. However,
real-world and robotics processes are usually described by non-linear equations,
breaking the linearity assumption of the KF. To tackle this problem, linearization
about the current mean and covariance can be performed. The Extended Kalman
Filter (EKF) is the most common algorithm obtained with this principle, using the
Taylor expansion linearization.

Theoretical Overview

The general problem of robot localization consists in the estimation of the robot state
x ∈Rn. The standard process of robot’s position estimation and filtering is composed
of two main steps [80, 81]:

• prediction or action update: the belief of the robot’s position is estimated
based on the previous knowledge and the last action given;

• correction or measurement update: the predicted belief is corrected according
to the information extracted from perception data.

The belief prediction and correction steps can be described for discrete states by the
equations:

bel(xk) = ∑
xk−1

p(xk|uk,xk−1)bel(xk−1) (3.2)

bel(xk) = η p(zk|xk)bel(xk)

where bel(xk) is the predicted belief, uk the command signal and η a normalization
factor. The corrected belief bel(xk) is obtained applying the Bayes rule. The discrete-
time stochastic evolution of the state x ∈ Rn is described by a non-linear function
g(), also called transition model dependent on the previous state xk−1, the command
received uk and the process noise wk−1:

xk = g(xk−1,uk)+wk−1 (3.3)

3.2 Localization Approaches 63

Differently, the non-linear function h() describes the measurement model according
to the specific set of sensor data used in the perception stage. The measurement
z ∈ Rm is therefore obtained knowing the actual state estimate by:

zk = h(xk)+ vk (3.4)

where the random variable vk represents the measurement noise. The process and
measurement noises are assumed to be independent of each other, white, and with
normal probability distribution.

p(w)∼N (0,R) (3.5)

p(v)∼N (0,Q)

R and Q represent the process noise covariance matrix and the measurement noise
covariance matrix.

In the EKF the transition and measurement model are approximated using the Taylor
linearization for multi-dimensional vectors. The resulting linearized models can be
expressed as follow:

g(xk−1,uk)≈ g(µk−1,uk)+Gk (xk−1−µk−1) (3.6)

h(xk)≈ h(µk)+Hk (xk−µk−1)

Where

• xk and zk are the actual state and measurement vectors,

• µk and µk are the predicted and corrected estimate of the state at time k

• G is the Jacobian matrix of g() with respect to the state vector x, whose (i,j)-th
entry is

Gi,j =
∂gi (µk−1, uk,)

∂x j
(3.7)

• V is the Jacobian matrix of g() with respect to the command input u, whose
(i,j)-th entry is

Vi,j =
∂gi (µk−1, uk,)

∂u j
(3.8)

64 Autonomous Navigation of Mobile Robots

• H is the Jacobian matrix of h with respect to the state vector x, whose (i,j)th
entry is

Hi,j =
∂hi (µk,)

∂x j
(3.9)

Table 3.1 EKF equations for prediction and correction steps.

EKF Prediction

1) Predict the new mean vector of the state

µk = g (µk−1, uk,) (3.10)

2) Predict the new uncertainty covariance matrix

Pk = GkPk−1GT
k +WkRk−1WT

k (3.11)

EKF Correction

1) Compute Kalman Gain K

Zk = HkPkHT
k +Qk (3.12)

Kk = PkHT
k Z−1

k (3.13)

2) Correct estimate with measurement zk

µk = µk+ K(zk−h(µk)) (3.14)

3) Correct the uncertainty covariance with measurement innovation

Pk = (I−KkHk)Pk (3.15)

3.2 Localization Approaches 65

Jacobians are necessary to map the covariance matrix P into the correct linearized
space. The same is done for the covariance matrix Z associated to the measurement’s
prediction. The equations of the EKF are reported in Table 3.1. Further details can
be found in the book [82].

3.2.2 Robot model

Fig. 3.2 Model of a differential drive robot. Image from [81].

The robot model proposed in this section is based on a differential drive robot.
Differential drive is one of the most popular kinematics architectures for mobile
robots, especially for indoor applications. Many experimental tests in this thesis
have been conducted using this kind of robots. Fig. 3.2 shows a model of differential
robot and its reference frames. The global inertial reference frame is defined by XI

and YI , while XR and YR defines the local mobile reference frame of the robot. The
states that describe the robot’s pose in 2D space in the global frame can be expressed
as [x,y,θ], where, x and y are its cartesian coordinates on the ground plane, and θ its
rotation angle about the vertical axis.

Rk =

xk

yk

θk

 (3.16)

66 Autonomous Navigation of Mobile Robots

A differential drive robot spin two wheels at a different rotational velocity. The robot
motion can be modeled as a unicycle with constant velocity inputs vk and ωk during
the sampling interval Ts = [tk, tk+1]. In this interval, the robot follows a circular
trajectory of radius vk

ωk
.

 ẋ
ẏ
θ̇

=

vcosθ

vsinθ

ω

=

cosθ 0
sinθ 0

0 1

[v
ω

]
(3.17)

where (v,w) is the velocity control input. The unicycle model reported below is
equivalent to the differential drive as long as we are only interested in the position
of the platform given the overall control input (v,w) instead of the specific wheels
velocity (φ̇R, φ̇L):

φ̇R = ω(r+d/2) (3.18)

φ̇L = ω(r−d/2)

The platform displacement and rotation in the time interval Ts can be expressed as:

∆s =
r (∆φR +∆φL)

2
(3.19)

∆θ =
r (∆φR +∆φL)

d

where r is the radius of the wheel and d is the wheelbase, ∆φi is the angular rotation
of each wheel.

Given as known the previous state of the robot Rk and the velocities vk and ωk,
the next stateRk+1 can be computed by integration over the time interval [tk, tk+1].
Different techniques can be used for the discrete integration, considering that the
trade-off should be made between precision and computational complexity.

g(xk,uk) =

xk+1 = xk +

vk
ωk

(sinθk+1− sinθk)

yk+1 = yk +
vk
ωk

(cosθk+1− cosθk)

θk+1 = θk +ωkTs

(3.20)

A more precise model can be obtained using the Runge-Kutta integration method,
which consider the average value of the angle θ in the short time interval Ts.

3.3 Local Planning: Dynamic Window Approach 67

g(xk,uk) =

xk+1 = xk + vkTs cos

(
θk +

ωkTs
2

)
yk+1 = yk + vkTs sin

(
θk +

ωkTs
2

)
θk+1 = θk +ωkTs

(3.21)

3.3 Local Planning: Dynamic Window Approach

Dynamic Window Approach (DWA) is a local motion planning algorithm commonly
used in mobile robotics. The original paper was presented in 1997 [83] and, despite
some improvement in terms of additional cost function introduced by most recent
version (DWB)[84], it still holds as a milestone of local planning. DWA is based
on the concept of dynamic window, i.e. it selects velocity commands (v,w) for a
differential robot among the ones that can be reached in the next time step according
to the acceleration limits of the roobot. Overall, DWA optimizes a cost function
with the twofold objective of guaranteeing a collision-free and kinematically feasible
trajectory generation.

Fig. 3.3 The velocity search space in Dynamic Window Approach: it is limited to the
admissible (collision-free) and reachable velocities. [83]

3.3.1 Velocity search space

The velocity search space and the dynamic window are shown in Fig. 3.3, taken
directly from the paper. The dynamic window approach considers only circular
trajectories uniquely determined assuming the pair (v,ω) of translational and rota-
tional velocities constant for a small time step dt. This results in a two-dimensional
velocity search space.

68 Autonomous Navigation of Mobile Robots

Goal

Fig. 3.4 The Dynamic Window Approach evaluates trajectories obtained by simulating
admissible velocities for a small time interval, using a cost function J(v,ω) composed of a
weighted sum of different costs.

The search space of the possible velocities is then reduced only considering:

1. Admissible velocities: only safe, collision-free trajectories are considered.
A pair (v,ω) is considered admissible, if the robot is able to stop before it
reaches the closest obstacle on the corresponding curvature.

2. Reachable Velocities (Dynamic window): the velocities that can be reached
within a short time interval dt given the limited accelerations of the robot,
respecting the kinematic limit of the platform.

3.3.2 Optimization

The candidate velocity pairs are then used to simulate the resulting trajectories for a
given simulation time interval, as depicted in Fig. 3.4. An objective function is then
used to score the obtained trajectories:

J(v,ω) = σ (α ·heading+β ·dist+ γ · vel) (3.22)

This function trades off the following aspects:

1. Target heading: heading is a metric to indicate that the robot is moving
towards the goal.

3.3 Local Planning: Dynamic Window Approach 69

2. Obstacles: dist is the distance to the closest obstacle on the trajectory. This
term should be maximized for a safe command selection.

3. Velocity: vel is the forward velocity of the robot, faster motion allows for
reduced traversal time to reach the goal.

The function σ smooths the weighted sum of the three components. More complex
cost function can be designed to describe advanced target behaviours. For example,
following an available global path while avoiding obstacles. The standard DWA
presented some critic aspect when dealing with velocity regulation in sharp angles
or narrow passages. Dynamic obstacles also require for a high reactivity and re-
planning capability. Despite that, still many recent local planners leverage the
principle of the DWA. For example, a new implementation called DWB present
in the open-source navigation framework of ROS 2 [84] improves the limitation
of the classic DWA by adopting a more detailed and rich cost function, together
with inserting some smoothing sub-policy to mitigate the overall navigation quality.
However, there is still space to improve the flexibility and reliability of autonomous
navigation algorithms for mobile robots. Exploring new solutions and approaches to
challenging application contexts is one of the core objectives of this thesis, relying
on novel Machine Learning methods.

Part II

Autonomous Robots for Indoor Social
Assistance

Chapter 4

Adaptive social navigation with Deep
Reinforcement Learning

In recent years, service robots have emerged as a promising automation solution
in various social contexts, ranging from domestic assistance [15, 14] to health-
care [10]. These advancements have opened up new avenues for robotics research,
particularly in human-aware navigation. The robotics community has proposed
different benchmarks to evaluate the existing social navigation algorithms [85, 86].
However, social navigation is a complex problem that poses contrasting objectives
and is often difficult to formulate with an analytical expression, as is usually done in
classic navigation cost functions. This complexity arises from the intricate dynamics
of human behavior and the multitude of social rules not considered in standard path
planning. Different social navigation scenarios have been partially categorized in
the literature to build consistent research and benchmarks [87, 88], highlighting
unique challenges in each situation. Standard social planners struggle to perform
properly in all of them, considering that environmental geometry and features are
crucial in constraining navigation in cluttered, narrow passages or wide open spaces.
Therefore, the diversity and unpredictability of social scenarios necessitate a more
flexible and adaptive approach.

In this context, Machine Learning (ML) techniques represent a potential solution to
this problem. ML models can leverage data to learn behaviors that enhance mobile
robots’ adaptability to new situations[89] without being explicitly programmed for a
specific task. Diverse end-to-end learning approaches [90, 91] have been directly

73

applied to make navigation control adaptive. Deep Learning can also select the most
suitable social navigation strategy according to the context, as done in [92], which
provides the robot with adaptive behavior. Among existing ML paradigms, Deep
Reinforcement Learning (DRL) is particularly suited for learning behavioral policies
and, hence, for navigation [93]. On the other hand, end-to-end learning approaches
may often present weaker performance in unseen testing conditions. The authors in
[94] proposed a precious comparison between end-to-end and parameter-learning
approaches, highlighting the improved performance of hybrid solutions combining
standard controllers and learning. For example, a DRL approach is employed
in [95] to evaluate the projected trajectories of the classical Dynamic Windows
Approach local planner (DWA), learning a reward function for navigating in dynamic
environments. The parameter-learning presented in the family of APPL approaches
(Adaptive Planner Parameter Learning) [96] results in a promising direction to
convey robustness and versatility in a unique solution [94]. APPL aims to learn
a parameter management policy that can dynamically adjust the hyper-parameters
of classical navigation algorithms according to the environment geometry. The
authors proposed different ML techniques, including RL [97]. However, the adaptive
parameter approach is applied only in static environments. Finally, an adaptive DWA
implementation has been proposed in [98], dynamically changing the basic cost
terms of the algorithm with a Q-table approach.

In this chapter an adaptive parameter-learning approach for social navigation is
proposed. This study is an improvement and extension of the most promising
previous works: we frame the adaptive control method in a social navigation problem,
adopting a DRL agent working with continuous action space. A social controller
is designed by adding a social cost to the Dynamic Window Approach (DWA).
This cost is computed considering the robot-pedestrian interaction according to the
Social Force Model (SFM) [99, 100]. The proposed solution leverages the advantage
of a DRL agent to dynamically adapt the cost weights of the human-aware local
planner to different social scenarios. From a general perspective, this research aims
to enhance the performance and versatility of service mobile robots in general social
contexts. The contribution of this study can be summarized in (i) a social-aware
local planner based on SFM, used as a baseline solution, that we refer to as Social
Force Window (SFW) planner; (ii) an adaptive cost optimization of the SFW planner
with a DRL agent, managing the cost terms dynamically according to the context.

74 Adaptive social navigation with Deep Reinforcement Learning

4.1 Methodology

4.1.1 Social Force Window Planner

The Dynamic Window Approach (DWA) is an extremely popular local path planning
method in mobile robotics [83]. A brief overview of DWA has been provided
in Chapter 3. DWA generates velocity commands that comply with the robot’s
kinematics constraints. The search space is, therefore, restricted to velocities that
can be reached quickly and avoid collisions with obstacles. The classic objective
function used to evaluate the trajectories comprises three terms associated with the
goal, the velocity, and the obstacles.

Goal

Person

Adaptive Cost
SFW Planner

DRL

Robot

Fig. 4.1 The Social Force Window (SFW) Planner combines standard Dynamic Window
Approach and Social Force Model. The trajectory scoring process is optimized by a DRL
agent that dynamically adjust the cost weights based on local environmental conditions.

A human-aware local planner has been proposed, adding a social cost to the classic
DWA trajectory scoring function. For the social cost, a "social work" quantity is
adopted by using the Social Force Model (SFM) of interaction between a crowd of
agents proposed by [99, 101, 100]. A social work Cs is computed at each time step
for the robot according to the following expression:

Cs =Wr +∑
i

Wp,i (4.1)

where Wr is the sum of the modulus of the robot social force (FP) and the robot
obstacle force (FO) along the trajectory according to the SFM, while Wp is the sum
of the modulus of the social forces generated by the robot for each pedestrian i along

4.1 Methodology 75

the trajectory. A schematic representation of forces acting on the robot is shown in
Fig. 4.1. The goal produces an attractive force while the obstacles and pedestrians
generate different repulsive forces.

The overall cost function for trajectory scoring can be formulated as:

J =Cs ·ws +Co ·wo +Cv ·wv +Cd ·wd +Ch ·wh (4.2)

where we have a single cost term for social navigation Cs, obstacles in the costmap
Co, robot velocity Cv, distance Cd and heading Ch from a local waypoint on a given
global path. The costs are combined using weights w that regulate the impact of each
term in the velocity command selection. We refer to this advanced social version
of the DWA as a Social Force Window (SFW) planner which is publicly available
in Github1. This local planner aims to generate safe, efficient, and human-aware
paths. However, finding an optimal trade-off between all those desired aspects in
every environmental context is not easy. Hence, we tackle the challenge by using a
Reinforcement Learning approach to dynamically handle the weights of the costs.

Agent Policy Network
State Composition Cost Weights Prediction Trajectory Scoring

Robot Motion

Fig. 4.2 Workflow of the main step performed by the proposed adaptive Social Force Window
(SFW-SAC) Planner with DRL. The policy network learns to set the weights of the social
cost used by the DWA for each situation.

4.1.2 Deep Reinforcement Learning framework

As better explained in Chapter 2, a typical Reinforcement Learning (RL) framework
can be formulated as a Markov Decision Process (MDP) described by the tuple
(S,A,P,R,γ). An agent starts its interaction with the environment in an initial state
s0, drawn from a pre-fixed distribution p(s0) and then cyclically selects an action

1https://github.com/robotics-upo/social_force_window_planner

https://github.com/robotics-upo/social_force_window_planner

76 Adaptive social navigation with Deep Reinforcement Learning

at ∈ A from a generic state st ∈ S to move into a new state st+1 with the transition
probability P(st+1|st,at), receiving a reward rt = R(st,at).

In RL, a parametric policy πθ describes the agent behavior. In the context of
autonomous navigation, we usually model the MDP with an episodic structure
with maximum time steps T . Hence, the agent’s policy is trained to maximize the
cumulative expected reward Eτ∼π ∑

T
t=0 γ trt over each episode, where γ ∈ [0,1) is

the discount factor. More in detail, we aim at obtaining the optimal policy π∗
θ

with
parameters θ through the maximization of the discounted term:

π
∗
θ = argmax

π

Eτ∼π

T

∑
t=0

γ
t [rt +αH(π(·|st))] (4.3)

whereH(π(·|st)) is the entropy term, which increases robustness to noise through
exploration, and α is the temperature parameter which regulates the trade-off between
reward optimization and policy stochasticity. In this work, a parameter-learning
approach has been adopted to develop an adaptive social navigation system. The
DRL agent learns a policy to dynamically set the weights of the cost function that
governs the robot’s control algorithm. In particular, a Soft Actor-Critic (SAC)[76]
off-policy algorithm has been used to train the agent in simulation.

4.1.3 SFM Adaptive Cost Approach

The key idea of the proposed method lies in learning an optimal policy to dynamically
set the weights of each objective function term used by the SFM local planner to score
the simulated circular trajectories and select the next velocity command (v,w). A
DRL agent is trained to learn such policy given the local features of the surrounding
environment and induce the local planner to choose optimal velocity commands.
DRL is considered a competitive approach to tackle this complex task since it is not
straightforward for a human to find an optimal trade-off between all the cost terms
of a social controller in each situation. On the other hand, the overall methodology
represents a robust hybrid solution that efficiently integrates the flexibility of the
DRL agent policy with the reliability of a classical navigation algorithm. Moreover,
the agent allows the planner to extend its adaptability to different social scenarios by
learning the map between task-related and perception data to suitable cost weights.
Fig. 4.2 shows the main working steps of the proposed methodology.

4.1 Methodology 77

4.1.4 Reward function

Reward shaping is a fundamental and controversial practice in model-free RL. A
specific reward function, similar to the cost function of the SFW planner, has been
designed to let the agent learn an optimal cost weights regulation policy among all
the desired components of the overall navigation behavior.

Goal distance First, a distance advancement reward term is defined to encourage
the approach of the next local goal on the global path, always placed at 2m from the
robot’s actual pose:

rd = dt−1−dt (4.4)

where dt−1 and dt are Euclidean distances between the robot and the local goal.
Local goal and final goal coincide in the final section of the trajectory.

Path alignment Then, we define a reward contribution rh to keep the robot oriented
towards the next local goal:

rh =

(
1−2

√∣∣∣∣φπ
∣∣∣∣
)

(4.5)

where φ is the heading angle of the robot, namely the angle between its linear velocity
and local goal on the global path.

Robot velocity A velocity reward is defined to promote faster motion when allowed
by the environment:

rv =
v− vmax

vmax
(4.6)

Obstacle avoidance An obstacle reward is included to encourage safe trajectory
scoring and avoid collisions:

ro =
do,min− lidarmax

lidarmax
(4.7)

where do,min is the lowest distance measured by the LiDAR ranges at the current
time step and lidarmax is the saturation distance of LiDAR points, which is set to 3m
to perceive only local environmental features.

78 Adaptive social navigation with Deep Reinforcement Learning

Social penalty The main reward contribution has been assigned to provide the agent
with a socially compliant navigation policy. In particular, two different social terms
have been considered: proxemics-based reward and social work. The proxemics
term penalizes the robot when intruding into the personal space of a person:

rp =
1

dp,min
(4.8)

where dp,min is the minimum person distance from the robot. The social work
generated by robot and people interaction according to the Social Force Model has
been used as reward rs, as done in the cost of the SFW planner.

We also include a reward contribution for end-of-episode states, assigning rc =−400
if a collision occurs. The final reward signal is finally obtained linearly, combining the
described terms. More in detail, cd = 10.0, ch = 0.4, co = 2.0, cp = 2.0 and cs = 2.5
are the numerical coefficients chosen to balance the diverse reward contributions in
the final signal.

Cost
Weights

Dense ReLU

Tanh

Goal Info

LiDAR
Ranges

People Info

Input State

Fig. 4.3 Schematic of the policy network architecture. State composition is illustrated with
separate inputs: goal distance and angle, previous cost weights, people position and velocity,
and LiDAR ranges. The new cost weights are predicted as output action of the policy
network.

4.1 Methodology 79

4.1.5 Policy Neural Network and Training Design

We define the parametrized agent policy with a deep neural network. We train the
agent with the Soft Actor-Critic (SAC) algorithm presented in [76], which allows
for a continuous action space and a fast convergence. In particular, we instantiate
a stochastic Gaussian policy for the actor and two Q-networks for the critics. The
neural network architecture of the agent, represented in Fig. 4.3, is composed of
two dense layers of 256 neurons each. A random initial exploration phase has been
performed. Random actions are then sampled with a probability that is exponentially
reduced with the increase of episodes to maintain a proper rate of exploration during
the whole training. Moreover, SAC uses a stochastic Gaussian policy that outputs
the mean and the standard deviation of each action distribution, which are used to
sample the action value at the training phase. Differently, the mean value of actions’
distribution is directly used at test time. The critic networks’ structure presents no
differences, except they include the predicted action vector in the inputs and predict
the Q values.

State definition

The information included in the input state of the policy network has been selected to
be a synthetic but complete description of the main environmental and task-specific
aspects. The state st has been, therefore designed as the ensemble of:

• Goal information: [goalangle,goaldistance] with respect to the robot expressed
in polar coordinate.

• The set of cost weights predicted at the previous time step, [wd,wh,wv,wo,ws]t−1

to provide information about the actual state of the SFW costs used for trajec-
tory scoring.

• People position and velocity information is embedded in the state for the
closest K = 4 people to the robot. Position is computed in polar coordinates
[personangle, persondistance], while velocity with module and orientation, both
expressed in the robot frame. People are perceived at a maximum distance of
5m, and if people are detected to be less than K = 4, padding at the maximum
distance is used to fill the empty input features and guarantee a constant input
dimension.

80 Adaptive social navigation with Deep Reinforcement Learning

Fig. 4.4 Gazebo simulation environments where the agent has been trained (top) and tested
(top and bottom). People trajectories are indicated with dotted lines, robot starting poses
with a circle, goals with a cross and the associated episode’s number.

• A set of 36 LiDAR 2D points saturated at 3m to provide the agent with the
necessary awareness of local environmental geometry and spaces and the
presence of obstacles.

Output actions

The policy network predicts an action at = [wd,wh,wv,wo,ws] at each time step,
directly representing the new set of cost weights for the Social Force Window local
planner. The weights are chosen in the interval of values [0.1,5.0], and they are set
with a frequency of 2Hz, which has been considered a proper choice for a robot

4.2 Experiments and Results 81

moving at a maximum translational velocity of vmax = 0.6[m/s] in dynamic social
scenarios.

4.2 Experiments and Results

4.2.1 Experimental settings

The adaptive social navigation system has been trained and tested in Gazebo simula-
tion in diverse scenarios. The HuNavSim plugin [86] has been adopted to instantiate
people moving according to the SFM with customized trajectories and behaviors;
HuNavSim has also been used to collect the metrics of interest for the evaluation of
the algorithms. Differently, the PIC4rl-gym [27] has been used as ROS 2 framework
for DRL agent training and testing. Fig. 4.4 shows the environments realized to
carry out challenging experiments categorized in different social challenges. The
first Gazebo world is used for both training and testing. A wide set of diverse
episodes is defined for training the agent in various conditions involving pedestrians
passing, overtaking, and crossing tasks in narrow and open spaces. The agent has
also been partially tested in the same world, changing the starting pose of the robot
and its goals, indicated in Fig. 4.4, scenarios [1− 6]. Diversely, testing episodes
[7−12] have been performed in a separate different world to evaluate the system
in diverse scenarios, always considering crossing, passing, overtaking, and mixed
miscellaneous tasks.

For general and reproducible experimentation, we set a basic pedestrian behavior
that considers the robot an obstacle. A global path is computed once at the beginning
of each episode with the standard grid-based search planner of the Nav2 framework.
The main controller parameters of the SFW algorithm are the ones of the classic
DWA. Besides the kinematics limits of the robots, the waypoint position and the
trajectory simulation time are important factors for a social controller, regulating the
alignment to the global path and the predicting horizon. Controller parameters and
cost weight values used for the experimentation are reported in Table 4.1. The static
cost weights used are the results of the fine-tuning process carried out by a human
expert. We use the same implementation of the SFW planner for the DWA baseline,
setting the social cost to zero value.

82 Adaptive social navigation with Deep Reinforcement Learning

Table 4.1 Controller parameters. On the left the kinematic and classic DWA parameters, on
the right the cost function weights used by the SFW controller and modified by the SFW-SAC
in the range reported. The DWA uses the same cost weights except for the social term.

DWA parameter Value Cost weight SFW SFW-SAC

max linear vel 0.6 [m/s] social weight 2.0 [0.5 - 3.0]
min linear vel 0.08 [m/s] costmap weight 2.0 [0.5 - 3.0]
max angular vel 1.5 [rad/s] velocity weight 0.8 [0.1 - 1.0]
waypoint tol 2.0 [m] angle weight 0.6 [0.1 - 1.0]
sim time 2.5 [s] distance weight 1.0 [0.1 - 1.5]

4.2.2 Results

In this section, we describe the metrics chosen to evaluate the proposed social
navigation system, and we discuss the obtained results. Considering the difficulty of
strictly judging the performance of a social navigation algorithm without adopting
human rating, the adaptive social planner SFW-SAC has been analyzed from different
perspectives. First, we compared it to the baselines DWA and Social Force Window
Planner (SFW) with static costs using relevant quantitative metrics.

Quantitative evaluation Standard navigation metrics such as clearance time [s],
path length (PL) [m] and average linear velocity vavg[m/s] are employed to evaluate
the effectiveness of the planner from a classic perspective. On the other hand, the
social work (SW) metric is included in the quantitative results to show the social
impact of the navigation, measuring the social forces generated by the robot and
on the robot by pedestrians during its motion. The social work has been taken into
account as the average value SWstep over the number of trajectory steps to consider
the duration of the episode, and avoiding metrics biases caused by a fast execution
of the navigation task.

A thorough inspection of the performance is presented, reporting both resulting
metrics in Table 4.2. Results show that the DRL method enables the planner to
overcome the baseline performance in multiple environments. The basic DWA fails
to complete the navigation task in a high percentage of scenarios, colliding with
obstacles or pedestrians. On the other hand, the SFW baseline demonstrates an
improved ability to handle social navigation tasks. Even though the cost weights
combination found by a human offers safe behavior in most situations, it still presents
some limitations. For example, in cluttered scenarios, SFW can be hindered by high

4.2 Experiments and Results 83

(a) DWA Env.2 (b) DWA Env.3 (c) DWA Env.10

(d) SFW Env.2 (e) SFW Env.3 (f) SFW Env.10

(g) SFW-SAC Env.2 (h) SFW-SAC Env.3 (i) SFW-SAC Env.10

Fig. 4.5 Trajectory plots of Env 2, 3, 10 comparing DWA, SFW and the proposed SFW-SAC
adaptive planner with DRL. Goals are represented with green circles, the robot with a red
rectangle and people with blue ellipses. Transparency and indexes 1,2,3 represent temporal
evolution of the motion of both robot and people.

84 Adaptive social navigation with Deep Reinforcement Learning

social costs, which can cause the algorithm to get stuck. Diversely, the SFW-SAC
proposes a more general performance, finding a better trade-off of costs in different
situations. This advantage is proved by the higher success rate obtained in almost all
the environments, sometimes being the unique solution able to complete it (Env 3).
A more detailed analysis of results tells us that SFW-SAC often finds a compromise
performance between the more aggressive DWA and the SFW with high static social
cost values. This trend can be noticed by looking at the time, path length, and average
velocity results. On average, the adaptive planner generally chooses higher velocities
than the SFW but lower than the DWA. Social work embeds all the navigation effects
on humans, considering distances, approaching velocities, and time spent close to
people. Thus, it often presents alternating results that are difficult to interpret without
a visual inspection of the navigation. Indeed, DWA often reduces the duration of the
episode thanks to abrupt motion and brief transitions close to people that can lead
to a collision with a high risk. The SWstep, relating the social impact to the duration
of the task, shows more clearly the socially compliance of SFW and SFW-SAC
compared to DWA. The agent-based solution is often able to mitigate the social
work improving or remaining comparable with the SFW, without compromising the
success rate or strongly violating social rules.

Proxemics According to this, the human awareness of navigation is also measured
through the level of intrusion of proxemics spaces of people. Fig. 4.6 illustrates the
percentage of time spent by the robot in the intimate, personal, social, and public
space of people in each testing episode. It can be noticed that even though the
SFW-SAC planner develops a more risky navigation policy, it can keep people’s
distances respected and comparable with the SFW baseline. It should be noted
that the proxemics results reported should be paired with the success rate of the
algorithms on each episode for a clear perspective. DWA often computes aggressive
trajectories that do not take humans into account, although the temporal intrusion of
social spaces is sometimes limited to short time intervals.

Trajectory visual comparison Resulting trajectories of some relevant scenarios
where the proposed adaptive SFW-SAC show significant improvements and inter-
esting differences, i.e., Environments [2,3,10], are plotted in Fig. 4.5 for a better
understanding of the performance of the algorithms. In Env. 2, only the SFW-SAC
can properly perform the overtaking, passing to the left of the person, while the
other algorithms cross the person’s path. In Env. 3, DWA and SFW are not able to

4.2 Experiments and Results 85

handle the presence of a static person on the path and collide; the agent learns how to
deviate the motion from the path and avoid the person. In Env. 10, a narrow curved
passage with people passing is successfully handled by the SFW and the SFW-SAC,
with a smoother trajectory.

Fig. 4.6 Average temporal percentage of pedestrians space intrusion according to the prox-
emics standard in 10 different scenarios. Proxemics data must be coupled with success rate
reported in Table 4.2 for a clear performance frame.

86 Adaptive social navigation with Deep Reinforcement Learning

Table 4.2 Results obtained testing the proposed adaptive controller SFW-SAC on different
environments. For each environment we report average metric results over 10 runs, comparing
the agent with DWA and SFW baselines.

Env Method Success% Time [s] PL [m] vavg [m/s] SWstep

1
DWA 100.00 11.65 5.68 0.49 0.03
SFW 100.00 12.48 6.04 0.49 0.04
SFW-SAC 100.00 12.21 5.91 0.48 0.05

2
DWA 20.00 12.32 6.21 0.50 0.17
SFW 70.00 20.43 6.42 0.31 0.11
SFW-SAC 100.00 13.08 6.36 0.49 0.22

3
DWA 0.0 - - - -
SFW 0.0 - - - -
SFW-SAC 70.00 23.26 11.29 0.48 0.12

4
DWA 20.00 21.71 12.21 0.56 0.25
SFW 60.00 37.91 12.65 0.38 0.16
SFW-SAC 70.00 26.20 12.60 0.48 0.20

5
DWA 50.00 19.53 9.47 0.49 0.28
SFW 60.00 29.34 9.54 0.34 0.34
SFW-SAC 70.00 33.28 9.47 0.30 0.24

6
DWA 50.00 19.57 8.87 0.46 0.26
SFW 40.00 44.24 10.75 0.25 0.16
SFW-SAC 90.00 23.60 8.75 0.37 0.18

7
DWA 0.0 - - - -
SFW 90.00 19.83 6.38 0.32 0.08
SFW-SAC 100.00 16.59 6.25 0.39 0.11

8
DWA 90.00 10.35 5.21 0.50 0.10
SFW 100.00 15.64 5.95 0.35 0.13
SFW-SAC 100.00 12.32 5.42 0.44 0.16

9
DWA 80.00 15.75 8.32 0.53 0.14
SFW 100.00 19.77 8.84 0.45 0.12
SFW-SAC 100.00 18.62 8.98 0.48 0.12

10
DWA 0.0 - - - -
SFW 70.00 31.96 8.91 0.29 0.13
SFW-SAC 90.00 32.84 9.99 0.29 0.14

11
DWA 50.00 15.45 6.98 0.45 0.29
SFW 80.00 48.58 8.37 0.19 0.16
SFW-SAC 80.00 30.60 7.72 0.27 0.17

12
DWA 90.00 13.98 6.09 0.43 0.21
SFW 40.00 53.04 6.48 0.14 0.16
SFW-SAC 90.00 32.01 6.29 0.24 0.20

Avg
DWA 58.57 15.84 8.00 0.50 0.17
SFW 76.67 25.73 8.39 0.35 0.14
SFW-SAC 89.00 21.20 8.50 0.42 0.15

Chapter 5

Online Learning of Wheel Odometry
Correction for Mobile Robots with
Attention-based Neural Network

Wheel odometry (WO) and inertial odometry (IO) are the simplest forms of self-
localization for wheeled mobile robots [102]. However, extended trajectories without
re-localization, together with abrupt kinematic and ground changes, drastically
reduce the reliability of wheel encoders as the unique odometric source. For this
reason, visual odometry (VO) has recently emerged as a more general solution
for robot localization [103], relying only on the visual features extracted from
images. Nonetheless, service and assistive robotics platforms may often encounter
working conditions that forbid the usage of visual data. Concrete scenarios are often
related to the lack of light in indoor environments where GPS signals are denied, as
occurs in tunnels exploration [104, 105] or in assistive nightly routines [14, 15, 106].
Repetitive feature patterns in the scene can also hinder the precision of VO algorithms,
a condition that always exists while navigating through empty corridors [107] or
row-based crops [19]. Therefore, an alternative or secondary localization system
besides VO can provide a substantial advantage for the robustness of mobile robot
navigation. Wheel-inertial odometry is still widely considered a simple but effective
option for localization in naive indoor scenarios. However, improving its precision
in time would extend its usage to more complex scenarios. Previous works tackle the
problem with filters or simple neural networks. Learning-based solutions demonstrate

88
Online Learning of Wheel Odometry Correction for Mobile Robots with

Attention-based Neural Network

IMU Encoder
Data

Visual Inertial
Odometry Data

O
nline Learning StepNeural Network

Loss

Odometry
Correction

Fig. 5.1 Diagram of the proposed approach. Red blocks and arrows refer to the online
training phase, blue ones to the model inference stage, and yellow ones to the odometric
input data.

to mitigate the odometric error at the cost of a time-consuming data collection and
labeling process. Recently, online learning has emerged as a competitive paradigm
to efficiently train neural networks on-the-fly avoiding dataset collection [108].
In this context, this work aims at paving the way for a learning-based system
directly integrated into the robot and enabling a seamless transition between multiple
odometry sources to increase the reliability of mobile robot localization in disparate
conditions. Fig. 5.1 summarizes the proposed methodology schematically.

Several studies have explored using machine learning techniques to estimate wheel
odometry (WO) in mobile robotics applications. Approaches include different
feed-forward neural networks (FFNN) [109], of which, in some cases, the output
has been fused with other sensor data [110], and long short-memory (LSTM) NN,
which have been applied to car datasets [111]. These approaches show a promising
improvement in WO accuracy, which is crucial for mobile robotics applications.
Many works have focused on using Inertial Measurement Unit (IMU) data in mobile
robots or other applications, such as person tracking using IMU data from cell
phones [112]. One system was improved by implementing a zero-velocity detection
with Gate Recurrent Units (GRU) neural network [113]. Another study used an
Extended Kalman Filter (EKF) to estimate positions and velocities in real-time in a
computationally lightweight manner [114]. Additionally, a custom deep Recurrent
Neural Network (RNN) model, IONet, was used to estimate changes in position

5.1 Methodology 89

and orientation in independent time windows [115]. Some studies used a Kalman
Filter (KF) to eliminate noise from the accelerometer, gyroscope, and magnetometer
sensor signals and integrate the filtered signal to reconstruct the trajectory [116].
Another KF approach has been combined with a Neural Network to estimate the
noise parameters of the filter [117]. Several neural network architectures have
been proposed to predict or correct IO odometry over time. For example, a three-
channel LSTM was fed with IMU measurements to output variations in position and
orientation and tested on a vehicle dataset [118]. Another LSTM-based architecture
mimics a kinematic model, predicting orientation and velocity given IMU input data.
Studies have investigated the role of hyper-parameters in IO estimation [119].

Sensor fusion of wheel encoder and IMU data is a common method for obtaining a
robust solution. One approach involves fusing the data with a Kalman Filter, which
can assign a weight to each input based on its accuracy [120]. A Fully Connected
Layer with a convolutional layer has been employed for estimating changes in
position and orientation in a 2D space over time in an Ackermann vehicle, along with
a data enhancement technique to improve learning efficiency [121]. Additionally, a
GRU RNN-based method has been proposed to compensate for drift in mechanum
wheel mobile robots, with an in-depth fine-tuning of hyper-parameters to improve
performance [122].

In this chapter, we tackle the problem of improving wheel-inertial odometry by
learning how to correct it online with an efficient artificial neural network [13]. At
this first stage, the study has been conceived to provide the robot with a more reliable,
secondary odometric source in standard indoor environments where the working
conditions for VO can temporarily vanish, as in the case of robots for domestic night
surveillance or assistance.

5.1 Methodology

5.1.1 Problem Formulation

A theoretical introduction to the problem of mobile robot localization is provided in
Chapter3. Here, some pills are reported to frame the main concepts and the notation
used in this chapter. The position of a robot at time t referred to the starting reference
frame R0 can be calculated by accumulating its increments during time segments δ t.

90
Online Learning of Wheel Odometry Correction for Mobile Robots with

Attention-based Neural Network

The time stamp n refers to the generic time instant t = nδ t. The state of the robot xn

is defined by the position and orientation of the robot, such as:

xn = (xn,yn,θn)
T , (5.1)

where (xn,yn) is the robot’s position in the 2D space and θn is its heading angle.
Given the state, it is possible to parametrize the transformationTm

0 matrix from the
robot’s frame Rm to the global frame R0. Its first two columns represent the axes
of the robot frame, and the last one is its position with respect to the origin. The

Residual Reduction Module

Reduction Block

Sigmoid FlattenInput Conv2D ReLU Global Average
Pooling

Dense Dropout

Squeeze and Excite Block

Fig. 5.2 Architecture of the proposed model. The batch dimension is omitted for better
clarity.

robot employed to develop this work is equipped with an IMU, which includes a
gyroscope and an accelerometer, and two wheel encoders. Therefore, un is defined
as the measurement array referred to instant n, i.e.:

un =
(

vl,vr, ẍ, ÿ, z̈, θ̇x, θ̇y, θ̇z

)T
, (5.2)

where (vl,vr) are the wheels’ velocities, (ẍ, ÿ, z̈) are the linear accelerations and
(θ̇x, θ̇y, θ̇z) are the angular velocities. The input Un to the proposed model consists in
the concatenation of the last N samples of the measurements Un =(u(n),u(n−1), . . . ,u(n−N))

T .
At each time sample, the state is updated as a function of the measurements f (Un):
first, the change of the pose δ x̂ = f (Un) of the robot is estimated, relative to the
previous pose x̂n−1. Then, the updated state is calculated, given the transformation
matrix obtained before, as:

x̂n = x̂n−1 ⊞ f (Un) = Tm
0(n−1)δ x̂n, (5.3)

5.1 Methodology 91

where the operator ⊞ symbolizes the state update.

5.1.2 Neural Network Architecture

As formalized in the previous section, the prediction of x̂n ∈ R3 from Un ∈ RT×C

is framed as a regression problem. The architecture we propose to solve this task
is inspired to REMNet [123, 124], though it uses 2D convolutions instead of the
original 1D convolutional blocks (Fig. 5.2). This modification aims at exploiting
temporal correlations without compressing the channel dimension throughout the
backbone. In particular, we keep the channel dimension C separated from the filter
dimension F . In this way, the first convolutional step with kernel (K,1) and F
filters outputs a low-level feature map f1 ∈ RT×C×F . Then, a stack of N Residual
Reduction Modules (RRM) extracts high-level features while reducing the temporal
dimension T . Each RRM consists of a residual (Res) block followed by a reduction
(Red) module:

RRM(x) = Red(Res(x)) (5.4)

The Res block comprises a 2D convolution with kernel K×1 followed by a Squeeze-
and-Excitation (SE) block [62] on the residual branch. The SE block applies attention
to the channel dimension of the features with a scaling factor learned from the
features themselves. This operation improves the representational power of the
network by enabling it to perform dynamic channel-wise feature recalibration. First,
the block applies average pooling to dimensions T and C. Then, it reduces the
channel dimensionality with a bottleneck dense layer of F/R units. Finally, another
dense layer restores the original dimension and outputs the attention weights. After
multiplying the attention mask for the features, the result is used as a residual
and added to the input of the residual block. The Red block halves the temporal
dimension by summing two parallel convolutional branches with a stride of 2. The
layers have kernels K× 1 and 1× 1, respectively, to extract features at different
scales. After N RRM blocks, we obtain the feature tensor f ∈ RT×C×F/2N

, which is
flattened to predict the output through the last dense layer. We also include a dropout
layer to discourage overfitting.

5.1.3 Training Procedure

The goal of this work consists of learning the positioning error of the robot using
wheel odometry. Nonetheless, it is important to remark that, nowadays, visual-inertial

92
Online Learning of Wheel Odometry Correction for Mobile Robots with

Attention-based Neural Network

Fig. 5.3 Infinite-shaped trajectories estimated by different methods. The data are collected
during a total navigation time of about 60s.

odometry (VIO) is a standard approach on robotic platforms. This work does not aim
to propose a more precise localization system but to learn wheel-inertial odometry
as a second reliable localization algorithm available whenever visual approaches
fail. We exploit a basic VIO system on the robot for the only training process since
it enables a competitive online learning paradigm to train the model directly on
the robot. Batch learning, the most used training paradigm, requires all the data to
be available in advance. As long as the data are collected over time, the proposed
method consists in training the network in a continuous way when a batch of N data
is available. This approach has been tested extensively in [125], demonstrating a
negligible loss in accuracy compared to the batch-learning paradigm.

The proposed model’s training consists of two main steps, which are repeated as long
as new data are available. First, a batch of N elements is collected, respectively, the
input of the network Un and the expected output δx. Then, an update step is carried
out using an SGD-based optimizer algorithm adopting a Mean Absolute Error loss
function, which does not emphasize the outliers or the excessive noise in the training
data.

5.2 Experiments and Results

In this section, the proposed approach is tested through extensive experimental eval-
uations. The model presented in Section 5.1.2 has been trained with an incremental

5.2 Experiments and Results 93

Fig. 5.4 Absolute error of position and orientation of different methods during the test
performed on a subset of infinite-shaped trajectories. The considered subset is the same as
figure 5.3.

learning method and a classical batch training approach. Results obtained with
a simple FFNN model and a standard localization solution based on an EKF are
also discussed in the comparison. For this sake, both training processes have been
accomplished on the same dataset, and all the tests have been executed on the same
test set.

5.2.1 Experimental Setting

The dataset used for the experiments was collected in a generic indoor environment.
The employed robotic platform was a Clearpath Jackal1, a skid-steer driving four-
wheeled robot designed for indoor and outdoor applications. All the code was
developed in a ROS 2 framework and is tested on Ubuntu 20.04 LTS using the ROS

1https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/

94
Online Learning of Wheel Odometry Correction for Mobile Robots with

Attention-based Neural Network

2 Foxy distro. Since an indoor environment was considered, the linear velocity of
the robot was limited to 0.4m/s and its angular velocity to 1rad/s. The data from
the embedded IMU and wheel encoders were used as inputs to the model. According
to these assumptions, we used the robot pose provided by an Intel Realsense T265
tracking camera as ground truth. As the testing environment is a single room, the
precision of the tracking camera is guaranteed to provide a drift of less than 1%
in a closed loop path2. All the data have been sampled at 1/δ t = 25Hz. The data
were collected by teleoperating the robot around the room and recording the sensor
measurements. For the training dataset, the robot has been moved along random
trajectories. For the test dataset, critical situations when the skid-steer drive robot’s
odometry is known to lose the most accuracy were reproduced, such as tight curves,
hard brakings, strong accelerations, and turns around itself. The obtained training
dataset consists of 156579 samples; 80% have been used for training and 20% for
validation and hyperparameter tuning. The test dataset consists of 61456 samples.
The model hyperparameters have been tuned by performing a grid search using a
batch learning process, considering a trade-off between accuracy and efficiency. In
the identified model, we adopted F = 64 filters, N = 2 reduction modules, and a ratio
factor R = 4. Kernel size K = 3 is used for all the convolutional layers, including
the backbone. The input dimensions were fixed to T = 10 and C = 8. The former
corresponds to the number of temporal steps, and it has been observed how a higher
value appears to be superfluous. In contrast, a lower value leads to performance
degradation. The latter value, C, corresponds to the number of input features, i.e.,
sensor measurements as described in 5.1. We adopted Adam [50] as the optimizer
for the training. The exponential decay rate for the first-moment estimates is fixed to
β1 = 0.9, and the decay rate for the second-moment estimates is fixed to β2 = 0.999.
The epsilon factor for numerical stability is fixed to ε = 10−8. The optimal learning
rate η was experimentally determined as 1×10−4 for batch learning. Conversely,
the incremental learning process showed how a value of η = 7× 10−5 avoided
overfitting since the data were not shuffled. In both learning processes, a batch size
of B = 32 was used.

2https://www.intelrealsense.com/tracking-camera-t265/

https://www.intelrealsense.com/tracking-camera-t265/

5.2 Experiments and Results 95

Fig. 5.5 Histograms of the SE error in position and orientation in section B of the test set.

5.2.2 Evaluation Metrics

To evaluate the performance of the proposed model, two different metrics were used
[126]:

• Mean Absolute Trajectory Error (m-ATE), which averages the magnitude of the
error evaluated between the estimated position and orientation of the robot and
its ground truth pose in the same frame. Sometimes, it can lack generalization
due to possible error compensations along the trajectory.

• Segment Error (SE), which averages the errors along all the possible segments
of a given length s, considering multiple starting points. It is strongly less
sensitive to local degradation or compensations than the previous metrics.

96
Online Learning of Wheel Odometry Correction for Mobile Robots with

Attention-based Neural Network

Table 5.1 Performance comparison on the different test scenarios and the overall test set with
the respective standard deviation. When trained with batch learning, the proposed architecture
performs better than the FFNN proposed in [121]. If trained online, it outperforms the
common EKF-based localization method and achieves the results of the model trained
offline.

Test T[s] Method m−AT E(x,y)[m] m−AT Eθ [rad] SE(x,y)[m] SEθ [rad]

A 998

EKF 0.692±0.213 0.821±0.334 0.099±0.043 0.069±0.032
Online Learning 0.292±0.098 0.118±0.079 0.071±0.038 0.020±0.013

Batch Learning 0.208±0.061 0.084±0.072 0.062±0.039 0.013±0.010
FFNN [121] 0.354±0.124 0.326±0.125 0.063±0.036 0.027±0.012

B 668

EKF 1.118±0.586 0.380±0.126 0.096±0.041 0.052±0.030
Online Learning 0.330±0.081 0.117±0.097 0.079±0.042 0.017±0.015

Batch Learning 0.197±0.059 0.067±0.030 0.051±0.034 0.011±0.009
FFNN [121] 0.513±0.223 0.38±0.181 0.057±0.034 0.022±0.011

C 802

EKF 0.572±0.207 0.343±0.174 0.088±0.045 0.049±0.034
Online Learning 0.270±0.104 0.112±0.053 0.081±0.043 0.033±0.030

Batch Learning 0.178±0.095 0.086±0.062 0.047±0.031 0.019±0.016
FFNN [121] 0.326±0.102 0.183±0.058 0.050±0.031 0.019±0.013

All 2458

EKF 0.738±0.385 0.553±0.338 0.094±0.043 0.058±0.033
Online Learning 0.292±0.100 0.115±0.075 0.076±0.041 0.023±0.021

Batch Learning 0.195±0.076 0.081±0.062 0.054±0.036 0.014±0.012
FFNN [121] 0.377±0.160 0.285±0.145 0.057±0.034 0.023±0.012

5.2.3 Quantitative Results

The proposed method was tested by training the neural network from scratch using
the stream of sensor data in real-time, brought by the ROS 2 topics. The data were
first collected in mini-batches of 32 elements. After completion, backpropagation is
performed on the model to update all the weights. The data stream is recorded to
provide the aforementioned 5.2.1 training dataset, which was later used to evaluate
other methods. The results of the methods are compared to different state-of-the-art
solutions, which are i) the same network trained with a traditional batch learning,
ii) a Feed-Forward neural network, as in [121], and iii) an Extended Kalman Filter
based method, which can be considered one of the most common wheel-inertial
odometry estimators. All the models were evaluated offline using a test set composed
of 19 sequences of various lengths, comprised between 60s and 280s, which aim to
recreate different critical situations for wheel inertial odometry. In particular, the
sequences can be separated into three main trajectory types:

5.2 Experiments and Results 97

• Type A, comprises round trajectories which do not allow fortunate error com-
pensation during the time. Therefore, they may lead to fast degradation of the
estimated pose, and especially of the orientation.

• Type B comprises an infinite-shaped trajectory. This test allows partial error
compensations, but possible unbalanced orientation prediction may lead to fast
degradation of the position accuracy. A partial sequence of type B trajectories
are shown in Fig. 5.3.

• Type C comprises irregular trajectories, including hard brakings and accelera-
tions, and aims to test the different methods’ overall performance.

Table 5.1 presents the numeric results of the different tests, considering the proposed
model (Online Learning) and the selected benchmarks. All the leaning-based ap-
proaches show a significant error reduction compared to the EKF results, which can
be considered a baseline for improvement. Considering both the neural network
architectures trained offline, the proposed convolutional one achieves an average
improvement of 73.5% on the position m−AT E(x,y) and 85.3% on the orientation
m−AT Eθ . In comparison, the FFNN model achieves 49.0% and 48.4%, respectively.
The Segment Error improves in both cases: the proposed model improves by 42.6%
on the position SE(x,y) and 75.8% on the orientation SEθ . The FFNN architecture
improves by 39.3% and 60.3%, respectively. Compared with the EKF baseline,
the online learning model shows almost the same improvement as batch learning.
The improvement on the m-ATE equals 60.4% on the position and 79.2% on the
orientation. The Segment Error also appears to be lower, showing an improvement
of 19.1% on position and 60.3% on orientation. The observed difference between the
two training paradigms is an acceptable trade-off between the slight loss of accuracy
of the online training compared to the batch training and the possibility of training
the model without a pre-collected dataset. Fig. 5.5 reports the histograms of the
distribution of the Segment Errors, in position and orientation, respectively, for test
scenario B. It emerges how learning-based methods achieve, on average, a smaller
error than the EKF method. Fig. 5.4 shows the error trend during time related to the
trajectory of figure 5.3. It is evident how the batch-trained and online-trained models
perform similarly to the other methods.

98
Online Learning of Wheel Odometry Correction for Mobile Robots with

Attention-based Neural Network

5.2.4 Latency Evaluation

Since all the training and inference processes are tested online, firm real-time perfor-
mance is needed to avoid missing data for training or producing late odometry data.
The trained neural network has been converted into a TensorFlow Lite float32 model,
which allows the development of models on edge devices and performs inference
on CPU devices. Using the Jackal’s Board computer, based on an i3-4330TE @ 2.4
GHz chip, a mean odometry estimation time of 4 ms was achieved on 100 measure-
ments, which is 10% of the sampling frequency of 25 Hz. The training process on an
external PC with 32-GB RAM on a 12th-generation Intel Core i7 @ 4.7 GHz took
an average time of 25 ms per batch, considering 100 measurements.

Chapter 6

Domestic assistance with an
omidirectional service robot

Robot assistants have recently emerged as a promising solution for elderly care and
monitoring in the indoor domestic environment. The increasing demand for service
robotic platforms for indoor assistance has paved the way for the development of
diverse robotic solutions, especially devoted to elderly care [127, 128]. According
to the World Population Prospects (2019) provided by the United Nations [129],
life expectancy reached 72.6 years, with a future expectation of 77.1 in 2050. Fur-
thermore, projections reveal that there will be more people aged 65 years or over
than young aged 15 to 24 years by 2050 [129]. Population ageing dramatically
impacts our society’s organization, exacerbating delicate issues such as the isolation
of numerous vulnerable subjects and elderly people in their homes for most of the
day. Moreover, the recent emergency related to the COVID-19 outbreak has further
increased the need for a reliable and automatic assistance tool in both hospitals and
patients’ residential environments. In this scenario, robots demonstrated to be a key
technological ally in fighting the pandemic and its dramatic social effects, such as
people isolation [130, 131]. Indeed, they can offer support to both medical staff
and families whenever the services of dedicated assistive operators or volunteers
are not available due to the intensive demand generated by the pandemic. Although
the specific role and objectives of a robotic assistant for elderly care need to be
concurrently discussed from an ethical perspective according to Abdi et al. [132]
diverse robotic platforms for social assistance already exist. However, these studies
have been limited to the scope of human-machine interaction, realizing companion

100 Domestic assistance with an omidirectional service robot

robots with humanoid [133] or pets-like architectures [134, 135]. These robots have
been particularly studied for what concerns dementia, aging, and loneliness problems
[136, 137]. Different studies specifically focus on detailed monitoring tasks, for
example, heat strokes [138] and fall detection [139]. Besides the healthcare and
elderly monitoring purposes, the potential scope of application of an indoor robot
assistant is wide: house and air quality management [140, 141] according to the
Internet of Things (IoT) paradigm [142], surveillance and security and many other
service tasks [143].

In this chapter, a novel robotic assistive platform is presented: Marvin [14]. The goal
of this mobile robot is to provide basic domestic assistance to the user. More in detail,
we identify a set of service functions for Marvin within the overall research scope of
socially assistive robots: user monitoring, night assistance, remote presence, and
connectivity. A layered modular design is adopted to conceive Marvin, resulting in a
system indifferent to small modifications of the domestic environment and features
required by the specific application. Differently from previously presented robots
for home assistance, discussed in Section 6.1, we chose a tiny omnidirectional base
platform [144]. In particular, omnidirectional mobility can be exploited to monitor
the user while navigating and avoiding obstacles efficiently. Thus, a great focus is
devoted to development of a human-centered autonomous navigation system for a
robotic assistant, which aims at fulfilling the user assistance requirement in two key
scenarios: goal-based navigation and person following (Fig. 6.1). Indeed, person
following [145, 146] is the primary challenging task to enable any visual or vocal
interaction with the robot while the user is moving around. On the other hand, the
robot should be also capable to accomplish desired services in the room, moving
around towards different destinations while keep monitoring the person.

Overall, Marvin is a novel robotic solution for domestic and, more generally, indoor
user assistance. The contributions of this work can be summarized as follows:

• an agile tiny platform for user monitoring, night assistance, and remote pres-
ence, by adopting an omnidirectional wheeled base and a controllable tele-
scopic positioning device (Section 6.2);

• a real-time AI-based vision system (Section 6.3) to constantly detect and track
the users and check potential critical conditions based on their pose, triggering
an emergency call;

6.1 Assistive Service Robots 101

(a) The rover has to reach different goals
while keep monitoring the user.

(b) The robot must follow a different path
keeping active the monitoring of the person.

Fig. 6.1 Visualization of human-centered navigation and person following task for domestic
assistance: the omnidirectional capability allows the rover to follow the user maintaining its
orientation towards them while avoiding obstacles.

• an integrated navigation system that exploits the omnidirectional platform
separately handling obstacle avoidance and orientation control for person
monitoring (Section 6.4);

• the PIC4Speech vocal control system (Section 6.5) to provide a reliable, offline
vocal interface for the user to express commands to the robot easily.

6.1 Assistive Service Robots

In the last years, the robotics research community is focusing its effort on the
study of an effective design for an indoor assistant, and different proposals have
recently emerged. Diverse researchers based their study on the human-machine
interaction, realizing humanoid companion robots such as NAO [133] or pets-like
architectures such as Aibo [134] and PARO [135]. These kinds of robots have
been particularly studied for research on dementia, aging, and loneliness problems
[136, 137], although their usage cannot be extended to home assistance without a
mobile platform. Different studies specifically focus on detailed monitoring tasks,
for example, heat strokes [138] and fall detection [139]. However, although their
usual expensive cost, they often result to be unused for a long time horizon due to
the complex healthcare task they try to accomplish. Indeed, for the pure purpose of a
companion robot, marginal differences exist with the more competitive commercial
vocal assistants like Alexa, with a much lower cost. Jibo [147] (Fig. 6.2a) is another

102 Domestic assistance with an omidirectional service robot

example of a social robot for the home which falls in this category. Hence, an
assistive domestic robot should go beyond the conversational skills of common vocal
assistants and we decided to choose a mobile platform, trying to identify a clear,
helpful role for the robot in a domestic scenario.

Fig. 6.2 Commercial robots developed or suitable for service home-care applications.

There are already a good amount of research prototypes and few commercial mobile
platforms for home-care robotics today. Among them, the HOBBIT robot [148] and
the Toyota Home Service Robot (HSR) [149] are the results of different research
projects and they present a similar architecture composed of a wheeled main body
equipped with manipulators for grasping objects. The Pepper robot (Fig. 6.2b)
is one of the most popular humanoid robots and it has been also used for nursing
and rehabilitative care of the elderly [150]. TIAGo [151] (Fig. 6.2c)is another
comparable platform developed for robotics research groups and in general for indoor
applications. Even though they are standard differential drive wheeled platforms, all
these robots aim at reproducing a human-like overall shape and presence. However,
a large footprint and a standard steering system represent strong disadvantages to
navigating in a realistic cluttered household environment. The same limitations hold
for the SMOOTH robot [152], the resulting prototype of a research study that aims
at developing a modular assistant robot for healthcare with a participatory design
process. Three use cases for the SMOOTH robot have been identified: laundry and
garbage handling, water delivery, and guidance. In agreement with the authors of the
SMOOTH robot, we decided to avoid a robotic arm on the robot, due to the higher
control complexity it requires and stability issues it causes when mounted on a tiny
lightweight mobile platform. Instead, a simpler positioning device is preferred to
lift the camera and to allow the user to access the robot visual interface easily. The

6.2 Marvin robot design 103

abilities to carry objects without a manipulator and offer physical support to elderly
people are the advantages of the SMOOTH robot design.

An agile and flexible motion of the platform is considered a crucial design choice
to enable the introduction of robot assistants in real-world domestic environments
on a large scale. Omniwheels and mecanum wheels have already been studied in
many prototypes [153, 154] and they are particularly used in industrial robotics
applications [155], where the flexibility and the optimization of trajectories are a
priority. Recently, our design considerations have been partially confirmed by the
lastly emerging commercial proposals. Indeed, Amazon has recently launched its
commercial home assistant Astro [156] (Fig. 6.2d). Astro can surely be considered
an enhanced design thought for end-users, which can visually recognize people
and interact with them through a visual interface that aims at conveying expressive
reactions and thanks to the Alexa vocal assistant. Robotic platforms such as Astro
aim at totally managing the house, also providing surveillance and telepresence
services. Astro presents a reduced size compared to the typical humanoid platforms
to guarantee agile movements in the house and does not represent an oppressive
figure for the users, at the cost of not being able to carry or manipulate items.
Moreover, the robot is thought to be integrated within the full house automation
system, exploiting Alexa as a vocal interface. However, this choice exposes Astro to
high privacy risks and issues, handling both vocal and visual data of domestic private
environments.

6.2 Marvin robot design

Researchers at Pic4SeR Center (Interdepartmental Centre for Service Robotics) of
the Politecnico di Torino, in association with the researchers at Officine Edison,
developed a personal assistant mobile robot called Marvin considering the landscape
of existing solutions described. The robot has been conceived as a proof of concept
to explore the possibilities of autonomous assistive robots in domestic environments,
designed for people owning reduced motility, like elderly or people with disabilities.
To such an aim, the robot must be able to perform the following service functions:

1. User Monitoring: the robot should be able to detect a potentially dangerous
situation for the user and call for help.

104 Domestic assistance with an omidirectional service robot

2. Night Assistant: one of the most critical moments in the daily life of elders is
the night-time bedroom-to-toilet journey. This service proposes to accompany
the user in any desired location of the domestic environment, enlightening the
path and raising alarms in the case of need.

3. Remote presence and connectivity: the robot must be provided with the ability
to access commonly used communication platforms (mobile phone, video-call
services).

These tasks, addressed to provide a service to the user, in turn require a series of
robotic capabilities described in the next sections. The architecture of the mobile
robot has been developed with a modular approach to support different environment
and potential new features to be added, without completely rethinking the robot’s
structure. The overall system can be divided into three main layers, as presented in
Fig. 6.3:

• A Low Layer System consists of the mechanical structure, the control electron-
ics, and firmware. This layer is responsible for the actuation and control of the
system motion given the desired state of the system which is computed by the
Upper Layer System.

• A Upper Layer System collects the Upper Layer sensors such as lidar, cam-
eras and remote controller, the autonomous navigation stack, and the visual
perception sub-system.

• A Human-Machine Interface consists of a vocal control interface and a manual
control interface.

The interaction between the different layers is coordinated by predefined communi-
cation protocols. In this thesis, we briefly mention the core elements of the low layer
system, providing a major focus on the perception, navigation and vocal command
features developed. Further details can be found in the realted article [14].

An omnidirectional platform is considered to overcome the limitations of differential
drive locomotion systems and fulfill the flexible and agile mobility requirements. A
Nexus 4WD Mecanum robot [157] has been chosen as starting base platform for
Marvin’s development. It is characterized by overall dimensions of 400 mm × 360
mm × 100 mm and a limited mass (5.4kg), with a passive roll joint between the
front wheels and the rear wheels to deal with the presence of four contact points

6.2 Marvin robot design 105

Fig. 6.3 Schematic representation of the modular platform architecture. The three main
layers of the architecture (left) are decomposed in their respective principal components
(right).

with the ground. Aside from its ability to exhibit full planar mobility, Marvin
has the capability to deploy its sensors and user interface, exploiting its integrated
positioning device designed in accordance with the typical domestic workspace.
Such aspect is crucial for different reasons:

• it allows improving the perception of the robot of the external environment
improving the range of view of the sensors;

• a re-orientable and deployable head enhances the usability of the touch inter-
face for the users, giving a chance also to bedridden or handicapped people to
easily interact with the robot.

In Fig. 6.4, the mobile assistive robot is represented in two configurations: on the
left, the telescopic mechanism is deployed for better standing usage, while on the
right, the custom mechanism is retracted and inclined forward for better-seated usage.
The retracted configuration is also very effective at keeping the center of gravity low
during the motion of the robot.

6.2.1 Sensors and computational resources

For the robot to effectively work in the domestic environment, a whole series of
sensors are required to perceive the surroundings adequately. Marvin mounts the
following sensor devices. also shown in Fig. 6.5:

106 Domestic assistance with an omidirectional service robot

Fig. 6.4 Final prototype of the mobile assistive robot in two different working configurations:
(a) Deployed configuration for standing usage, HMI height = 1.1 m, mechanism tilting angle
= 0°, (b) Retracted end angled configuration for better-seated usage, HMI height = 0.80 m,
mechanism tilting angle = 20°.

• Intel RealSense T265 Tracking Camera1, with VIO technology for self-
localization of the platform. It is placed in the front of the rover, to better
exploit its capability;

• Intel RealSense D435i Depth Camera 2, that provide aligned color and depth
images at 30 frame-per-second (fps). It is mounted on the appropriate support,
on the positioning device, which provides a convenient elevated position for
the camera;

• RPLIDAR A1 3 provides a 2D point cloud for obstacle avoidance navigation
and mapping of the environment.

• Jabra 710 4, with a panoramic microphone and speaker. It is particularly
useful for voice command. Can be placed on the rover or used wireless from a
distance.

• Furthermore, a wireless gamepad is employed for manual control operations.

1https://www.intelrealsense.com/tracking-camera-t265/
2https://www.intelrealsense.com/depth-camera-d435i/
3https://www.slamtec.com/en/Lidar/A1
4https://www.jabra.com/business/speakerphones/jabra-speak-series/

jabra-speak-710#7710-409

https://www.intelrealsense.com/tracking-camera-t265/
https://www.intelrealsense.com/depth-camera-d435i/
https://www.slamtec.com/en/Lidar/A1
https://www.jabra.com/business/speakerphones/jabra-speak-series/jabra-speak-710##7710-409
https://www.jabra.com/business/speakerphones/jabra-speak-series/jabra-speak-710##7710-409

6.3 Visual Perception for Person Monitoring 107

Fig. 6.5 Sensors employed on Marvin robotic platform, associated with the corresponding
task they serve.

The robot relies on two computational units: a PJRC Teensy 4.15 microcontroller unit
(MCU), which manages the low layer system software and an Intel NUC11TNHv56

that executes the main Upper Layer system applications. A Coral Edge TPU Ac-
celerator7 is also employed to run optimized neural network models without the
necessity of a full-size graphics processing unit. At software level, the Robot Op-
erating System 2 (ROS2) [158] middleware framework is adopted to integrate all
the different high-level application nodes. ROS 2 is preferred over the original ROS
[159] as it is more suitable for real-time systems, it is actively supported by the
robotics community and it has access to more advanced applications [160, 161].

6.3 Visual Perception for Person Monitoring

Person detection is the pillar of every visual-based Human-Robot interaction. Classic
Deep Learning-based one-stage object detectors such as YOLO [162] and SSD [163]
estimate a bounding box in the image where the target object is contained. Pose
estimation models may represent a more competitive alternative for human-aware
robotics tasks since they also offer the information about person’s pose status. State-
of-the-art models for human pose estimation [164, 165] provide a skeleton schematic
graph of the person.

The monitoring task is carried out through a double-step computing pipeline. Firstly,
the person-detection is obtained with PoseNet [165], a lightweight neural network
able to detect humans in images and videos. As output, it gives 17 key joints (like

5https://www.pjrc.com/store/teensy41.html
6https://www.intel.com/content/dam/support/us/en/documents/intel-nuc/

NUC11TNH_L6_UserGuide.pdf
7https://coral.ai

https://www.pjrc.com/store/teensy41.html
https://www.intel.com/content/dam/support/us/en/documents/intel-nuc/NUC11TNH_L6_UserGuide.pdf
https://www.intel.com/content/dam/support/us/en/documents/intel-nuc/NUC11TNH_L6_UserGuide.pdf
https://coral.ai

108 Domestic assistance with an omidirectional service robot

elbows, shoulders, or feet) of each person present in the scene. At this point, a second
simple Convolutional Neural Network (CNN) receives the key points to classify
the pose of the person as standing, sitting, or laying. A persisting laying condition
can automatically activate an emergency call to an external agent (a relative or a
healthcare operator). A custom labeled dataset of images has been collected in a
house environment to train the CNN for the pose classification. The total number
of images used for this dataset is 25,009. The images are divided into three classes:
standing, sitting, and lying, containing 7849, 11,400, and 5760 images, respectively.
The classification model reaches an accuracy of almost 99% on the test set, obtained
retaining the 20% of the original dataset. The performance of the model is definitely
high, probably due to the common background scene of the collected images. A
randomized background with scenes of diverse domestic environments may allow for
a more challenging testing condition, leading also to improving the generalization
performance of the model. Moreover, the overall pipeline runs on the Google Coral
Edge TPU device for a faster inference, reaching 30 frame-per-second (FPS), that
is the maximum frame rate allowed with the Realsense D435i camera. Moreover,
as shown in Fig. 6.6, the key points predicted by PoseNet are then translated into
a bounding box that can be exploited for human-centered navigation tasks. The
resulting bounding box is tracked with SORT [166], a very simple online and real-
time tracking algorithm based on the Kalman filter. SORT also keeps track of the
subject when they leave the frame for a few moments, and associates an ID to each
person in the image. This ID is maintained as long as the person does not leave the
frame for several time instants. At this point, a depth map aligned with the RGB
frame, can be used to extrapolate the relative position of the detected individual
in the robot reference frame (xP,yP). A subset of the skeleton-pose key points is
selected to find the person’s center point C in the image. It is computed as the average
coordinate of the shoulders joints if recognized recognized with high confidence,
otherwise hips are considered.

6.4 Navigation System

Domestic environments are highly dynamic environments, where obstacles’ position
could be changed over time (chairs, bins) or they can move on their own (people,
animals, other autonomous platforms). Therefore, beside a map-based global path
planner, these scenarios pose the need for a reactive navigation system. Fig. 6.7

6.4 Navigation System 109

PoseNet

+

Person
Position

Person
Following

Intel RealSense D435i

Color Image Aligned
Depth Image

PoseNet

Laying
Pose Classification

Standing Si�ing

Help
Request

Fig. 6.6 Representation diagram of the person identification system: the estimated pose of the
person is continuously classified as standing, sitting, or laying, generating a help emergency
request if necessary. Moreover, it is used to extract the dynamic goal coordinates for the
person following task.

resumes the complete proposed human-centered navigation system. The upper blue
section of the scheme contains the extraction of the person position (xP,yP) in the
robot reference frame through the visual perception pipeline. The yaw controller
then processes this position to obtain the angular velocity command ω needed to
keep the platform oriented towards the person. On the lower red section of the
scheme, the local planner receives the LiDAR range points and the goal coordinate
(xG,yG) to produce a collision-free trajectory and provide linear velocities [vx,vy].
The full velocity command for the robot is therefore obtained by combining linear
and angular velocities in the vector [vx,vy,ω].

110 Domestic assistance with an omidirectional service robot

Angular Velocity Robot Command

Yaw
Controller

Linear Velocities

DWB Local
Planner

Planning

LiDAR points

Goal

Depth

RGB

Person Centre
(Robot Frame)

Perception

Position
Controller

Fig. 6.7 Human-Centered navigation methodology pipeline scheme. Linear and angular
velocity [vx,vy,ω] are generated separately to successfully carry out obstacle avoidance
through local trajectory planning together with person monitoring through yaw control.

6.4.1 Omnidirectional Motion Planner and Obstacle Avoidance

An integrated navigation system is developed tailoring the Navigation 2 algorithmic
stack 8 for the specific use case of assistance and person monitoring. Hence, the DWB
local planner, an optimized revisited version of the Dynamic Window Approach
(DWA) presented in Chapter 3, generates an obstacle-free trajectory towards the goal
and drives the rover along it. To detach the control of linear and angular velocities
for the double-objective navigation task at hand, DWB plans safe trajectories using
only the two linear velocities [vx,vy], along x and y axes of the horizontal plane. The
goal of the navigation task (xG,yG) coincides with the person’s position (xP,yP) in
the specific case of the person following, diversely it is a separate target point to be
reached while monitoring the person in the service navigation scenario.

6.4.2 Person-focused Orientation Control

The angular velocity ω is provided by another system node, which at any instant
computes the angular difference ∆θ between the orientation of the rover and the
orientation of the vector connecting the rover’s center of rotation with the person

8https://navigation.ros.org/

https://navigation.ros.org/

6.4 Navigation System 111

position, retrieved from the perception module:

∆θ = arctan(yP,xP) (6.1)

The exact yaw velocity is then calculated as follow:

ω = sign(∆θ) ·min(∥k ·∆θ∥,ωmax) (6.2)

Where k is a parameter used to linearly increase ω as ∆θ grows, and ωmax is the
maximum angular speed value allowed. After some tests on our indoor application,
we found optimal values of these parameters respectively at 1.3 and 1.5rad/s, but
they can be changed depending on the specific operating scenario.

An alternative orientation control strategy has been investigated in [16]. A Soft Actor-
Critic (SAC) algorithm [76] has been adopted to train a Reinforcement Learning
agent to directly compute the ω control for the robot.

Input features The input features of the policy network embed the necessary infor-
mation about the dynamic goal: 1) dt : the distance of the goal from the rover 2) ∆θt :
the angular difference between the orientation of the rover and the orientation of the
vector connecting the rover’s center of rotation with the goal 3) ωt−1: yaw velocity
command assigned to the platform at the previous time instant

Reward Reward shaping is the typical process that leads researchers to analytically
specify the desired behavior to the agent thanks to a dense reward signal assigned
at each time step. To this end, a reward rh is defined as the arithmetic sum of two
distinct contributions:

ryaw =

(
1−2

√∣∣∣∣∆θt

π

∣∣∣∣
)

(6.3)

rsmooth =−|ωt−1−ωt | (6.4)

The first contribute ryaw teaches the agent to maintain its orientation towards the goal,
while the second contribute rsmooth is used to obtain a smooth transition between the
current agent’s yaw velocity output and that at the next time instant.

Neural network architecture The simple neural network used for the orientation
control policy comprises three dense layers, respectively with 512, 256, and 256
units each.

112 Domestic assistance with an omidirectional service robot

The DRL policy showed slightly improved performance compared to the proportional
error-based control, avoiding the parameter’s tuning process at the cost of training
the policy in simulation.

6.5 Vocal Human-Robot Interface

Deep Learning models for vocal assistants requires an extremely high amount of
data to be trained [167]. Moreover, state-of-the-art models in Natural Language
Processing (NLP) [168, 169] provide great performances at the cost of a much
higher computational cost, which forbids their usage on embedded devices with
constrained hardware resources. Commercial solutions such as Siri, Alexa, or
Google Home exploit a cascade activation pipeline of multiple models that transfer
the computation from the physical device, when triggered, to the cloud servers to run
their NLP algorithms. Indeed, the development of a full pipeline of algorithms for
fast-interference low-cost vocal assistance in robots is rare to be found in the research
literature. The proposed PIC4Speech vocal assistant has the aim of providing a low-
cost, efficient solution to be executed on board the robotic platforms without the
need for expensive hardware and, above all, without relying on a stable internet
connection. The exposure of private data to the internet can create controversial
privacy issues. PIC4Speech combines state-of-the-art Deep Neural Networks (DNN)
for speech-to-text translation and a simple rule-based model for Natural Language
Processing (NLP) to minimize the computational cost of the pipeline and preserving
a flexible interaction. Similarly to commercial products it exploits a cascade of
models that are progressively activated when the previous one is enabled. In Fig.
6.8, an overview of the overall architecture of the PIC4Speech vocal assistant is
represented, showing the subsequent activation of each block. Although PIC4Speech
is designed as an offline vocal assistant, its usage in this primitive version is mainly
devoted to allowing the user to give commands to the robot vocally and not to hold a
complete conversation. In particular, the system aims at matching a vocal instruction
expressed by the user to the corresponding required task to successively start the
correct control process.

The PIC4Speech operative chain can be summarized as follows:

6.5 Vocal Human-Robot Interface 113

Fig. 6.8 Overview of PIC4Speech vocal assistant architecture. The scheme describes the
successive cascade activation of the different components of the vocal assistant pipeline.

1. The first component is the keyword detector [170], which constantly monitors
the input audio stream in search of the specific triggering command. In this
specific case, that word is the name of the robot: “Marvin”.

2. Once the trigger word is detected, a second model performs a speech-to-text
operation. We exploited the Vosk offline speech recognition API [171] for this
block which gives the flexibility to switch language and has ample community
support. It continuously analyzes the input audio stream until the volume is
below a certain threshold and performs the transcription.

3. The transcribed text is subsequently passed to a natural language processing
(NLP) algorithm that matches the input with a certain number of predefined
intents. The recognized robot action is therefore sent to the robot control
framework.

4. The response of the vocal assistant is also given to the user with a text-to-
speech process. Each OS comes with a default vocal synthesizer that can
directly access the speakers.

More in detail, the keyword detection is performed with a DNN based on a Vi-
sion Transformer that constantly listens to the audio stream, looking for the target
command. First, the mel-scale spectrogram is extracted from each sample of the
input stream. These features are treated as visual information and, therefore, they
are processed with a Vision Transformer [67], a state-of-the-art model for image
classification. We re-trained the keyword detector from scratch on the Speech Com-
mands dataset [172], constituted by 1-second-long audio samples from 36 classes:

114 Domestic assistance with an omidirectional service robot

35 standard keywords plus a silence/noise class. The re-train model achieved a
test accuracy of 97% over the different classes on the 11,005 test samples of the
Speech Commands dataset. Specifically, for the current target class ‘Marvin’, we
get the results reported in Table 6.1, evaluating the performance with standard
classification metrics: Precision = T P/(T P+FP), Recall = T P/(T P+FN) and
F1score = 2 · (recall · precision)/(recall + precision). Thanks to the multi-class
approach, the keyword can be changed at run-time. Being constantly active, it is of
primary importance that this network consumes less energy as possible, but at the
same time, it is capable of maintaining a good compromise between false positive
and false negative detection. At the same time, the network should deal with different
sound environments and noise levels. Further improvements to the keyword detector
can be reached by augmenting the training set with newly generated samples to
increase the robustness of the model in crowded, noisy environments. Here, a simple
rule-based matching mechanism is used for the NLP stage. Although it represents a
simple approach, a good level of flexibility is guaranteed by the actual solution as
the user can introduce new actions for the robotic platform associated with several
indicative sentences. A more advanced version may be developed with the aim of
semantically matching the encoded query text and the robot actions, using a universal
sentence encoder [173, 174].

Table 6.1 Classification results of the target keyword ‘Marvin’ on the 11,005 test sam-
ples of the Speech Commands dataset. Standard classification metrics are used for
the evaluation: Precision = T P/(T P + FP), Recall = T P/(T P + FN) and F1score =
2 · (Recall ·Precision)/(Recall +Precision).

Keyword Detector
Classification Metrics

Results

True Positives (T P) 189

True Negatives (T N) 10,806

False Positives (FP) 4

False Negatives (T N) 6

F1 Score 0.9742

Precision 0.9793

Recall 0.9692

6.6 Navigation Experiments and Results 115

Different from commercial vocal assistants, which require a stable internet con-
nection, PIC4Speech works completely offline, running uniquely on the hardware
resources of the platform. This competitive advantage derived from the choice of
lightweight models in the algorithms pipeline prevents Marvin from exposing the
visual and audio data of the domestic environment to internet-derived risks.

6.6 Navigation Experiments and Results

(a) The person is close to the navigation goal. (b) The person is at the corner of the hallway.

Fig. 6.9 Omnidirectional person-centered navigation results in two scenarios with the person
in different positions: in (a) the person is close to the navigation goal, in (b) the person
is at the corner of the hallway. Red arrows indicate position and orientation of the rover
at different time instants, the blue point is the person’s position, while the orange spline
represents the path crossed by the rover.

Two different kinds of experiments are conducted to validate the navigation capabili-
ties of Marvin:

1. the first experimental stage aims at demonstrating the efficiency of the person-
centered navigation task for monitoring purposes, where the rover has to
navigate from a point A to a target point B of coordinate (xG,yG), maintaining
its focus on the subject located in (xP,yP);

2. the second series of experiments tests the person following task, where (xG,yG)

and (xP,yP) coincide and represent the dynamic goal obtained from the visual
perception pipeline, which identifies and tracks the person of interest.

For each tested scenario, tests are performed with Marvin in two different configu-
rations. In the first configuration, the rover adopts our decouple navigation system:
it plans collision-free trajectories fully exploiting its omnidirectional kinematics,

116 Domestic assistance with an omidirectional service robot

combining both the two linear velocities [vx,vy]. The angular yaw velocity ω is
controlled by the person tracking module to always maintain visual contact with the
followed person. In the second configuration, the rover behaves like a differential
platform. This means it can only exploit velocity vx, while control of velocity vy is
denied, and the angular yaw velocity ω is solely dedicated to navigation purposes.
This procedure allows the comparison of performances between our solution and a
generic differential platform in tracking the user.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6.10 Qualitative visualization of the four scenarios set up for the person following test.
In the upper row, a schematic representation is shown, where red objects represent low-height
obstacles over which the robot’s camera can see. In the lower row, the real testing area with
the robot is shown.

6.6.1 Person-centered navigation

Tests are performed in two different scenarios composed of a 90◦ hallway with low
walls, which represent any potential obstacle present in a realistic domestic scene.
The rover camera can see over the walls, but the platform is forced to avoid them
in order to reach its goal. The starting point and the destination (xG,yG) are the
same in the two cases. What changes is the position of the person (xP,yP): near the
destination point in the first scenario (Fig. 6.9a), and in the corner of the hallway in
the second (Fig. 6.9b). In these preliminary trials, the person maintains their position

6.6 Navigation Experiments and Results 117

Table 6.2 Results obtained from the person-centered navigation test are expressed in terms
of mean angular difference ∆θ , its standard deviation, root mean square error (RMSE), and
mean absolute error (MAE) considering ∆θ = 0 as the optimal value. The person is located
close to the destination point in the first scenario (Fig. 6.9a) and in the corner of the hallway
in the second (Fig. 6.9b). Contrary to the differential configuration, omnidirectional motion
drastically reduce the maximum error ∆θ between the orientation of the rover and the person
during the navigation.

Scenarios ∆θ Error Mean Std.Dev. RMSE MAE

1 Omnidir. −2.88 4.63 5.47 4.32

Differential −32.75 28.71 43.55 33.94

Improvement 91.21% 83.87% 87.44% 87.27%

2 Omnidir. −2.23 3.98 4.58 2.51

Differential −75.08 79.88 109.62 75.08

Improvement 97.03% 95.02% 95.82% 96.66%

during the whole extent of the test. The rover odometry data are acquired with a
frequency of 5Hz.

Seven tests are performed for each scenario and both configurations, omnidirectional
and differential. The error term is represented by the angular difference ∆θ between
the orientation of the rover and the orientation of the vector connecting the rover’s
center of rotation with the person’s position. The horizontal FOV of the RealSense
D435i (RGB stream) is equal to 69◦. The angular difference ∆θ should never be
higher than half this angle, approximately 34.5◦, to constantly keep track of the
person’s position.

118 Domestic assistance with an omidirectional service robot

(a) Scenario 1 - Omnidirectional configura-
tion

(b) Scenario 1 - Differential configura-
tion

(c) Scenario 2 - Omnidirectional configu-
ration

(d) Scenario 2 - Differential configura-
tion

Fig. 6.11 Person following results in the first two scenarios: scenario 1 is composed of a wide
U-shaped path, while scenario 2 presents narrow passages through obstacles. Red arrows
indicate position and orientation of the rover associated with the person’s position (blue
point) at the same instant. The orange spline represents the path crossed by the rover.

The metrics considered for each test are the average angular difference ∆θ with
its standard deviation, the root mean square error (RMSE), and the mean absolute
error (MAE) maintained along the whole path, considering ∆θ = 0 as the optimal
value. In Table 6.2 are reported, for each scenario and each metric, the average value
computed over all the different tests, and the percentage of improvement introduced

6.6 Navigation Experiments and Results 119

by the proposed method. As seen from the results and Fig. 6.9, the omnidirectional
system is able to efficiently navigate towards the goal, constantly maintaining its
orientation towards the person. The ∆θ angular error is kept at extremely low average
values equal to −2.88 and −2.23 respectively in the two scenarios. Furthermore,
the maximum recorded value of ∆θ does not exceed 17◦, which is well below
the limit of 34◦ imposed by the camera’s FOV. This means the system can keep
tracking the person for the whole extent of the navigation. Moreover, from data
collected during the experimentation, the perception and tracking system was able
to correctly recognize and localize the followed person within the environment on
average 29 times per second. On the other hand, velocity commands are provided
with frequencies over 15 fps at any time. For comparison, we also added the results
obtained with the differential drive configuration. Its limitation is particularly evident
in the second scenario, where the person and the goal have two completely different
positions.

120 Domestic assistance with an omidirectional service robot

(a) Scenario 3 - Omnidirectional config-
uration

(b) Scenario 3 - Differential configuration

(c) Scenario 4 - Omnidirectional configura-
tion

(d) Scenario 4 - Differential configura-
tion

Fig. 6.12 Person following results in the third and fourth scenario: scenario 3 presents a high
number of obstacles and possible paths, while scenario 4 is composed of a high 90◦ wall to
be circumnavigated. Red arrows indicate position and orientation of the rover associated
with the person’s position (blue point) at the same instant. The orange spline represents the
path crossed by the rover.

6.6 Navigation Experiments and Results 121

6.6.2 Person following

Table 6.3 Results obtained from the person following test in four different scenarios are
expressed in terms of mean angular difference ∆θ , its standard deviation, root mean square
error (RMSE), and mean absolute error (MAE) considering ∆θ = 0 as the optimal value.
Our omnidirectional planning and control system clearly demonstrates a performance gap
in keeping the tracking of the person while following its motion: the ∆θ error is drastically
reduced in comparison with a differential drive navigation.

Scenario ∆θ Error Mean Std.Dev. RMSE MAE
A Omnidir. 2.99 10.54 11.00 8.98

Differential 16.00 63.41 68.31 57.20
Improvement 81.31% 83.38% 83.90% 84.30%

B Omnidir. −4.09 8.75 9.93 8.19
Differential −15.67 53.99 58.48 50.11
Improvement 73.90% 83.79% 83.02% 83.66%

C Omnidir. 0.31 8.28 8.81 6.93
Differential 12.34 42.19 45.05 37.38
Improvement 97.49% 80.37% 80.44% 81.46%

D Omnidir. 4.46 11.84 12.84 10.10
Differential 27.66 20.95 35.07 29.19
Improvement 83.88% 43.48% 63.39% 65.40%

For the person following task, tests are performed in four different scenarios. The
geometric configuration can be seen in Fig. 6.10. Similar to the previous test stage,
obstacles are constituted by low walls, except for the fourth, where they are full-
height walls. Contrary to the previous case, the person to be followed moves for
the whole extent of the test. For this reason, a ground truth data collection system
is used, localizing the person and the rover with ultra-wideband tag signals. Four
ultra-wideband anchors have been placed at the corner of the rectangular testing area.
The rover’s orientation is aligned with the one used by the ultra-wideband system.
This allows us to correctly compute the angular difference ∆θ between rover and
person at any time instant. To our knowledge, this experimental setting is the first
attempt in the literature to quantitatively measure a person’s quality following system
performance, going beyond the typical qualitative evaluation.

As already done for the first test, seven validation runs are performed for each rover
configuration in every scenario. The same error term ∆θ and metrics discussed in
the previous section are used to evaluate the person following performances. Results
can be consulted in Table 6.3. Furthermore, in Fig. 6.11 and Fig. 6.12, for each

122 Domestic assistance with an omidirectional service robot

scenario and each configuration, a visualization of the performed test is reported.
The gridmaps reported in the figure are directly obtained from the rover during the
navigation, while rover and person poses are obtained from the ultra-wideband sys-
tem. As can be seen, our methodology proves to robustly track the followed person
more effectively than a traditional differential drive navigation in all the considered
scenarios. In the omnidirectional configuration (Fig. 6.11a,6.11c,6.12a,6.12c) the
rover manages to always maintain the user within the camera’s view, contrary to the
differential drive case, where the visual contact is instead lost several times. This
generally leads to higher performance in following the user, fully satisfying the
person monitoring requirement. The obtained values of ∆θ clearly show the per-
formance gap in all scenarios, demonstrating the successful behavior in monitoring
the person provided by our solution. Also in the fourth scenario (Fig. 6.12c,6.12d),
where after the curve the wall obstructs the rover’s view of the user, it appears clear
that the ability to remain facing the human dynamic goal allows for a more accurate
re-acquisition of tracking as soon as the obstacle is passed. In this last scenario, the
differential drive system registers the highest orientation error, with a substantial ∆θ

average gap from our solution.

6.7 Experimental Demo

Finally, a qualitative demonstration has been conducted at Officine Edison, Milan,
during an institutional presentation specifically organized to test and show Marvin’s
overall capabilities. The demonstration took place in an area called Domus (Fig.
6.13), which simulates a real domestic environment made up of a kitchen, bedroom,
living room, and bathroom. Like a normal house, the Domus features different
obstacles of various heights and dimensions, and rooms are separated by regular size
doors.

In the setup phase, Marvin was guided in each of the different rooms and their
relative positions were saved with respect to the starting point, where a docking
station for recharging could eventually be placed. Moreover, a telephonic number
was memorized for the emergency call task. In the demonstration, all the functional-
ities of the robot were tested, and a qualitative analysis was conducted. From the
starting point (Fig. 6.13a), the rover was asked to autonomously reach the bedroom
waypoint, passing through the double-leaf door. Here, the user monitor function
was demonstrated, showing how Marvin was able to correctly classify the pose

6.7 Experimental Demo 123

Fig. 6.13 Simplified map of the Domus area at Officine Edison, Milan, with the four rooms,
kitchen, living room, bedroom, and bathroom, respectively in yellow, orange, green, and blue.
Letters on the map indicate the various goals saved in the environment, associated with the
corresponding image: (a) starting point, (b) bedroom keypoint, with user’s pose recognition,
(c) living room keypoint, with lights turned on, ready for night assistant task (d) bathroom
keypoint, (e) kitchen keypoint, with demonstration of the positioning device capabilities.

of the visualized user, standing, sitting on an armchair, or laying in the bed (Fig.
6.13b). In addition, it was also demonstrated how, after a request from the user,
the system was capable of connecting with the pre-configured telephone to call the
emergency number. Then, the rover was asked to follow the user from the bedroom
to the living room (Fig. 6.13c). Later, the user activated the night assistance task
by asking the rover to accompany him to the bathroom, causing the robot to turn
on the on board lights (Fig. 6.13d). Finally, Marvin was asked to reach the kitchen
and to adjust the inclination and height of the positioning device to adapt to the
user, sitting on the chair, so that the mounted tablet could be more easily accessed
and operated (Fig. 6.13e). Marvin successfully completed the demo addressing all
the service function required for domestic assistance. Thanks to its mobility and
the elevated position of the camera, mounted on the positioning device, the rover
managed to efficiently track and follow the person, albeit the several obstacles with
diverse heights.

Part III

Autonomous Navigation for Precision
Agriculture

Chapter 7

A Deep Learning Pipeline for
Autonomous Navigation in Row-based
Crops

Agriculture 3.0 and 4.0 paradigms recently guided technological innovation in preci-
sion farming to focus the research activity on four essential requirements: increasing
productivity, allocating resources reasonably, adapting to climate change, and avoid-
ing food waste [175]. One fundamental step for introducing an efficient and reliable
automation in the agriculture processes is the development of an autonomous navi-
gation pipeline for vehicles and robots. This is the first requirement to successfully
design a platform that takes care of several tasks such as harvesting [176], spraying
[177, 178], vegetative assessment and yield estimation [179, 180], and many others
[181, 182]. In this part of the thesis, we focus on the development of a complete
autonomous navigation system for an Unmanned Ground Vehicle (UGV) to be used
in row-based crops such as vineyards and orchards. Row-based crops account for
about 75% of all planted acres of agriculture in the United States [183]. Nowadays,
autonomous navigation in agricultural contexts is tackled with the usage of expen-
sive high-precision GNSS sensors, such as GPS receivers with RTK corrections
[184, 185], usually in combination with laser sensors [186, 187]. However, the pres-
ence of thick canopies and lush vegetation decreases the reliability of GNSS sensors
[188, 189], especially during spring and summer. This condition strengthens the
need for alternatives to reduce the cost of the system without affecting its robustness.

127

Visual odometry [190–192] and computer vision methods [193] have been proposed
as different valid options to tackle navigation inside fields. However, these methods
generalize poorly in the case of long outdoor paths with repetitive visual patterns.

Deep Learning (DL) methods are spreading as powerful solutions to tackle many
different precision agriculture tasks such as fruits detection [194, 195], counting
[196], land crop classification [24, 197]. Recently, DL solutions have been proposed
to solve the autonomous navigation problem, overcoming the limits of localiza-
tion in row crops scenarios with methods of orientation classification [198], plant
segmentation [199, 20].

Global Path
Planning

Position-agnostic
Controller

Semantic
Segmentaion

DRL Agent

Vineyard Grid
Segmentation

Waypoints
Estimation and

Clustering

Fig. 7.1 A representation of the overall pipeline. First, an occupancy grid of the crop is
generated to estimate and cluster the waypoints at start/end of vineyards row. Thus, a global
path can be planned. Finally, a visual-based local controller policy computes the velocity
commands to guide the robot inside each row of the field.

The Navigation Pipeline

A DL-based pipeline is proposed here, composed of multiple modules to tackle the
full navigation problem in row-based crops, as illustrated in Fig. 7.1. The proposed
pipeline is based on the intuitive idea to decouple the navigation in two stages: inside
and outside the plant rows. This choice is driven by the fact that robot localization is
usually hindered by the environment inside the rows, while standard methods can be
used to navigate outside. Firstly, an aerial image of the field is segmented to generate
a binary grid representation of the crop rows. Then, the grid is used to estimate

128 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

and cluster the waypoints at the starting/ending point of each row. The clustered
waypoints can be exploited as reference positions to trigger the switch from the intra-
row navigation logic to the inter-rows one. Moreover, a complete global path can be
obtained through the waypoints with a standard planning algorithm such as A* [200].
In this chapter, we focus on the development of different visual-based controller
that allow to guide the robot along the intra-row segments of the row-based field
and avoid a costly sensorization of the robotic platform for localization purposes. In
Chapter 8 the global waypoints generation and clustering process will be explained.
The navigation of the robot outside the rows, from one row’s ending waypoint to the
next starting one can be tackled with a classic local planner relying on odometry or
GNSS positioning signal, as demonstrated in [17]. GNSS localization can still be
hindered by adverse weather conditions, however, the path to be covered outside the
rows is usually short and does not present the obstruction of plants canopies. Future
work, currently under development, will investigate alternative methods to control
the robot without localization also outside the rows.

Position-agnostic visual control methods

The competitive advantage of GPS-free visual approaches has been partially investi-
gated in the last years of service robotics research. Different computer vision and
machine learning techniques have been applied so far to improve the performance of
robot guidance. A first vision-based approach was proposed in [201] using mean-
shift clustering and the Hough transform to segment RGB images and generate
the optimal central path. Later, [202] achieved promising results using multispec-
tral images and simply thresholding and filtering on the green channel. Recently,
DL approaches have been successfully applied to the task. [203, 204] proposed
a classification-based approach in which a model predicts the discrete action to
perform. In contrast, [198, 199] proposed a proportional controller to align the robot
to the center of the row using heatmaps of the scene first and segmented images
in the latest version. In Section 7.1 a family of enhanced semantic segmentation
based controllers is presented, while in Section 7.2 a Deep Reinforcement Learning
paradigm is adopted.

7.1 Semantic Segmentation-based control 129

7.1 Semantic Segmentation-based control

Although previously proposed local controllers proved effective in their testing
scenarios, they have only been applied in crops where a full view of the sky favors
both GPS receivers [205], and vision-based algorithms to distinguish plants canopies
form the background [191]. Moreover, the increasing necessity of open access
datasets to train DL models guided researchers to build wide and reliable synthetic
datasets for crop semantic segmentation [18, 25].

7.1.1 Methodology

To navigate high-vegetation orchards and arboriculture fields, this study provides
a real-time control algorithm with two variations, which enhances the method de-
scribed in [199]. The proposed method completely avoids the employ of GPS
localization, which can be less accurate due to signal reflection and mitigation due
to high and thick vegetation. Therefore, our algorithms consist of a straightforward
operating principle, which exclusively employs RGB-D data and processes it to
obtain effective position-agnostic navigation. It can be summarized in the following
four steps:

1. Semantic segmentation of the RGB frame, with the purpose of identifying the
relevant plants in the camera’s field of view.

2. Addition of the depth data to the segmented frame to enhance the spatial
understanding of the surrounding vegetation of the robot.

3. Searching for the direction towards the end of the vegetation row, given the
previous information.

4. Generation of the velocity commands for the robot to follow the row.

However, the two suggested approaches only vary in steps 2 and 3, where they
utilize depth frame data and generate the robot’s desired direction. Conversely, the
segmentation technique 1 and the command generation 4 are executed in a similar
manner. A visual depiction of the proposed pipeline is illustrated in Fig. 5.1.

The first step of the proposed algorithm, at each time instant t consists in acquiring
an RGB frame Xt

rgb and a depth frame Xt
d , where Xt

rgb ∈ Rh×w×c and Xt
d ∈ Rh×w.

In both cases, h represents the frame height, w represents the frame width, and c

130 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

is the number of channels. The RGB data received is subsequently inputted into a
segmentation neural network model Hseg, yielding a binary segmentation mask that
conveys the semantic information of the input frame.

X̂t
seg = H

(
Xt

rgb

)
(7.1)

where X̂t
seg is the obtained segmentation mask.

Furthermore, the segmentation masks from the previous N time instances, ranging
from t−N to t, are combined to enhance the robustness of the information.

X̂t
CumSeg =

t⋃
j=t−N

X̂ j
seg (7.2)

where, X̂t
CumSeg denotes the cumulative segmentation mask, and the symbol

⋃
signi-

fies the logical bitwise OR operation applied to the last N binary frames.

Moreover, the depth map Xt
d is employed to assess the segmented regions between

the camera position and a specified depth threshold dth. This process helps eliminate
irrelevant information originating from distant vegetation, which has no bearing on
controlling the robot’s movement.

X̂t
segDepth i=0,...,h

j=0,...,w
(i, j) =

0, if X̂t
CumSeg(i, j) · X̂

t
d(i, j) > dth

1, if X̂t
CumSeg(i, j) · X̂

t
d(i, j) ≤ dth

(7.3)

where, X̂segDepth represents the resultant intersection of the cumulative segmentation
frame and the depth map, restricted to a distance threshold of dth.

From this point forward, the proposed algorithm diverges into two variants, namely,
SegMin and SegMinD, as elaborated in the following sections 7.1.1 and 7.1.1, respec-
tively.

SegMin

The initial variant refines the methodology introduced in [199]. Following the
segmentation mask processing, a column-wise summation is executed, generating a
histogram h ∈ Rw that characterizes the vegetation distribution along each column

7.1 Semantic Segmentation-based control 131

as in the following formula:

h j =
h

∑
i=1

X̂segDepth(i, j) (7.4)

where i = 0, . . . ,w is the index along the vertical direction of each frame column.
Subsequently, a moving average is applied to this histogram using a window of
size n to enhance robustness by smoothing values and mitigating punctual noise
from previous passes. In an ideal scenario, the minimum value xh in this histogram
corresponds to regions with minimal vegetation, effectively pinpointing the central
path within the crop row. If multiple global minima are identified, indicating areas
with no detected vegetation, the mean of these points is calculated and considered
as the global minimum. This approach ensures a more reliable identification of the
continuation of the row, accommodating variations in the vegetation distribution.

SegMinD

The second proposed methodology presents a variation of the earlier algorithm
tailored specifically for wide rows featuring tall and dense canopies. In such scenar-
ios, the initial algorithm might encounter challenges in determining a clear global
minimum, as the consistent presence of vegetation above the robot complicates the
interpretation. This variant addresses this issue by incorporating a multiplication
operation between the previously processed segmentation mask and the normalized
inverted depth data.

X̂t
depthInv = X̂t

segDepth

⋂(
1− Xt

d
dth

)
(7.5)

where, X̂t
depthInv is the outcome of an element-wise multiplication, denoted by

⋂
,

involving the binary mask X̂t
segDepth and the depth frame X̂t

d that has been normalized
over the depth threshold dth. Similar to the previous scenario, a column-wise
summation is executed to derive the array h, followed by a smoothing process
using a moving average. This introduced modification serves a crucial purpose by
allowing elements closer to the robot to exert a more significant influence, thereby
enhancing the algorithm’s ability to discern the direction of the row. The different
sum histograms obtained with SegMin and SegMinD are directly compared in Fig.

132 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

7.2, showing the sharper trend and the global minimum isolation obtained, including
the depth values.

RGB SegMin SegMinD

Fig. 7.2 Contrasting the histograms produced by the two distinct algorithms, considering the
RGB frame on the right, reveals that SegMinD provides a more defined and less ambiguous
global minimum point.

Segmentation Network

A prior study on crop segmentation in real-world conditions provided the neural
network design that was chosen [199]. Fig. 7.3 illustrates its entire architecture and
its primary benefit is its ability to leverage rich contextual information from the image
at a lower computing cost. A MobileNetV3 backbone makes up the network’s initial
stage, which is designed to efficiently extract the visual features from the input image
[206]. With squeeze-and-excitation attention sub-modules [207], it is comprised of a
series of inverted residual blocks [208]. They increase the amount of channel features
while gradually decreasing the input image’s spatial dimensions. It is succeeded by
a Lite R-ASPP (LR-ASPP) module [209], an enhanced and condensed variant of
the Atrous Spatial Pyramid Pooling module (R-ASPP) that upscales the extracted
features via two parallel branches. The first lower the spatial dimension by 1/16 by
applying a Squeeze-and-Excite sub-module to the final layer of the backbone. To
modify the number of channels C to the output segmentation map, a channel attention
weight matrix is produced, multiplied by the unpooled features, and then upsampled
and fed through a convolutional layer. The second branch takes characteristics from
an earlier stage of the backbone, which reduces the spatial dimension by 1/8, and
adds them to the output of the upsampling step, mixing lower-level and higher-level
patterns in the data. The network’s input has a dimensionality equal to W ×H×3,
while the segmented output is equal to W ×H.

7.1 Semantic Segmentation-based control 133

SigmoidMobileNet
Block

Input Conv2D ReLU Average
Pooling

Batch
Norm

Upsample
2D

Fig. 7.3 The Deep Neural Network utilized in this study features a backbone of MobileNetV3
and an LR-ASPP head, as detailed in [206]. The spatial scaling factor of the features in
comparison to the input size is provided beneath each block.

Furthermore, the output values of the neural network are scaled between 0 and 1 using
a sigmoid function, as this work primarily focuses on the semantic segmentation of
plant rows. The usual cross-entropy loss between the ground-truth label y and the
anticipated segmentation mask is used to train the DNN:

LCE(y, ŷ) =−
N

∑
i=1

yi · log(ŷi) (7.6)

which for binary segmentation becomes a simple binary cross-entropy loss.

During both the validation and testing phases, the DNN performance is evaluated
through an intersection over unit (IoU) metrics:

mIoU(θ) =
1
N

N

∑
i=0

(
1−

X̂ i
seg∩X i

seg

X̂ i
seg∪X i

seg

)
(7.7)

where X i
seg is the ground truth mask, X̂ i

seg is a predicted segmentation mask, and θ is
the vector representing the network parameters. Since there are only plants as the
target class of interest, N in the IoU computation always equals 1. The model is
trained on the AgriSeg synthetic dataset [18]1. Further details on the training strategy
and hyperparameters are provided in Section 7.1.2.

1https://pic4ser.polito.it/AgriSeg

https://pic4ser.polito.it/AgriSeg

134 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

Robot heading control

The goal of the controller pipeline is to maintain the mobile platform at the center of
the row, which, in this study, is equated to aligning the row center with the middle
of the camera frame. Consequently, following the definition in the preceding step,
the minimum of the histogram should be positioned at the center of the frame width.
The distance d from the frame center to the minimum is defined as:

d = xh−
w
2

(7.8)

The generation of linear and angular velocities is accomplished using custom func-
tions, mirroring the approach employed in [17].

vx = vx,max

[
1− d2(w

2

)2

]
(7.9)

ωz =−kωz ·ωz,max ·
d2

w2 (7.10)

where, vx,max and ωz,max represent the maximum attainable linear and angular veloci-
ties, and kωz serves as the angular gain controlling the response speed. To mitigate
abrupt changes in the robot’s motion, the ultimate velocity commands v̄x and ω̄z
undergo smoothing using an Exponential Moving Average (EMA), expressed as:[

v̄t
x

ω̄ t
z

]
= (1−λ)

[
v̄t−1

x

ω̄ t−1
z

]
+λ

[
vt

x

ω t
z

]
(7.11)

where, t represents the time step, and λ stands for a selected weight.

7.1.2 Experiments and Results

Segmentation Network Training and Evaluation

We train the crop segmentation model using a subset of the AgriSeg synthetic
segmentation dataset [18, 25]. In particular, for the pear trees and apple trees, we
train on generic tree datasets in addition to pear and apples; for vineyards, we train on
vineyard and pergola vineyards (note that the testing environments are different from

7.1 Semantic Segmentation-based control 135

Fig. 7.4 Test of semantic segmentation DNN on real-world test samples from vineyard (top),
pear trees (middle) and apple trees (bottom) fields. For each crop, RGB input image (left),
ground truth mask (center) and the predicted mask (right) are reported.

the ones from which the training samples are generated). Only 100 miscellaneous
real images of different crop types are added to the training dataset in all the cases.
Thanks to the high-quality rendering of the AgriSeg dataset, this small amount of real
images is sufficient to reach generally good performance in real-world conditions.
A more in depth analysis of generalization properties of the semantic segmentation
network is discussed in Chapter 10 In both cases, the model is trained for 30 epochs
with Adam optimizer and learning rate 3×10−4. We apply data augmentation by
randomly applying cropping, flipping, greyscaling, and random jitter to the images.
Our experimentation code is developed using TensorFlow as the deep learning
framework. We train models starting from ImageNet pretrained weights, so the input
size is fixed to (224 × 224). All the training runs are performed on a single Nvidia
RTX 3090 graphic card.

136 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

Table 7.1 Semantic Segmentation results on real images in different crop fields. For each
crop, a model has been trained on synthetic data, only using 100 additional real images
containing miscellaneous crops different from the test set.

Model Real Test IoU Train Data Real Test Data

Vineyard 0.6950 13840 500
Apples 0.8398 15280 210
Pear 0.8778 7980 140

Table 7.1 reports the results obtained testing the trained segmentation DNN on
real images in terms of Intersection over Union (IoU). Fig. 7.4 also shows some
qualitative results on sample images collected on the field during the test campaign.

Simulation Environment

The proposed control algorithm underwent testing using the Gazebo simulation
software2. Gazebo was chosen due to its compatibility with ROS 2 and its ability
to integrate plugins simulating sensors, including cameras. A Clearpath Jackal
model was employed to evaluate the algorithm’s performance. The URDF file
from Clearpath Robotics, containing comprehensive information about the robot’s
mechanical structure and joints, was utilized. In the simulation, an Intel Realsense
D435i plugin was employed, placed 20 cm in front of the robot’s center, and tilted
upward by 15◦: this configuration enhanced the camera’s visibility of the upper
branches of trees. The assessment of the navigation algorithm took place in four
customized simulation environments, each designed to mirror distinct agricultural
scenarios. These environments included a conventional vineyard, a pergola vineyard
characterized by elevated vine poles and shoots above the rows, a pear field populated
with small-sized trees, and a high-tree field where the canopies interweave above
the rows. Each simulated field features varied terrains, replicating the irregularities
found in real-world landscapes. Comprehensive measurements for each simulation
world can be found in Table 7.2. In the experimental phase of this study, we adopted
frame dimensions of (h,w) = (224,224), matching the input and output sizes of
the neural network model, with a channel count of c = 3. The maximum linear
velocity was set to vx,max = 0.5m/s, and the maximum angular velocity was capped
at ωz,max = 1rad/s. The angular velocity gain, denoted as ωz,gain, was fixed at 0.01,

2https://gazebosim.org

https://gazebosim.org

7.1 Semantic Segmentation-based control 137

and the Exponential Moving Average (EMA) buffer size was set to 3. Additionally,
the depth threshold was adjusted based on the specific characteristics of different
crops. Specifically, it has been empirically set at 5 m for vineyards, raised to 8 m for
pear trees and pergola vineyards, and further increased to 10 m for tall trees, taking
into account the average distance from the rows in various fields.

RGB Masked Depth Histogram

(a)

(b)

(c)

(d)

Fig. 7.5 Sample outputs of the proposed SegMinD algorithm for High Trees (a), Pear Trees
(b), Pergola Vineyard (c), and Vineyard (d). Predicted segmentation masks are refined cutting
values exceeding a depth threshold. The sum over mask columns provides the histograms
used to identify the center of the row as its global minimum.

138 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

Table 7.2 Dimensions of various simulated crops indicate the average values for the distance
between rows, the spacing between plants within a row, and the heights of the plants.

Gazebo worlds Rows distance [m] Plant distance [m] Height [m]

Common vineyard 1.8 1.3 2.0
Pergola vineyard 6.0 1.5 2.9
Pear field 2.0 1.0 2.9
High trees field 7.0 5.0 12.5

(a) (b)

(c) (d)

Fig. 7.6 Gazebo simulated environments were employed to assess the SegMin approach in
various crop rows of significance, including wide rows with high trees (a), a slender row of
pear trees (b), an asymmetric pergola vineyard with irregular rows (c), and both straight and
curved vineyard rows (d). For the latter scenario, the evaluations were conducted in both the
second row from the top and the second row from the bottom.

Navigation Results in Simulation

The comprehensive evaluation of the SegMin navigation pipeline and its variant,
SegMinD, took place in realistic crop fields within a simulation environment, em-
ploying pertinent metrics for visual-based control without the need for precise robot
localization, aligning with methodologies from prior studies [199, 19]. The camera
frames were published at a frequency of 30 Hz, with inference conducted at 20 Hz
and velocity commands from controllers published at 5 Hz. The evaluation utilized
the testing package from the open-source PIC4rl-gym3 in Gazebo [27]. The chosen

3https://github.com/PIC4SeR/PIC4rl_gym

https://github.com/PIC4SeR/PIC4rl_gym

7.1 Semantic Segmentation-based control 139

Table 7.3 Navigation outcomes across diverse test fields were assessed using the SegMin,
SegMinD, and the SegZeros segmentation-based algorithms. The evaluation employed
metrics to gauge the efficacy of navigation, including clearance time, and assessed precision
through Mean Absolute Error (MAE) and Mean Squared Error (MSE) by comparing the
obtained path with the ground truth. Additionally, kinematic information about the robot’s
navigation was captured through the cumulative heading average γ[rad], mean linear velocity
vavg[m/s], and the standard deviation of angular velocity ωstddev[rad/s]. Notably, SegZeros
proved impractical for scenarios involving tall trees, pear trees, and pergola vineyards.

Test Field Method Clearance [s] MAE [m] MSE [m] Cum. γavgγavgγavg [rad] vavgvavgvavg [m/s] ωstddevωstddevωstddev [rad/s]

High Trees SegMin 40.41 ± 0.12 0.27 ± 0.01 0.08 ± 0.00 0.08 ± 0.00 0.49 ± 0.00 0.05 ± 0.00
SegMinD 40.44 ± 0.51 0.17 ± 0.01 0.04 ± 0.00 0.05 ± 0.00 0.48 ± 0.01 0.06 ± 0.02

Pear Trees SegMin 42.06 ± 1.23 0.03 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.48 ± 0.00 0.11 ± 0.05
SegMinD 42.26 ± 1.91 0.03 ± 0.02 0.00 ± 0.00 0.02 ± 0.00 0.48 ± 0.01 0.03 ± 0.00

Pergola Vine. SegMin 40.86 ± 0.39 0.08 ± 0.01 0.01 ± 0.00 0.03 ± 0.02 0.48 ± 0.00 0.17 ± 0.02
SegMinD 41.14 ± 0.33 0.10 ± 0.05 0.01 ± 0.01 0.03 ± 0.01 0.48 ± 0.00 0.20 ± 0.03

Straight Vine. SegMin 50.51 ± 0.31 0.11 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.49 ± 0.00 0.08 ± 0.01
SegMinD 50.63 ± 0.28 0.11 ± 0.01 0.02 ± 0.00 0.03 ± 0.01 0.49 ± 0.00 0.09 ± 0.01
SegZeros 53.69 ± 1.03 0.14 ± 0.03 0.02 ± 0.01 0.03 ± 0.0 0.46 ± 0.01 0.09 ± 0.01

Curved Vine. SegMin 53.32 ± 0.25 0.12 ± 0.01 0.02 ± 0.00 0.04 ± 0.01 0.49 ± 0.00 0.09 ± 0.02
SegMinD 51.44 ± 1.03 0.09 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.48 ± 0.01 0.06 ± 0.01
SegZeros 71.05 ± 27.13 0.11 ± 0.04 0.02 ± 0.01 0.05 ± 0.01 0.40 ± 0.13 0.11 ± 0.04

metrics aimed to assess the navigation effectiveness, measured by clearance time
and precision, involving a quantitative comparison of obtained trajectories with a
ground truth trajectory using Mean Absolute Error (MAE) and Mean Squared Error
(MSE). Ground truth trajectories were computed by averaging interpolated poses of
plants within rows. In the case of an asymmetric pergola vineyard, a row referred to
the portion without vegetation on top, as depicted in Fig. 7.6 (c). The algorithms’
response to terrain irregularities and row geometries was also studied, encompassing
significant kinematic information about the robot. The evaluation considered the
cumulative heading average γ[rad] along the path, mean linear velocity vavg[m/s],
and standard deviation of angular velocity ωstddev[rad/s]. These metrics provided
insights into how well the algorithms maintained the robot’s correct orientation, with
the mean value of ω consistently approaching zero due to successive orientation
corrections.

The complete set of results is outlined in Table 7.3. Each metric is accompanied by
both the average value and standard deviation, reflecting the repetition of experiments
in three runs on a 20 m long track within each crop row. The proposed method
effectively addresses the challenge of guiding the robot through rows of trees with
dense canopies, such as high trees and pears, even in the absence of a localization

140 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

system. It also demonstrates proficiency in unique scenarios, like navigating through
pergola vineyards. The presence of plant branches and wooden supports poses a
challenge for existing segmentation-based solutions. These solutions, built on the
assumption of identifying a clear passage by focusing solely on zeros in the binary
segmentation mask [199], encounter limitations in our tested scenarios. In our result
comparisons, we term this prior method as SegZeros, utilizing the same segmentation
neural network for assessment.

9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

2

1

0

1

2.5 1.5 0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5

5

4

3

2

1

0

1

2

3

4

5

GT
SegMin
SegMinD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1

2

3

4

5

6

7

GT
SegZeros
SegMin
SegMinD

Fig. 7.7 Trajectories comparison between our proposed algorithms (SegMin and SegMinD)
and the ground truth central path (GT): Pears (top), High Trees (center), Curved Vineyard
(bottom). In the last graph, the trajectory generated with the SegZeros algorithm is also
reported for comparison.

The SegMin methodology, based on histogram minimum search, proves to be a
resilient solution for guiding the robot through tree rows. The incorporation of
depth inverse values as a weighting function in SegMinD enhances the algorithm’s

7.1 Semantic Segmentation-based control 141

precision, particularly in navigating through challenging scenarios like wide rows
(high trees) and curved rows (curved vineyard). Furthermore, these innovative
methods exhibit competitive performance even in standard crop rows, where a
clear passage to the end of the row is discernible in the mask without canopy
interference. Compared to the previous segmentation-based baseline method, the
histogram minimum approach significantly reduces navigation time and enhances
trajectory precision in both straight and curved vineyard rows. On the other hand, the
search for plant-free zero clusters in the map proves to be less robust and efficient,
leading to undesired stops and an overall slower and more oscillating behavior during
navigation. Additionally, the standard deviation of angular velocity aligns with the
results obtained, being smaller in cases where the trajectory is more accurate, while
the cumulative heading exhibits larger values when the algorithms demonstrate
increased reactivity. The trajectories generated by SegMin, SegMinD, and SegZeros
algorithms are visually depicted in Fig. 7.7 within representative scenarios. These
scenarios include a cluttered, narrow row featuring small pear trees, a wide row
with high trees, and curved vineyards where the state-of-the-art SegZeros method is
applied.

Navigation test on the field

The overall navigation pipeline of SegMin and its variant SegMinD are tested in
real crop fields, evaluating the results with relevant metrics for visual-based control
without precise localization of the robot, as done in previous works [199, 19]. The
robotic platform employed to perform the tests is a Clearpath Husky UGV equipped
with a LiDAR Velodyne Puck VLP-16, an RGBD camera Realsense D455, an AHRS
Microstrain 3DM-GX5 and a Mini-ITX computer with an Intel Core i7 processor and
16 GB of memory. The camera frames were captured at a rate of 30 Hz, inference
was performed at 20 Hz, and velocity commands were published at 5 Hz. In this
section’s experiments, ground truth trajectory was unavailable due to the complexity
and demanding nature of measurement, which requires sophisticated instruments for
sufficient accuracy. Instead, the lateral displacement of the rover within the row was
determined using point clouds from the LiDAR. Points were clustered to separate the
two rows, then fitted by a straight line, followed by computing the shortest distance
from the plants to the origin, i.e., the center of the robot, where the sensor is mounted,
for both lanes. The AHRS measured the rover’s heading and compared it with the

142 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

average heading of the row obtained from satellite images, considering the tested
rows are straight.

Table 7.4 Navigation results of the real-world testing of the algorithms. SegMinD has been
tested on apple and pear orchards. A comparison has been performed between the algorithms
SegZeros, SegMin and SegMinD in a vineyard row choosing the same parameters: depth
threshold set to 8.0 m and pixel-wise confidence to 0.7.

Algorithm MAE [m] RMSE [m] Cum. γavgγavgγavg [rad] ω STD [rad/s]

Apple Trees SegMin 0.16708 0.18841 -0.03278 0.04112
SegMinD 0.07208 0.09110 0.10709 0.06881

Pear Trees SegMin 0.46540 0.47309 0.03066 0.12924
SegMinD 0.28435 0.29792 0.03004 0.13074

Vineyard
SegZeros 0.16669 0.17011 -0.01282 0.02675
SegMin 0.23045 0.24193 -0.03372 0.11451
SegMinD 0.16007 0.17093 -0.11478 0.10127

The performances of the proposed control have been evaluated on two different
plant orchards, i.e., apples and pears, and a vineyard. The performance metrics are
reported in Table 7.4. The trajectories of the best test for each crop field and the
comparison between the proposed algorithms, SegMin, SegMinD, and SegZeros,
are represented in Fig. 7.8. Overall, the novel control laws can effectively solve the
problem of guiding the robot through tree rows with thick canopies (high trees and
pears) without a localization system in a real-world scenario.

Moreover, the algorithms SegMin and SegMinD demonstrate the ability to generalize
to the common case without obstruction by canopies. As shown by the comparison
performed in the vineyard, they obtained results in line with the existing SegZeros.
The algorithms SegMin and SegMinD show their effectiveness in maintaining the
robot on the desired central line, even recovering from strong disturbances. As
can be noticed by the trajectories in pear and apple trees (top and central plots in
Fig. 7.8), sudden drifts of the robot are caused by fruits, branches, stones, and
disparate irregularity of the terrain. Those small obstacles cannot be precisely sensed
and tackled with classic obstacle avoidance algorithms; hence, the resilience of the
control algorithms to these external factors is crucial to keep the robot on track.
Differently, in vineyard rows, grass and cleaner terrain induce smoother overall
trajectories.

7.1 Semantic Segmentation-based control 143

10 20 30 40 50 60 70 80 90
Travelled Distance [m]

−2

−1

0

1

2

[m
]

20 40 60 80 100 120 140 160

Travelled Distance [m]

−1

0

1

[m
]

Plants distance from robot Robot distance from center

10 15 20 25 30 35 40 45

Travelled Distance [m]
−1.0

−0.5

0.0

0.5

1.0

[m
]

seg zero seg min seg min d Plants

Fig. 7.8 Trajectory results of relevant tests performed on the field. In order from top to
bottom: navigation in pear tree rows using SegMinD, navigation in apple tree rows using
SegMinD, and trajectory comparison of all three algorithms in a vineyard row. Sudden drifts
in orchards traversal are caused by fruits, small obstacles, and irregularity in the terrain.

Finally, an ablation study is carried out on a vineyard row to assess the impact of key
parameters on the proposed control strategy within the novel SegMinD algorithm.
Specifically, the study explores the effects of the depth image max distance and
pixel-wise confidence threshold of the predicted segmentation mask. The findings,
detailed in Table 7.5, indicate that a confidence level greater than 0.5 is required for
achieving robust behavior, filtering mask portions with uncertain prediction. Indeed,
results with a confidence level of 0.3 exhibit a high standard deviation in the angular

144 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

Table 7.5 Ablation study on SegMinD algorithm performance: relevant parameters of the
segmentation control system are explored for a better understanding of their impact on the
overall result. Three values of depth threshold and prediction confidence are selected for the
ablation.

Depth threshold MAE RMSE Cum. γavgγavgγavg [rad] ω STD [rad/s]

Confidence 0.3

5.0 0.35234 0.36031 -0.27982 0.99039
8.0 0.22854 0.23814 -0.01200 0.25087
11.0 0.35295 0.36281 0.06704 0.38422

Confidence 0.5

5.0 0.22456 0.23915 0.02729 0.42077
8.0 0.15794 0.17106 -0.19994 0.40949
11.0 0.45508 0.45754 0.00374 0.10303

Confidence 0.7

5.0 0.38653 0.39433 0.02949 0.46574
8.0 0.11928 0.15057 -0.04034 0.12565
11.0 0.39656 0.40279 -0.01696 0.35989

velocity command. Regarding the depth image maximum distance, three values are
tested: 5, 8, and 11 m. A low value of 5 m produces sub-optimal results compared to
an intermediate value of 8 m. In this scenario, the noise in the segmentation has a
more pronounced effect as the long-view geometry of the row is not considered in the
computation of the histogram, including only close plants. Conversely, a high value
for the depth threshold leads to inferior results due to the insufficient precision of
the depth camera, resulting in artifacts that can compromise overall performance. In
conclusion, the optimal outcome is achieved with a high confidence in the prediction
and an intermediate depth threshold of 8 m.

7.2 Position-agnostic controller with Deep Reinforce-
ment Learning

Classical navigation algorithms execute perception, planning and control as sepa-
rate concatenated stages, increasing the overall risk of error in each sub-module.
Differently, policy learning methods can directly map raw input data to actions,
drastically simplifying the whole navigation algorithmic pipeline. Model-free Deep
Reinforcement Learning (DRL) optimizes a parametric policy without accessing the

7.2 Position-agnostic controller with Deep Reinforcement Learning 145

dynamic model of the environment, allowing to train an agent to navigate in unseen
environments. DRL has recently emerged as a powerful approach for autonomous
vehicles [210] and mobile robot navigation [93].

Fig. 7.9 At each time instant t, the proposed agent receives as inputs a raw noisy depth
image Dt , the previous velocity commands [vt−1,ωt−1] and the yaw ψt , to generate the
new commands [vt ,ωt]. Since no explicit localization is required, the agent performs a
positioning-independent navigation in the vineyard row.

7.2.1 Task Formulation

Similarly to the problem described in Chapter 4, the navigation problem is modeled
in a reinforcement learning framework. Therefore, the problem is formulated as a
Markov Decision Process (MDP) described by the tuple (S,A,P,R,γ) [211]. An
agent starts its interaction with the environment in an initial state s0, drawn from
a pre-fixed distribution p(s0) and then cyclically select an action at ∈ A from a
generic state st ∈ S to move into a new state st+1 with the transition probability
P(st+1|st,at), receiving a reward rt = R(st,at). A parametric policy πθ representing
the agent behaviour is optimized during the training. In the context of autonomous
navigation, we model the MDP with an episodic structure with maximum time
steps T , hence the agent is trained to maximize the cumulative expected reward
Eτ∼π ∑

T
t=0 γ trt over each episode, where γ ∈ [0,1) is the discount factor. More in

detail, we use a stochastic agent policy in an entropy-regularized reinforcement
learning setting, in which the optimal policy π∗

θ
with parameters θ is obtained

maximizing a modified discounted term:

π
∗
θ = argmax

π

Eτ∼π

T

∑
t=0

γ
t [rt +αH(π(·|st))] (7.12)

146 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

WhereH(π(·|st)) is the entropy term which increases robustness to noise through
exploration, and α is the temperature parameter which regulates the trade-off between
reward optimization and policy stochasticity.

Reward

The potential outcome of the vineyard navigation task can be easily summarized in
a binary output: the robot successfully arrives at the end of the row or it does not.
However, this sparse reward feedback can be assigned to the agent only in the case
of a completed successful episode, which is an improbable event all over the initial
learning phases. According to this, reward shaping is the typical process which leads
researchers to analytically specify the desired behaviour to the agent thanks to a
dense reward signal assigned at each time step. Moreover, this approach allows to
precisely express secondary desired behaviours. In this application scenario, we
identify three key features of an ideal optimal policy: a complete collision-free travel
in the vineyard row, a centered trajectory and a proper orientation. Nonetheless, the
reward can be computed during the training in simulation exploiting positioning data
that is not needed at test time by the agent. To this end, we first define a reward
contribution rh to keep the robot oriented towards the end of the row:

rh =

(
1−2

√∣∣∣∣φπ
∣∣∣∣
)

(7.13)

where φ is the heading angle of the robot, namely the angle between its linear velocity
and the end of the row. We consider rh as a fundamental feedback to let the agent
understand how to counteract the sudden angular deviations imposed by the irregular
terrain, which is realistically generated in our simulated world. Then, in order to
obtain a central trajectory, we consider the possibility of directly scoring the distance
of the robot from the center of the row. However, this approach requires to compare
the robot pose with the mean line of each specific row at each step, and nonetheless
it results in a slow and inefficient policy when combined with the heading reward rh.
For this reason, we prefer a distance-based reward to strongly encourage the agent to
reach the end of the row:

rd = dt−1−dt (7.14)

where dt−1 and dt are euclidean distances between the robot and the end of the row
(EoR) at successive time steps, as shown in Fig. 7.10. Robot pose information is

7.2 Position-agnostic controller with Deep Reinforcement Learning 147

Fig. 7.10 The reward at each time step t is computed as a function of the distances from the
end of the row (EoR) dt and dt−1, and the angle φt between the robot orientation and the
shortest path to EoR. This information is available while training the agent although it does
not constitute its input.

uniquely used for reward computing while training, and is not included as agent
input, as better specified in the following subsection 7.2.1. We finally include a
sparse reward contribution for end-of-episode states, assigning rs = 1000 for the
successful completion of the task, rc =−500 if collision occurs, and rψ =−500 if
the robot overcomes a ±85◦ yaw limit. Stopping the episode when the robot exits
the vineyard row or reverses its motion direction is fundamental to keep collecting
meaningful sample transitions for the task.

The final reward signal results to be as follows:

r = a · rh +b · rd +

rs if Success

rc if Collision

rψ if Reverse

(7.15)

Where a = 0.6 and b = 35 are numerical coefficients to efficiently integrate the
diverse reward contributions in the final signal.

Policy Network

We define the parametrized agent policy with a deep neural network. We train the
agent with the Soft Actor-Critic (SAC) algorithm presented in [76], which allows for
a continuous action space. In particular, we instantiate a stochastic Gaussian policy
for the actor and two Q-networks for the critics.

148 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

Depth Image

State
Info

Yaw

Linear Velocity

Angular Velocity

Concat

Activation

GlobalAveragePooling Conv2D MaxPooling FC

Fig. 7.11 Architecture of the actor policy network. A convolutional backbone extracts
features from the depth image Dt . The features are then concatenated to the input vector
[vt−1,ωt−1,ψt] and two fully connected layers output the action vector [vt ,ωt] with specific
activation functions.

Input features We select the input features of the policy network only considering
the odometric and perception data available during the vineyard navigation task. To
this end, we identify a set of input features which enables a localization-independent
navigation, and an affordable perception system such as a simple depth camera.
Several iterations lead us to the choice of three key elements as agent inputs.

1) The previous set of velocity commands [vt−1,ωt−1] to provide information about
its current motion and temporal continuity to the agent and avoid strongly oscillating
or disentangled commands.

2) The yaw of the robot ψt measured at the current time instant t, which is always
available thanks to an IMU sensor on the robot. The simple yaw angle does not
represent the required optimal heading angle φt for the task. Indeed, such angle
depends on the robot position, which is not available at test time in GPS-denied
conditions. However, the yaw ψt provides awareness about the actual orientation of
the robot and helps in generating smooth collision-free velocity commands.

3) A raw noisy depth image of size (112×112). Each pixel of the image contains
a distance in the range of [0.0,5.0]m and it is the only perception data of the en-
vironment the agent exploits to guide the robot through the vineyard. Processing
the image, the agent acquires the necessary knowledge on obstacles and it can also
visually infer its current orientation with respect to the end of the visible row. A
reduced size of the image allows to obtain a compact latent representation of only

7.2 Position-agnostic controller with Deep Reinforcement Learning 149

32 features. The choice of depth images is also motivated by the aim of reducing
the simulation-to-reality gap. Indeed, depth images are only marginally affected by
visual features. On the other hand, real depth images may present peculiar noisy
behaviours, so we add to each raw image two different noises: a first uniform random
noise with values in [−0.5,0.5]m, and a second random noise proportional to the
depth values in the image, also in the range [−0.5,0.5]m. The second noise aims at
disturbing more heavily the higher-distance points. Overall, each pixel presents at
most a perturbation of ±1m.

Output actions The policy network predicts an action at = [vt ,ωt] at each time
step, which directly represents the required linear and angular velocity command to
control the robot. This choice is mainly dictated by the differential-drive steering
model of the robotic platforms we use, and it also allows to easily integrate the
system with ROS standard command messages.

Network architecture The architecture of the policy network presents a double
input structure, represented in Fig. 7.11. A convolutional feature extractor is
designed to efficiently map the depth image in a compact latent representation,
inspired by the work proposed for visual SAC in [212]. However, we avoid the
adoption of an encoder-decoder structure and an additional reconstruction loss. Our
solution allows the agent to easily learn how to extract relevant feature for the task
autonomously. Firstly, the feature extractor takes the depth image Dt (H×W) as
input. It consists of two convolutional layers (kernel size K = 3, F = 32 filters, strides
S1 = 2 and S2 = 1 respectively) with ReLU activations followed by a max pooling
layer (pool size P = 2), two more convolutional layers (with the same structure
as the previous ones), and a global average pooling layer. The features are then
concatenated to the position-agnostic robot state input vector, which includes the
measured yaw ψt and the previous action command (linear velocity vt−1 and angular
velocity ωt−1). The resulting vector is processed by two fully connected layers with
N = 256 neurons and ReLu activation. Finally, an additional output layer predicts
the action vector [vt ,ωt], using tanh as activation function. The linear velocity vt is
further squashed to (0,0.5) to match the velocity profile of the robot. As we use a
stochastic Gaussian policy, the network actually predicts the mean and the standard
deviation of each action distribution, which are used to sample a value from the
derived distribution while training. Instead, the mean value is directly used as output
at test time. The critic network structure is identical to the actor one, except it takes

150 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

also the predicted action vector in input and outputs an estimate of the Q value and it
is trained according to the SAC algorithm.

Random Initialization Strategy A critical condition of the vineyard environment is
its constrained geometry. As a consequence, the agent usually collides in few steps in
the early stage of the DRL training, exploring a drastically reduced number of states
of the environment. This behaviour negatively affects the generalization properties of
the agent and more generally the probability of a stable convergence of the training
algorithm. For this reason, we identify a set of counteractions to effectively train the
policy: 1) The vineyard training stage comprises different vineyard rows where the
robot travels during the same training simulation to encourage better generalization
derived from a higher number of visited states. 2) The robot is initialized in a
new random pose in the vineyard every 10 episodes, varying its [x0,y0] position
coordinates and its initial yaw ψ0, enabling also the agent to travel the rows in both
direction. Consequently, the agent is able to visit the final sections of rows from the
beginning of the simulation, significantly speeding up the convergence of the training
with better generalization results. 3) An initial exploration phase is combined with
an additional ε-greedy policy which samples random values in the action spaces with
a probability that is exponentially reduced with the increase of episodes to maintain
a proper level of exploration during the whole training.

7.2.2 DRL agent experiments

In this section we present the experimental session followed to validate the proposed
methodology in a simulated vineyard, with the aim of answering to the following
questions:

1) Is the agent able to successfully accomplish the task of vineyard navigation in an
unseen environment?

2) How well can the agent guide the robot through the vineyard? In particular, our
main objective is to evaluate the quality of the produced trajectory in terms of number
of collisions, centrality, and average velocity commands.

3) How well can the agent generalize to new testing conditions such as a different
robotic platform or an increased level of noise in the depth image?

To this end, we firstly report the performance of our navigation agent in the testing
environment evaluating the quality of the trajectory and the overall behaviour of the

7.2 Position-agnostic controller with Deep Reinforcement Learning 151

robot on several repeated tests. Moreover, we test the generalization and robustness
properties of our trained policy, varying the robotic platform and increasing the noise
in the depth images. Finally, we provide an analysis of the real-time performance on
different computational systems.

(a) Training Env

(1)

(2)

(3)

(4)

(5)

(b) Testing Env

Fig. 7.12 Training (a) and testing (b) simulation environments. Intentional gaps and curves
are introduced in (b) to provide a challenging environment for the agent. Testing rows are
numbered as referenced in the results section.

Vineyard navigation test in simulation

The agent have been validated on the five vineyard rows of the testing environment
of Fig. 7.12: two straight rows, two curved rows and a hybrid row. We perform a
total amount of ten tests for each row, half in the forward direction (F) and half in the
reverse direction (R). We repeat tests multiple times to better validate our approach
and obtain more consistent results. The main approach to validate autonomous
navigation algorithms is to compare the trajectory followed by the platform with a
ground truth path. We compute the median line for each vineyard row in the testing
environment, performing a mean operation between two adjacent rows, then we
fit the obtained median points with a fifth-order polynomial in order to achieve an
accurate ground truth line. Afterwards, we compare the robot trajectory with the
computed ground truth lines in order to estimate its Mean Absolute Error (MAE)

152 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

(a) (b) (c)

Fig. 7.13 Results achieved by the agent in the testing environment. (a) resumes the perfor-
mance on all the rows, where the agent follows a trajectory very close to the optimal one. In
(b), the agent recovers from a critical situation given by gaps in the row. In (c), the agent fails
and switches to the adjacent row but still reaches the end of the vineyard without collisions.

and Root Mean Square Error (RMSE). Moreover, for each test we report the number
of trials in which the UGV is able to successfully reach the end of the row.

Table 7.6 presents the complete quantitative evaluation of the experiment. Despite
the difficulty of the test environment, the learned policy demonstrates the ability of
correctly guiding the robot through different rows. As expected, the agent performs
slightly better on the straight test rows (1 and 2) compared to the curved ones (4
and 5), since the conditions are closer to the training scenario. That is proved by
the lower MAE and RMSE values. Failures mostly occur in the hybrid test row 3R
(2 successes out of 5) and in the curved row 5F (3 successes out of 5), due to the
presence of a wide gap between the plants. However, the agent is able to correctly
cope with gaps in the other tests. Fig. 7.13 presents some examples of trajectories
obtained during the test phase, particularly relevant to the gap handling. During the
tests shown in Fig. 7.13a, the agent is able to follow a path very close to the optimal
one. In Fig. 7.13b, the gap causes a suboptimal behavior, but the agent is still able to
recover the correct path. On the other hand, in Fig. 7.13c, an example of a failure is
presented. It is worth citing that, despite following the wrong path, the agent is still
able to avoid collisions. The overall results report an MAE of 0.114m, an RMSE of
0.136m and a success rate of 45/50 total runs, which is a considerably positive result.

Generalization, Robustness and Real-Time Performance

We conduct further experiments to evaluate the generalization and robustness prop-
erties of the trained policy varying two separate impacting conditions: the rover

7.2 Position-agnostic controller with Deep Reinforcement Learning 153

Table 7.6 Performance of the agent in the test environment (forward F and reverse R). We
include both MAE and RMSE metrics (lower is better), the actions v and ω (mean and
standard deviation) and the success rate (higher is better). The last row reports the overall
mean results and metrics.

Test Row Row Shape MAE [m] RMSE [m] v [m/s] ω [rad/s] Success

1F Straight 0.076 0.089 0.493 ± 0.020 -0.027 ± 0.538 5/5
1R Straight 0.131 0.141 0.478 ± 0.053 -0.030 ± 0.623 5/5

2F Straight 0.068 0.076 0.488 ± 0.037 -0.028 ± 0.642 5/5
2R Straight 0.087 0.105 0.489 ± 0.037 -0.001 ± 0.610 5/5

3F Hybrid 0.120 0.154 0.497 ± 0.003 -0.012 ± 0.353 5/5
3R Hybrid 0.100 0.130 0.494 ± 0.017 -0.036 ± 0.610 2/5

4F Curved 0.164 0.191 0.468 ± 0.079 -0.008 ± 0.687 5/5
4R Curved 0.081 0.097 0.484 ± 0.059 -0.014 ± 0.493 5/5

5F Curved 0.112 0.145 0.486 ± 0.057 -0.005 ± 0.571 3/5
5R Curved 0.201 0.233 0.445 ± 0.122 -0.042 ± 0.656 5/5

Overall - 0.114 0.136 0.482 ± 0.048 -0.020 ± 0.578 45/50

Table 7.7 Comparison of agent generalization capabilities on a different robotic platform.
We test the rovers on both straight (1F) and curved (4F) rows, reporting the average results
among 3 runs.

Row Rover Success Tavg [s] MAE [m] RMSE [m]

Straight
Jackal 3/3 78 0.079 0.088
Husky 3/3 69 0.081 0.098

Curved
Jackal 3/3 78 0.085 0.101
Husky 2/3 88 0.112 0.138

platform and the amount of noise in the depth image. These additional tests are per-
formed on two different rows of the testing environments: one straight (Row 1F) and
one curved (Row 4F). We repeat each test three times for a consistent comparison in
both the configurations. Moreover, we analyze the inference timing of the proposed
agent with different computational systems in order to report the ability of the actual
platforms to run the policy on-board in real-time.

Different Robotic Platform We choose the Husky UGV4 to test our policy with a
different platform. The Husky URDF model is also provided by Clearpath Robotics.
Husky has an overall size Length ×Width × Height equal to 990×670×390 mm,
compared to the smaller Jackal size of 508×430×250 mm. The larger footprint

4https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

154 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops

Table 7.8 Success rate of the agent tested with increasing noise factor in both straight (1F)
and curved (4F) vineyard rows with three trials for each test run.

Noise Factor 2 4 6 8 10

Success (Straight Row) 3/3 3/3 3/3 2/3 0/3

Success (Curved Row) 3/3 3/3 3/3 3/3 0/3

 [
m

/s
]

 [
ra

d/
s]

(a) (b)

Fig. 7.14 Model robustness to noise. We report the mean and standard deviation for v (a) and
ω (b), highlighting how the predictions of the policy network tend to oscillate more when
the noise level increases. However, the agent is able to reach the end of the row in almost all
the cases even with high levels of noise.

and the increased height of the camera constitute sensible variations for the agent,
which needs to select actions accordingly to manage collision avoidance. Overall,
the results presented in Table 7.7 can be considered successful: the agent is able to
guide the new UGV to the end of the vineyard row with a success rate of 3/3 in
the straight case and 2/3 in the curved case. Despite the slight degradation in the
MAE and RMSE of the trajectory and a longer time required in the curved row, the
agent demonstrates to generalize well with different platforms, taking into account
the considerable differences between the two robotic platforms.

Depth Image Noise Real-world depth images often present unpredictable noisy
behaviours. Aware of that, we investigate the ability of our solution to resist to
heavier noise in the observations, by gradually applying a multiplicative factor to
the noise in the images. The trained policy demonstrates to be robust to noise by
successfully reaching the end of the row until using a maximum noise factor of 10.
We consider noise multiplication factors of 2,4,6,8,10, obtaining the success rate
presented in Table 7.8. Moreover, we show the effect of the increased noise in the

7.2 Position-agnostic controller with Deep Reinforcement Learning 155

velocity commands generated by the agent in Fig. 7.14. The mean value of the linear
velocity commands is reduced proportionally to the increase of the perturbation
in the depth image, demonstrating how the agent prioritizes a safe traveling with
respect to speed. On the other hand, the standard deviation in both velocities result
to be much higher, suggesting uncertainty and oscillation in the robot behaviour.
Nonetheless, considering the degradation level used in the depth image, the obtained
performances are strongly encouraging in terms of noise tolerance and robustness.

Table 7.9 Real-time inference performance of the actor policy network on different hardware
configurations. Each test is reported with a statistic on 100 independent trials.

Platform CPU Model T [ms]

Jackal Intel i3-4330TE@2.40GHz
TF 6.20±1.50

TFLite 1.96±0.11

Husky Intel i7-6700TE@2.40GHz
TF 4.42±1.35

TFLite 1.24±0.21

NUC Intel i5-1145G7@2.60GHz
TF 2.80±0.62

TFLite 0.63±0.39

Real-Time Performance As additional analysis, we test inference timings of the
actor policy network on three different computing hardware to investigate its per-
formance on real platforms. In particular, we test the computers mounted on Jackal
and Husky UGVs, together with an Intel NUC mini PC, an emerging solution as
on-board computing hardware for robotics platforms. For our test, we apply network
optimizations with the TensorFlow Lite5 library, obtaining the float32 .tflite con-
verted model. Results presented in Tab. 7.9 show how all the considered hardware
configurations can easily reach real-time performance and that TFLite conversion
heavily decreases inference timings.

5https://www.tensorflow.org/lite

Chapter 8

Waypoint Generation in Row-based
Crops with Deep Learning and
Contrastive Clustering

A reliable autonomous navigation system is a fundamental problem to enable au-
tomatic operation in agriculture. Row-based crops fields such as vineyards and
orchards presents constrained geometries, that often hinder the usage of common
navigation solution. As discusses in Chapter 7, many local planners have been pro-
posed combining Deep Learning (DL) with computer vision [204, 21, 19] or other
sensor processing methods [213–215]. However, local planners provide a solution
for intra-row navigation only, and therefore a global path generator is always needed.
In a complex scenario such as a row-based environment, where traversing each row
is the practical navigation goal, the problem of developing an efficient global path
planner has been quite neglected by the research community. Existing solutions
usually tackle the problem by clustering visual data obtained from satellites or UAVs.
For example, in [216] authors use a classical clustering method to identify vineyard
rows from a 3D model of the terrain reconstructed from UAV data and then compute
the path accordingly. However, as pointed out in [217], the extraction of relevant
information about rows geometry from images can be a complex task, in addition to
being extremely computationally expensive. This limitation also holds considering
other approaches besides clustering. For instance, in [218] authors adopted 3D point
cloud aerial photogrammetry to detect the structure of vineyards.

8.1 Methodology 157

Recently, the DeepWay method [219] has been proposed to efficiently combine DL
and clustering for the generation of start and end row waypoints given an occupancy
grid of the vineyard. Moreover, novel contributions adopted the same paradigm and
training procedure to extend the coverage to arbitrary unstructured environments
[220]. Despite being an important baseline for row-based path generation, DeepWay
leaves substantial space for improvement. In particular, it applies DBSCAN clus-
tering [221], followed by a complex heuristic geometrical post-processing heavily
based on angle estimation, to discriminate start waypoints from end waypoints. How-
ever, this method performs poorly in a wide range of real-world situations, including
curved crops and rows of different lengths.

In this chapter, we complete the description of the Deep Learning pipeline for row-
based crops navigation introduced in Chapter 7 with a novel solution for waypoint
generation that combines DL with a contrastive clustering approach [22]. To this
end, we conceive a new DNN architecture to simultaneously predict the position
of the navigation waypoints for each row and cluster them in a single forward step.
Hence, we train our model with an additional contrastive loss on a synthetic dataset
of top-view vineyard maps and test it on manually-labeled real satellite images. The
experimentation conducted demonstrates that the proposed solution successfully
predicts precise waypoints also in real-world crop maps. We also consider complex
conditions such as curved rows, differently from previous solutions based on classical
clustering algorithms.

8.1 Methodology

Due to its intrinsic nature, every row-based crop is characterized by a set of lines or
curves that identify two regions comprising the starting and ending points of each
row, respectively. In this scenario, a robotic path should cover the whole field, and it
can be divided into intra-row segments, that connect the starting region to the ending
region, and inter-row segments, that connect two starting or two ending points. Given
an optimal estimation of these starting and ending waypoints, it is possible to plan
a full-coverage path in the row-based environment simply by alternating intra-row
and inter-row segments. Therefore, the planning process heavily relies on two main
steps: waypoint estimation, which identifies candidates for the points of interest, and
waypoint clustering, which assigns each estimated point to one of the two regions.

158
Waypoint Generation in Row-based Crops with Deep Learning and Contrastive

Clustering

Clustering Head

Estimation Head

Backbone

Residual
Reduction
Module

Transpose
Conv2D ConcatConv2D MishInput Sigmoid Tanh

Residual
Reduction
Module

Fig. 8.1 Architecture of the backbone and the two regression heads. The number of residual
reduction modules in the main block R determines the backbone compression factor K =
2R+1.

Following the same approach presented in [219], we frame the waypoint generation
process as a regression problem, in which we estimate the coordinates of the points
with a deep neural network, starting from a top-view map of the environment. The
map consists of a 1-bit single-channel occupancy grid that identifies with 1 the plant
rows and with 0 the free terrain. Therefore, this kind of estimation process can
be easily applied to geo-referenced segmented masks of the target fields obtained
from satellites or UAV imagery. The waypoints and the planned path can then
be converted from the image reference system to a Global Navigation Satellite
System (GNSS) reference frame to be used in real-world navigation. In addition to
waypoint detection, differently from classical unsupervised methodologies for point
clustering, we propose a supervised approach based on a contrastive loss to perform
point assignment. Therefore, the proposed model simultaneously performs both
estimation and clustering with a single forward pass, without the need for complex
post-processing operations based on heuristic geometrical-based rules.

8.1.1 Backbone Design

We implement the model as a convolutional neural network characterized by a feature
extraction backbone, followed by two specialized heads. A head is responsible for
the estimation task, while the other deals with clustering.

The backbone is designed following the same architecture used in [219]. The
basic block of the network is the residual module, characterized by a stack of
a 2D convolution and spatial and channel attention [63]. Each residual block is

8.1 Methodology 159

Reduction BlockResidual Block

Channel
AttentionConv2D Mish Spatial

Attention

Fig. 8.2 Residual reduction module architecture. The channel and spatial attentions are
implemented as in [63].

-1

+1

-1

+1

Fig. 8.3 The input occupancy grid is subdivided into a grid of K×K cells. For each cell, the
waypoint estimation head outputs the probability p of a waypoint presence, as well as the
relative horizontal and vertical displacements with respect to the cell center ∆∆∆ = (∆x,∆y).

followed by a reduction module characterized by convolutions with stride 2 that
progressively halve the spatial dimensions. The backbone is a stack of R residual
reduction modules, made by combining a residual module and a reduction module.
The final part of the network is made by an additional downsampling block, followed
by a transposed convolution upsampling stage, all arranged in a residual fashion.
This combination of compression and expansion has been proved very effective
for different computer vision tasks such as segmentation [222] and representation
learning [223]. Overall, the model performs a dimensionality compression of a factor
of 2R+1, where R is the number of residual reduction modules in the main block.
The complete backbone structure is detailed in Fig. 8.1 and Fig. 8.2.

160
Waypoint Generation in Row-based Crops with Deep Learning and Contrastive

Clustering

8.1.2 Waypoint Estimation

The waypoint estimation is framed as a regression problem, similarly to object detec-
tion approaches in computer vision [162]. In particular, given an input occupancy
grid map X with dimensions H ×W , we subdivide it into a grid of K×K cells.
Each cell is responsible for predicting the probability p that a waypoint falls in that
region, as well as its relative horizontal and vertical displacements with respect to
the cell center ∆∆∆ = (∆x,∆y). The displacements are defined in the range [−1,+1]
and represent a shift relative to half of the cell dimension, with −1 identifying the
left/top borders and +1 the right/bottom ones. An example of prediction with its cor-
respondent displacements is shown in Fig. 8.3. Given a prediction p̂ppout = (x̂out , ŷout)

in the output reference frame, the waypoint coordinates in the input reference frame
p̂ppin can be reconstructed with the following equation:

p̂ppin = p̂ppout K +
K
2
+∆∆∆

K
2

(8.1)

The waypoint estimation head maps the high-level features extracted with the back-
bone to the output space with a 1x1 convolution. The backbone compression factor
2R+1 corresponds to the grid dimension K. Therefore, the output tensor of the estima-
tion branch has a dimension of H/K×W/K×3. We apply a sigmoid activation to
the probability output and a tanh activation to the displacement outputs. We optimize
the network for the waypoint estimation task with a weighted mean squared error
loss. For each output cell uuui, j, the estimation loss is therefore computed as:

l est
i, j = 1

wp
i, j λ∥uuui, j− ûuui, j∥2 +(1−1wp

i, j)(1−λ)∥uuui, j− ûuui, j∥2 (8.2)

where 1wp
i, j ∈ {0,1} is an indicator Boolean function evaluating 1 if a waypoint is

present in that cell, and λ is the relative constant that weights differently positive
and negative cells.

At inference time, we get the list of predicted waypoints by considering all the
cells with probability p over a certain threshold tp. As in standard object detection
methodologies, we also apply a suppression algorithm to decrease the number of
redundant predictions that typically occur when multiple adjacent cells detect the
same waypoint. The algorithm identifies all the groups of predictions with Euclidean
distance within a certain threshold tsup in the input reference frame. For each group,

8.1 Methodology 161

Fig. 8.4 In the latent space mapped by f (·), points of the same cluster appear closer together
with respect to points of the other cluster. The mapping function f (·) is implemented with
the backbone and the clustering head together. In this example, the latent space has a
dimensionality D = 2.

the point with highest confidence p is selected, while the remaining predictions are
discarded.

8.1.3 Contrastive Clustering

Once the waypoints are detected, they should be assigned to starting or ending
regions. This task can be seen as a simple binary classification, in which the labels
represent the two clusters. However, in this scenario the actual assigned label is not
relevant, as the only fundamental aspect is whether points of the same group are
assigned the same label. The aim is to discriminate the points of the two regions
without caring about which of them is classified as starting or ending. Indeed, an
optimal path can be successfully planned regardless of the choice of the starting
cluster. This invariance cannot be guaranteed by supervised classification.

For this reason, we model the clustering problem as a supervised representation
learning process. Given the two sets of points A = {ppp | ppp ∈ first cluster} and B =

{ppp | ppp ∈ second cluster}, we want to find a non-linear mapping f (·) such that

d
(

f (pppiii), f (ppp jjj)
)
≪ d

(
f (pppiii), f (pppkkk)

)
for pppiii, ppp jjj ∈ A , pppkkk ∈ B (8.3)

and vice versa, where d is a distance measure. In the latent space mapped by f (·),
points of different clusters are well-separated according to distance d. This means

162
Waypoint Generation in Row-based Crops with Deep Learning and Contrastive

Clustering

that a simple clustering method such as K-means [224] can successfully discriminate
the two groups in the latent space, as shown in Fig. 8.4. Inspired by the contrastive
framework used for unsupervised learning in [225], we select as distance metric d
the inverse of the cosine similarity:

sim(uuu,vvv) =
uuu⊤vvv

∥uuu∥2 ∥vvv∥2
(8.4)

For each image, we consider the N ground-truth waypoints as independent samples.
Given a point pppiii, we consider as positive examples all the other N/2−1 points in the
same cluster, and as negative examples the N/2 points of the other cluster. Therefore,
we define the clustering loss contribution for the sample i as:

l clus
i =

1
N−1

N

∑
j=1
j ̸=i

[
1 pppiii,ppp jjj∈A
∨ pppiii,ppp jjj∈B

log
(

sig
(
sim
(

f (pppiii), f (ppp jjj)
)))

+

+
(

1−1 pppiii,ppp jjj∈A
∨ pppiii,ppp jjj∈B

)
log
(

1− sig
(
sim
(

f (pppiii), f (ppp jjj)
)))] (8.5)

where 1 pppiii,ppp jjj∈A
∨ pppiii,ppp jjj∈B

∈ {0,1} is an indicator function evaluating 1 if pppiii and ppp jjj are in the

same cluster and 0 otherwise, while ‘sig’ represents the sigmoid function. Basically,
this loss computes the binary cross-entropy of the cosine similarity in the latent
space mapped by f (·) for the pair (pppiii, ppp jjj). f (·) is optimized to push the cosine
similarity towards the maximum +1 if the points are in the same cluster and towards
the minimum -1 otherwise. The final loss is computed over all the pairs (i, j) as well
as (j, i) for each input image. This loss can be seen as a variation of the one used
in [226, 227, 225], but instead of N groups with 2 elements each, optimized with
categorical cross-entropy and softmax, we have 2 groups with N/2 elements each,
optimized with binary cross-entropy and sigmoid.

The mapping f (·) is modeled by the clustering head in the output space reference
system. The head is composed of two convolutional layers with Mish activation
and one final 1x1 convolution with linear activation. The output tensor of the
clustering branch has a dimension of H/K×W/K×D, where D is the latent space
dimensionality.

8.2 Experimental Setting 163

Fig. 8.5 Examples of curved occupancy grids: synthetic (a) and real-world from Google
Maps satellite database without (b) and with (c) manual annotation. Red and blue points are
the ground-truth waypoints divided in the two clusters.

At inference time, for each waypoint detected in the estimation phase, we select
the correspondent feature from the clustering head output. We can predict the
clustering assignment by fitting a K-means predictor with two centroids on the
selected features. Since we use the cosine similarity in the loss computation, we are
optimizing the clustering in the normalized latent space. For this reason, the features
should be divided by their Euclidean norm before clustering. This normalization
decreases by one the latent space dimensionality, and therefore the minimum number
of dimensions D for the clustering head is 2.

8.2 Experimental Setting

In this section, we present all the details of our experimentation. We describe the
datasets used for network training and testing as well as the main hyperparameters
adopted during the training phase.

8.2.1 Dataset Description

Considering the lack of open datasets of row crops bird-eye maps and the time
required to manually annotate a large set of real images, we define a method to
build realistic synthetic occupancy grids to train the model. We modify the method
presented in [219] to extend it to both straight and curved occupancy grids. The
generation process can be summarized as follows:

1. sample a uniformly random number of rows n ∈ [10,50] and angle α ∈
[−π/2,π/2];

164
Waypoint Generation in Row-based Crops with Deep Learning and Contrastive

Clustering

2. generate row centers with a random inter-row distance, along the line perpen-
dicular to α and passing through the image center;

3. generate random field borders and find starting and ending points for each row
with orientation α;

4. to create curved maps, add a random displacement to the row centers and
compute a quadratic Bézier curve with the starting, ending and center points
as control points; this ensures that the curves are continuous and smooth;

5. generate the occupancy grid by drawing circles with random radius r ∈ [1,2]
pixels to model irregularities in the row width

6. create random holes in the rows to emulate segmentation errors or missing
plants;

7. compute the N = 2n ground-truth waypoints as the mean points of the lines
connecting the ending points of the rows with the adjacent ones.

To further increase variability, we randomly add displacement noise every time we
sample a point coordinate during the generation process. We select H =W = 800
pixels as input dimension for all the generated images. To investigate the effect
of including synthetic curved images in the training set, we randomly generate
two independent datasets, one with straight rows only, the other with both straight
and curved rows. Overall, each dataset contains 3000 images for training, 300 for
validation, and 1000 for testing. In addition to the synthetic data, we manually
annotate real row-based images of vineyards and orchards from Google Maps (100
straight and 50 curved). These satellite images are fundamental to test the ability
of the network to generalize to real-world scenarios and to prove the effectiveness
of the synthetic generation process. Fig. 8.5 shows examples of both synthetic and
manually-annotated images.

8.2.2 Network Training

To select the best hyperparameters, we perform a random search over a set of
reasonable values. For all the convolutional layers, we set a kernel size of 5 and
channel dimension C = 16. For the main block of the backbone, we set the number of
residual reduction modules R = 2. Therefore, the backbone compression factor and
output cell dimension is K = 2(R+1) = 8. We set the clustering space dimensionality

8.3 Results 165

Table 8.1 Performance of waypoint estimation on both straight and curved test datasets.
We first test the model on our synthetic datasets (Straight Synth, Curved Synth) and then
validate the results on manually annotated occupancy grids obtained from real satellite
images (Straight Real, Curved Real). For each test set, we compare the results of the model
trained on straight rows with those obtained training on curved rows. We report the mean
and standard deviation for the Average Precision APr, where r is the maximum accepted
distance in pixels between predicted and ground-truth waypoints.

Test Train AP2 AP3 AP4 AP6 AP8

Straight Synth
Straight 0.6404 ± 0.0171 0.9284 ± 0.0088 0.9856 ± 0.0021 0.9991 ± 0.0001 0.9993 ± 0.0001
Curved 0.5751 ± 0.0241 0.8921 ± 0.0107 0.9743 ± 0.0022 0.9979 ± 0.0001 0.9984 ± 0.0001

Straight Real
Straight 0.5191 ± 0.0288 0.8155 ± 0.0109 0.9116 ± 0.0032 0.9482 ± 0.0017 0.9507 ± 0.0024
Curved 0.4597 ± 0.0166 0.7634 ± 0.0076 0.8788 ± 0.0089 0.9391 ± 0.0052 0.9433 ± 0.0049

Curved Synth
Straight 0.5143 ± 0.0193 0.8224 ± 0.0236 0.9232 ± 0.0166 0.9726 ± 0.0078 0.9768 ± 0.0065
Curved 0.5664 ± 0.0226 0.876 ± 0.0066 0.9632 ± 0.0009 0.9937 ± 0.0006 0.9949 ± 0.0006

Curved Real
Straight 0.4685 ± 0.0906 0.7110 ± 0.0625 0.8125 ± 0.0625 0.8802 ± 0.0374 0.8891 ± 0.0355
Curved 0.5327 ± 0.0269 0.8010 ± 0.0095 0.8881 ± 0.0094 0.9333 ± 0.0026 0.9374 ± 0.0033

to D = 3. Thus, the output tensors have both a dimension of 100× 100× 3. The
resulting network is a lightweight model with less than 73,000 parameters. We select
Adam [50] as optimizer with a constant learning rate of η = 3e−4 and batch size
of 16. Experimentally, we find more effective to first train the estimation head and
the backbone together with the loss of Eq. 8.2. We set the loss weight to λ = 0.7 to
compensate for the high imbalance in the number of positive and negative cells and
stabilize the training. We then freeze the backbone weights and train the clustering
head only with the loss of Eq. 8.5. To highlight the challenge posed by curved
scenarios, we independently train the model on both the straight and curved training
sets. We train each model for a total of 200 epochs on an Nvidia 2080 Ti GPU using
the TensorFlow 2 framework. To obtain significant statistics, we run each training
session three times, so that the results can be described in terms of mean and standard
deviation.

8.3 Results

In this section, we report and comment the main results regarding both waypoint
detection and clustering. Visual examples are included as well, to give a qualitative
idea of the performance of our model. We extensively test our approach on both
straight and curved rows, including a final evaluation on real satellite data. All the
related code is open source and available online1.

1www.github.com/fsalv/ClusterWay

www.github.com/fsalv/ClusterWay

166
Waypoint Generation in Row-based Crops with Deep Learning and Contrastive

Clustering

8.3.1 Waypoint Estimation

As regards waypoint estimation, we use Average Precision (APr) as principal met-
ric, considering different values of the range threshold r, such that a waypoint is
considered correctly detected if its Euclidean position error in pixels is smaller than
r. In this way, we can highlight the precision of the model at different levels of
proximity. The AP is commonly used for evaluating object detection tasks [228, 229]
and is computed as the area-under-the-curve of the precision-recall plot obtained
varying the confidence threshold tp. The waypoint estimation results are reported in
Table 8.1, where each value is detailed with its mean and standard deviation. All the
tests are performed setting a waypoint suppression threshold equal to the minimum
inter-row distance of the synthetic datasets, tsup = 8 pixels.

The first important result is the model trained on curved crops being able to reach
an AP8 of about 94% on all four test scenarios. This achievement confirms the
effectiveness of our model far beyond the synthetic training scenario, as real satellite
data does not seem to create substantial performance drops (5.7% at worst). Looking
at lower values of r, the synthetic-to-real gap rises to 11.5%, showing how the model
is able to estimate synthetic waypoints with higher precision. The model trained
on straight crops achieves excellent performance on its corresponding test set and
even on real satellite data, but generalizes poorly on curved rows: the precision drop
reaches 11% on AP8 and even 22% considering AP3. On the contrary, the model
trained on curved crops scales very well on straight scenarios. This outcome confirms
the importance of training on curved crops to obtain robust models able to cope with
challenging situations.

8.3.2 Waypoint Clustering

As regards waypoint clustering, we adopt two separate metrics. The first is an
adjusted binary accuracy, assigning a score of 0 to the worst outcome (all the points
in the same cluster, meaning 50% of the points correctly clustered) and 1 to perfect
clustering. However, the number of waypoints in a crop is variable and accuracy
alone does not give an insight of the distribution of errors among different samples.
For example, crops with a small number of waypoints tend to be easier to cluster than
dense ones. Considering the fact that full-coverage path planning is possible only if
every waypoint is correctly clustered, we add a clustering error metric computing
the average number of wrongly labeled points per image. The results are detailed in

8.3 Results 167

Table 8.2 Performance of waypoint clustering on both straight and curved datasets, comparing
our approach with K-means and the DBSCAN pipeline proposed by [219]. We first test
models on our synthetic datasets (Straight Synth, Curved Synth) and then validate the results
on real occupancy grids obtained from satellite images (Straight Real, Curved Real). For
each test, we compare the results of models trained on straight rows with those obtained
training on curved rows. We report the mean adjusted accuracy and clustering error with
their standard deviations.

Test Method Train Adjusted Accuracy Clustering Error

Straight Synth

K-means
Straight 1.0000 ± 0 0 ± 0
Curved 0.9913 ± 0.0076 0.6667 ± 0.5774

DBSCAN
Straight 1.0000 ± 0 0 ± 0
Curved 0.9724 ± 0.0240 2.0000 ± 1.7321

Ours
Straight 0.9994 ± 0.0003 0.0187 ± 0.0114
Curved 0.9985 ± 0.0006 0.0527 ± 0.0219

Straight Real

K-means
Straight 0.4243 ± 0.1037 26.3333 ± 7.0238
Curved 0.4635 ± 0.0873 26.0000 ± 5.1962

DBSCAN
Straight 0.9532 ± 0.0429 2.3333 ± 2.0817
Curved 0.9585 ± 0.0026 2.0000 ± 0

Ours
Straight 0.9707 ± 0.0135 1.0400 ± 0.5197
Curved 0.9716 ± 0.0123 0.7700 ± 0.3012

Curved Synth

K-means
Straight 0.9714 ± 0.0336 1.0000 ± 1.0000
Curved 0.9885 ± 0.0199 0.3333 ± 0.5774

DBSCAN
Straight 0.9563 ± 0.0757 1.3333 ± 2.3094
Curved 0.8898 ± 0.0337 3.0000 ± 1.0000

Ours
Straight 0.9823 ± 0.0138 0.3414 ± 0.3278
Curved 0.9992 ± 0.0006 0.0127 ± 0.0038

Curved Real

K-means
Straight 0.2443 ± 0.0984 73.3333 ± 29.2632
Curved 0.2721 ± 0.1493 70.0000 ± 19.5192

DBSCAN
Straight 0.7247 ± 0.2734 27.0000 ± 25.5343
Curved 0.5181 ± 0.1061 45.3333 ± 6.6583

Ours
Straight 0.8571 ± 0.0924 3.4667 ± 2.4437
Curved 0.9344 ± 0.0116 1.1933 ± 0.1858

Table 8.2. To have a baseline, we compare our approach with the K-means algorithm
directly applied in the image reference system and the DBSCAN clustering with
geometrical assignment approach proposed by [219]. All the clustering tests are
performed setting the confidence threshold to tp = 0.4 and the waypoint suppression
threshold to tsup = 8 pixels. As for the previous results, each value is reported with
its mean and standard deviation.

168
Waypoint Generation in Row-based Crops with Deep Learning and Contrastive

Clustering

Fig. 8.6 Examples of clustering on a real-world curved sample: K-means and DBSCAN
pipeline [219] are not able to correctly cluster the predicted waypoints; on the other hand,
the proposed method correctly assigns the points.

Our methodology achieves remarkable results, outperforming or at least matching
existing solutions in all the testing scenarios. In particular, both the training strategies
(based on straight and curved crops) approach perfect clustering on the synthetic
straight dataset and generalize well to real crops. On the contrary, K-means, which
perfectly works for the well-separated synthetic samples, loses more than half of its
adjusted accuracy and presents a very high clustering error when switching to real
test rows, mainly due to the irregular shapes typical of real-world vineyards. The
DBSCAN pipeline, instead, is able to generalize to straight satellite crops, since the
methodology was specifically designed to cope with real-world straight rows.

As regards curved test sets, K-means clustering is totally unable to generalize to the
real dataset. At the same time, also the DBSCAN pipeline results drop significantly
when switching to real samples, due to its heavy dependence on angle estimation. Our
model, trained on straight rows, obtains 0.98 adjusted accuracy and 0.34 clustering
error on synthetic data, outperforming both the baselines. However, it struggles to
generalize to real crops, reaching an adjusted accuracy of 0.86. On the other hand,
the model trained on curved data outperforms the baselines in synthetic and real
data, where it achieves an adjusted accuracy of 0.93. This result can be considered
extremely positive, taking into account the strong challenges present in satellite data.
In particular, a clustering error of 1.19 is remarkably smaller than those obtained
by K-means and DBSCAN. In conclusion, these results confirm how the proposed
methodology, combined with a well-devised generation process of curved synthetic
samples, allows path planning even in challenging scenarios.

8.3 Results 169

Fig. 8.7 Examples of full-coverage path planning in real-world curved vineyards taken from
Google Maps satellite database.

8.3.3 Qualitative Results

To give further insight into the performance of the proposed methodology, we
present some qualitative examples on real-world curved samples. Fig. 8.6 shows a
comparison between the three clustering methodologies. K-means and the DBSCAN
pipeline are clearly unable to correctly assign points in challenging scenarios. Finally,
Fig. 8.7 shows some examples of full-coverage path planning. The planning is
performed by selecting the points in an A-B-B-A fashion and using the planner
proposed by [230]. With geo-referenced maps, the planned path can be converted
from the image reference system to a Global Navigation Satellite System (GNSS)
reference frame to be used in real-world navigation. All the tests are performed
with the model trained on the curved dataset and setting the confidence threshold to
tp = 0.4 and the waypoint suppression threshold to tsup = 8 pixels.

Part IV

Generalization and Optimization of
Deep Learning Models

Chapter 9

Back-to-Bones: a Domain
Generalization Benchmark for
Backbones

Machine Learning algorithms without generalization properties would work only in
situations identical to the ones previously experienced [231]. Deep neural networks
(DNNs) are powerful models capable of extracting subtle regularities from training
data. Nevertheless, they often fail to generalize to out-of-training data. Indeed,
disparate independent studies report how neural networks could easily fail without
effective generalization capabilities, hindering the introduction of novel high-tech
systems in real-world [232, 233]. In Chapters7 and 10 the segmentation task on the
multi-crop dataset AgriSeg and in real robotics settings demonstrate the challenges of
training fully reliable DNNs. Indeed, in autonomous driving different environments
and circumstances not encountered during the training phase can be faced. They
can be caused by light, weather, background, synthetic textures, and they represent
what is commonly called a domain gap in the data. Domain Generalization (DG)
aims at training models that generalize to out-of-distribution (OOD) data. The access
to a set of source datasets provides a predictor with the ability to extract and learn
general invariant patterns, which are, hypothetically, also recognizable in the target
domain dataset [234, 235]. As an extension of supervised learning, this approach
aims to minimize empirical risk at training time to extrapolate an overall probability
distribution from source datasets that enables accurate classification of OOD data.

173

Fig. 9.1 Our experimentation proves the importance of backbones in Domain Generalization.
We find that novel architectures, such as transformed-based models, lead to a better represen-
tation of data, outperforming outdated backbones, such as ResNets, and leaving marginal
room for feature mapping improvement using DG algorithms.

In the last decade, aware of the tremendous impact of generalization on computer
vision applications, the DG research community has tackled the problem with al-
gorithms that aim to find invariant features that hold with novel domains. Among
the constellation of proposed approaches, we identify the principal broad strategies
adopted for domain generalization in augmenting the source domain [236, 237],
aligning domain distributions [238–242], meta-learning [243–245], self-supervised
learning [246–248], and regularization strategies [249–253]. Although methodolo-
gies have given meaningful insights about the nature of DG over the years, only
recent research contributions have proposed a rigorous testing benchmark to evaluate
and compare the advantages provided by DG algorithms fairly. With DOMAINBED

[254], the results obtained by the most relevant solutions have been critically ana-
lyzed over DG datasets, unmasking the marginal positive or negative improvement
obtained in most cases compared to naive empirical risk minimization (ERM). Nev-
ertheless, the study has been carried out uniquely with ResNet50 [59] as a feature
extractor. Thus, new DG algorithms are still proposed overlooking a fundamental
aspect of practical Deep Learning applications: the importance of the backbone.

In this study, we claim that the domain gaps existing in realistic scenarios should be
tackled starting from accurately selecting the model architecture, which is undeniably
central in most Deep Learning applications (Fig. 9.1). In particular, we conduct
extensive experimentation on the principal DG datasets and assess a wide variety of

174 Back-to-Bones: a Domain Generalization Benchmark for Backbones

ρ=
0.9
21

Fig. 9.2 DG accuracy achieved by tested backbones compared with their performance on
ImageNet, with error bars. Regardless of different architectures and priors, we find a strong
linear correlation between the two metrics (ρ = 0.921). In 9.2.1, we also compare DG
accuracy with the number of parameters, finding a much weaker correlation.

backbone architectures, from novel vision transformers to standard convolutional
models. Our results demonstrate an evident linear correlation between large-scale
single-domain classification accuracy and domain generalization performance (Fig.
9.2). Moreover, we achieve state-of-the-art results in DG with naive ERM and
simple data augmentation, remarking that, under fair testing conditions, the most
promising algorithms presented so far give no substantial advantage. We reinforce the
experimentation with a visual analysis of the feature extractors. As an outcome of this
work, we release BACK-TO-BONES1, a testbed for the Deep Learning community
to evaluate and compare the domain generalization performance of newly proposed
backbones.

9.1 Problem Framework

In this section, we first define necessary notations and concepts to frame the problem
of domain generalization and empirical risk minimization. Secondly, we introduce a
formal definition of a backbone and its constituents.

Problem Definition Given the input random variable X with values x ∈ X , and the
target random variable Y with values y ∈ Y , the definition of domain is associated
with the joint probability distribution PXY , or P(X ,Y), over XxY . Supervised learn-

1https://github.com/PIC4SeR/Back-to-Bones

https://github.com/PIC4SeR/Back-to-Bones

9.2 Back-to-Bones 175

ing aims to train a classifier f : X →Y exploiting N available labeled examples of a
dataset D = (xi,yi)

N
i=1 that are identically and independently distributed and sampled

according to PXY . The goal of the training process is to minimize the empirical risk
associated with a loss function l : Y ×Y → [0,+∞),

Remp(f) =
1
N

N

∑
i=1

l(f (xi),yi) (9.1)

by learning the classifier f . The dataset D is the only available source of knowledge
to learn PXY . We refer to this basic learning method as empirical risk minimization
[255].

In domain generalization, a set of different K source domains S = (Sk)
K
k=1 is used

to learn a classifier f that aims at generalizing well on an unknown target domain
T . Each source domain is associated with its joint probability distribution Pk

XY ,
whereas PS

XY indicates the overall source distribution learned by the classifier [256].
Indeed, DG aims to enable the classifier to predict well on out-of-distribution data,
namely on the target domain distribution PT

XY , by learning an overall domain invariant
distribution from the source domains seen during training.

Backbone Definition We define a backbone B = f (A,TB,D) as a function of three
elements: the model architecture A, the training procedure TB (including optimiza-
tion, regularization, and data augmentation), and the training data D. Consequently,
all three factors introduce a certain degree of variability to the domain generalization
accuracy:

DGaccuracy (S , T) = g(B,TDG,Nexp)

where TDG is the adopted DG training procedure and Nexp is the experimentation
noise. TDG usually includes a dedicated algorithm to cope with domain shifts. Nexp

comprehends a systematic error due to the adopted model selection strategy and a
random component caused by the stochasticity in the training process.

9.2 Back-to-Bones

We set up our experimental benchmark to run a detailed analysis of the role of feature
extractors in domain generalization. Besides choosing architectures, datasets, and
DG algorithms to evaluate, particular attention is given to model selection strategy

176 Back-to-Bones: a Domain Generalization Benchmark for Backbones

and statistical interpretation to obtain a fair and accurate benchmark. In the following
subsections, we provide details on our experimental setup.

Table 9.1 Baselines comparison of different backbones for DG. We report the average
accuracy over three runs and the associated standard deviation for each model. We include
the results achieved by DOMAINBED with ResNet50 for reference. The models marked with
* are pretrained on Imagenet21K instead of ImageNet1K. The rightmost column indicates
the accuracy of the networks on ImageNet1K. In [23] we included the detailed results on
single domains.

Backbone PACS VLCS Office-Home Terra Incognita Average ImageNet Parameters

ResNet18 80.51 ± 0.29 74.64 ± 0.61 63.87 ± 0.36 40.93 ± 1.85 64.99 ± 0.78 69.76 11.69M
ResNet50 [254] 85.50 ± 0.20 77.50 ± 0.40 66.50 ± 0.30 46.10 ± 1.80 68.90 ± 0.68 76.13 25.56M

ResNet50 83.85 ± 0.77 76.21 ± 1.20 68.79 ± 0.21 47.32 ± 0.97 69.04 ± 0.79 76.13 25.56M
ResNet50 A1 84.52 ± 0.68 78.37 ± 0.56 72.47 ± 0.13 42.23 ± 0.87 69.40 ± 0.56 80.40 25.56M

EfficientNetB0 85.46 ± 0.65 75.16 ± 0.34 67.27 ± 0.27 44.76 ± 0.94 68.16 ± 0.55 76.30 5.29M
EfficientNetB2 87.02 ± 1.37 75.44 ± 0.20 69.35 ± 0.24 43.80 ± 1.90 68.90 ± 0.93 79.80 9.11M
EfficientNetB3 86.71 ± 0.30 78.14 ± 0.18 69.84 ± 0.08 45.70 ± 1.84 70.10 ± 0.60 81.10 12.23M

DeiT Small 16 86.22 ± 1.33 79.47 ± 0.41 72.03 ± 0.33 43.40 ± 1.08 70.28 ± 0.79 79.87 22.05M
DeiT Base 16 88.10 ± 0.48 79.80 ± 0.32 76.35 ± 0.36 47.22 ± 0.75 72.87 ± 0.48 82.00 86.57M
ConViT Small 87.10 ± 0.33 80.00 ± 0.34 73.90 ± 0.17 45.83 ± 0.61 71.71 ± 0.36 81.43 27.78M
ConViT Base 87.27 ± 0.40 80.31 ± 0.67 76.51 ± 0.25 46.37 ± 0.89 72.62 ± 0.55 82.29 86.54M
LeViT Base 87.55 ± 1.50 78.91 ± 0.50 75.16 ± 0.13 45.68 ± 1.50 71.83 ± 0.91 82.59 39.13M

ViT Small 16* 83.59 ± 0.43 79.96 ± 0.60 77.25 ± 0.33 44.12 ± 1.07 71.23 ± 0.61 81.40 22.05M
ViT Base 32* 84.00 ± 1.17 78.46 ± 0.64 76.84 ± 0.17 36.71 ± 2.07 69.00 ± 1.01 80.72 88.22M
ViT Base 16* 88.48 ± 1.22 80.05 ± 0.15 81.47 ± 0.21 49.77 ± 1.28 74.94 ± 0.72 84.53 86.57M

Backbones To be consistent with previous works, we include ResNet18 and ResNet50
[59] in the benchmark and compare them with some of the most successful architec-
tures proposed in recent image classification research. We also consider the latest
ResNet50 A1 [257], trained using the most recent practices in optimization and data
augmentation and reaching a remarkable 80.4% top-1 accuracy on Imagenet1K. We
include different sizes for each network to glimpse the effects of model dimension on
DG accuracy. EfficientNet [258] demonstrated that systematical model scaling and
dimension balancing yield remarkable results with fewer parameters. For this reason,
we select three network versions, namely B0, B2, and B3. Finally, transformers [40]
recently revolutionized Deep Learning by proving the effectiveness of self-attention
for feature extraction; hence, four transformer-based architectures are included in
the comparison. In particular, we choose DeiT (Small and Base) [259], ConViT
[260] (both in its Small and Base configurations), and LeViT Base [261]. To provide
further insights on the effect of additional pretraining data besides standard ImageNet
[36], we also include Vision Transformer (ViT) [67] trained on ImageNet21K in its
Small and Base versions. Regarding ViT Base, a configuration with a 32x32 patch
size has been added to the standard 16x16 format to test the impact of patch size on

9.2 Back-to-Bones 177

DG. Further information on architectural details can be found in the cited papers.
We report the number of parameters for each model in the last column of Table 9.1.

Datasets Among the various datasets created explicitly for DG in the last years, we
use four of the most widely adopted ones for our primary experimentation. VLCS
[262] considers four previous classification datasets as domains, while PACS [263]
and Office-Home [264] focus more on style shifts (e.g. from photos to cartoons,
sketches, and paintings). Terra Incognita [265] comprehends several animal photos
taken with camera traps placed in different locations by day and night. To those, we
add DomainNet [266], a bigger and more recent dataset that contains six domains
divided by style and 345 classes. We use it to further stress the generalization
capability of the best-performing backbones in the presence of more transfer learning
data and fewer samples per class. We omit Rotated MNIST [267] and Colored
MNIST [268] since we consider them too distant from any practical application.
Moreover, from our perspective, simple rotation and colorization do not constitute
actual domain shifts.

DG Algorithms We choose some of the most promising DG algorithms in recent
research, particularly considering their performance on DOMAINBED [254]. More-
over, we select them to explore different approaches to the DG problem. CORAL
[239] and MMD [241], indeed, focus on aligning the extracted features through
second-order statistics (covariance). On the other hand, Mixup [269] works directly
on input images, interpolating samples from different domains and considering the
loss coming from both precursors. RSC [250], instead, introduces a heuristic that
discards dominant features in the label determination, stimulating the model to rely
on weaker data correlations. CausIRL [270] (used in combination with MMD or
CORAL) builds from a causal analysis of generalization enforcing soft domain in-
variance to interventions on the source domain. CAD [271] introduces a contrastive
adversarial domain bottleneck to guarantee convergence to target domains that pre-
serve the Bayes predictor. ADDG [272] exploits a double mechanism (Intra-model
and Inter-model) to diversify attention between features and suppress domain-related
attention.

Data Augmentation Many research works prove that data augmentation plays a
fundamental role in DG, as it can partially compensate for certain domain shifts
[237]. That is particularly true in the presence of style changes, as popular data
augmentation strategies involve the alteration of saturation, hue, and contrast. Since

178 Back-to-Bones: a Domain Generalization Benchmark for Backbones

the effect of data augmentation on DG has already been investigated, in this work,
we use a standard setup to keep the focus on backbones. The de-facto standard
augmentation strategy for DG, which we use in our benchmark, includes random
cropping keeping at least 80% of the original image, horizontal flipping with 50%
probability, image grayscaling with 10% chance, and random changes in color
brightness, contrast, saturation, and hue, with a maximum of 40%. Since all the
models are pretrained on ImageNet1K or ImageNet21K, input images are further
normalized according to the mean and standard deviation of that datasets.

Model Selection To assess the DG capability of the considered pretrained networks,
we fine-tune each of them on a set of K source domains S and test them on a
target domain T . As pointed out by [254], “a domain generalization algorithm
should be responsible for specifying a model selection method" and avoid improper
comparisons between results obtained adopting different selection methods. In total
agreement with their recommendations, we use the training-domain validation set
strategy, which picks the model maximizing the accuracy on a validation split of
the training set (in our case 10%, uniform across domains) at the end of each epoch.
This selection method assumes that the average distribution of source domains is
similar to that of the target domain on which the best model is tested.

Hyperparameter Search We conduct a random search for each backbone and
dataset to determine the optimal training hyperparameters for the baselines. We
define a range of values for continuous arguments and a set of choices for discrete
ones, running approximately 32 iterations for each search and selecting the best
combination via the previously defined model selection strategy. The learning rate is
bounded in the range [10−6,10−2], choosing its scheduler among step (90% reduction
after 80% of the epochs), exponential (with a decay in the range [0.9,1)), and cosine
annealing. The batch size and the number of training epochs are the same for all
the experimentation, fixing their values at 32 and 30, respectively. Finally, we use
cross-entropy loss and select the optimizer among SGD (with a momentum of 0.9)
and Adam, keeping the weight decay to 5 ·10−4.

Experimental Framework Our benchmarks are developed in Python 3 using the
Deep Learning framework PyTorch. As the experimentation applies transfer learning
to pretrained models, we use existing implementations of the considered backbones.
Only the classification head is changed, adapting the network to the different number
of classes. In particular, standard ResNets are taken from the PyTorch library torchvi-

9.2 Back-to-Bones 179

Table 9.2 Baseline comparison of a selection of the best backbones on DomainNet (Clipart,
Infograph, Painting, Quickdraw, Real, and Sketch domains). We include the results achieved
by DOMAINBED with ResNet50 for reference. The model marked with * is pretrained on
Imagenet21K instead of ImageNet1K.

Backbone C I P Q R S Avg

ResNet50 [254] 58.1 18.8 46.7 12.2 59.6 49.8 40.9
DeiT Base 16 69.1 25.0 55.8 17.1 69.3 57.0 48.9
ConViT Base 69.5 24.3 55.7 17.7 69.3 57.0 48.9
ViT Base 16* 74.9 28.9 60.8 17.5 77.3 61.8 53.5

sion2, EfficientNets from EfficientNet-PyTorch3, transformers and ResNet50 A1
from timm4. The implementations of DG algorithms are taken from DOMAINBED5

and adapted to work with the architectures under test.

We repeat each training three times with different and randomly generated seeds to
give more statistical information about accuracy results. In this way, both hyperpa-
rameter search and benchmarks cannot take advantage of the repeatability of trials,
as data splitting, augmentation, and weight initialization change from one iteration
to the next. Therefore, each of the results of our benchmark is reported as the mean
over three repetitions, along with its standard deviation.

9.2.1 Baseline Benchmark

The first analysis of our work consists of a precise and fair benchmark of the DG
capabilities of recent Deep Learning architectures for image classification, trying to
determine what solutions work best and, possibly, why. Every pretrained backbone,
after a hyperparameter search, is trained following the standard DG leave-one-
domain-out procedure using the previously described model selection strategy. Our
benchmark results are reported in Table 9.1 as the mean and standard deviation over
three iterations.

Firstly, our benchmark highlights a strong correlation between DG accuracy and
ImageNet performance. As depicted in Fig. 9.2, we find a direct proportionality
between the two metrics (excluding the ViT models due to their different pretraining).

2pytorch.org/vision/stable/models
3github.com/lukemelas/EfficientNet-PyTorch
4github.com/rwightman/pytorch-image-models
5github.com/facebookresearch/DomainBed

180 Back-to-Bones: a Domain Generalization Benchmark for Backbones

We apply linear least-square regression and obtain a Pearson correlation coefficient
ρ = 0.921. Indeed, a quick look at the results is sufficient to notice how newer and
more performing backbones tend to achieve a higher DG accuracy on nearly all the
datasets. That is primarily true for different sizes of the same architecture. ResNet50
reaches better results than ResNet18 for all the datasets, and the same happens
for EfficientNet, ConViT, and ViT variants. For ResNet50, we also compare our
results with those obtained by DOMAINBED and find comparable values. ResNet50
A1 benefits from its stronger pretraining, largely improving the accuracy obtained
by the standard model on VLCS and Office-Home. However, Terra Incognita
seems to penalize the network with its peculiar light conditions, resulting in a slight
overall enhancement. Regarding different architectures, EfficientNetB2 performs
very similarly to ResNet50 while the B3 version gains an additional 1% on them.
Transformer-based models bring further improvements by exploiting their self-
attention-based feature extraction, even in the case of DeiT Small and ConViT Small.
In particular, they strongly outperform EfficientNet on OfficeHome by over 4%,
while Terra Incognita is the only dataset without any significant progress. That is
probably due to the peculiarity of the domains, comprehending many night shots
that can be challenging even for humans and rewarding less effective ImageNet
pretraining. Among other transformers, DeiT Base 16 and ConViT Base prove to
be the best, the latter being slightly more performing. Finally, the three ViT models
show that pretraining on a more significant amount of data improves generalization.
However, only ViT Base 16 registers a considerable step forward, suggesting that
the abundance of data is fully exploited only by larger models. Nonetheless, ConViT
Small performs similarly to the same-sized ViT Small 16, while larger patches
demonstrate to degrade the accuracy of ViT Base 32. In conclusion, our results show
how better DG comes from the union of a good feature extractor architecture and an
optimal pretraining, as none of the two is sufficient alone.

As an additional comparison, we plot the achieved DG accuracy compared to the
number of parameters of the backbones (Fig. 9.3). Contrary to the graph of Fig. 9.2,
in this case, the correlation between model dimension and generalization is much
less marked, with a Pearson correlation coefficient (ρ) of 0.740. This confirms the
central role of model architecture in DG tasks and our idea of backbone as the union
of architecture, training procedure, and data.

9.2 Back-to-Bones 181

ρ=0.
740

Fig. 9.3 DG accuracy achieved by tested backbones compared with their number of parame-
ters, with error bars. We find a much weaker correlation between the two metrics (ρ = 0.740)
than the one reported in Fig. 9.2.

Finally, we conduct an additional benchmark on the DomainNet dataset. Although
representing a significant challenge for large-scale generalization, we choose to
include DomainNet only in this second stage of the study due to its demanding
computational nature and strong class unbalancing. Indeed, our main intention is
to promote a practical and accessible benchmark that aims to become a widespread
reference for DG. We select only the best three models from the previous tests for
this one (DeiT Base 16, ConViT Base, and ViT Base 16). In Table 9.2, we report
the results achieved on each test domain, including those obtained by DOMAINBED

on ResNet50 for reference. It is well evident that the feature extraction capabilities
of modern backbones bring substantial improvement in all the domains, with an
average increase in DG accuracy up to 12.6%. Moreover, ViT further enhances the
results by exploiting its stronger pretraining.

9.2.2 Model Introspection

After assessing the DG performance of different backbones, we propose a series of
insights on how different architectures leverage training data to create their inner
representation. First, we investigate the benefits of ImageNet pretraining for DG with
a k-NN classifier, comparing ResNet50 and the best models from our benchmark.
Then, we apply t-SNE [273] on the same extracted features to visualize how close

182 Back-to-Bones: a Domain Generalization Benchmark for Backbones

same-class and same-domain samples are and the effect of fine-tuning on DG datasets.
Finally, we inspect the attention maps of one of the transformer-based models to
have a qualitative insight on the region of the images it focuses on.

Fig. 9.4 DeiT Base attention maps when using the [CLS] token as a query for the different
heads in the last layer. We select the same head for all examples. ERM encourages the
backbone to focus on domain-invariant features, highly mitigating pretraining noise.

K-NN Evaluation Firstly, we take ResNet50 and the best-performing models from
our benchmark and evaluate their ability to tackle DG without fine-tuning. To do
so, we use ImageNet weights to extract features from training domains and a k-NN
(with k = 5) to fit that data. Then, we use test-domain images for the evaluation. To
have a fair comparison with our benchmark, we use the same amount of training
data, leaving out 10% of samples from source domains. The results in Table 9.3
show an overall difference of about 5% between ResNet50 and transformer-based
models pretrained on ImageNet1k. This outcome is consistent with the generalization
boost achieved in the standard DG framework (Table 9.1), although k-NN results
tend to oscillate among different datasets. On the same trend, ViT Base 16 gains an
additional 10% average accuracy, thanks to its pretraining on the larger ImageNet21K
dataset. This outcome suggests that learning a wider overall source distribution PS

XY

is always needed to tackle a substantial domain gap effectively. That pretraining
alone does not guarantee the ability to extract domain-invariant features.

9.2 Back-to-Bones 183

Table 9.3 Comparison of different feature extractors without fine-tuning, using a k-NN
classifier (k = 5). The model marked with * is pretrained on Imagenet21K instead of
ImageNet1K.

Backbone PACS VLCS Office-Home TerraInc. Avg

ResNet50 56.04 69.57 56.26 14.75 49.16
DeiT Base 16 56.27 65.50 65.57 27.06 53.60
ConViT Base 56.83 64.50 66.63 27.96 53.98
ViT Base 16* 75.14 75.14 82.72 25.64 64.66

horse, sketch

horse, art painting

guitar, cartoonguitar, art painting

Fig. 9.5 ResNet50 (ImageNet1K)
S = 0.1430

horse, art painting

horse, sketch

guitar, cartoon

guitar, art painting

Fig. 9.6 ResNet50 (S: [P, C, S]→ T :
A)
S = 0.3107

horse, art painting

horse, sketch
guitar, cartoon

guitar, art painting

Fig. 9.7 ConViT Base (ImageNet1K)
S = 0.1558

horse, art painting

horse, sketch

guitar, cartoon

guitar, art painting

Fig. 9.8 ConViT Base (S: [P, C, S]
→ T : A)
S = 0.5688

Fig. 9.9 Backbone features visualization with t-SNE on PACS (Photo (P), Art Painting
(A), Cartoon (C) and Sketch (S) domains). Target domain samples are highlighted. Some
image examples from different domains and classes are visualized for better interpretability.
After the fine-tuning, the ConViT Base architecture achieves a better class separation than
ResNet50, clustering together same-class samples of different domains.

184 Back-to-Bones: a Domain Generalization Benchmark for Backbones

Feature Mapping Visualization To further enlighten the role of backbones in ex-
tracting meaningful and invariant features to deal with DG, we can visualize the
distributions in the feature space by projecting them in a two-dimensional space
using t-SNE. Fig. 9.9 shows t-SNE visualization for ResNet50 and ConViT Base,
pretrained on ImageNet1K and fine-tuned on PACS, targeting the Art Painting do-
main. For each model, we remove the classification head and extract the features
for the whole dataset. The more clustered the same class features appear in the
t-SNE, the more separable from other classes they are in the original space. We
also include the silhouette score (S) as a quantitative metric of the separation of
classes below each plot. Fig. 9.5 shows how ResNet50 pretrained on ImageNet tends
to map together same-domain samples and not same-class ones, being therefore
unsuitable for DG without fine-tuning. After the fine-tuning process (Fig. 9.6), the
model achieves a better separation of source domain classes. However, many target
domain samples are still mapped in the same space, far from the same-class source
clusters (e.g. the Art Painting guitar example). Similarly to ResNet50, without
fine-tuning, domains dominate the features space distribution of ConViT (Fig. 9.7),
causing several clusters of the same class but different domains to emerge in different
locations (e.g. horse samples). However, some same-class samples of more similar
domains, such as the guitars of Cartoon and Art Painting, are effectively clustered
together. The fine-tuning process (Fig. 9.8) distinctly pushes together same-class
clusters, resulting in good generalization over the target domain. This analysis sug-
gests that the ConViT backbone is more suited for DG than ResNet50 since it tends
to give more similar representations to same-class samples from different domains.
Additional feature mapping visualizations have been reported in the appendix section
of the paper [23].

Self-attention Visualization In literature, DG algorithms are often presented with
a qualitative analysis, highlighting the regions the network focuses on using interpre-
tation methods such as GradCAM [274]. Indeed, heat maps are brought as evidence
of their capability to push attention toward more localized and domain-invariant
features. Nevertheless, this section shows that competitive backbones with naive
ERM can perfectly localize class-discriminative regions. In particular, Fig. 9.4 shows
the attention maps extracted using the [CLS] token as a query for the different heads
in the last layer of the DeiT Base architecture. We provide four random examples for
different target domains of PACS showing the same attention head map before and
after DG fine-tuning. It is remarkable how naive ERM is able to redirect attention

9.2 Back-to-Bones 185

towards more invariant features. Additional attention visualizations are reported in
the original paper [23].

Table 9.4 Comparison between ERM and three promising DG algorithms on the best-
performing backbones of our benchmark. We report the average accuracy over three runs and
the associated standard deviation for each model. We highlight in bold the best result for each
dataset, including ERM, when its accuracy is in the same confidence interval. We include the
results achieved by DOMAINBED with ResNet50 for reference. The model marked with * is
pretrained on Imagenet21K instead of ImageNet1K. We report in detail the results obtained
for all the domains in [23].

Backbone Algorithm PACS VLCS Office-Home Terra Incognita Overall

ResNet50 [254]

ERM [255] 85.50 ± 0.20 77.50 ± 0.40 66.50 ± 0.30 46.10 ± 1.80 68.90 ± 0.68
RSC [250] 85.20 ± 0.90 77.10 ± 0.50 65.50 ± 0.90 46.60 ± 1.00 68.60 ± 0.83

Mixup [269] 84.60 ± 0.60 77.40 ± 0.60 68.10 ± 0.30 47.90 ± 0.80 69.50 ± 0.58
CORAL [239] 86.20 ± 0.30 78.80 ± 0.60 68.70 ± 0.30 47.60 ± 1.00 70.33 ± 0.55
MMD [241] 84.60 ± 0.50 77.50 ± 0.90 66.30 ± 0.10 42.20 ± 1.60 67.65 ± 0.78

CausIRL CORAL [270] 85.80 ± 0.10 77.50 ± 0.60 68.60 ± 0.30 47.30 ± 0.80 69.80 ± 0.45
CausIRL MMD [270] 84.00 ± 0.80 77.60 ± 0.40 65.70 ± 0.60 46.30 ± 0.90 68.40 ± 0.68

CAD [271] 85.20 ± 0.90 78.00 ± 0.50 67.40 ± 0.20 47.30 ± 2.20 69.48 ± 0.95
ADDG [272] 89.2 - 72.5 - -

DeiT Base 16

ERM [255] 88.10 ± 0.48 79.80 ± 0.32 76.35 ± 0.36 47.22 ± 0.75 72.87 ± 0.48
RSC [250] 85.37 ± 1.30 77.27 ± 0.51 76.47 ± 0.28 45.41 ± 1.50 70.97 ± 0.90

Mixup [269] 85.67 ± 0.61 78.25 ± 0.60 75.96 ± 0.11 46.63 ± 0.49 71.32 ± 0.48
CORAL [239] 85.13 ± 0.82 78.34 ± 0.86 76.48 ± 0.14 46.33 ± 1.83 71.38 ± 0.93
MMD [241] 87.22 ± 0.28 78.71 ± 0.22 77.03 ± 0.10 49.35 ± 1.42 73.08 ± 0.50

CausIRL CORAL [270] 83.86 ± 0.75 77.80 ± 0.40 76.12 ± 0.04 46.73 ± 0.81 71.13 ± 0.50
CausIRL MMD [270] 85.46 ± 0.68 77.27 ± 0.42 76.53 ± 0.42 45.77 ± 1.66 71.26 ± 0.79

CAD [271] 87.74 ± 0.62 79.28 ± 0.36 76.61 ± 0.15 47.46 ± 0.64 72.77 ± 0.44
ADDG [272] 75.30 ± 0.34 78.28 ± 0.77 77.58 ± 0.30 29.14 ± 2.24 65.07 ± 0.91

ConViT Base

ERM [255] 87.27 ± 0.40 80.31 ± 0.67 76.51 ± 0.25 46.37 ± 0.89 72.62 ± 0.55
RSC [250] 85.73 ± 0.81 79.05 ± 0.61 76.77 ± 0.26 44.94 ± 1.47 71.62 ± 0.79

Mixup [269] 86.00 ± 0.45 80.00 ± 0.76 76.48 ± 0.16 43.95 ± 0.18 71.61 ± 0.39
CORAL [239] 86.24 ± 0.24 79.62 ± 0.38 75.33 ± 0.22 44.41 ± 1.33 71.40 ± 0.54
MMD [241] 86.84 ± 0.63 80.72 ± 0.55 77.94 ± 0.31 46.78 ± 1.22 73.07 ± 0.68

CausIRL CORAL [270] 84.71 ± 0.31 79.14 ± 0.69 77.05 ± 0.16 45.63 ± 2.03 71.63 ± 0.80
CausIRL MMD [270] 86.59 ± 0.96 80.30 ± 0.56 77.92 ± 0.35 46.85 ± 0.59 72.92 ± 0.61

CAD [271] 87.42 ± 0.66 79.99 ± 0.41 77.71 ± 0.09 46.77 ± 3.31 72.97 ± 1.12
ADDG [272] 86.34 ± 0.76 79.79 ± 0.30 76.29 ± 0.33 43.97 ± 1.75 71.60 ± 0.78

ViT Base 16*

ERM [255] 88.48 ± 1.22 80.05 ± 0.15 81.47 ± 0.21 49.77 ± 1.28 74.94 ± 0.72
RSC [250] 86.58 ± 2.14 79.59 ± 0.63 78.74 ± 0.64 40.79 ± 1.41 71.42 ± 1.20

Mixup [269] 88.62 ± 0.54 80.77 ± 1.28 82.93 ± 0.07 48.59 ± 0.92 75.23 ± 0.70
CORAL [239] 84.60 ± 1.31 80.89 ± 0.49 80.92 ± 0.25 50.58 ± 0.26 74.25 ± 0.58
MMD [241] 87.99 ± 0.08 79.54 ± 0.37 81.71 ± 0.28 49.40 ± 2.45 74.66 ± 0.79

CausIRL CORAL [270] 88.26 ± 1.09 80.10 ± 0.91 81.73 ± 0.13 47.29 ± 2.64 74.35 ± 1.19
CausIRL MMD [270] 86.57 ± 1.13 79.48 ± 1.12 81.62 ± 0.22 49.52 ± 0.58 74.30 ± 0.76

CAD [271] 87.44 ± 0.53 78.79 ± 2.43 79.80 ± 0.36 39.45 ± 4.15 71.37 ± 1.87
ADDG [272] 75.33 ± 0.54 77.77 ± 0.32 77.72 ± 0.09 25.60 ± 0.64 64.11 ± 0.40

186 Back-to-Bones: a Domain Generalization Benchmark for Backbones

9.2.3 Domain Generalization Algorithms

Domain generalization research mainly focuses on studying non-trivial algorithms
to reduce the effect of domain shifts on classification accuracy. However, these
algorithms are uniquely proposed in combination with outdated backbones such as
ResNet50, ResNet18, or even AlexNet. According to the results in Table 9.1, recent
backbones can provide significant improvements compared to ResNet50 with simple
ERM. At this point, it is worth determining whether the application of DG algorithms
brings a further boost in generalization to our baselines. To do so, we combine some
of the most promising and recent algorithms available on DOMAINBED with three
of our best baselines. We evaluate the methods introduced at the beginning of this
Section (MMD, CORAL, Mixup, RSC, CAD, CausIRL CORAL, CausIRL MMD,
and ADDG) using ViT Base 16, DeiT Base 16, and ConViT Base as backbones
and repeating each training three times. Table 9.4 reports the obtained results,
composed of average accuracy and associated standard deviation. Results obtained
with ResNet50 are also reported directly from DOMAINBED for the same group of
datasets as a reference. The only exception is the most recent ADDG, which the
authors have not tested on VLCS and Terra Incognita and does not report standard
errors. As highlighted by the values in bold, the overall performance of ERM is
equal to or better than other DG algorithms for all the considered datasets and
backbones. Indeed, even where another methodology slightly outperforms ERM, the
accuracy results mostly fall in the same confidence interval and hence differ very little
statistically. We can then conclude from our experimentation that DG algorithms
improve generalization properties marginally or even negatively for transformer-
based backbones. This outcome extends the recent findings of DOMAINBED to other
baselines and strongly reinforces the belief that choosing an effective backbone is the
first step towards filling domain gaps. A more detailed presentation and discussion
of the results obtained, including the results on each single domains, can be found in
the original paper [23].

Chapter 10

Crop Segmentation with Knowledge
Distillation: Domain Generalization
on the AgriSeg dataset

Among all the DL solutions developed for precision agriculture [275], semantic
segmentation is one of the most adopted perception techniques [276], being used
to identify objects on different scales: detailed leaf disease [277, 278], single fruits
or branches [279, 280], crop rows [199], and entire fields [281, 282]. However, as
shown in the robotic application in Chapter 7, operating autonomously in agricultural
environments may present peculiar generalization challenges due to weather or
lighting conditions, terrain, and plant shapes and colors. According to this, DL
models easily fail in realistic applications without effective generalization ability,
leading autonomous systems to failure [232, 233]. Moreover, the scarcity of task-
specific labeled data has recently favored the practice of synthetic data generation,
leading to an additional Simulation-to-Reality (Sim2Real) gap problem [283].

For this reason, robustness in realistic scenarios needs to be investigated and en-
hanced with a Domain Generalization (DG) approach. DG is a set of representation
learning techniques that aims to train DL models capable of generalizing to unseen
domains, i.e., out-of-distribution (OOD) data. In Chapter 9 the DG problem has
been formulated and framed in the landscape of existing methodologies, underlining
the importance of the backbones and proposing a rigorous benchmark [23], together
with [254]. However, these studies are limited to the image classification task and

188
Crop Segmentation with Knowledge Distillation: Domain Generalization on the

AgriSeg dataset

DG methods are often evaluated on small artificial datasets [256]. The applica-
tion of generalization methods to realistic tasks is still limited to a few attempts
[284, 285, 24].

In the meantime, segmentation across multiple scenarios has been studied through
the design of massive foundation models [286] and specific DG methods. As
we aim to push the limits of generalization for small and efficient architectures,
we focus on the latter approach. In particular, [287] proposed an Instance Batch
Normalization (IBN) block for residual modules to avoid networks’ bias toward
low-level domain-specific features like color, contrast, and texture. [288], on the
same line, proposed a permuted Adaptive Instance Normalization (PAdaIN) block,
which works at both low-level and high-level features, randomly swapping second-
order statistics between source domains and hence regularizing the network towards
invariant features. [284] proposed RobustNet, a model incorporating an Instance
Selective Whitening (ISW) loss disentangling and removing the domain-specific
style in feature covariance. [285] proposed to extract domain-generalized features
by leveraging a variety of contents and styles using a wild dataset. Differently, [289]
has been the first attempt to apply knowledge distillation in the DG framework for
classification tasks proposing a gradient filtering approach. [290], instead, proposed
Cross-domain Ensemble Distillation (XDED) to extract the knowledge from domain-
specific teachers and obtain a general student. However, this setup was only applied
to classification, while the authors used a different approach for segmentation based
on a single training domain. This was probably because largely-used segmentation
datasets do not allow benchmarking on multiple domains.

This work aims to effectively exploit knowledge distillation to enhance DG and
propose a novel multi-domain benchmark for crop segmentation. For this research,
we adopt the lightweight (LR-ASPP) network architecture described in Chapter 7
to perform the semantic segmentation task at a reasonable inference time on low-
resources hardware. The proposed method distills knowledge from an ensemble of
models individually trained on source domains to a student model that can adapt
to unseen target domains as depicted in Fig. 10.1. Furthermore, we investigate the
effect of feature whitening to reduce domain-specific bias and improve the ability
of the model to focus on domain-independent features. To properly validate the
proposed method, the synthetic multi-domain dataset for crop segmentation AgriSeg
is presented, containing 10 crop types and covering different terrain styles, weather

10.1 Methodology 189

Specialized Teachers General Student

Fig. 10.1 Schematic representation of the proposed distillation methodology for crop seg-
mentation. Ensembled specialized teachers allow the student to obtain a distillation mask
(ȳT) that is much more informative than the label (y).

conditions, and light scenarios for more than 50,000 samples. Quantitative and
qualitative experiments have been conducted to demonstrate the effectiveness of the
method compared to other state-of-the-art methodologies. The code used for the
experiments1 and the AgriSeg dataset2 are publicly available.

10.1 Methodology

A formal definition of the Domain Generalization problem has been given in the
previous Chapter 9. Here, we decline the same problem in the semantic segmentation
task adopting the backbone architecture describe in Chapter 7. Therefore, we
provide a brief explanation of the knowledge distillation and ensemble distillation
methodologies used to composed our overall solution for the AgriSeg application.

10.1.1 Knowledge Distillation

Knowledge distillation aims at transferring the knowledge learned by a teacher
model to a smaller or less expert student model. It has first been proposed in [291],
received greater attention after [292], and represents today one of the most promising
techniques for model compression and regularization. In its original formulation

1https://github.com/PIC4SeR/AgriSeg
2https://pic4ser.polito.it/agriseg/

https://github.com/PIC4SeR/AgriSeg
https://pic4ser.polito.it/agriseg/

190
Crop Segmentation with Knowledge Distillation: Domain Generalization on the

AgriSeg dataset

based on classification, knowledge distillation consists in applying an auxiliary loss
to the output logits of the student zS(x) ∈ RC, where C is the number of classes. The
posterior predictive distribution of x can be formulated as:

P(y|x;θ ,τ) =
exp(zy(x)/τ)

∑
C
i=1 exp(zi(x)/τ)

(10.1)

where y is the label, θ is the set of parameters of the model, and τ is the temperature
scaling parameter. To match the distributions of student and teacher, knowledge
distillation minimizes the Kullback-Leibler Divergence between the two:

LKD(X ;θ ,τ) = ∑
xi∈X

C

∑
c=1

DKL(P(c|xi;θT ,τ)||P(c|xi;θS,τ)) (10.2)

where X is a batch of input samples and θT and θS are the parameters of teacher
and student, respectively. In this work, we apply a novel knowledge distillation
technique for semantic segmentation to improve the ability of models to generalize
across domains.

10.1.2 Ensemble Distillation

We propose a simple yet effective training procedure based on model ensemble
and knowledge distillation to encourage the model to learn domain-invariant fea-
tures. We draw inspiration from the Cross-Domain Ensemble Distillation (XDED)
methodology proposed for image classification in [290], which leverages the sep-
arate pretraining of a teacher for each source domain and distills the ensembled
logits predicted by them. We aim to apply the same intuition to semantic segmen-
tation, taking into account the differences between the two tasks and improving
the methodology accordingly. As a remark, the authors of XDED also proposed a
semantic segmentation method in the same paper, but radically different from the
original XDED. The choice was probably because the adopted benchmark (GTA
V → Cityscapes) provided only one source domain, and a proper cross-domain
ensemble was impossible. In particular, they instead average all the output logits in
a training batch that correspond to the same ground-truth label. We compare with
XDED in 10.3.

In our proposed method, we improve on the work of [290] by fully adapting XDED
to semantic segmentation. In particular, we train a teacher for each source domain

10.1 Methodology 191

and ensemble them to create the distillation knowledge:

ȳT (x) =
1
D

D

∑
d=1

ŷT
d (x) (10.3)

where ŷT
d is the predicted logits tensor for the source domain d, ȳT is the ensembled

teacher logits tensor, and D is the number of source domains. The motivation behind
this choice is that by averaging the predictions of different specialized models, the
resulting map is much more informative than the ground-truth label. As depicted in
figure 10.3, the teacher’s segmentation is less confident and often assigns non-zero
probabilities to disturbing elements such as grass and background vegetation. This
spurious information guides the student towards implicitly recognizing what features
are more likely to confound at test time, as the distillation loss has a relatively
low weight in the optimization process. On the contrary, if the distillation mask is
very confident, the student is guided toward being more confident and implicitly
incorporates the information that a certain domain is easier to segment. This effect
can be enhanced using a temperature factor. For this reason, we train the student
in the standard ERM DG framework with an additional distillation loss based on
the distance between the output logits of the student and the ensembled teacher. We
leverage the recent findings by [293] and modify the distillation loss function to
exploit the channel-wise information extracted from the network.

In particular, we apply the softmax operator φ along the flattened spatial dimension
instead of the channel dimension before computing the loss:

φ(ŷS) =
exp(ŷS

i /τ)

∑
W ·H
i=1 exp(ŷS

i /τ)
(10.4)

where ŷS
i is the i-th element of the flattened student logit tensor ŷS, W ·H is its spatial

dimension, and τ is the temperature. The same operation is applied to the teacher
logits ȳT . The distillation loss is calculated as the Kullback-Leibler Divergence
(KLD) between the teacher and student logits:

LKD(ȳT , ŷS) =
τ2

C

C

∑
c=1

W ·H
∑
i=1

φ(ȳT
c,i) · log

(
φ(ȳT

c,i)

φ(ŷS
c,i)

)
(10.5)

192
Crop Segmentation with Knowledge Distillation: Domain Generalization on the

AgriSeg dataset

where C is the number of output channels and, hence, of semantic classes. For the
specific case of binary segmentation, the formulation is simplified as the predicted
mask consists of only one channel (C = 1).

In combination with the distillation loss, we optimize the standard cross-entropy loss
between the student logits and the ground-truth labels y:

LCE(y, ŷS) =−
C

∑
i=1

yi · log(ŷS
i) (10.6)

which for binary segmentation becomes a simple binary cross-entropy loss. The
overall loss can be written as follows:

L(y, ȳT , ŷS) = LCE(ȳ, ŷS)+λLKD(ȳT , ŷS) (10.7)

where λ is a weighting parameter to balance the loss components. We provide a
thorough ablation of the various component of our method in 10.3.2 to highlight the
strong improvement on similar solutions.

10.2 Experimental Setting

This section describes the details of the proposed synthetic AgriSeg segmentation
dataset and the procedure we followed to validate the effectiveness of our DG
methodology. In 10.2.1, we review the procedure followed to generate the AgriSeg
dataset, while in section 10.2.2, details on the training framework and implementation
are given.

10.2.1 Dataset

To generate the synthetic crop dataset with realistic plant textures and measurements,
high-quality 3D plant models have been created using Blender3. A wide variety of
crops have been included in the dataset to validate the segmentation performance of
the model trained with the proposed DG method. Depending on the plant’s height,
three primary macro-categories of crops have been identified. Low crops, such as
Lettuce and Chard, have an average height of 20-25 cm. Medium crops, such as
Zucchini, grow to 60 cm. Tall crops, which include vineyards and trees, can grow up

3https://www.blender.org/

10.2 Experimental Setting 193

Fig. 10.2 Detailed example of synthetic 3D crop models realized to build the AgriSeg Dataset.
A generic tree (top) and lettuce (bottom) are on the left. On the right are zucchini (top) and
vines (bottom).

to 2.5-4.5 m. A meaningful target performance to be achieved by the segmentation
model is set to generalize to previously unseen plants inside the same macro-category,
which differ mostly in the color features and slightly in the geometrical shape. Some
examples of 3D plant models are shown in Fig. 10.2.

Various terrains and sky models have been used to achieve realistic background and
light conditions to achieve realistic background and light conditions. The generaliza-
tion properties of the segmentation network are enhanced considering the light of
different moments of the day and various weather conditions. Afterward, Blender’s
Python scripting functionality was used to automatically separate plants from the
rest of the frame and generate a dataset of RGB images and their corresponding
binary segmentation mask. This work presents the AgriSeg dataset, composed of
RGB images and the associate segmentation mask samples of low crops, such as
chards and lettuce, medium crops like zucchini, generic vineyard, pergola vineyards,
pear trees, and generic tall trees. Nonetheless, each dataset presents four sub-datasets
that differ in the background and the terrain. Cloudy and sunny skies, diverse light-
ing, and shadow conditions are considered. Camera position and orientation have
been changed to acquire diversified image samples along the whole field for each

194
Crop Segmentation with Knowledge Distillation: Domain Generalization on the

AgriSeg dataset

Crop Samples Type Category↓ Height [m]

Lettuce 4800 Synthetic Low 0.22
Chard 4800 Synthetic Low 0.25
Lavender 4800 Synthetic Low 0.3
Zucchini 19200 Synthetic Medium 0.6
Vineyard 4800 Synthetic Tall 2.5
Pergola Vineyard 4800 Synthetic Tall 3.2
Pear Tree 4800 Synthetic Tall 2.7
Generic Tree 1 4800 Synthetic Tall 4.5
Generic Tree 2 2785 Synthetic Tall 4.5

Vineyard [199] 500 Real Tall 2.5
Miscellaneous 100 Real Any Any

Table 10.1 Detailed properties for each domain of the AgriSeg dataset. The section on the
top reports the synthetic crops datasets generated in simulation, while the section on the
bottom the real-world ones.

subdataset. The details of each subdataset are listed in Table 10.1. In the last rows,
we also include two real domains to validate the considered methodologies on real
data. The Real Vineyard dataset was originally presented in [199], but the proposed
labels were coarse. Hence, we re-label the samples using the SALT labeling tool 4

based on Segment Anything [286]. We include another real domain, Miscellaneous,
containing 100 samples from disparate crop types, and label it using SALT. This
domain aims to benchmark the segmentation performance on any crop and is used
as a final test in our experiments. Overall, the AgriSeg dataset contains more than
50,000 samples.

10.2.2 Training

In this section, we report all the relevant information regarding the experimental
setting of model training and testing: data preprocessing, hyperparameter search,
and implementation. We repeat each training five times with different and randomly
generated seeds to give more statistical information about accuracy results. In
this way, both hyperparameter search and benchmarks cannot take advantage of
the repeatability of trials, as data splitting, augmentation, and weight initialization

4https://github.com/anuragxel/salt

https://github.com/anuragxel/salt

10.2 Experimental Setting 195

change from one iteration to the next. Each of the results of our benchmark is
reported as mean and standard deviation.

Data Preprocessing

We preprocess input images through the ImageNet standard normalization [36] to
use pretrained weights. We apply the same data augmentation to all the experi-
ments, following common practice in DG for semantic segmentation. It consists of
random cropping with a factor in the range [0.5,1], flipping with a probability of
50%, greyscale with a probability of 10%, random brightness, and contrast with a
maximum relative change of 0.4. Experiments confirm that this configuration leads
to enhanced generalization on the proposed dataset.

Hyperparameters

We conduct a random search to determine the optimal training hyperparameters for
the ERM DG baseline. We define a range of values for continuous arguments and
a set of choices for discrete ones and select the best combination via the training-
domain validation set strategy proposed in [254]. It consists of picking the model
that maximizes the metric (in our case, Intersection-over-Union with a threshold
of 0.9) on a validation split of the training set (in our case, 10%, uniform across
domains) at the end of each epoch. This selection method assumes that the average
distribution of source domains is similar to that of the target domain on which the
best model is tested.

We choose a batch size B = 64 and set the number of training epochs to 50. Since
our dataset tackles binary crop segmentation, the adopted task loss is binary cross-
entropy, while for the distillation loss, we choose temperature τ = 1 and weight λ = 3.
Following the procedure proposed in [290], we combine knowledge distillation with
feature whitening and apply UniStyle to the first layers of the backbone (results are
reported in 10.3). We use AdamW [294] as the optimizer with a weight decay of
10−5. The learning rate is scheduled with a polynomial decay between 10−3 and
10−5. As regards the compared methodologies, we apply IBN [287] and ISW[284]
to the first three blocks of the backbone, while pAdaIN [288] is applied to all the
layers with a probability of 10−3. The ISW loss is weighted by a factor of 10−2,
while XDED [290] is applied with a weight of 10−3, a temperature of 2, and in
combination with UniStyle feature whitening.

196
Crop Segmentation with Knowledge Distillation: Domain Generalization on the

AgriSeg dataset

Implementation

Our experimentation code is developed in Python 3 using TensorFlow as the DL
framework. We train models starting from ImageNet pretrained weights, so the input
size is fixed to (224×224). The considered DG methodologies are taken from the
available repositories where possible or reimplemented. All the training runs are
performed on a single Nvidia RTX 3090 graphic card.

10.3 Results

In this section, we present the main results of the experimentation conducted to
evaluate the effectiveness of the proposed methodology. First, we compare our
distillation-based approach with recent and promising DG and semantic segmenta-
tion alternatives. Inspired by popular datasets for image classification, we select four
domains (Generic Tree 2, Chard, Lettuce, and Vineyard) and evaluate all the method-
ologies by training on three domains and testing on the fourth. The domains are
selected to cover different crop dimensions and visual characteristics and guarantee a
challenging generalization benchmark. Then, we perform an additional evaluation by
training the model on all four datasets and testing on four additional target domains
(Pear Tree, Zucchini, Real Vineyard, and Real Miscellaneous). We also report the pre-
dicted masks for a qualitative comparison on some random samples. In addition, we
conduct a small ablation study to investigate the effect of UniStyle feature whitening,
the difference between channel-wise and spatial-wise softmax in the computation of
the distillation loss, and the importance of specialized single-domain teachers.

10.3.1 DG Benchmark

We run the leave-one-out DG benchmark described in 10.2.2 and report the results
with their mean and standard deviation in Table 10.2. On average, our ensemble
distillation methodology is 3% better than the second-best compared solution (ISW).
Moreover, it achieves the best or second-best results on each target domain, confirm-
ing that distilling from a set of specialized teachers gives insightful information to
the student and makes it less biased towards domain-specific features. The results for
ERM are quite balanced across domains, proving the strong validity of this method
despite its simplicity. ISW achieves positive results, generalizing well on almost all
crops but failing in the Lettuce domain. This failure could be due to the color of

10.3 Results 197

Method Generic Tree 2 Chard Lettuce Vineyard Average

ERM[255] 38.38±12.10 83.22±5.50 33.45±13.34 46.69±9.69 50.44±10.15
IBN[287] 26.92±12.61 83.52±1.97 33.14±22.82 47.72±2.96 47.83±10.09
ISW[284] 65.72±8.4765.72±8.4765.72±8.47 86.05±3.87 25.72±12.89 51.34±2.36 57.21±6.00

pAdaIN[288] 42.27±12.80 79.93±1.65 13.22±8.30 45.73±4.81 45.29±6.89
XDED[290] 38.79±17.26 84.35±5.11 29.99±14.80 47.63±6.27 50.19±10.86

WildNet[285] 45.76±2.17 82.45±0.78 22.20±0.73 59.78±0.4859.78±0.4859.78±0.48 52.55±1.04
Ours 50.02±06.80 86.17±1.7986.17±1.7986.17±1.79 58.01±12.7458.01±12.7458.01±12.74 53.26±3.59 61.86±6.2361.86±6.2361.86±6.23

Table 10.2 Comparison between the proposed methodology and other state-of-the-art DG
algorithms for semantic segmentation adopting the leave-one-out DG validation procedure
described in 10.2.2. We report the Intersection-over-Union (IoU) metric (in %) for each result
as mean and standard deviation. Each column’s best and second-best results are highlighted
and underlined, respectively.

Method Pear Tree Zucchini Real Vineyard Real Misc. Average

ERM[255] 78.37±2.51 86.51±1.71 42.76±11.38 64.40±3.10 68.01±4.68
IBN[287] 73.80±4.21 86.21±3.23 42.23±11.32 63.36±9.47 66.40±7.13
ISW[284] 73.49±1.81 87.47±0.7787.47±0.7787.47±0.77 33.80±23.85 48.36±7.30 60.78±8.43

pAdaIN[288] 74.53±2.53 81.83±4.82 41.16±10.23 60.32±9.09 64.46±6.67
XDED[290] 76.82±3.02 86.34±1.07 46.38±10.07 57.24±8.89 66.69±5.76

WildNet[285] 75.31±3.50 81.88±2.37 31.11±1.35 46.57±3.09 58.72±2.58
Ours 80.18±2.6580.18±2.6580.18±2.65 86.25±1.42 52.01±4.6852.01±4.6852.01±4.68 66.69±3.1866.69±3.1866.69±3.18 71.28±2.9871.28±2.9871.28±2.98

Table 10.3 Comparison between the proposed methodology and other state-of-the-art DG
algorithms on additional target domains. We train the models on all four domains chosen
for the previous benchmark. We report the Intersection-over-Union (IoU) metric (in %) on
the unseen domains as mean and standard deviation. The best and second-best results are
highlighted and underlined, respectively.

lettuce since its leaves get easily confounded with the color of grass in other domains
(e.g. Vineyard). Our method, instead, retains good performance thanks to the insights
given by the ensembled teachers and is not biased by spurious color correlations.
However, the variance in results is considerable for the most challenging domains
for almost all the DG methodologies tested. WildNet, instead, presents quite stable
average performances over the runs but reports suboptimal results. This finding
suggests that DG training offers a complex challenge, and our KD methodology
could be further studied and improved to provide more robust results. We will
address this aspect in future works.

To further validate the generalization capability of our method, we construct a more
challenging benchmark by using four unseen test domains (Pear Tree, Zucchini,

198
Crop Segmentation with Knowledge Distillation: Domain Generalization on the

AgriSeg dataset

Gen. Tree 2 Chard Lettuce Vineyard

ERM

Ours

Fig. 10.3 Comparison of ERM predictions with our ensemble of specialized teachers. While
for simpler domains, the predictions of the specialized teachers agree and return a high-
confidence mask, for challenging ones, the teachers give an uncertain but more informative
mask.

Real Vineyard, and Real Miscellaneous). The models are trained and validated on
all four datasets used for the previous benchmark. In this way, each model has
been trained on at least a domain similar in shape and size to a target domain,
informing the models about the principal geometric features of different plant types.
Here the domain gap resides in visual differences and correlations between plants
and backgrounds. The results are reported in Table 10.3. Our method overcomes
all state-of-the-art alternatives, as in the leave-one-out benchmark. The proposed
solution retains the best performance on almost all the domains, except for Zucchini,
where the difference is really small. This result enforces previous considerations
on the generalization ability of knowledge distillation without any additional layers
or computations at inference time. As expected, thanks to the Generic Tree 2
source domain, all the models perform well on the Pear Tree domain, despite its
significant difference in shape from the other crops. An interesting aspect is that
ERM obtains good results on all the crops being the second-best generalizing model
in this benchmark. However, its performance on the Real Vineyard domain is very
low. While this is partially due to the dataset being very challenging, it also suggests
a deeper investigation of the Sim2Real gap that will be addressed in future works.
Indeed, the passage from synthetic to real crops further widens the existing domain
gap between different crops and backgrounds. Another interesting insight can be
found in the standard deviations, as our method obtains one of the smallest values.

10.3 Results 199

L
et

tu
ce

R
ea

lV
in

.
R

ea
lM

is
c.

Input ERM [255] IBN [287] XDED [290] Ours

Fig. 10.4 Qualitative comparison between our distillation-based DG methodology and the
most promising competitors according to our benchmark. We inspect output masks on
Lettuce, Real Vineyard, and Real Miscellaneous domains for random samples.

This result is particularly evident for real domains, where other methods report high
variance. WildNet performs very badly on real samples while obtaining satisfactory
results on synthetic ones. Its small standard deviation suggests that the multiple
training losses applied during training could have an over-regularizing effect on the
process. On the contrary, our approach finds the best trade-off between regularization
and learning.

10.3.2 Ablation Study

We conduct an ablation study to investigate the effect of different components on the
generalization capability of our methodology. We also highlight the main differences
between our approach and XDED [290] regarding methodological components and
performance. In particular, we consider the UniStyle low-level feature whitening
approach used by [290] in combination with ensemble distillation. We also analyze
the effectiveness of our choice to apply the output softmax operator along the
spatial dimension instead of channels following the findings of [293]. Finally, we
substitute the specialized teachers with an ensemble of ERM models trained on all
the source domains. The results are reported in Table 10.4, in which we included
the ERM baseline as a reference. On average, the results suggest that applying only

200
Crop Segmentation with Knowledge Distillation: Domain Generalization on the

AgriSeg dataset

Method KD UniStyle Softmax Gen. Tree 2 Chard Lettuce Vineyard Average

ERM [255] ✗ ✗ ✗ 38.38±12.10 83.22±5.50 33.45±13.34 46.69±9.69 50.44±10.15
XDED[290] ✓ [0,1,2] Channel 38.79±17.26 84.35±5.11 29.99±14.80 47.63±6.27 50.19±10.86

Ours

✓ ✗ Channel 34.61±11.84 87.48±2.07 21.76±3.99 50.26±2.77 48.53±5.17
ERM ✗ Space 43.99±14.91 85.32±3.47 39.11±14.15 42.42±10.55 52.71±10.77

✓ [0,1,2] Space 56.32±18.98 81.81±3.67 43.44±5.12 62.49±4.50 61.01±8.07
✓ [0,1] Space 54.78±22.11 87.48±2.96 47.40±15.19 56.35±8.72 61.50±12.25
✓ ✗ Space 50.02±06.80 86.17±1.79 58.01±12.74 53.26±3.59 61.86±6.2361.86±6.2361.86±6.23

Table 10.4 Ablation study highlighting the differences between our approach and [290]. We
evaluate the effect of UniStyle (the numbers represent the blocks on which whitening is
applied), channel-wise softmax, and ensembling methods on the proposed methodology. We
report the Intersection-over-Union (IoU) metric (in %) for each result as mean and standard
deviation. The best and second-best results are highlighted and underlined, respectively.

distillation is slightly better than combining it with feature whitening, especially
considering that this implies additional computation at inference time. The variance
of the results is also larger when feature whitening is applied, suggesting that this
regularization can lead to better optimization in some cases but suboptimal solutions
in others, depending on weight initialization. However, the gap is limited, and
more importantly, results on single domains are not unique, as each variant seems
to be more suited for some domains than others. Nonetheless, our methodology
outperforms ERM and XDED by more than 10%, on average. Our study confirms that
applying softmax along the spatial dimension leads to better knowledge distillation
for segmentation tasks. Indeed, despite performing well in Chard and Vineyard
domains, the variant with channel-wise softmax retains unsatisfactory results on
Generic Tree 2 and Lettuce crops. Finally, we confirm the intuition that ensembling
models specialized in single domains brings more information than distilling from
models trained on all the source domains together. As depicted in Fig. 10.3, the
distillation masks are less confident, giving the student a better understanding of
what parts of the image are more likely to confound the predictor. However, the
version distilled from ERM teachers outperforms plain ERM by 2%. We further
inspect the effect of the method’s hyperparameters on generalization capabilities.
We vary the distillation loss weight λ and the temperature T and report the results on
the Real Miscellaneous domain in Fig. 10.5. The graphs show that our choice (λ =

10−2,T = 2) is the optimal balance that ensures regularization without constraining
the student. As reported in our benchmarks, this yields good generalization across
various synthetic and real domains.

10.3 Results 201

10 3 10 2 10 1
62

63

64

65

66

67

m
Io

U
[%

]

= 1
= 2
= 3

1 2 3
62

63

64

65

66

67

m
Io

U
[%

]

= 10 3

= 10 2

= 10 1

Fig. 10.5 Ablation study on the hyperparameters λ and τ . The reported IoU value is relative
to the Real Miscellaneous domain and is averaged on three runs. We represent two views of
the results for better readability.

Finally, in Fig. 10.4, we report a qualitative comparison between output masks from
our method and the most promising competitors (ERM, IBN, and XDED, according
to our benchmark). We inspect output masks on Lettuce, Real Vineyard, and Real
Miscellaneous domains for random samples. Although IoU is computed with a
confidence threshold of 90 %, we choose to plot the original masks to highlight
unconfident predictions. The difference is most evident for the Lettuce domain, in
which other algorithms erroneously segment the terrain (ERM, IBN) or retain low
confidence on crops (XDED). The same happens for the Real Vineyard domain,
where the predictions are generally less confident, and XDED performs similarly to
our solution. On the Real Miscellaneous domain, XDED performs slightly worse
than our solution, as the segmentation mask does not include trunks. In this scenario,
IBN is more accurate and similar to our method, confirming the results of Table 10.3.
In conclusion, our solution outputs satisfactory masks for all domains, performing
on par or better than all other methods.

Chapter 11

Domain-Adversarial Vision
Transformer for Land Crop
Classification with Multi-Temporal
Satellite Imagery

In this Chapter, the investigation of Deep Learning models generalization defined
and discussed in Chapters 9 and 10 is declined into another application in the con-
text of precision agriculture and remote sensing: land cover and crop classification
(LC(&)CC). In the past few decades, the launch of many satellite missions has
offered an extensive repository of remote sensing images. Availability of the open-
source data by many Earth-observation satellites has made remote sensing easy
and obtainable [295]. Open-source data sets are available free of cost from several
satellite missions such as the Sentinel-2 and Landsat [296]. These satellites are
equipped with multi-spectral sensors with short revisit time, and good spatial and
spectral resolution, allowing researchers to test modern image analysis techniques
to extract more detailed information of the target object. Overall, the new scenario
has led to the opportunity for the land cover monitoring, change detection, image
mosaicking, and large-scale processing using multi-temporal and multi-source im-
ages [295, 297–299]. The most essential and critical remote sensing application is
land cover and crops classification (LC&CC). It facilitates labeling the cover such as
forest, ocean, and agricultural land. Moreover, mapping can also be done manually

203

using satellite images, but the process is quite tedious, costly, and time-consuming.
Finally, an exquisite global cover map is not available as yet, but there is a land cover
map named Corine Land Cover (CLC) [300] which provides land cover information
with 100m per pixel resolution. However, the problem with this map is that it only
covers the European area and is updated once in six years.

There are several ways to perform land classification automatically. In general, the
classification involves the creation of a training dataset that consists of annotated
samples of the corresponding class labels, training a model using the training dataset,
and evaluating the resulting predictions. The number and quality of training sam-
ples play a pivotal role in defining the performance of the trained model. From
a remote sensing prospective, training sample collection requires a ground survey
or visual photo-interpretation by an expert [301]. Ground surveying involves GIS
expert knowledge, human resource that is not typically economical, while visual
interpretation is not appropriate to be used for some applications, such as finding
chlorophyll concentration [302] and classification of tree species [303]. Most of the
machine learning (ML) algorithms such as random forest, support vector machines,
logistic regression performs well in the context of classification of remote sensing
images. However, performance of these ML algorithms are not satisfied when learn-
ing features from different sources such as active and passive sensors [304]. It was
shown in [305, 306] that Convolutional Neural Networks (CNN) are better than
traditional land cover classification techniques. In the land segmentation section
of the deep globe challenge [307], the Deep Neural networks (DNNs) completely
dominate the leaderboards. The best examples of land cover classification using
DNNs are ResNet and DenseNet [308, 309]. For example, in [310], a 2D-CNN is
used to obtain the spatial features of the hyperspectral imagery (HSI), analyzing
the continuity of land covers in the spatial domain. Often relation among spectral
bands of HSI is not linear, 2D-CNNs are normally used together with 1D-CNNs
to incorporate the spectral and spatial domain of features [311]. The classification
task becomes quite challenging when dealing with high-dimensional hyperspectral
data with few labeled samples. Recently, generative adversarial networks (GANs)
[312] have been exploited for sample generation, though it is not easy to acquire
high-quality samples with authenticity [313].

The generalization problem analyzed in this study comes from the fact that there
is a difference in the land covers of different locations, hence, the model trained

204
Domain-Adversarial Vision Transformer for Land Crop Classification with

Multi-Temporal Satellite Imagery

in one area does not perform well in the other areas. Additionally, the satellite
imagery of different satellites present changes in their resolution, capture time, and
other radiometric parameters. Due to these multiple changing variables, the dataset
taken from a satellite covering one region and another satellite dataset covering
the same or other regions leads to a domain shift between the datasets. One way
to achieve a reliable outcome is possibly to train a model with a huge amount of
training samples to generalize its behavior for all classes of all the regions. However,
that needs an enormous labeled dataset that is time and labor-intensive. Another
method to deal with the shift between the datasets is termed Domain Adaptation
(DA), in which a model is trained on one dataset (source data) and predictions
are made on the other dataset (target domain). DA is the restricted formulation to
only two domains (source and target) of the wider Domain Generalization problem
defined in 9. The distribution shift between the target and source dataset is mainly
due to temporal differences in the acquisition, in the sensors, and in geographical
factors such as variations of elements in the Earth’s surface. The domain shift affects
the performance of a model trained on a source dataset and applied on the target
dataset. DA methods often rely on learning domain-invariant models that keep
comparable performances on the two datasets. Existing DA techniques may be
classified as supervised, unsupervised, and semisupervised [314–316]. In supervised
DA methods, it is presumed that labeled data are available for both source and target
domains [317]. In a semisupervised domain, the labeled data for the target domain
is assumed to be small while an unsupervised method contains labeled data for the
source domain only. For example in [318], a semisupervised visual DA was proposed
to address classification of very high-resolution remote sensing images. To deal with
the variation in features distribution between the source and target domains, multiple
kernel learning DA method was employed.

Tuia et al. [301] divide the DA methodologies into four different categories: domain-
invariant feature selection, adapting data distribution, adapting classifiers, and adap-
tive classifiers using active learning methods. In the context of classification and
segmentation of remotely sensed images, in [319] an unsupervised adversarial DA
method was proposed based on a boosted domain confusion network (ADA-BDC)
which focuses on feature extraction to enhance the transferability of classifier which
is trained by source domain images and tested on target domain images. In [320],
an unsupervised DA was used using generative adversarial networks (GANs) for
semantic segmentation of aerial images. A multi-source domain adaptation (MDA)

205

for scene classification was proposed to transfer knowledge from the multiple-source
domains to the target domain in [321]. Most of the studies presented in the literature
related to DA-based classification have used single date images of source and target
domain. However, in [322], first approach was proposed in the context of DA for
classification of multi-temporal satellite images in which Bayesian classifier-based
DA was employed with only two images of Landsat-5 satellite.

This study investigates adversarial training of DNNs to bridge the domain discrepancy
between distinct geographical zones. More in detail, we analyze the application of
DA to challenging multi-spectral, multi-temporal data, highlighting the advantages
of adopting the most recent self-attention-based models for LC(&)CC to different
target zones where labeled data are not available. We choose to experiment our
methodology on the BreizhCrops dataset, a large-scale time series benchmark dataset
introduced in 2020 by Rußwurm et al., [323], for supervised classification of field
crops from satellite data. Fig. 11.1 shows the visual representation of the crop
prediction performed on a sub-region of Brittany, highlighting the benefit provided
by the proposed methodology.

Fig. 11.1 Visual representation of land crops classification on zone 3 (Ille-et-Vilain) of the
BreizhCrops dataset. For each sub-image we show the complete region and a sub-area
to facilitate the visualization of the advantage obtained by the proposed methodology. In
particular, on the left the crops predictions without our domain adaptation mechanism are
shown, while in the center the same predictions performed adopting DANN are proposed. On
the right, ground truth labeled crops can be visualized. The improvement in the classification
with DANN is evident, especially in the reduction of misclassification of wheat and meadows.

206
Domain-Adversarial Vision Transformer for Land Crop Classification with

Multi-Temporal Satellite Imagery

11.1 Study Area and Data

To promote reproducibility of our experimentation, we rely on BreizhCrops, a large-
scale time series benchmark dataset introduced in 2020 by Rußwurm et al., [323],
for supervised classification of field crops from satellite data. The dataset comprises
multivariate time series examples in the Region of Brittany, France, of the season
2017, from January 1 to December 31. In particular, the authors of the dataset
exploited all available Sentinel 2 images from Google Earth Engine, [324], and
farmer surveys collected by France National Institute of Forest and Geography
Information (IGN) to collect more than 600 k samples divided into 9 classes with
45 temporal steps and 13 spectral bands. Most importantly, as shown in Fig. 11.2,
acquired data are equally split into distinct regional areas. Indeed, as regulated by
the Nomenclature des unites territoriales statistiques (NUTS), the overall dataset is
divided into the four NUTS-3 regions Côtes-d’Armor, Finistère, Ille-et-Vilaine, and
Morbihan. That, in conjunction with the challenging nature of the dataset, makes
BreizhCrops an ideal benchmark to test domain adaptation for multi-spectral and
multi-temporal data for LC&CC.

Fig. 11.2 Magnified view of the four NUTS-3 regions of Brittany, located in the northwest of
France and covering 27,200 km². The strict division of the supervised BreizhCrops dataset
in the four regions allows the performance of a formal and controlled analysis on domain
adaptation for LC&CC with multi-spectral and multi-temporal data.

As summarized in Fig. 11.3, even if the authors of the dataset avoided broad cate-
gories, due to the nature of agricultural production, which focuses on a few dominant
crop types, a class imbalance can be observed in the collected parcels. That con-

11.2 Methodology 207

stitutes a challenge for every classifier type, but it reflects the strong imbalance in
real-world crop-type-mapping datasets. On the other hand, sample classes in the
different regions are balanced, making BreizhCrops a perfect bench for testing do-
main adaptation strategies. Finally, to disentangle the performed domain adaptation
analysis from the influence of the random variation of the atmospheric conditions,
we exclusively make use of L2A bottom-of-atmosphere imagery where data acquired
over time and space share the same reflectance scale. Adjacent and slope effects
are corrected by the MAJA processing chain [325] that employs 60-meter spectral
bands to apply atmospheric rectification and detect clouds. Therefore, only ten
spectral features are available for each parcel. Table 11.1 is presented as a summary
of the number of samples collected for the domain adaptation experimentation di-
vided into classes and regions. In conclusion, multi-spectral, multi-temporal pixels
are individually extracted for each parcel and are constituted by 10 spectral bands
and 45 temporal steps each. The class imbalanced highlighted by the number of
parcels of Fig. 11.3 is reflected in the number of samples of Table 11.1 used for all
experimentation.

Table 11.1 Summary of the number of samples per class divide in the four NUTS-3 regions
of Brittany. Instances are derived by L2A bottom-of-atmosphere parcels to disentangle our
analysis with variation of the atmospheric conditions.

Barley Wheat Rapeseed Corn Sunflower Orchards Nuts Permanent
Meadows

Temporary
Meadows

Zone 1 13,051 30,380 5596 44,003 1 937 10 32,641 52,013
Zone 2 10,736 15,026 2349 36,620 6 348 18 36,536 39,143
Zone 3 7154 27,202 3557 42,011 10 1217 10 32,524 52,682
Zone 4 5981 17,009 3244 31,361 2 552 11 26,134 38,141

11.2 Methodology

In this work, unsupervised domain adaptation is considered in the field of land cover
classification from satellite images. The study aims to tackle the problem of low
generalization capability of classifiers only trained on a peculiar geographical region
dataset. Moreover, the lack of rich available datasets of labeled satellite images
increases the interest towards this challenge. In particular, the proposed methodology
is intended to investigate the application of representation learning (RL) techniques
for domain adaptation when dealing with multi-temporal data. For this purpose, a

208
Domain-Adversarial Vision Transformer for Land Crop Classification with

Multi-Temporal Satellite Imagery

Fig. 11.3 Class frequencies divided in the four NUTS-3 regions of Brittany. The respective
number of parcels highlights the strong class imbalance, reflecting the substantial imbalance
in real-world crop-type-mapping datasets. However, samples per class in the four regions are
equally divided.

Transformer Encoder-based classifier is adapted to a Domain-Adversarial Neural
Networks (DANN) architecture and trained accordingly.

In this section, a thorough description of the methodology is provided. First, we
frame domain adaptation with the DANN method. Then, we briefly explain the
Transformer Encoder structure with self-attention adopted for the multi-temporal
crops classification. Finally, we describe the resulting architecture of the attention-
based DANN, which is used to train a classifier with improved domain generalization.

11.2.1 Domain-Adversarial Neural Networks

Classifiers obtained with Deep Neural Networks often suffer from a lack of gener-
alization related to possible variations in the appearance of the same objects. This
problem is usually identified as a domain gap. In the land cover classification task,
this situation is very recurrent and can be associated with the spectral shift affecting
the data collected in different regions at different times. The shift is often related to
photogrammetric distortion or visual differences in the appearance of lands. Further-
more, when dealing with satellite images, a dataset usually needs to be created by
labeling images for a specific region to train a classification model. Despite this time-
expensive procedure, standard training does not guarantee satisfying performance on
images of different regions.

Domain-Adversarial Neural Networks (DANN) is a representation learning technique
that allows a classifier to generalize better from a source domain to a target domain.
This specific domain adaptation method consists of adding a branch to the original

11.2 Methodology 209

feed-forward architecture of the classifier and carry out an adversarial training. From
a generic perspective, it is possible to identify three main components of the DANN:
a feature extractor with parameters θ f , a label predictor with parameters θy, and a
domain classifier with parameters θd . The feature extractor is the first block of the
DANN model. It is responsible for learning the function G f : X → Rd , which maps
the input samples X to a d-dimensional vector containing the extracted features. The
label predictor function, Gy(G f (X)), compute the label associated with the predicted
class of the sample. The domain discriminator function Gd(G f (X)) distinguishes
between source and target domains given the extracted features. The combination
of feature extractor and label predictor gives us the complete classifier model. The
domain classifier is composed of a secondary branch, similar to the label predictor,
which receives the extracted feature vector by the first block of the network.

Given these three main elements, the expression of the total loss used to train DANN
is obtained by the following expression, according to the authors [238]:

L
(
θ f ,θy,θd

)
=

1
n

n

∑
i=1
Li

y
(
θ f ,θy

)
−λ

(
1
n

n

∑
i=1
Li

d
(
θ f ,θd

)
+

1
n′

N

∑
i=n+1

Li
d
(
θ f ,θd

))
(11.1)

The first term Ly is the label predictor loss, while the second one involves the domain
discriminator loss Ld . The hyper-parameter λ can be tuned to weigh the contribution
of the two learning terms. A more detailed analysis of the choice of λ is proposed
in the experiments section. n and n′ are respectively the numbers of samples from
the source and the target domains. Totally, we have N = n+n′ samples used in the
training. The expression of the total loss function also describes the principal goals of
DANN: first, we want to obtain a label predictor with low classification risk. Second,
we are adding a regularization term for the domain adaptation. To this extent, we aim
to find a set of parameters of the feature extractor θ f that can map a generic input
sample from either source or target domain to a new latent space of features, where
the domain gap is reduced. On the other hand, the classification performance has
not to be affected. For this reason, the extracted features should be discriminative as
well as domain-invariant. According to this goal, the optimal choice of parameters
θ f and θy is represented by the one which minimizes the total loss function, keeping
θ̂d unchanged. By contrast, the domain discriminator parameters θd are updated to

210
Domain-Adversarial Vision Transformer for Land Crop Classification with

Multi-Temporal Satellite Imagery

maximize the loss while not changing the other ones.(
θ̂ f , θ̂y

)
= argmin

θ f ,θy

L
(
θ f ,θy, θ̂d

)
(11.2)

θ̂d = argmax
θd

L
(
θ̂ f , θ̂y,θd

)
. (11.3)

In the original paper of DANN, the parameters of each piece of the neural network
model are updated with a classical Stochastic Gradient Descent (SGD) optimizer.
Here instead we use Adam [50]. Parameters θ f ,θy and θd are updated according to
its rules.

θ f ←− θ f −η

(
m̂ f ,y√
v̂ f ,y + ε

−λ
m̂ f ,d√
v̂ f ,d + ε

)
(11.4)

θy ←− θy−
η√

v̂y + ε
m̂y (11.5)

θd ←− θd−
η√

v̂d + ε
m̂d (11.6)

As explained in Chapter 1, the first (mean) and the second (uncentered variance)
moments of Adam m̂ and v̂ are estimated as exponentially moving averages computed
with the gradients obtained from each mini-batch. For the specific case of DANN,
gradients used to estimate the Adam moments change for each element G f , Gy, Gd

of DANN structure. For example, the feature extractor gradients (∂Li
y/∂θ f) and

(∂Li
d/∂θ f) are used to compute m̂ f ,y and m̂ f ,d . Diversely, gradients obtained from

label predictor (∂Li
y/∂θy) and domain discriminator (∂Li

d/∂θd) are only used to
update their respective momentum m̂y and m̂d .

The feature extractor and the domain discriminator play adversarial roles during the
training process. A satisfying feature extractor can fool the domain discriminator by
forwarding a vector of domain-invariant features. The role of the domain discrimina-
tor is to improve and evaluate this ability. A key intuition in the DANN method is to
carry out the adversarial training with a standard backpropagation of the gradients,
thanks to a custom Gradient Reversal Layer between the feature extractor and the
domain discriminator. This particular layer does not add other parameters to the
model but changes the sign of the upstream gradients. The GRL operation can be
formulated withR(x) in the following mathematical expressions for the forward and

11.2 Methodology 211

backpropagation step:
R(x) = x (11.7)

dR
dx

=−I (11.8)

where I is the identity matrix. Hence, by performing optimization steps on the
resulting DANN architecture, we can update parameters to reach saddle points of the
total loss function reported in (11.1).

11.2.2 Classification of Multi-Spectral Time Series with Self-
Attention

Self-Attention, popularized by the Transformer model in 2017 [40], has provided a
considerable boost in machine translation performance while being more paralleliz-
able and requiring significantly less time to train. Nevertheless, the introspection
capability behind the success of Transformers is not limited only to natural language
processing, but can be adapted to any time series analysis to filter data and focus
on more relevant repressions aspects. In Chapter 1, an theoretical introduction to
Self-Attention and to Vision Transformer [67] model can be found. Here, a summary
of the main operation performed is provided adapting to the case of satellite imagery.

A single sample pixel i-th of multi-spectral, multi-temporal acquisition can be
represented as a matrix X(i) ∈ Rt×b where t is the temporal dimension and b is given
by the number of spectral bands. Therefore, it is a 1D sequence of tokens, (x0, ...,xt),
with xt ∈ Rb, that can be easily linearly projected to feed a standard Transformer
encoder. The encoder can map a temporal input sequence Xt×b in a continuous
representation XL

t×dmodel
, where L is the output layer of the Transformer model and

dmodel is the constant latent dimension of the projection space. Self-attention, through
local multi-head dot-product self-attention blocks, can easily manipulate the temporal
sequence finding correlations between different time-steps and completely avoiding
the use of recurrent layers. The dot-product self-attention operation is composed
on a trainable associative memory with key and value vector pairs of dimensions d.
For a sequence of t query vectors, arranged in a matrix Q ∈ Rt×d , the self-attention
operation is described by the following operation:

Attention(Q,K,V) = Softmax(QKT/
√

d)V (11.9)

212
Domain-Adversarial Vision Transformer for Land Crop Classification with

Multi-Temporal Satellite Imagery

where the Softmax function is applied over each row of the input matrix and K∈Rt×d

and V ∈ Rt×d are the key and value vector matrices, respectively. Query, key and
values matrices are themselves computed from a sequence of t input vectors with
dimension dmodel using linear transformations: Q = XWQ, K = XWK, V = XWV

where X ∈ Rt×dmodel . Finally, multi-head dot-product self-attention is defined by
considering applying h self-attention functions to the input X . Each head provides a
sequence of size t×d. These h sequences are rearranged into a t×dh sequence that
is linearly projected into t×dmodel .

Subsequently, after the transformer encoder, the output representation, XL
t×dmodel

,can
be exploited to perform a classification of the input sequence. Indeed, that can be
achieved by further processing the output encoder matrix and feeding a classification
head trained to map the hidden representation to one of the k classes. In conclusion,
a Transformer encoder can be repurposed to process a multi-spectral input sequence
and find valuable correlations between the different time-steps to perform LC&CC
with a high level of accuracy.

11.2.3 DANN for Land Cover and Crop Classification

We employ DANN in conjunction with self-attention-based models to bridge the
domain gap between different geographical regions. The overall architecture of
the adopted methodology is shown in Fig. 11.4. First, an input sequence Xt×b is
linearly projected to the constant latent dimension of the Transformer model dmodel .
Moreover, a Transformer encoder does not contain recurrence or convolution to make
use of the order of the sequence. Therefore, some positional encoding is injected
about the relative or absolute position of the tokens in the sequence. The positional
encodings have dimension dmodel as the projected sequence, so that the two can be
summed. Guided by experimentation, as in [67], we adopt a learnable positional
encoding instead of the sine and cosine functions with different frequencies of [40].
The resulting pre-processed input sequence Xl0

t×dmodel
feeds the Transformer encoder,

parameterized by Θ f , that provides as output a continuous representation XL
t×dmodel

.
Subsequently, we make use of the max function, over the temporal axis, to extract a
token, xL

dmodel
, from the output sequence.

The extracted representation constitutes the input for either the LC&CC and do-
main multi-layer perceptron classifiers. The first network provides a probability
distribution over the k different classes, ŷk. On the other hand, the domain classifier

11.2 Methodology 213

Fig. 11.4 Overview of the overall framework to train a Transformer encoder with domain-
adversarial training. The multi-spectral temporal sequence Xt×b is first linearly projected and
fused with a position encoding. Subsequently, the self-attention-based model manipulates
the input series and, through a max operation applied to the last layer of the encoder, is
possible to extract a token xL

dmodel
from the output sequence. Finally, gradients derived by

LC&CC and Domain classifiers train the network while keeping close the distribution of
source and target domains.

outputs the probability, d̂2, that the extracted representation xL
dmodel

belongs to the
target or source domain. Using the cross-entropy loss function for both classifiers,
it is possible to compute the respective gradients and update the weights, Θ f of the
feature extractor. Indeed, inverting the sign of the gradients, ∇Ld(Θd), derived from
the domain classifier, and multiplying them for a scale factor λ , we can increasingly
reduce the distance between the latent space of the two domains while training the
encoder on the classification task. Overall, the proposed training framework provides
an effective solution to transfer the acquired knowledge of a model to a diverse
region, exploiting only the original nature of the data.

214
Domain-Adversarial Vision Transformer for Land Crop Classification with

Multi-Temporal Satellite Imagery

11.3 Experiments and Discussion

We experiment with the proposed methodology on the four regions of the multi-
temporal satellite BreizhCrops dataset presented in Section 11.1. As explained in
the same section, we indicate this dataset as an optimal choice to train and test new
domain adaptation methods exploiting labeled multi-temporal data. The first main
objective of the conducted experimentation is to investigate how the classification
performance of a state-of-the-art model for LC&CC model is affected by a lack of
generalization towards different geographical regions. Then, we clearly highlight
how adversarial training can mitigate the domain gap and significantly boost perfor-
mance for source and target regions with marked distribution distance. It is important
to remark that the method relies on the availability of samples of both source and
target domains, whereas only source labels are required, not allowing direct applica-
bility of transfer learning techniques. Finally, in the last part of the section, obtained
results are discussed and inspected through dimensionality reduction techniques,
validating the proposed method for practical use.

Fig. 11.5 λ scheduling: the value of the domain adaptation parameter λ is changed during
training according to an exponentially growing trend. This allows the feature extractor to
learn basic features during the initial epochs. Different final λmax values are tested to study
the right level of adaptation required in the different cases: 1, 0.5 and 0.2. λmax = 0.2 is the
best choice for an overall adaptation improvement of the classifier in the different regions.
The parameter γ influences the slope of the curve and it is kept constant to 10 to let λ reach
the desired value in a suitable number of epochs.

11.3 Experiments and Discussion 215

11.3.1 Experimental Settings

We carried out a complete set of experiments to compare the Transformer encoder
classifier performance with and without DANN. The standard classifier is trained
separately on each of the single regions of the dataset, then tested on the other ones.
By contrast, DANN models are trained on each source-target pair to gain the desired
adaptation capability and tested an all the regions except for the source domain. No
validation set is used for model selection. Tests are always performed with the model
resulting from a fixed number of training epochs.

In the final architecture, the classifier model comprises a transformer encoder feature
extractor and a final classification stage. In all experimentation, the transformer
encoder receives as input a batch of 256 tensors with t = 45 temporal steps and
b = 10 spectral bands in the image samples. Moreover, to linearly project the
temporal sequence to the constant latent dimension of the encoder, the input is first
passed to a dense layer with 64 units. Therefore, dmodel is equal to 128. On the other
hand, the multi-head attention Transformer encoder is defined with several layers
and attention heads equal to nlayers = 3 and nheads = 2. Finally, the dimension of
internal fully connected layers dinner = 128. Rectified linear units is the non-linear
activation function used for all neurons of the encoder.

The LC&CC classification stage is a simple multi-layer perceptron head composed
of a normalization layer, a fully connected layer with 128 units, ReLU as activation
function, and a final layer with k = 9 neurons. On the other hand, for the DANN
experimentation, the domain predictor is identical to the multi-layer perceptron head
of the LC&CC classifier, with 128 units and a ReLU activation. However, the number
of neurons in the final layer is set to d = 2, since we always perform a single target
domain adaptation.

A cross-entropy loss function is chosen to train both the classifiers. The parameters
of both models are updated using Adam optimizer with β1 = 0.9, β2 = 0.999 and
ε = 1 × 10−7 . A fixed number of epochs is always set to 250. The learning rate
value is changed during training according to an exponential decay policy from a
starting value of 0.001, with a decay scheduled for each epoch equal to 0.99epoch. A
key point in the experimental settings is related to the domain adaptation parameter
λ . It acts as a regularization parameter, since it regulates the impact of the domain
discriminator gradients on the feature extractor during training. Therefore, it can
be considered to be the principal hyper-parameter to tune when using DANN. We

216
Domain-Adversarial Vision Transformer for Land Crop Classification with

Multi-Temporal Satellite Imagery

always use a scheduling policy for λ , as suggested in the original publication of
DANN:

λt = λmax

(
2

1+ e−γt −1
)

(11.10)

where λmax is the plateau value reached. This is the actual value of λ used for the
second half of the training, which affects the final performance of the model in terms
of generalization. The parameter γ = 10 defines the slope of the curve and it is fixed
to such value to let λmax be reached in a suitable number of epochs. A scheduled
value of λ allows the feature extractor to learn the basic features for the classification
during the first epochs. It then adjusts the mapping function to let the source and
target domain feature distributions to overlap at the end of the training process. As
shown in Fig. 11.5, different values of λmax are tested to study the response of
the model. To our knowledge, λmax = 0.2 is the best value for a robust adaptation
improvement of the classifier, at least among the set of tested λmax values.

Fig. 11.6 Class-wise comparison of classification results on zone 3 (target), selecting zone 2
as source domain. Confusion matrix obtained with Transformer encoder trained on zone 2
and tested on zone 3 is shown in (a) on the left. Fig. (b) on the right shows classification
results with DANN model tested on zone 3. The effect of DANN clearly mitigate the
prediction error, with a particular focus on relevant classes such as Corn, Permanent and
Temporary Meadows.

As already explained at the beginning of the section, the classifiers are trained and
tested on all the possible combinations of regions to quantify the existing domain
gap. The classification performance is evaluated using three different classification
metrics, which are chosen among the ones proposed in the BreizhCrops dataset
benchmarks: Accuracy, F1-score and K-score. This last metric is the Cohen’s
kappa [326], computed according κ = (po− pe)/(1− pe) where po and pe are the

11.3 Experiments and Discussion 217

Table 11.2 Results of crops classification for the Transformer Encoder classifier trained
with and without DANN using λmax = 0.2. The two models are trained and tested on
all the possible combinations of source/target domains available in BreizhCrops dataset.
Accuracy, F1-Accuracy and K-score are the metrics used to compare the classification quality.
Training accuracy is also reported for the Transformer encoder classifier. Maximum Mean
Discrepancy computed on a subset of extracted features of source and target domain shows
the successful reduction of features distance obtained with DANN.

Zone Transformer Encoder DANN

Source
Domain

Target
Domain

Train
Accuracy

Test
Accuracy F1-Acc K-Score MMD Test

Accuracy F1-Acc K-Score MMD

1 2 0.8577 0.7877 0.5675 0.7229 0.1109 0.7628 0.5540 0.6950 0.0077
1 3 0.8577 0.7436 0.5266 0.6606 0.1620 0.7449 0.5080 0.6714 0.0183
1 4 0.8577 0.7941 0.5675 0.7294 0.0516 0.7960 0.5734 0.7343 0.0086
2 1 0.8951 0.7433 0.5309 0.6773 0.1577 0.7403 0.5161 0.6687 0.0208
2 3 0.8951 0.4967 0.3592 0.3642 0.6700 0.6505 0.4544 0.5483 0.0104
2 4 0.8951 0.6006 0.4395 0.4912 0.2536 0.7482 0.4832 0.6735 0.0416
3 1 0.8750 0.7767 0.5339 0.7122 0.1819 0.8045 0.5778 0.7488 0.0121
3 2 0.8750 0.6638 0.4594 0.5615 0.6254 0.7589 0.5334 0.6865 0.0277
3 4 0.8750 0.7348 0.5074 0.6504 0.1184 0.7968 0.5778 0.7338 0.0115
4 1 0.8870 0.7927 0.5551 0.7354 0.0339 0.8233 0.5822 0.7753 0.0039
4 2 0.8870 0.7600 0.5443 0.6870 0.0953 0.8003 0.5788 0.7399 0.0084
4 3 0.8870 0.7111 0.4961 0.6230 0.0960 0.7673 0.5443 0.6965 0.0062

empirical and expected probability of agreement on a label. In addition, we make
use of Maximum Mean Discrepancy (MMD) metric, presented in Section 11.3.2, to
quantitatively evaluate the distance between source and target distributions.

11.3.2 Maximum Mean Discrepancy

MMD is a statistical test originally proposed in [327] to determine a measure of the
distance between two distributions. MMD is largely used in domain adaptation since
it perfectly fits the need to understand whether the source and the target domain
extracted features overlap. MMD can be directly exploited as a loss function for
adversarial training of generative models or for domain adaptation purposes, as
shown in [328, 329]. However, in this works we limit its usage to show the results of
the Transformer Encoder DANN in terms of reduction of feature distances.
Formally, MMD is a kernel-based difference between feature means. Given a set of
m samples X with a probability measure P, the feature mean can be expressed as:

µp(φ(X)) = [E[φ(X1)], · · · ,E[φ(Xm)]]
T (11.11)

218
Domain-Adversarial Vision Transformer for Land Crop Classification with

Multi-Temporal Satellite Imagery

Table 11.3 Comparison between Transformer Encoder Classifier with and without DANN, in
terms of classification metrics reported in Table 11.2. This run of experiments is conducted
with a scheduling of the adaptation parameter λ , with λmax = 0.2.

Zone Improvement [%]

Source
Domain

Target
Domain

Test
Accuracy F1-Accuracy K-Score

1 2 −3.1576 −2.3859 −3.8508
1 3 0.1762 −3.5378 1.6395
1 4 0.2296 1.0467 0.6773
2 1 −0.3996 −2.7935 −1.2698
2 3 30.9721 26.4916 50.5414
2 4 24.5690 9.9474 37.1046
3 1 3.5803 8.2152 5.1446
3 2 14.3204 16.1075 22.2539
3 4 8.4475 13.8791 12.8283
4 1 3.8705 4.8817 5.4228
4 2 5.3053 6.3384 7.6922
4 3 7.9018 9.7154 11.8067

where φ(X) is the feature map that maps X to a new feature space F . If it satisfies
the necessary theoretical conditions, a kernel-based approach can be used to compute
the inner product of two distributions of samples X ∼ P and Y ∼ R:

⟨µP(φ(X),µQ(φ(Y)⟩F = EP,R[⟨φ(X),φ(Y)⟩F] = EP,Q[k(X ,Y)] (11.12)

At this point the MMD can be defined as the distance between the feature means of
X ∼ P and Y ∼ R:

MMD2(P,R) = ∥µP−µR∥2
F (11.13)

which can be expressed more in detail using Equation (11.12):

MMD2(P,R) = EP[k(X ,X)]−2EP,R[k(X ,Y)]+ER[k(Y,Y)] (11.14)

However, an empirical estimate of MMD needs to be computed since in a real case
only samples are available instead of the explicit formulation of the distributions. It
is possible to obtain the MMD expression by considering the empirical estimates of
the feature means based on their samples:

11.3 Experiments and Discussion 219

MMD2(X ,Y) =
1

m(m−1)∑
i

∑
j ̸=i

k(xi,xj)−2
1

m ·m ∑
i

∑
j

k(xi,yj)+
1

m(m−1)∑
i

∑
j ̸=i

k(yi,yj)

(11.15)

where xi and yi in this case are the image samples from source and target domains,
m is the number of samples of the considered subsets. Finally, we specifically use a
gaussian kernel with the following expression:

k(xi,xj) = exp
(−∥xi−xj∥2

2σ2

)
= exp

(−1
σ2 [xi

⊺xi−2xi
⊺xj +xj

⊺xj]

)
(11.16)

11.3.3 Results and Applicability Study

In this section, we present the comparison results between the Transformer classifier
with and without DANN, clearly highlighting the scenarios that present a definite
advantage in applying adversarial training for training a classifier for LC&CC. From
results in Tables 11.2 and 11.3, Fig. 11.6, it is possible to notice that DANN
adversarial training allows the classifier to improve knowledge transferability to
other domains for most of the cases. Nonetheless, we investigate a potential criterion
to decide if the transfer of learning from source to target can be effectively improved
by DANN. More in detail, since DANN aims to overlap feature distributions, we
look at the extracted features from a subset of 10000 samples of each zone dataset
that is considered representative of the total one. We use the set of extracted features
to compute a numerical evaluation of the distance decrease, and to give a graphical
visualization of the effect of DANN. From a quantitative perspective, we propose
Maximum Mean Discrepancy as the feature distance metrics to detect suitable
conditions where DANN is an appropriate methodology. To compute MMD without
considering the clustering of classes, we only need unlabeled image samples. We use
PCA algorithm to compute the principal components of the extracted features and
we exploit them to provide 2D and 3D visualization of relevant cases. First, we can
look at the MMD values obtained from both the Transformer encoder and DANN
in Table 11.2. It is clear that DANN is always able to reduce the distance between

220
Domain-Adversarial Vision Transformer for Land Crop Classification with

Multi-Temporal Satellite Imagery

feature distributions. However, this is not always associated with an increase in
classification performance. We realize that key information is contained in the MMD
value obtained from source and target features, extracted by the standard classifier.
This simple test is crucial and can also be done without labels. The best improvement
with DANN is reached considering zone 2 as the source domain and selecting zone
3 as the target domain. The percentage improvement shown in Table 11.3, with an
increase of more than 30% of accuracy, correlates with an initial MMD value for this
specific case is equal to 0.6700, reduced by DANN to 0.0104. What can be deduced
by this observation is that high values of the MMD indicate a lack of generalization
of the classifier and a domain gap. It is also to consider that the geographical zones
of interest are close to each other. Hence, it can be reasonable to find small domain
gaps. A clear example is the case of zone 1, when chosen as source domain. This
factor can be considered an additional difficulty of the study case. Therefore, it is
possible that the same methodology applied to other regions on the planet, sharing
the same categories of crops, can probably show greater results. Another peculiar
case to be considered is: zones 4 (source) and 3 (target). The MMD value is low
from the initial analysis of the case, without the intervention of DANN. However, a
classification boost is always achieved.

We report a visual representation of the extracted features to add meaning to the pre-
vious considerations. In particular, Fig. 11.7–11.9 show the 2D principal components
obtained from the peculiar cases defined below:

• case 1: zone 2 (source), zone 3 (target). In this case DANN shows the
greatest improvements with an initial high value of MMD. Features are visually
reported in Fig. 11.7: in (a,b) when extracted by standard Transformer encoder
trained on the source domain, in (c,d) when extracted by DANN. The difference
is visually clear. Features distributions are matched by DANN, with a resulting
overlapping shape between source and target domain.

• case 2: zone 1 (source), zone 2 (target). In this case DANN shows the worst
improvements with an initial low value of MMD. Features are visually reported
in (a,b) of Fig. 11.8 when extracted by standard Transformer encoder, in (c,d)
of the same Fig. 11.8 when extracted by DANN. They appear already similar
also without DANN.

• case 3: zone 4 (source), zone 3 (target). In this case DANN shows noticeable
improvements, regardless an initial low value of MMD. Features are visually

11.3 Experiments and Discussion 221

reported in (a,b) of Fig. 11.9 when extracted by standard Transformer encoder,
in (c,d) of Fig. 11.9 when extracted by DANN. As with case 1, the difference
is visually clear, and the effect of DANN can be easily appreciated.

Finally, case 1 and case 2 defined above are also considered for a 3D representation.
Fig. 11.10 shows the obtained results. For each subplot in the figure, both source and
target domain features are scattered. Thanks to this visual perspective, the effect of
the DANN method is highlighted, considering both the worst and the best application
scenario. In case 1, the difference between source and target features is shallow also
without DANN, as shown in (a). By contrast, the situation from (c) to (d) is changed
thanks to the adversarial training significantly. The proposed discussion underlines
some interesting insights on the correlation between reducing the domain gap and
improving a classifier performance. The isolated cases considered provide a good
reference example to decide if it is a reasonable and convenient choice to adopt the
proposed DANN methodology for multi-spectral temporal sequences for Land Cover
classification.

222
Domain-Adversarial Vision Transformer for Land Crop Classification with

Multi-Temporal Satellite Imagery

Fig. 11.7 2D feature visualization obtained with PCA, extracted with the Transformer
Encoder trained on the source domain and with the Transformer DANN model trained on
the specific source-target domains. A comparison between the 2D feature distributions is
proposed for the case of zone 2 (source) and 3 (target). In (a,b) we have features extracted
with the Transformer Encoder from source and target domains: (a) reports features of the
source domain (zone 2) and (b) the ones extracted from the target domain (zone 3). In this
case, features are mapped poorly in the target domain, with a consequent low accuracy in
classification. In (c,d) the same features extracted with the Transformer DANN model are
shown. The positive effect of DANN in terms of features overlapping is evident compared to
(a,b).

11.3 Experiments and Discussion 223

Fig. 11.8 2D feature visualization obtained with PCA, extracted with the Transformer
Encoder trained on the source domain and with the Transformer DANN model trained on
the specific source-target domains. A comparison between the 2D feature distributions is
proposed for the case of zone 1 (source) and 2 (target). In (a,b) we have features extracted
with the Transformer Encoder from source, (a), and target, (b), domain: a low MMD distance
indicates no need for domain adaptation. In (c,d) the same features extracted with the
Transformer DANN model are shown, with no substantial differences.

224
Domain-Adversarial Vision Transformer for Land Crop Classification with

Multi-Temporal Satellite Imagery

Fig. 11.9 2D feature visualization obtained with PCA, extracted with the Transformer
Encoder trained on the source domain and with the Transformer DANN model trained on
the specific source-target domains. A comparison between the 2D feature distributions is
proposed for the case of zone 4 (source) and 3 (target). In (a,b) we have features extracted
with the Transformer Encoder from source, (a), and target, (b), domains: regardless of an
initial low MMD, the classifier accuracy can still be improved reducing the domain gap. In
(c,d) the same features extracted with the Transformer DANN model are shown, with a clear
improvement of the feature mapping, which result in very similar distributions from source
to target domain.

11.3 Experiments and Discussion 225

Fig. 11.10 3D feature visualization and comparison. (a,b) show the features extracted from
zone 1 (source) and 2 (target). They are respectively obtained with transformer encoder and
DANN. It is clear that the transformer encoder alone can correctly map features on both
domains. By contrast, the improvement provided by DANN model is very evident in figures
(c,d), representing the features extracted from zone 2 (source) and 3 (target), where the
transformer encoder alone present both high values of MMD and low classification accuracy
on target domain.

Chapter 12

Optimized Single-Image
Super-Resolution at the Edge with
Knowledge Distillation

In the last decade, Deep Learning (DL) techniques have pervaded robotic systems and
applications, drastically boosting automation in both perception [330, 93], navigation
and control [331, 332] tasks. The development of Machine Learning driven algo-
rithms is paving the way for advanced levels of autonomy for mobile robots, widely
increasing the reliability of both unmanned aerial vehicles (UAV) and unmanned
ground vehicles (UGV) [330]. In this context, the successful transmission of images
acquired by the robot to the ground station often assumes a significant relevance to
the task at hand, allowing the human operators to get real-time information, monitor
the state of the mission, take critical planning decisions and analyze the scenario.
Moreover, unknown outdoor environments may present unexpected extreme charac-
teristics which still hinder the release of unmanned mobile robots in the complete
absence of human supervision. Complete or partial remote teleoperation remains
the most reliable control strategy in uncertain scenarios. Indeed, irregular terrain,
lighting conditions, and the loss of localization signal can lead navigation algorithms
to fail. As a direct consequence of navigation errors, the robotic platform can get
stuck in critical states where human intervention is required or preferred.

However, visual data transmission for robot teleoperation, monitoring, or online data
processing requires a stable continuous stream of images, which may be drastically

227

affected by poor bandwidth conditions due to the long distance of the robot or
by constitutive factors of the specific environment. Besides this, UAVs and high-
speed platforms require the pilot to receive the image stream at a high framerate to
follow the vehicle’s motion in non-line-of-sight situations. A straightforward but
effective solution to mitigate poor bandwidth conditions and meet high-frequency
transmission requirements is reducing the transmitted image’s resolution. On the
other hand, heavy image compression with massive loss of detail can compromise
image usability. To this end, we propose EdgeSRGAN, a novel deep learning model
for Single-Image Super-Resolution (SISR) at the edge to handle the problem of
efficient image transmission. Single-Image Super-Resolution, also referred to as
super-sampling or image restoration, aims at reconstructing a high-resolution (HR)
image starting from a single low-resolution (LR) input image, trying to preserve
details and the information conceived by the image. Therefore SISR, together
with image denoising, is an ill-posed underdetermined inverse problem since a
multiplicity of possible solutions exist given an input low-resolution image. Recently,
learning-based methods have rapidly reached state-of-the-art performance and are
universally recognized as the most popular approach for Super-Resolution. Such
approaches rely on learning common patterns from multiple LR-HR pairs in a
supervised fashion. SRCNN [333] was the first example of a CNN applied to single-
image super-resolution in literature. It has been followed by multiple methods
applying standard deep learning methodologies to SISR, such as residual learning
[334, 335], dense connections [336], residual feature distillation [337], attention
[338–340], self-attention, and transformers [341–343]. All these works focus on
content-based SR, in which the objective is to reconstruct an image with high pixel
fidelity, and the training is based on a content loss, such as mean square error or mean
absolute error. In parallel, other works proposed Generative Adversarial Networks
(GAN) [312] for SISR to aim at reconstructing visually pleasing images. In this
case, the focus is not on pixel values but perceptual indexes that try to reflect how
humans perceive image quality. This is usually implemented using perceptual losses
and adversarial training and is referred to as visual-based SR. SRGAN [344] first
proposed adversarial training and was later followed by other works [335, 345, 346].
With robotic image transmission as a target application in mind, in this work, we
particularly focus on visual-based SR, aiming to reconstruct visually pleasing images
to be used by human operators for real-time teleoperation and monitoring.

228Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation

100 101 102

Framerate [fps]

0.05

0.10

0.15

0.20

0.25

0.30

0.35

LP
IP

S

bicubic
RT ORT

SRGANESRGAN

AGD

Real-ESRGAN
SwinIR

EdgeSRGAN

EdgeSRGAN-tiny

EdgeSRGAN-tiny

EdgeSRGANi8

EdgeSRGANi8-tiny

CPU
EdgeTPU

Fig. 12.1 LPIPS [347] results (lower is better) on Set5 [348] vs framerate (80×60 input) of
different visual-oriented SISR methods for ×4 upsampling. Real-time (RT) and over-real-
time (ORT) framerates are marked as references. Our models, marked with ⋆, reach real-time
performance with a competitive perceptual similarity index on the CPU. Edge TPU models
can further increase inference speed far beyond real-time, still outperforming the bicubic
baseline.

Our intuition relies on a lightweight neural network allowing us to send low-
resolution images at a high transmission rate with scarce bandwidth and then re-
construct the high-resolution image on the pilot’s mobile device. Moreover, the
successful spread of edge-AI in different engineering applications [349–351] has
shown encouraging results in moving the execution of DL models on ultra-low power
embedded devices. Hence, we propose an edge-AI computationally efficient Super
Resolution neural network to provide fast inference on CPUs and Edge TPU devices.
To this aim, we adopt several optimization steps to boost the performance of our
model while minimizing the quality drop. We refine the architecture of the original
SRGAN [344] to speed up inference and perform model quantization. Nonetheless,
we experiment with a teacher-student knowledge distillation technique for SISR
to further enhance the reconstructed image of our tiny model. We take inspiration
from the work of [352] and obtain a remarkable improvement for all the considered
metrics. We perform experiments to validate the proposed methodology under mul-
tiple perspectives: numerical and qualitative analysis of our model reconstructed
images and inference efficiency on both CPU and Edge TPU devices. As an exam-
ple, as shown in Fig. 12.1, EdgeSRGAN achieves real-time performance with a
competitive perceptual similarity index compared with other visual-oriented SISR

12.1 Methodology 229

Transpose
Conv2D TanhConv2D ReLUInput

Fig. 12.2 EdgeSRGAN Generator Architecture.

methods. Moreover, we test the performance of our system for robotic applications.
In particular, we focus on image transmission for teleoperation in case of bandwidth
degradation, also performing tests with the popular robotic middleware ROS2. Other
potential applications of efficient SISR can be found in underwater robotics percep-
tion [353, 354], robotic surgery [355, 356], and inspection of bridges cracks [357].
The code of the project is available at https://github.com/PIC4SeR/EdgeSRGAN.

12.1 Methodology

In this section, we introduce all the components of the proposed methodology.
We choose to use an adversarial approach to obtain an optimal balance between
pixel-wise fidelity and perceptual quality. For this reason, we take inspiration
from three of the most popular GAN-based solutions for SISR: SRGAN [344],
ESRGAN [358], and AGD [345]. The proposed method aims to obtain a real-time
SISR model (EdgeSRGAN) with minimal performance drop compared to state-
of-the-art solutions. For this reason, we mix successful literature practices with
computationally-efficient elements to obtain a lightweight architecture. Then, we
design the network training procedure to leverage a combination of pixel-wise loss,
perceptual loss, and adversarial loss. To further optimize the inference time, we
apply knowledge distillation to transfer the performance of EdgeSRGAN to an even
smaller model (EdgeSRGAN-tiny). Furthermore, we study the effect of quantization
on the network’s latency and accuracy. Finally, we propose an additional inference-
time network interpolation feature to allow real-time balancing between pixel-wise
precision and photo-realistic textures.

https://github.com/PIC4SeR/EdgeSRGAN

230Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation

LeakyReLU FlattenConv2D BatchNormInput Dense Sigmoid

Fig. 12.3 EdgeSRGAN Discriminator Architecture. The model progressively reduces the
spatial dimensions of the image by alternating blocks with strides 1 (B1) and 2 (B2). The
first block (marked with *) does not apply batch normalization.

12.1.1 Network Architecture

As previously done by [358], we take the original design of SRGAN and propose
some changes to both the architecture and training procedure. However, in our
case, the modifications seek efficiency as well as performance. To obtain a lighter
architecture, we reduce the depth of the model by using only N = 8 Residual Blocks
instead of the original 16. In particular, we use simple residuals instead of the
Residual-in-Residual Dense Blocks (RRDB) proposed by [358] as they are less
computationally demanding. For the same reason, we change PReLU activation
functions into basic ReLU. We also remove Batch Normalization to allow the model
for better convergence without generating artifacts [358]. Finally, we use Trans-
pose Convolution for the upsampling head instead of Sub-pixel Convolution [359].
Despite its popularity and effectiveness, Sub-pixel Convolution is computationally
demanding due to the Pixel Shuffling operation, which rearranges feature channels
spatially. We choose instead to trade some performance for efficiency and apply
Transpose Convolutions taking precautions to avoid problems such as checkerboard
artifacts [360]. The complete EdgeSRGAN architecture is described in Fig. 12.2.
The adopted discriminator model is the same used in [344, 358], as it serves only
training purposes and is not needed at inference time. Its architecture is described in
Fig. 12.3.

12.1.2 Training Methodology

The training procedure is divided into two sections, as it is common practice in
generative adversarial SISR. The first part consists of classic supervised training
using pixel-wise loss. In this way, we help the generator to avoid local minima and

12.1 Methodology 231

generate visually pleasing results in the subsequent adversarial training. We use the
mean absolute error (MAE) loss for the optimization as it has recently proven to
bring better convergence than mean squared error (MSE) [361, 335, 338, 358].

LMAE = ||yHR−ySR||1 (12.1)

where yHR is the ground-truth high resolution image, ySR is the output of the gen-
erator, and B is the batch size. We use the Peak Signal-to-Noise Ratio (PSNR)
metric to validate the model. In the second phase, the resulting model is fine-tuned
in an adversarial fashion, optimizing a loss that takes into account adversarial loss
and perceptual loss. As presented in [344], the generator G training loss can be
formulated as

LG = LP
G +ξLA

G +ηLMAE. (12.2)

LP
G is the perceptual loss introduce by [344], computed as the MSE between the

feature representations φ(·) of a reconstructed image ySR and the reference image
yHR. The features are extracted using VGG19 [362] as backbone pre-trained on
ImageNet:

LP
G = ||φ(yHR)−φ(ySR)||2 (12.3)

Differently, the adversarial generator loss LA
G is defined as:

LA
G =− log(D(ySR)) (12.4)

where D is the discriminator. Using this loss, the generator tries to fool the discrimi-
nator by generating images that are indistinguishable from the real HR ones. ξ and
η are used to balance the weight of different loss components. The weights of the
discriminator D are optimized using a symmetrical adversarial loss, which tends to
correctly discriminate HR and SR images.

LD = log(D(ySR))− log(D(yHR)) (12.5)

We optimize both models simultaneously, without alternating weight updates like in
most seminal works on GANs. The overall training methodology is summarized in
Fig. 12.4 summarizes the overall training methodology.

232Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation

Generator

Discriminator

Feature
Extractor
(VGG19)

LR

HR

SR

SR

HR

SRHR

HR

SR

Pixel Loss

Perceptual
Loss

Adversarial
Loss

Fig. 12.4 EdgeSRGAN Training Methodology.

12.1.3 Knowledge Distillation

In Chapter 10, KD has been exploited to transfer knowledge with the aim of boosting
the generalization of student models. Differently here, we use it to transfer knowledge
from bigger models to simpler ones efficiently. KD has been applied in some SISR
works to compress the texture reconstruction capability of cumbersome models
and obtain efficient real-time networks [352, 363]. However, to the best of our
knowledge, KD has never been applied to GAN SISR models. For this reason,
we adapt an existing technique developed for SISR called Feature Affinity-based
Knowledge Distillation (FAKD) [352] to the GAN training approach. The FAKD
methodology transfers second-order statistical info to the student by aligning feature
affinity matrices at different layers of the networks. This constraint helps to tackle
the fact that regression problems generate unbounded solution spaces. Indeed, most
of the KD methods so far have only tackled classification tasks. Given a layer l
of the network, the feature map Fl extracted from that layer (after the activation
function) has shape C×W ×H, C is the number of channels, W and H are the width
and the height of the tensor. We first flatten the tensor along the last two components
obtaining the three-dimensional feature map Fl with shape C× (W ·H) which now
holds all the spatial information along a single axis. We define the affinity matrix Al

as the product:
Al = F̃l

⊤ · F̃l (12.6)

12.1 Methodology 233

Teacher

LR

SRT

Feature Affinity Loss

Student
SRS

Pixel Distillation Loss

Fig. 12.5 EdgeSRGAN Distillation Process.

where · is the matrix multiplication operator and the transposition ⊤ swaps the last
two dimensions of the tensor. F̃l is the normalized feature map, obtained as

F̃l =
Fl

||Fl||2
(12.7)

Differently from [352], the norm is calculated for the whole tensor and not only along
the channel axis. Moreover, we find better convergence using the euclidean norm
instead of its square. In this way, the affinity matrix Al has shape (W ·H)× (H ·W)

and the total distillation loss LDist can be computed as:

LDist = λ ||yT
SR−yS

SR||1 +
1

NL

(
NL

∑
l=1
||AT

l −AS
l ||1
)

(12.8)

where NL is the number of distilled layers. Differently from [352], we sum the
loss along all the tensor dimensions and average the result obtained for different
layers. These modifications experimentally lead to better training convergence. We
also add another loss component, weighted by λ , which optimizes the model to
generate outputs close to the teacher’s ones. In our experimentation, the distillation
loss is added to the overall training loss weighted by the parameter γ . The overall
distillation scheme is summarized in Fig. 12.5.

234Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation

12.1.4 Model Interpolation

Following the procedure proposed in [358], we adopt a flexible and effective strategy
to obtain a tunable trade-off between a content-oriented and GAN-trained model.
This feature can be very useful for real-time applications, as it allows the SISR
network to adapt to the user’s needs promptly. Indeed, some real scenarios may
need better perceptual quality, for example, when the remote control of a robot has
to be performed by a human pilot. On the other hand, when images are used to
directly feed perception, autonomous navigation, and mapping algorithms, higher
pixel fidelity might be beneficial. To achieve this goal, we linearly interpolate model
weights layer-by-layer, according to the following formula:

θ
Int
G = αθ

PSNR
G +(1−α)θ GAN

G (12.9)

where θ
Interp
G , θ PSNR

G , and θ GAN
G are the weights of the interpolated model, the PSNR

model, and the GAN fine-tuned model, respectively. α ∈ [0,1] is the interpolation
weight. We report both qualitative and quantitative interpolation results for EdgeSR-
GAN in Section 12.2.3. We avoid the alternative technique of directly interpolating
network outputs: applying this method in real time would require running two mod-
els simultaneously. Moreover, Wang et al.[358] report that this approach does not
guarantee an optimal trade-off between noise and blur.

12.1.5 Model Quantization

To make EdgeSRGAN achieve even lower inference latency, we apply optimization
methods to the model to reduce the computational effort at the cost of a loss in
performance. Several techniques have been developed to increase model efficiency
in the past few years [364], from which the employed method is chosen. We reduce
the number of bits used to represent network parameters and activation functions
with TFLite1. This strategy strongly increases efficiency with some impact on
performance. We quantize weights, activations, and math operations through scale
and zero-point parameters following the methodology presented by Jacob et al.
[364]:

r = S(q−Z) (12.10)

1https://www.tensorflow.org/lite/

https://www.tensorflow.org/lite/

12.2 Experiments 235

where r is the original floating-point value, q is the quantized integer value, and S and
Z are the quantization parameters (scale and zero point). A fixed-point multiplication
approach is adopted to cope with the non-integer scale of S. This strategy drastically
reduces memory and computational demands due to the high efficiency of integer
computations on microcontrollers. For our experimentation, we deploy the quantized
model on a Google Coral Edge TPU USB Accelerator.

Table 12.1 Framerate comparison of different methods for ×4 and ×8 upsampling, with
two different input resolutions (80×60 and 160×120). The results are provided as mean
and standard deviation of 10 independent experiments of 100 predictions each. Current
content-oriented SISR state-of-art method SwinIR [343] is reported as a reference. Real-time
and over-real-time framerates are in blue and red, respectively. The proposed solution is the
only one compatible with EdgeTPU devices and allows reaching real-time performance in
both conditions.

Framerate (80×60) [fps] Framerate (160×120) [fps]

Method Scale Params CPU EdgeTPU CPU EdgeTPU

SwinIR [343]

×4

11.9M 0.25 ± 0.01 - 0.06 ± 0.01 -
ESRGAN [358] 16.7M 0.40 ± 0.01 - 0.10 ± 0.01 -
Real-ESRGAN [346] 16.7M 0.44 ± 0.01 - 0.11 ± 0.01 -
SRGAN [344] 1.5M 2.70 ± 0.08 - 0.95 ± 0.02 -
AGD [345] 0.42M 3.17 ± 0.12 - 0.88 ± 0.01 -
EdgeSRGAN 0.66M 10.26 ± 0.11 140.23 ± 1.50 2.66 ± 0.02 10.63 ± 0.03
EdgeSRGAN-tiny 0.09M 37.99 ± 1.42 203.16 ± 3.03 11.76 ± 0.20 20.57 ± 0.05

SwinIR [343]
×8

12.0M 0.23 ± 0.01 - 0.06 ± 0.01 -
EdgeSRGAN 0.71M 7.70 ± 0.31 14.26 ± 0.06 1.81 ± 0.04 -
EdgeSRGAN-tiny 0.11M 24.53 ± 1.28 41.55 ± 0.38 5.81 ± 0.29 -

12.2 Experiments

12.2.1 Experimental Setting

In this section, we define our method’s implementation details and the procedure we
followed to train and validate the efficiency of EdgeSRGAN optimally. As previously
done by most GAN-based SISR works, we train the network on the high-quality
DIV2K dataset [365] with a scaling factor of 4. The dataset contains 800 training
samples and 100 validation samples. We train our model with input images of
size 24x24 pixels, selecting random patches from the training set. We apply data
augmentation by randomly flipping or rotating the images by multiples of 90◦. We
adopt a batch size of 16.

236Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation

For the standard EdgeSRGAN implementation, we choose N = 8, F = 64, K = 3, and
D = 1024, obtaining a generator with around 660k parameters and a discriminator
of over 23M (due to the fully-connected head). The discriminator is built with
F = 64, K = 3, D = 512, and with a coefficient for LeakyReLU α = 0.2. We first
train EdgeSRGAN pixel-wise for 5×105 steps with Adam optimizer and a constant
learning rate of 1×10−4. Then, the model is fine-tuned in the adversarial setting
described in Section 12.1 for 1×105 steps. Adam optimizer is used for the generator
and the discriminator with a learning rate of 1×10−5, further divided by 10 after
5×104 steps. For the loss function, we set ξ = 1×10−3 and η = 0.

To obtain an even smaller model for our distillation experiments, we build EdgeSRGAN-
tiny by choosing N = 4, F = 32, and D = 256. We further shrink the size of the
discriminator by eliminating the first compression stage (B1) from each block (see
Fig. 12.3). In this configuration, we also remove the batch normalization layer
from the first B2 block to be coherent with the larger version. The obtained genera-
tor and discriminator contain around 90k and 2.75M parameters. The pre-training
procedure is the one described for EdgeSRGAN, while the adversarial training is
performed with the additional distillation loss (γ = 1×10−2, λ = 1×10−1) of Eq.
12.8. EdgeSRGAN is used as a teacher model, distilling its layers 2, 5, and 8 into
EdgeSRGAN-tiny’s layers 1, 2, and 4. The model is trained with a learning rate of
1×10−4, which is further divided by 10 after 5×104 steps. For the loss function,
we set ξ = 1×10−3 and η = 0.

Finally, we create a third version of our model to upscale images with a factor
of 8. To do so, we change the first transpose convolution layer of EdgeSRGAN
and EdgeSRGAN-tiny to have a stride of 4 instead of 2 and leave the rest of the
architecture unchanged. The training procedure for these models is analogous to
the ones used for the x4 models, with the main difference of adding a pixel-based
component to the adversarial loss by posing η = 1×102.

The optimal training hyperparameters are found by running a random search and
choosing the best-performing models on DIV2K validation. During GAN training,
we use PSNR to validate the models during content-based loss optimization and
LPIPS [347] (with AlexNet backbone).

We employ TensorFlow 2 and a workstation with 64 GB of RAM, an Intel i9-12900K
CPU, and an Nvidia 3090 RTX GPU to perform all the training experiments.

12.2 Experiments 237

12.2.2 Real-time Performance

Since the main focus of the proposed methodology is to train an optimized SISR
model to be efficiently run at the edge in real time, we first report an inference
speed comparison between the proposed method and other literature methodolo-
gies. All the results are shown in Tab. 12.1 as the mean and standard deviation
of 10 independent experiments of 100 predictions each. We compare the proposed
methodology with other GAN-based methods [344, 358, 346, 345] and with the
current state-of-the-art in content-oriented SISR SwinIR [343]. Since the original
implementations of the GAN-based solutions consider ×4 upsampling only, for the
×8 comparison, we only report SwinIR. We select two different input resolutions
for the experimentation, (80×60) and (160×120), in order to target (320×240)
and (640×480) resolutions for ×4 upsampling and (640×480) and (1280×960)
for ×8 upsampling, respectively. This choice is justified because (640×480) is a
standard resolution provided by most cameras’ native video stream. We also report
the number of parameters for all the models.

For all the considered methods, we measure the CPU timings with the model format
of the original implementation (PyTorch or TensorFlow) on a MacBook Pro with an
Intel i5-8257U processor. The concept of real-time performance strongly depends
on the downstream task. For robotic monitoring and teleoperation, we consider
10 fps as the minimum real-time framerate, considering over-real-time everything
above 30 fps, which is the standard framerate for most commercial cameras. The
proposed methodology outperforms all the other methods in inference speed and
achieves real-time performance on the CPU in almost all the testing conditions. It is
worth noting that AGD is specifically designed to reduce latency for GAN-based SR
and has fewer parameters than EdgeSRGAN, but it still fails at achieving real-time
without a GPU.

In addition, we report the framerate of the EdgeSRGAN int8-quantized models on an
EdgeTPU Coral USB Accelerator. The proposed solution is the only one compatible
with such devices and allows reaching over-real-time performance for (80× 60)
input resolution. It must be underlined how the ×8 models with (160×120) input
resolution cannot target the EdgeTPU device due to memory limitations.

238Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation

Ta
bl

e
12

.2
Q

ua
nt

ita
tiv

e
co

m
pa

ri
so

n
of

di
ff

er
en

tm
et

ho
ds

fo
rc

on
te

nt
-o

ri
en

te
d
×

4
up

sa
m

pl
in

g.
C

ur
re

nt
SI

SR
st

at
e-

of
-a

rt
m

et
ho

d
Sw

in
IR

[3
43

]
an

d
bi

cu
bi

c
ba

se
lin

e
ar

e
re

po
rt

ed
as

re
fe

re
nc

e.
↑ :

hi
gh

er
is

be
tte

r,
↓ :

lo
w

er
is

be
tte

r,
†:

tr
ai

ne
d

on
D

IV
2K

[3
65

]+
Fl

ic
kr

2K
[3

66
]+

O
ST

[3
67

]

Se
t5

[3
48

]
Se

t1
4

[3
68

]
B

SD
10

0
[3

69
]

M
an

ga
10

9
[3

70
]

U
rb

an
10

0
[3

71
]

M
et

ho
d

PS
N

R
↑

SS
IM

↑
L

PI
PS

↓
PS

N
R

↑
SS

IM
↑

L
PI

PS
↓

PS
N

R
↑

SS
IM

↑
L

PI
PS

↓
PS

N
R

↑
SS

IM
↑

L
PI

PS
↓

PS
N

R
↑

SS
IM

↑
L

PI
PS

↓

B
ic

ub
ic

28
.6

32
0.

81
4

0.
34

0
26

.2
12

0.
70

9
0.

44
1

26
.0

43
0.

67
2

0.
52

9
25

.0
71

0.
79

0
0.

31
8

23
.2

36
0.

66
1

0.
47

3
Sw

in
IR

[3
43

]
32

.7
19

0.
90

2
0.

16
8

28
.9

39
0.

79
1

0.
26

8
27

.8
34

0.
74

6
0.

35
8

31
.6

78
0.

92
3

0.
09

4
27

.0
72

0.
81

6
0.

19
3

SR
G

A
N

[3
44

]
32

.0
13

0.
89

3
0.

19
1

28
.5

34
0.

78
1

0.
29

4
27

.5
34

0.
73

5
0.

39
6

30
.2

92
0.

90
6

0.
11

1
25

.9
59

0.
78

2
0.

24
4

E
SR

G
A

N
[3

58
]†

32
.7

30
0.

90
1

0.
18

1
28

.9
97

0.
79

2
0.

27
5

27
.8

38
0.

74
5

0.
37

1
31

.6
44

0.
92

0
0.

09
7

27
.0

28
0.

81
5

0.
20

1
A

G
D

[3
45

]
31

.7
08

0.
88

9
0.

17
8

28
.3

11
0.

77
5

0.
29

1
27

.3
74

0.
72

9
0.

38
5

29
.4

13
0.

89
7

0.
11

8
25

.5
06

0.
76

7
0.

25
0

E
dg

eS
R

G
A

N
31

.7
29

0.
88

9
0.

19
1

28
.3

03
0.

77
4

0.
30

1
27

.3
59

0.
72

8
0.

40
5

29
.6

11
0.

89
7

0.
12

0
25

.4
69

0.
76

4
0.

26
6

E
dg

eS
R

G
A

N
-t

in
y

30
.8

75
0.

87
3

0.
20

4
27

.7
96

0.
76

1
0.

32
0

26
.9

99
0.

71
7

0.
41

8
28

.2
33

0.
87

1
0.

16
3

24
.6

95
0.

73
3

0.
32

5

Ta
bl

e
12

.3
Q

ua
nt

ita
tiv

e
co

m
pa

ri
so

n
of

di
ff

er
en

tm
et

ho
ds

fo
rv

is
ua

l-
or

ie
nt

ed
×

4
up

sa
m

pl
in

g.
C

ur
re

nt
SI

SR
st

at
e-

of
-a

rt
m

et
ho

d
Sw

in
IR

[3
43

]
an

d
bi

cu
bi

c
ba

se
lin

e
ar

e
re

po
rt

ed
as

re
fe

re
nc

e.
↑:

hi
gh

er
is

be
tte

r,
↓:

lo
w

er
is

be
tte

r.
†:

tr
ai

ne
d

on
D

IV
2K

[3
65

]+
Fl

ic
kr

2K
[3

66
]+

O
ST

[3
67

].

Se
t5

[3
48

]
Se

t1
4

[3
68

]
B

SD
10

0
[3

69
]

M
an

ga
10

9
[3

70
]

U
rb

an
10

0
[3

71
]

M
od

el
PS

N
R

↑
SS

IM
↑

L
PI

PS
↓

PS
N

R
↑

SS
IM

↑
L

PI
PS

↓
PS

N
R

↑
SS

IM
↑

L
PI

PS
↓

PS
N

R
↑

SS
IM

↑
L

PI
PS

↓
PS

N
R

↑
SS

IM
↑

L
PI

PS
↓

B
ic

ub
ic

28
.6

32
0.

81
4

0.
34

0
26

.2
12

0.
70

9
0.

44
1

26
.0

43
0.

67
2

0.
52

9
25

.0
71

0.
79

0
0.

31
8

23
.2

36
0.

66
1

0.
47

3
Sw

in
IR

[3
43

]
32

.7
19

0.
90

2
0.

16
8

28
.9

39
0.

79
1

0.
26

8
27

.8
34

0.
74

6
0.

35
8

31
.6

78
0.

92
3

0.
09

4
27

.0
72

0.
81

6
0.

19
3

SR
G

A
N

[3
44

]
29

.1
82

0.
84

2
0.

09
4

26
.1

71
0.

70
1

0.
17

2
25

.4
47

0.
64

8
0.

20
6

27
.3

46
0.

86
0

0.
07

6
24

.3
93

0.
72

8
0.

15
8

E
SR

G
A

N
[3

58
]†

30
.4

59
0.

85
2

0.
08

3
26

.2
83

0.
69

8
0.

13
9

25
.2

88
0.

64
9

0.
16

8
28

.4
78

0.
86

0
0.

06
5

24
.3

50
0.

73
3

0.
12

5
R

ea
l-E

SR
G

A
N

[3
46

]†
26

.6
17

0.
80

7
0.

16
9

25
.4

21
0.

69
6

0.
23

4
25

.0
89

0.
65

3
0.

28
2

25
.9

85
0.

83
6

0.
14

9
22

.6
71

0.
68

6
0.

21
4

A
G

D
[3

45
]

30
.4

32
0.

86
1

0.
09

7
27

.2
76

0.
73

9
0.

16
0

26
.2

19
0.

68
8

0.
21

4
28

.1
63

0.
87

0
0.

07
6

24
.7

32
0.

74
3

0.
17

0

E
dg

eS
R

G
A

N
29

.4
87

0.
83

7
0.

09
5

26
.8

14
0.

71
5

0.
17

6
25

.5
43

0.
64

4
0.

21
0

27
.6

79
0.

85
5

0.
08

1
24

.2
68

0.
71

6
0.

17
0

E
dg

eS
R

G
A

N
-t

in
y

28
.0

74
0.

80
3

0.
14

6
26

.0
01

0.
70

2
0.

24
2

25
.5

26
0.

65
8

0.
29

2
25

.6
55

0.
80

4
0.

14
0

23
.3

32
0.

67
2

0.
26

9
E

dg
eS

R
G

A
N

-t
in

y-
D

29
.5

13
0.

84
1

0.
13

2
26

.9
50

0.
72

7
0.

22
0

26
.1

74
0.

67
3

0.
28

2
27

.1
06

0.
84

5
0.

13
0

24
.1

17
0.

70
4

0.
24

9

12.2 Experiments 239

12.2.3 Super-Resolution Results

To present quantitative results on image super-resolution, we refer to content-oriented
SR for models trained with content-based loss only and visual-oriented SR for models
trained with adversarial and perceptual losses. Content-based loss (mean absolute
error or mean squared error) aims to maximize PSNR and SSIM, while adversarial
and perceptual losses aim to maximize visual quality. We test EdgeSRGAN models
on five benchmark datasets (Set5 [348], Set14 [368], BSD100 [369], Manga109
[370], and Urban100 [371]) measuring PSNR, SSIM, and LPIPS. We follow the
standard procedure for SISR adopted in [343], where the metrics are computed on
the luminance channel Y of the YCbCr converted images. Also, S pixels are cropped
from each image border, where S is the model scale factor.

Tab. 12.2 and Tab. 12.3 show the comparison with other methods for content-oriented
and visual-oriented ×4 SR, respectively. We report results of other GAN-based
methodologies [344, 358, 346, 345] as well as the current content-oriented SOTA
SwinIR [343] and bicubic baseline, as reference. Unlike what is usually found in
literature, we refer to the OpenCV bicubic resize implementation instead of the
one present in MATLAB. For visual-oriented SR, we also report the results of the
distilled tiny model EdgeSRGAN-tiny-D. The proposed method reaches competitive
results in all the metrics, even with some degradation for tiny models due to the
considerable weight reduction. The distillation method helps EdgeSRGAN-tiny
training by transferring knowledge from the standard model and decreasing the
degradation due to the reduced number of parameters. Note that ESRGAN and
RealESRGAN are trained on Flickr2K [366], and OST [367] datasets in addition
to DIV2K. Tab. 12.4 reports results of the ×8 models, together with SwinIR and
bicubic. Also, in this case, the proposed models reach competitive results, and
knowledge distillation helps to reduce performance degradation in the tiny model.
As a final qualitative evaluation, Fig. 12.6 compares the super-resolved images
obtained by EdgeSRGAN with the considered state-of-the-art solutions. Our model
shows comparable results, highlighting more texture and details than networks
trained with pixel loss (LMSE) while remaining true to the ground truth image.

Network Interpolation

We report the results of network interpolation on the benchmark datasets in Fig.
12.8. We consider α values between 0 and 1 with a step of 0.1, with 0 implying

240Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation

Ta
bl

e
12

.4
Q

ua
nt

ita
tiv

e
pe

rf
or

m
an

ce
of

th
e

pr
op

os
ed

m
et

ho
d

fo
r×

8
up

sa
m

pl
in

g.
C

ur
re

nt
SI

SR
st

at
e-

of
-a

rt
m

et
ho

d
Sw

in
IR

[3
43

],
an

d
bi

cu
bi

c
ar

e
re

po
rt

ed
as

re
fe

re
nc

es
.↑

:h
ig

he
ri

s
be

tte
r,

↓ :
lo

w
er

is
be

tte
r.

Se
t5

[3
48

]
Se

t1
4

[3
68

]
B

SD
10

0
[3

69
]

M
an

ga
10

9
[3

70
]

U
rb

an
10

0
[3

71
]

M
od

el
PS

N
R

↑
SS

IM
↑

L
PI

PS
↓

PS
N

R
↑

SS
IM

↑
L

PI
PS

↓
PS

N
R

↑
SS

IM
↑

L
PI

PS
↓

PS
N

R
↑

SS
IM

↑
L

PI
PS

↓
PS

N
R

↑
SS

IM
↑

L
PI

PS
↓

B
ic

ub
ic

24
.5

26
0.

65
9

0.
53

3
23

.2
79

0.
56

8
0.

62
8

23
.7

27
0.

54
6

0.
71

3
21

.5
50

0.
64

6
0.

53
5

20
.8

04
0.

51
5

0.
68

6
Sw

in
IR

[3
43

]
27

.3
63

0.
78

7
0.

28
4

25
.2

65
0.

65
2

0.
42

8
24

.9
84

0.
60

6
0.

53
7

25
.2

46
0.

80
0

0.
22

9
23

.0
23

0.
64

6
0.

37
5

E
dg

eS
R

G
A

N
co

nt
en

t
26

.4
62

0.
75

5
0.

32
1

24
.5

07
0.

62
6

0.
46

0
24

.5
90

0.
58

7
0.

56
7

23
.8

40
0.

75
3

0.
29

4
22

.0
01

0.
59

2
0.

46
3

E
dg

eS
R

G
A

N
-t

in
y

26
.0

25
0.

73
2

0.
35

9
24

.2
86

0.
61

5
0.

48
8

24
.3

83
0.

57
7

0.
59

1
23

.1
54

0.
72

3
0.

35
3

21
.6

80
0.

57
0

0.
52

0

E
dg

eS
R

G
A

N
vi

su
al

25
.3

07
0.

68
0

0.
22

8
23

.5
85

0.
55

8
0.

34
8

23
.5

47
0.

51
4

0.
38

6
22

.7
19

0.
68

0
0.

25
7

21
.1

02
0.

52
2

0.
37

4
E

dg
eS

R
G

A
N

-t
in

y
25

.5
23

0.
69

3
0.

28
0

23
.9

76
0.

58
9

0.
39

9
24

.1
63

0.
55

7
0.

47
5

22
.8

74
0.

69
5

0.
31

7
21

.4
77

0.
54

6
0.

45
9

Ta
bl

e
12

.5
Q

ua
nt

ita
tiv

e
pe

rf
or

m
an

ce
of

th
e

fu
ll-

in
te

ge
rq

ua
nt

iz
ed

m
od

el
s

fo
r×

4
an

d
×

8
vi

su
al

-b
as

ed
SR

.↑
:h

ig
he

ri
s

be
tte

r,
↓:

lo
w

er
is

be
tte

r.

Se
t5

[3
48

]
Se

t1
4

[3
68

]
B

SD
10

0
[3

69
]

M
an

ga
10

9
[3

70
]

U
rb

an
10

0
[3

71
]

M
od

el
Sc

al
e

PS
N

R
↑

SS
IM

↑
L

PI
PS

↓
PS

N
R

↑
SS

IM
↑

L
PI

PS
↓

PS
N

R
↑

SS
IM

↑
L

PI
PS

↓
PS

N
R

↑
SS

IM
↑

L
PI

PS
↓

PS
N

R
↑

SS
IM

↑
L

PI
PS

↓

E
dg

eS
R

G
A

N
i8

×
4

27
.1

86
0.

72
1

0.
20

9
24

.7
14

0.
47

5
0.

34
2

23
.6

75
0.

48
4

0.
43

8
25

.6
01

0.
71

2
0.

22
1

22
.8

02
0.

58
0

0.
34

1
E

dg
eS

R
G

A
N

i8
-t

in
y-

D
27

.3
30

0.
71

0
0.

25
7

24
.8

07
0.

56
2

0.
39

0
23

.8
37

0.
48

5
0.

48
1

25
.2

99
0.

69
6

0.
28

6
22

.5
80

0.
53

8
0.

45
4

E
dg

eS
R

G
A

N
i8

×
8

24
.4

33
0.

60
2

0.
31

2
22

.8
46

0.
47

7
0.

44
0

22
.6

09
0.

42
2

0.
49

2
22

.2
27

0.
60

3
0.

34
2

20
.5

25
0.

43
3

0.
49

9
E

dg
eS

R
G

A
N

i8
-t

in
y

24
.9

56
0.

64
2

0.
33

3
23

.4
87

0.
53

2
0.

46
1

23
.5

91
0.

49
4

0.
54

4
22

.4
45

0.
63

2
0.

38
6

21
.1

25
0.

48
9

0.
54

8

12.2 Experiments 241

Urban100 (×4): img_003

LR HR SRGAN [344] ESRGAN [358]

RealESRGAN [372] AGD [345] SwinIR [343] EdgeSRGAN (ours)

Manga109 (×4): ParaisoRoad

LR HR SRGAN [344] ESRGAN [358]

RealESRGAN [372] AGD [345] SwinIR [343] EdgeSRGAN (ours)

BSD100 (×4): 108070

LR HR SRGAN [344] ESRGAN [358]

RealESRGAN [372] AGD [345] SwinIR [343] EdgeSRGAN (ours)

Set5 (×4): butterfly

LR HR SRGAN [344] ESRGAN [358]

RealESRGAN [372] AGD [345] SwinIR [343] EdgeSRGAN (ours)

Set14 (×4): baboon

LR HR SRGAN [344] ESRGAN [358]

RealESRGAN [372] AGD [345] SwinIR [343] EdgeSRGAN (ours)

Fig. 12.6 Visual comparison of bicubic image SR (×4) methods on random samples from
the considered datasets. EdgeSRGAN achieves results that are comparable to state-of-the-art
solutions with ∼ 10% of the weights.

242Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation

Set5 (×4): baby

α = 0 α = 0.2 α = 0.4

α = 0.6 α = 0.8 α = 1

Fig. 12.7 Visual comparison of interpolated EdgeSRGAN for different values of α . Values
closer to 1 generate outputs focused on content fidelity, while small values go towards
visually pleasing results.

0.0
visual

0.2 0.4 0.6 0.8 1.0
contentα

24

25

26

27

28

29

30

31

32
PSNR↑

0.0
visual

0.2 0.4 0.6 0.8 1.0
contentα

0.65

0.70

0.75

0.80

0.85

0.90

SSIM↑

0.0
visual

0.2 0.4 0.6 0.8 1.0
contentα

0.10

0.15

0.20

0.25

0.30

0.35

0.40

LPIPS↓

Fig. 12.8 EdgeSRGAN network interpolation results on the benchmark datasets for ×4
upsampling. Changing the network interpolation weight α , it is possible to select the desired
trade-off between content-oriented and visual-oriented SR.
↑: higher is better, ↓: lower is better.

a full visual-oriented model and 1 a full content-oriented one. All results refer to
the standard EdgeSRGAN model for ×4 upsampling. This procedure effectively
shows how it is possible to choose the desired trade-off between content-oriented
and visual-oriented SR simply by changing the interpolation weight α . An increase
in the weight value causes an improvement of the content-related metrics PSNR and
SSIM and a worsening of the perceptual index LPIPS. This behavior holds for all the
test datasets, validating the proposed approach. This procedure can be easily carried
out in a real-time application and only requires computing the interpolated weights
once. Thus, it does not affect any way the inference speed. For an additional visual
evaluation, Fig. 12.7 reports the outputs obtained for increasing values of α on a
random dataset sample.

12.2 Experiments 243

Mobile Robot EdgeSRGAN
LR image

[160x120]

SR image [640x480]
Ground Station

Router

Fig. 12.9 Efficient image transmission system with EdgeSRGAN for mobile robotic applica-
tions in outdoor environments.

Network Quantization

To target Edge TPU devices and reach over-real-time inference results, we follow the
quantization scheme of Eq. 12.10 for both weights and activations to obtain a full-
integer model. Since quantized models must have a fixed input shape, we generate
a full-integer network for each input shape of the testing samples. We use the 100
images from the DIV2K validation set as a representative dataset to calibrate the quan-
tization algorithm. We refer to the int8-quantized standard model as EdgeSRGANi8.
As for the tiny model, we optimize the distilled network EdgeSRGANi8-tiny-D.
Results for the visual-oriented optimized models are shown in Tab. 12.5. Due to the
full-integer models’ reduced activation and weight, we experience a great increase in
inference speed up to over-real-time at the cost of degradation in SR performance.
All the proposed quantized models still outperform the bicubic baseline on the per-
ceptual index LPIPS and therefore represent a good option for applications in which
really fast inference is needed. A comparison of different models for visual-oriented
×4 upsampling is shown in Fig. 12.1. We consider LPIPS performance on the Set5
dataset compared to framerate.

12.2.4 Application: Image Transmission for Mobile Robotics

Our real-time SISR can provide competitive advantages in a wide variety of practical
engineering applications. In this section, we target a specific use case of mobile
robotics, proposing our EdgeSRGAN system as an efficient deep learning-based
solution for real-time image transmission. Indeed, robot remote control in unknown
terrains needs a reliable transmission of visual data at a satisfying framerate, pre-

244Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation

serving robustness even in bandwidth-degraded conditions. This requirement is
particularly relevant for high-speed platforms and UAVs. Dangerous or delicate
tasks such as tunnel exploration, inspection, or open space missions all require an
available visual stream for human supervision, regardless of the autonomy level of
the platform. In the last few years, the robotics community has focused on devel-
oping globally shared solutions for robot software and architectures and handling
data communications between multiple platforms and devices. ROS2 [373] is the
standard operative system for robotic platforms. It is a middleware based on a Data
Distribution System (DDS) protocol where application nodes communicate with
each other through a topic with a publisher/subscriber mechanism. However, despite
the most recent attempts to improve the reliability and efficiency of message and
data packet communications between different nodes and platforms, heavier data
transmission, such as image streaming, is not yet optimized and reliable.

The typical practical setting used for robot teleoperation and exploration in unknown
environments is composed of a ground station and a rover connected to the same
wireless network. As shown in Fig. 12.9, we adopted this ground station configu-
ration to test the transmission of images through a ROS2 topic, as should be done
in any robotic application to stream what the robot sees or to receive visual data
and feed perception and control algorithms for autonomous navigation and mapping.
For this experiment, we use both an Intel RealSense D435i camera and a Logitech
C920 webcam mounted on a Clearpath Jackal robot, together with a Microhard
BulletPlus router for image transmission. The available image resolutions with
RealSense cameras, the standard RGBD sensors for visual perception in robotics,
are (320×240) and (640×480), whereas the framerate typically varies between 15
and 30 fps.

Despite the absence of strong bandwidth limitations, transmission delays, or partial
loss of packets, the maximum resolution and framerate allowed by ROS2 commu-
nication are extremely low: we find that at 30 fps, the maximum transmissible
resolution for RGB is (120×120) with a bandwidth of 20 Mb/s while reducing the
framerate to 5 fps the limit is (320×240). This strict trade-off between framerate
and resolution hinders the high-speed motion of a robotic platform in a mission,
increasing the risk of collision due to reduced scene supervision. Even selecting
best effort in the Quality of Service (QoS) settings, which manage the reception of
packages through topics, the detected performances are always scarce.

12.2 Experiments 245

HR LR Bicubic EdgeSRGAN (ours)

HR LR Bicubic EdgeSRGAN (ours)

HR LR Bicubic EdgeSRGAN (ours)

HR LR Bicubic EdgeSRGAN (ours)

Fig. 12.10 Qualitative demonstration of applying EdgeSRGAN (×4) on real scenarios (zoom
for more detail). From top to bottom: apple monitoring, navigation in vineyards, drone
surveillance for autonomous rovers, and tunnel inspection.

Adopting our real-time Super-Resolution system ensures the timely arrival of RGB
and depth images via ROS2. Thanks to the fast-inference performance of EdgeS-
RGAN, we can stream low-resolution images (80× 60) at a high framerate (30
fps) and receive a high-resolution output: (320×240) with a x4 image upsampling
and (640×480) with a x8 upsampling, showing a clear improvement on standard
performance. Our system allows the ground station to access the streaming data
through a simple ROS topic. Hence, it provides multiple competitive advantages
in robotic teleoperation and autonomous navigation: high-resolution images can
be directly exploited by the human operator for remote control. Moreover, they
can be used to feed computationally hungry algorithms like sensorimotor agents,
visual-odometry, or visual-SLAM, which we may prefer to run on the ground station

246Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation

10 210 1100101

Bandwidth [Mbps]

0

5

10

15

20

25

30

Fr
am

er
at

e
[fp

s]

MJPEG

10 210 1100101

Bandwidth [Mbps]

0

5

10

15

20

25

30

Fr
am

er
at

e
[fp

s]

H264

Fig. 12.11 Framerate results vs. bandwidth for video transmission at different input resolu-
tions with MJPEG and H264 compression. Bandwidth is in log scale.

to save the constrained power resources of the robot and significantly boost the
autonomy level of the mission. In Fig. 12.10, we report a qualitative comparison
to highlight the effectiveness of EdgeSRGAN for real-world robotic scenarios. In
particular, we consider apple monitoring, navigation in vineyards, drone surveillance
for autonomous rovers, and tunnel inspection.

We also test video transmission performance in a more general framework to repro-
duce all the potential bandwidth conditions. We use the well-known video streaming
library GStreamer2 to transmit video samples changing the available bandwidth. We
progressively reduce the bandwidth from 10 Mbps to 10 kbps using the Wonder-
shaper library3 and measure the framerate at the receiver side. We use 10 seconds
of the standard video sample smtpe natively provided by GStreamer videotestsrc
video source at 30 fps, and we encode it for transmission using MJPEG and H264
video compression standards. The encoding is performed offline to ensure that all the

2https://gstreamer.freedesktop.org/
3https://github.com/magnific0/wondershaper

https://gstreamer.freedesktop.org/
https://github.com/magnific0/wondershaper

12.2 Experiments 247

available resources are reserved for transmission only. Indeed, most cameras provide
hardware-encoded video sources without requiring software compression. To be
consistent with the other experiments, we keep using (640×480) and (320×240) as
high resolutions and (160×120) and (80×60) as low resolutions. Each experiment
is performed 10 times to check the consistency in results. Fig. 12.11 presents the
average framerate achieved with different bandwidths. Streaming video directly
without any middleware, such as ROS2, ensures a higher transmission performance.
However, as expected, streaming high-resolution images is impossible in the case of
low bandwidth and the framerate quickly drops to very low values, resulting unsuit-
able for real-time applications. On the other hand, lower resolutions can be streamed
with minimal frame drop, even with lower available bandwidths. H264 compression
shows the same behavior as MJPEG but shifts to lower bandwidths. Indeed, H264 is
more sophisticated and efficient, as it uses temporal frame correlation in addition to
spatial compression. In a practical application with a certain bandwidth constraint,
a proper combination of a low-resolution video source and an SR model can be
selected to meet the desired framerate requirements on the available platform (CPU
or Edge TPU). This mechanism can also be dynamically and automatically activated
and deactivated depending on the current connectivity to avoid framerate drops and
ensure a smooth image transmission.

Conclusions

Intelligent service robots are at the forefront of technological innovation to support
humans in a wide range of activities. What we usually call intelligence refers to
a service robot’s ability to sense and understand the surrounding world, plan its
behavior, and act effectively. AI and ML are key technologies to move robotics
intelligence to the next level of autonomy and reach adaptive and reliable perfor-
mance in unseen or adverse environmental conditions different from structured and
controlled lab spaces. This thesis aims to meaningfully integrate these two recent
worlds and advance mobile robots towards natural collaborators in our everyday
lives. The problems and challenges highlighted in the thesis demonstrate that this
future is not far, but there are still many points to be improved to reach complete,
reliable solutions. Precision agriculture and indoor domestic assistance are the spe-
cific application contexts considered in this work. Part II focuses on the study of
autonomous navigation solutions based on both classic and learning methods for
social indoor environments. A prototype for a domestic assistance case study is
also presented. There are many challenges offered by this type of robotic solution.
For example, navigating a crowded environment and considering social rules are
unsolved problems. From the platform perspective, executing navigation algorithms
and multiple neural models on-board on the constrained resources of the robot is not
a trivial task. Privacy issues can also derive from solutions running on cloud-based
servers. Part III introduced a DL pipeline for autonomous operation in a row-based
crop composed of a position-agnostic local controller and a waypoints generator.
The overall solution represents an attempt to reduce the complexity and the costs
of an outdoor robotic platform, trying to develop navigation strategies independent
from a precise GNSS RTK positioning signal but only relying on an RGB-D camera.
The challenges related to deploying DL models in general real contexts are analyzed
in Part IV. Generalization of unseen conditions and out-of-distribution data is a

12.2 Experiments 249

common problem in real-world settings. Nowadays, the development of novel DL
methods is changing its paradigm, moving from custom dataset-specific models to
huge foundation models to address multiple downstream tasks with a single solution.
Among them, ChatGPT [374] for language processing, Segment Anything [375] for
computer vision, and novel foundation models for robot grasping [376, 377] and
navigation [378] are changing the common sense about AI. On the other hand, Edge-
AI is pushing model’s optimization techniques to fit low-power embedded devices.
The application and methodology presented in Chapter 12 follow this technological
direction, which remains the most suitable for robotics on-board execution of ML
models. Generalization and optimization are, therefore, two fundamental aspects to
move the next generation of AI toward a seamless integration with robotic platforms.
This consideration holds for both autonomous navigation and perception.

Future Works

In this dissertation, different methodologies and experiments have presented and
discussed in the real of DL and Service Robotics. However, many of them present
unsolved challenges and leave space for further development. Considering the
indoor social robotics field discussed in Part II, learning and planning techniques can
significantly contribute to enhancing autonomous operation in dynamic, crowded
environments where social rules also play a crucial role. The solution presented
in Chapter 4 is an example of integration between classic and learning methods.
These novel hybrid solutions convey different research toward an advanced autonomy
characterized by robust and adaptive behaviors. Moreover, the localization of mobile
robot can be enhanced with learning approaches as shown in Chapter 5. Future
works may consider physics-based learned models for such tasks, extending the
study to alternative positioning sensors. In Part III, autonomous robotic operations
in vineyards are presented with experiments on the field and different approaches,
focusing on the field’s rows traversal. Precision agriculture is an active sector for
service robotics, and the natural future contributions in this direction would be to
further increase the robustness of the position-agnostic algorithms developed to
avoid the usage of costly GNSS receivers and, above all, leverage the navigation
capabilities to address specific agricultural tasks. Perception and manipulation can
be combined on the robot to carry out fruit counting, plant monitoring, harvesting,
pruning, and parasite detection. The study of novel backbone architectures and

250Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation

training paradigms to enhance the generalization and inference performance of DL
models will undoubtedly be the focus of research worldwide in the next decade.
Knowledge distillation is a promising methodology for performing transfer learning
with a twofold objective: training a general and optimized student model. Overall,
all the research carried out and presented in this thesis paves the way for further
development and investigation of both ML and autonomous navigation algorithms
for the next generation of mobile service robots.

References

[1] Fortune Business Insights. Service robotics market size, share | growth drivers,
2023.

[2] Chinchane Amar and Mutreja Sonia. Service robotics market size, trends,
industry revenue, 2023.

[3] Cheng Yuan, Bing Xiong, Xiuquan Li, Xiaohan Sang, and Qingzhao Kong. A
novel intelligent inspection robot with deep stereo vision for three-dimensional
concrete damage detection and quantification. Structural Health Monitoring,
21(3):788–802, 2022.

[4] Jorge Pena Queralta, Jussi Taipalmaa, Bilge Can Pullinen, Victor Kathan
Sarker, Tuan Nguyen Gia, Hannu Tenhunen, Moncef Gabbouj, Jenni Raito-
harju, and Tomi Westerlund. Collaborative multi-robot search and rescue:
Planning, coordination, perception, and active vision. Ieee Access, 8:191617–
191643, 2020.

[5] Filippo Cantucci and Rino Falcone. Autonomous critical help by a robotic
assistant in the field of cultural heritage: A new challenge for evolving human-
robot interaction. Multimodal Technologies and Interaction, 6(8):69, 2022.

[6] Fangrui Yin. Inspection robot for submarine pipeline based on machine vision.
In Journal of Physics: Conference Series, volume 1952, page 022034. IOP
Publishing, 2021.

[7] Evangelos Papadopoulos, Farhad Aghili, Ou Ma, and Roberto Lampariello.
Robotic manipulation and capture in space: A survey. Frontiers in Robotics
and AI, 8:686723, 2021.

[8] Jinming Wen, Li He, and Fumin Zhu. Swarm robotics control and commu-
nications: Imminent challenges for next generation smart logistics. IEEE
Communications Magazine, 56(7):102–107, 2018.

[9] Mohd Saiful Azimi Mahmud, Mohamad Shukri Zainal Abidin, Abioye Abio-
dun Emmanuel, and Hameedah Sahib Hasan. Robotics and automation in
agriculture: present and future applications. Applications of Modelling and
Simulation, 4:130–140, 2020.

252 References

[10] Jane Holland, Liz Kingston, Conor McCarthy, Eddie Armstrong, Peter
O’Dwyer, Fionn Merz, and Mark McConnell. Service robots in the healthcare
sector. Robotics, 10(1):47, 2021.

[11] Saeid Nahavandi, Roohallah Alizadehsani, Darius Nahavandi, Shady Mo-
hamed, Navid Mohajer, Mohammad Rokonuzzaman, and Ibrahim Hos-
sain. A comprehensive review on autonomous navigation. arXiv preprint
arXiv:2212.12808, 2022.

[12] Mauro Martini, Noé Pérez-Higueras, Andrea Ostuni, Marcello Chiaberge,
Fernando Caballero, and Luis Merino. Adaptive social force window planner
with reinforcement learning. arXiv preprint arXiv:2404.13678, 2024.

[13] Alessandro Navone, Mauro Martini, Simone Angarano, and Marcello Chi-
aberge. Online learning of wheel odometry correction for mobile robots with
attention-based neural network. In 2023 IEEE 19th International Conference
on Automation Science and Engineering (CASE), pages 1–6, 2023.

[14] Andrea Eirale, Mauro Martini, Luigi Tagliavini, Dario Gandini, Marcello
Chiaberge, and Giuseppe Quaglia. Marvin: An innovative omni-directional
robotic assistant for domestic environments. Sensors, 22(14):5261, 2022.

[15] Andrea Eirale, Mauro Martini, and Marcello Chiaberge. Human-centered nav-
igation and person-following with omnidirectional robot for indoor assistance
and monitoring. Robotics, 11(5):108, 2022.

[16] Andrea Eirale, Mauro Martini, and Marcello Chiaberge. Rl-dwa omnidi-
rectional motion planning for person following in domestic assistance and
monitoring. In 2023 9th International Conference on Automation, Robotics
and Applications (ICARA), pages 86–90. IEEE, 2023.

[17] Simone Cerrato, Vittorio Mazzia, Francesco Salvetti, Mauro Martini, Simone
Angarano, Alessandro Navone, and Marcello Chiaberge. A deep learning
driven algorithmic pipeline for autonomous navigation in row-based crops.
arXiv preprint arXiv:2112.03816, 2021.

[18] Mauro Martini, Andrea Eirale, Brenno Tuberga, Marco Ambrosio, Andrea
Ostuni, Francesco Messina, Luigi Mazzara, and Marcello Chiaberge. Enhanc-
ing navigation benchmarking and perception data generation for row-based
crops in simulation. In Precision agriculture’23, pages 451–457. Wageningen
Academic, 2023.

[19] Mauro Martini, Simone Cerrato, Francesco Salvetti, Simone Angarano, and
Marcello Chiaberge. Position-agnostic autonomous navigation in vineyards
with deep reinforcement learning. In 2022 IEEE 18th International Con-
ference on Automation Science and Engineering (CASE), pages 477–484,
2022.

References 253

[20] Alessandro Navone, Mauro Martini, Andrea Ostuni, Simone Angarano, and
Marcello Chiaberge. Autonomous navigation in rows of trees and high crops
with deep semantic segmentation. In 2023 European Conference on Mobile
Robots (ECMR), pages 1–6, 2023.

[21] Alessandro Navone, Mauro Martini, Marco Ambrosio, Andrea Ostuni, Si-
mone Angarano, and Marcello Chiaberge. Gps-free autonomous naviga-
tion in cluttered tree rows with deep semantic segmentation. arXiv preprint
arXiv:2404.05338, 2024.

[22] Francesco Salvetti, Simone Angarano, Mauro Martini, Simone Cerrato, and
Marcello Chiaberge. Waypoint generation in row-based crops with deep
learning and contrastive clustering. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 203–218. Springer,
2022.

[23] Simone Angarano, Mauro Martini, Francesco Salvetti, Vittorio Mazzia, and
Marcello Chiaberge. Back-to-bones: Rediscovering the role of backbones in
domain generalization. arXiv preprint arXiv:2209.01121, 2022.

[24] Mauro Martini, Vittorio Mazzia, Aleem Khaliq, and Marcello Chiaberge.
Domain-adversarial training of self-attention-based networks for land cover
classification using multi-temporal sentinel-2 satellite imagery. Remote Sens-
ing, 13(13):2564, 2021.

[25] Simone Angarano, Mauro Martini, Alessandro Navone, and Marcello Chi-
aberge. Domain generalization for crop segmentation with knowledge distilla-
tion. arXiv preprint arXiv:2304.01029, 2023.

[26] Simone Angarano, Francesco Salvetti, Mauro Martini, and Marcello Chi-
aberge. Generative adversarial super-resolution at the edge with knowledge
distillation. Engineering Applications of Artificial Intelligence, 123:106407,
2023.

[27] Mauro Martini, Andrea Eirale, Simone Cerrato, and Marcello Chiaberge.
Pic4rl-gym: a ros2 modular framework for robots autonomous navigation
with deep reinforcement learning. In 2023 3rd International Conference on
Computer, Control and Robotics (ICCCR), pages 198–202. IEEE, 2023.

[28] Luca Marchionna, Giulio Pugliese, Mauro Martini, Simone Angarano,
Francesco Salvetti, and Marcello Chiaberge. Deep instance segmentation and
visual servoing to play jenga with a cost-effective robotic system. Sensors,
23(2):752, 2023.

[29] F Ioli, E Bruno, D Calzolari, M Galbiati, A Mannocchi, P Manzoni, M Martini,
A Bianchi, A Cina, C De Michele, et al. A replicable open-source multi-
camera system for low-cost 4d glacier monitoring. The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
48:137–144, 2023.

254 References

[30] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victo-
ria Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-the-art
in artificial neural network applications: A survey. Heliyon, 4(11), 2018.

[31] Mahmoud Hassaballah and Ali Ismail Awad. Deep learning in computer
vision: principles and applications. CRC Press, 2020.

[32] Yoav Goldberg. Neural network methods for natural language processing.
Springer Nature, 2022.

[33] Yifang Ma, Zhenyu Wang, Hong Yang, and Lin Yang. Artificial intelligence
applications in the development of autonomous vehicles: A survey. IEEE/CAA
Journal of Automatica Sinica, 7(2):315–329, 2020.

[34] Long Chen, Shaobo Lin, Xiankai Lu, Dongpu Cao, Hangbin Wu, Chi Guo,
Chun Liu, and Fei-Yue Wang. Deep neural network based vehicle and pedes-
trian detection for autonomous driving: A survey. IEEE Transactions on
Intelligent Transportation Systems, 22(6):3234–3246, 2021.

[35] Iqbal H Sarker. Deep cybersecurity: a comprehensive overview from neural
network and deep learning perspective. SN Computer Science, 2(3):154, 2021.

[36] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[37] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

[38] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT press Cambridge, 2016.

[39] Yann LeCun et al. Generalization and network design strategies. Connection-
ism in perspective, 19(143-155):18, 1989.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

[41] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-
nent in nervous activity. The bulletin of mathematical biophysics, 5:115–133,
1943.

[42] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536, 1986.

[43] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural networks, 2(5):359–366,
1989.

References 255

[44] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010.

[45] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier
neural networks. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 315–323. JMLR Workshop and
Conference Proceedings, 2011.

[46] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml, volume 30, page 3.
Atlanta, GA, 2013.

[47] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and
accurate deep network learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289, 2015.

[48] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415, 2016.

[49] Primo.AI. Gradient descent optimization & challenges, 2023.

[50] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[51] Meenal V Narkhede, Prashant P Bartakke, and Mukul S Sutaone. A review
on weight initialization strategies for neural networks. Artificial intelligence
review, 55(1):291–322, 2022.

[52] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics, pages 249–256.
JMLR Workshop and Conference Proceedings, 2010.

[53] Yoshua Bengio and Yves Grandvalet. No unbiased estimator of the variance of
k-fold cross-validation. Advances in Neural Information Processing Systems,
16, 2003.

[54] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International
conference on machine learning, pages 448–456. pmlr, 2015.

[55] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[56] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–1958,
2014.

256 References

[57] Perkgoz C. Alsaleh A. A space and time efficient convolutional neural network
for age group estimation from facial images. PeerJ Computer Science, 2023.

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012.

[59] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[60] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 2818–2826, 2016.

[61] François Chollet. Xception: Deep learning with depthwise separable convolu-
tions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1251–1258, 2017.

[62] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 7132–7141, 2018.

[63] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam:
Convolutional block attention module. In Proceedings of the European con-
ference on computer vision (ECCV), pages 3–19, 2018.

[64] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh
Valaee. Recent advances in recurrent neural networks. arXiv preprint
arXiv:1801.01078, 2017.

[65] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, November 1997.

[66] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of
recurrent neural networks: Lstm cells and network architectures. Neural
computation, 31(7):1235–1270, 2019.

[67] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2021.

[68] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. Machine
learning for data science handbook: data mining and knowledge discovery
handbook, pages 353–374, 2023.

[69] Raghubir Singh and Sukhpal Singh Gill. Edge ai: a survey. Internet of Things
and Cyber-Physical Systems, 3:71–92, 2023.

References 257

[70] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning. Journal of
Cognitive Neuroscience, 11(1):126–134, 1999.

[71] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning, 2013.

[72] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
experience replay. arXiv preprint arXiv:1511.05952, 2015.

[73] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning, 2015.

[74] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. 31st Interna-
tional Conference on Machine Learning, ICML 2014, 1, 06 2014.

[75] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International conference on machine
learning, pages 1587–1596. PMLR, 2018.

[76] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In International conference on machine learning, pages
1861–1870. PMLR, 2018.

[77] Josep Aulinas, Yvan Petillot, Joaquim Salvi, and Xavier Lladó. The slam
problem: a survey. Artificial Intelligence Research and Development, pages
363–371, 2008.

[78] Hamid Taheri and Zhao Chun Xia. Slam; definition and evolution. Engineer-
ing Applications of Artificial Intelligence, 97:104032, 2021.

[79] Prabin Kumar Panigrahi and Sukant Kishoro Bisoy. Localization strategies
for autonomous mobile robots: A review. Journal of King Saud University-
Computer and Information Sciences, 34(8):6019–6039, 2022.

[80] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.

[81] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduc-
tion to autonomous mobile robots. MIT press, 2011.

[82] Sebastian Thrun. Probabilistic robotics. Communications of the ACM,
45(3):52–57, 2002.

[83] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

258 References

[84] Steve Macenski, Tom Moore, David V Lu, Alexey Merzlyakov, and Michael
Ferguson. From the desks of ros maintainers: A survey of modern & capable
mobile robotics algorithms in the robot operating system 2. Robotics and
Autonomous Systems, 168:104493, 2023.

[85] Harmish Khambhaita and Rachid Alami. Assessing the social criteria for
human-robot collaborative navigation: A comparison of human-aware navi-
gation planners. In 2017 26th IEEE international symposium on robot and
human interactive communication (RO-MAN), pages 1140–1145. IEEE, 2017.

[86] Noé Pérez-Higueras, Roberto Otero, Fernando Caballero, and Luis Merino.
Hunavsim: A ros 2 human navigation simulator for benchmarking human-
aware robot navigation. IEEE Robotics and Automation Letters, 8(11):7130–
7137, September 2023.

[87] Yuxiang Gao and Chien-Ming Huang. Evaluation of socially-aware robot
navigation. Frontiers in Robotics and AI, 8:721317, 2022.

[88] Christoforos Mavrogiannis, Francesca Baldini, Allan Wang, Dapeng Zhao,
Pete Trautman, Aaron Steinfeld, and Jean Oh. Core challenges of social
robot navigation: A survey. ACM Transactions on Human-Robot Interaction,
12(3):1–39, 2023.

[89] Xuesu Xiao, Bo Liu, Garrett Warnell, and Peter Stone. Motion control for
mobile robot navigation using machine learning: a survey. arXiv preprint
arXiv:2011.13112, 2020.

[90] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially
aware motion planning with deep reinforcement learning. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
1343–1350. IEEE, 2017.

[91] Reuth Mirsky, Xuesu Xiao, Justin Hart, and Peter Stone. Prevention
and resolution of conflicts in social navigation–a survey. arXiv preprint
arXiv:2106.12113, 2021.

[92] Santosh Balajee Banisetty, Vineeth Rajamohan, Fausto Vega, and David Feil-
Seifer. A deep learning approach to multi-context socially-aware navigation.
In 2021 30th IEEE International Conference on Robot & Human Interactive
Communication (RO-MAN), pages 23–30. IEEE, 2021.

[93] Kai Zhu and Tao Zhang. Deep reinforcement learning based mobile robot
navigation: A review. Tsinghua Science and Technology, 26(5):674–691,
2021.

[94] Zifan Xu, Xuesu Xiao, Garrett Warnell, Anirudh Nair, and Peter Stone. Ma-
chine learning methods for local motion planning: A study of end-to-end
vs. parameter learning. In 2021 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), pages 217–222. IEEE, 2021.

References 259

[95] Utsav Patel, Nithish Kumar, Adarsh Jagan Sathyamoorthy, and Dinesh
Manocha. Dynamically feasible deep reinforcement learning policy for robot
navigation in dense mobile crowds, 2020.

[96] Xuesu Xiao, Zizhao Wang, Zifan Xu, Bo Liu, Garrett Warnell, Gauraang
Dhamankar, Anirudh Nair, and Peter Stone. Appl: Adaptive planner parameter
learning. Robotics and Autonomous Systems, 154:104132, 2022.

[97] Zifan Xu, Gauraang Dhamankar, Anirudh Nair, Xuesu Xiao, Garrett Warnell,
Bo Liu, Zizhao Wang, and Peter Stone. Applr: Adaptive planner parameter
learning from reinforcement. In 2021 IEEE international conference on
robotics and automation (ICRA), pages 6086–6092. IEEE, 2021.

[98] Masato Kobayashi, Hiroka Zushi, Tomoaki Nakamura, and Naoki Motoi.
Local path planning: Dynamic window approach with q-learning considering
congestion environments for mobile robot. IEEE Access, 11:96733–96742,
2023.

[99] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics.
Physical review E, 51(5):4282, 1995.

[100] Mehdi Moussaïd, Niriaska Perozo, Simon Garnier, Dirk Helbing, and Guy
Theraulaz. The walking behaviour of pedestrian social groups and its impact
on crowd dynamics. PloS one, 5(4):e10047, 2010.

[101] Mehdi Moussaïd, Dirk Helbing, Simon Garnier, Anders Johansson, Maud
Combe, and Guy Theraulaz. Experimental study of the behavioural mech-
anisms underlying self-organization in human crowds. Proceedings of the
Royal Society B: Biological Sciences, 276(1668):2755–2762, 2009.

[102] Sherif A. S. Mohamed, Mohammad-Hashem Haghbayan, Tomi Westerlund,
Jukka Heikkonen, Hannu Tenhunen, and Juha Plosila. A Survey on Odometry
for Autonomous Navigation Systems. IEEE Access, 7:97466–97486, 2019.

[103] Ke Wang, Sai Ma, Junlan Chen, Fan Ren, and Jianbo Lu. Approaches,
challenges, and applications for deep visual odometry: Toward complicated
and emerging areas. IEEE Transactions on Cognitive and Developmental
Systems, 14(1):35–49, 2020.

[104] Danilo Tardioli, Luis Riazuelo, Domenico Sicignano, Carlos Rizzo, Francisco
Lera, José L Villarroel, and Luis Montano. Ground robotics in tunnels: Keys
and lessons learned after 10 years of research and experiments. Journal of
Field Robotics, 36(6):1074–1101, 2019.

[105] Teresa Seco, María T Lázaro, Jesús Espelosín, Luis Montano, and José L
Villarroel. Robot localization in tunnels: Combining discrete features in a
pose graph framework. Sensors, 22(4):1390, 2022.

260 References

[106] Christian Tamantini, Francesco Scotto di Luzio, Francesca Cordella, Giuseppe
Pascarella, Felice Eugenio Agro, and Loredana Zollo. A robotic health-
care assistant for covid-19 emergency: A proposed solution for logistics
and disinfection in a hospital environment. IEEE Robotics & Automation
Magazine, 28(1):71–81, 2021.

[107] Surbhi Gupta, R Sangeeta, Ravi Shankar Mishra, Gaurav Singal, Tapas Badal,
and Deepak Garg. Corridor segmentation for automatic robot navigation in
indoor environment using edge devices. Computer Networks, 178:107374,
2020.

[108] Beatriz Pérez-Sánchez, Oscar Fontenla-Romero, and Bertha Guijarro-
Berdiñas. A review of adaptive online learning for artificial neural networks.
Artificial Intelligence Review, 49(2):281–299, February 2018.

[109] Haoming Xu and John James Collins. Estimating the Odometry Error of
a Mobile Robot by Neural Networks. In 2009 International Conference
on Machine Learning and Applications, pages 378–385, Miami, FL, USA,
December 2009. IEEE.

[110] Huijun Li, Ying Mao, Wei You, Bin Ye, and Xinyi Zhou. A neural network
approach to indoor mobile robot localization. pages 66–69, October 2020.
ISSN: 2473-3636.

[111] Uche Onyekpe, Vasile Palade, Stratis Kanarachos, and Stavros-Richard G.
Christopoulos. Learning Uncertainties in Wheel Odometry for Vehicular Lo-
calisation in GNSS Deprived Environments. In 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages 741–746,
Miami, FL, USA, December 2020. IEEE.

[112] Changhao Chen, Chris Xiaoxuan Lu, Johan Wahlström, Andrew Markham,
and Niki Trigoni. Deep Neural Network Based Inertial Odometry Using Low-
Cost Inertial Measurement Units. IEEE Transactions on Mobile Computing,
20(4):1351–1364, April 2021. Conference Name: IEEE Transactions on
Mobile Computing.

[113] Siyu Chen, Yu Zhu, Xiaoguang Niu, and Zhiyong Hu. Improved Window
Segmentation for Deep Learning Based Inertial Odometry. In 2020 IEEE
39th International Performance Computing and Communications Conference
(IPCCC), pages 1–7, Austin, TX, USA, November 2020. IEEE.

[114] Arno Solin, Santiago Cortes, Esa Rahtu, and Juho Kannala. Inertial Odometry
on Handheld Smartphones, June 2018. arXiv:1703.00154 [cs, stat].

[115] Changhao Chen, Xiaoxuan Lu, Andrew Markham, and Niki Trigoni. IONet:
Learning to Cure the Curse of Drift in Inertial Odometry, January 2018.
arXiv:1802.02209 [cs].

References 261

[116] J.-S. Botero Valencia, M. Rico Garcia, and J.-P. Villegas Ceballos. A simple
method to estimate the trajectory of a low cost mobile robotic platform using
an IMU. International Journal on Interactive Design and Manufacturing
(IJIDeM), 11(4):823–828, November 2017.

[117] Martin Brossard, Axel Barrau, and Silvere Bonnabel. AI-IMU Dead-
Reckoning. IEEE Transactions on Intelligent Vehicles, 5(4):585–595, Decem-
ber 2020.

[118] Mahdi Abolfazli Esfahani, Han Wang, Keyu Wu, and Shenghai Yuan. AbolD-
eepIO: A Novel Deep Inertial Odometry Network for Autonomous Vehicles.
IEEE Transactions on Intelligent Transportation Systems, 21(5):1941–1950,
May 2020.

[119] Quentin Arnaud Dugne-Hennequin, Hideaki Uchiyama, and Joao Paulo
Silva Do Monte Lima. Understanding the Behavior of Data-Driven Iner-
tial Odometry With Kinematics-Mimicking Deep Neural Network. IEEE
Access, 9:36589–36619, 2021.

[120] Jinglin Shen, David Tick, and Nicholas Gans. Localization through fusion
of discrete and continuous epipolar geometry with wheel and IMU odometry.
In Proceedings of the 2011 American Control Conference, pages 1292–1298,
San Francisco, CA, June 2011. IEEE.

[121] Zhihuang Zhang, Jintao Zhao, Changyao Huang, and Liang Li. Learning
End-to-End Inertial-Wheel Odometry for Vehicle Ego-Motion Estimation. In
2021 5th CAA International Conference on Vehicular Control and Intelligence
(CVCI), pages 1–6, Tianjin, China, October 2021. IEEE.

[122] Kansu Oguz Canbek, Hulya Yalcin, and Eray A. Baran. Drift compensation of
a holonomic mobile robot using recurrent neural networks. Intelligent Service
Robotics, 15(3):399–409, July 2022.

[123] Simone Angarano, Vittorio Mazzia, Francesco Salvetti, Giovanni Fantin, and
Marcello Chiaberge. Robust Ultra-wideband Range Error Mitigation with
Deep Learning at the Edge. Engineering Applications of Artificial Intelligence,
102:104278, June 2021. arXiv:2011.14684 [cs, eess].

[124] Simone Angarano, Francesco Salvetti, Vittorio Mazzia, Giovanni Fantin,
Dario Gandini, and Marcello Chiaberge. Ultra-low-power range error mit-
igation for ultra-wideband precise localization. In Intelligent Computing:
Proceedings of the 2022 Computing Conference, Volume 2, pages 814–824.
Springer, 2022.

[125] Christoph Käding, Erik Rodner, Alexander Freytag, and Joachim Denzler.
Fine-Tuning Deep Neural Networks in Continuous Learning Scenarios. In
Chu-Song Chen, Jiwen Lu, and Kai-Kuang Ma, editors, Computer Vision –
ACCV 2016 Workshops, volume 10118, pages 588–605. Springer International
Publishing, Cham, 2017. Series Title: Lecture Notes in Computer Science.

262 References

[126] Valentin Peretroukhin and Jonathan Kelly. DPC-Net: Deep Pose Correction
for Visual Localization. IEEE Robotics and Automation Letters, 3(3):2424–
2431, July 2018. arXiv:1709.03128 [cs].

[127] Ester Martinez-Martin and Angel P del Pobil. Personal robot assistants for
elderly care: an overview. Personal assistants: Emerging computational
technologies, pages 77–91, 2018.

[128] Alessandro Vercelli, Innocenzo Rainero, Ludovico Ciferri, Marina Boido, and
Fabrizio Pirri. Robots in elderly care. DigitCult-Scientific Journal on Digital
Cultures, 2(2):37–50, 2018.

[129] United Nations. Shifting demographics.

[130] Laurie L Novak, Juliann G Sebastian, and Tracy A Lustig. The world has
changed: Emerging challenges for health care research to reduce social isola-
tion and loneliness related to covid-19. NAM perspectives, 2020, 2020.

[131] Yang Shen, Dejun Guo, Fei Long, Luis A Mateos, Houzhu Ding, Zhen
Xiu, Randall B Hellman, Adam King, Shixun Chen, Chengkun Zhang, et al.
Robots under covid-19 pandemic: A comprehensive survey. Ieee Access,
9:1590–1615, 2020.

[132] Jordan Abdi, Ahmed Al-Hindawi, Tiffany Ng, and Marcela P Vizcaychipi.
Scoping review on the use of socially assistive robot technology in elderly
care. BMJ open, 8(2):e018815, 2018.

[133] David Gouaillier, Vincent Hugel, Pierre Blazevic, Chris Kilner, Jérôme Mon-
ceaux, Pascal Lafourcade, Brice Marnier, Julien Serre, and Bruno Maisonnier.
Mechatronic design of nao humanoid. In 2009 IEEE International Conference
on Robotics and Automation, pages 769–774. IEEE, 2009.

[134] Masahiro Fujita. Aibo: Toward the era of digital creatures. The International
Journal of Robotics Research, 20(10):781–794, 2001.

[135] Selma Šabanović, Casey C Bennett, Wan-Ling Chang, and Lesa Huber. Paro
robot affects diverse interaction modalities in group sensory therapy for older
adults with dementia. In 2013 IEEE 13th international conference on rehabil-
itation robotics (ICORR), pages 1–6. IEEE, 2013.

[136] Susel Góngora Alonso, Sofiane Hamrioui, Isabel de la Torre Díez, Ed-
uardo Motta Cruz, Miguel López-Coronado, and Manuel Franco. Social
robots for people with aging and dementia: a systematic review of literature.
Telemedicine and e-Health, 25(7):533–540, 2019.

[137] Norina Gasteiger, Kate Loveys, Mikaela Law, and Elizabeth Broadbent.
Friends from the future: A scoping review of research into robots and com-
puter agents to combat loneliness in older people. Clinical interventions in
aging, 16:941, 2021.

References 263

[138] Akihito Yatsuda, Toshiyuki Haramaki, and Hiroaki Nishino. A study on robot
motions inducing awareness for elderly care. In 2018 IEEE International
Conference on Consumer Electronics-Taiwan (ICCE-TW), pages 1–2, 2018.

[139] Zaid A Mundher and Jiaofei Zhong. A real-time fall detection system in
elderly care using mobile robot and kinect sensor. International Journal of
Materials, Mechanics and Manufacturing, 2(2):133–138, 2014.

[140] Gonçalo Marques, Ivan Miguel Pires, Nuno Miranda, and Rui Pitarma.
Air quality monitoring using assistive robots for ambient assisted living
and enhanced living environments through internet of things. Electronics,
8(12):1375, 2019.

[141] Jagriti Saini, Maitreyee Dutta, and Goncalo Marques. Sensors for indoor air
quality monitoring and assessment through internet of things: a systematic
review. Environmental Monitoring and Assessment, 193(2):1–32, 2021.

[142] Dragos Mocrii, Yuxiang Chen, and Petr Musilek. Iot-based smart homes: A
review of system architecture, software, communications, privacy and security.
Internet of Things, 1:81–98, 2018.

[143] Juan Angel Gonzalez-Aguirre, Ricardo Osorio-Oliveros, Karen L Rodríguez-
Hernández, Javier Lizárraga-Iturralde, Ruben Morales Menendez, Ricardo A
Ramírez-Mendoza, Mauricio Adolfo Ramírez-Moreno, and Jorge de Jesus
Lozoya-Santos. Service robots: Trends and technology. Applied Sciences,
11(22):10702, 2021.

[144] Ioan Doroftei, Victor Grosu, and Veaceslav Spinu. Omnidirectional mobile
robot-design and implementation. INTECH Open Access Publisher, 2007.

[145] Md Jahidul Islam, Jungseok Hong, and Junaed Sattar. Person-following by
autonomous robots: A categorical overview. The International Journal of
Robotics Research, 38(14):1581–1618, 2019.

[146] Shanee S Honig, Tal Oron-Gilad, Hanan Zaichyk, Vardit Sarne-Fleischmann,
Samuel Olatunji, and Yael Edan. Toward socially aware person-following
robots. IEEE Transactions on Cognitive and Developmental Systems,
10(4):936–954, 2018.

[147] Jibo Robot Website. https://jibo.com/, 2017.

[148] David Fischinger, Peter Einramhof, Konstantinos Papoutsakis, Walter
Wohlkinger, Peter Mayer, Paul Panek, Stefan Hofmann, Tobias Koertner,
Astrid Weiss, Antonis Argyros, et al. Hobbit, a care robot supporting inde-
pendent living at home: First prototype and lessons learned. Robotics and
Autonomous Systems, 75:60–78, 2016.

[149] Kunimatsu Hashimoto, Fuminori Saito, Takashi Yamamoto, and Koichi Ikeda.
A field study of the human support robot in the home environment. In 2013
IEEE Workshop on Advanced Robotics and its Social Impacts, pages 143–150.
IEEE, 2013.

https://jibo.com/

264 References

[150] Tetsuya Tanioka. Nursing and rehabilitative care of the elderly using humanoid
robots. The Journal of Medical Investigation, 66(1.2):19–23, 2019.

[151] PAL Robotics. Tiago.

[152] William K Juel, Frederik Haarslev, Eduardo R Ramirez, Emanuela Marchetti,
Kerstin Fischer, Danish Shaikh, Poramate Manoonpong, Christian Hauch,
Leon Bodenhagen, and Norbert Krüger. Smooth robot: Design for a novel
modular welfare robot. Journal of Intelligent & Robotic Systems, 98(1):19–37,
2020.

[153] Md Abdullah Al Mamun, Mohammad Tariq Nasir, and Ahmad Khayyat.
Embedded system for motion control of an omnidirectional mobile robot.
IEEE Access, 6:6722–6739, 2018.

[154] Paulo José Costa, Nuno Moreira, Daniel Campos, José Gonçalves, José Lima,
and Pedro Luís Costa. Localization and navigation of an omnidirectional
mobile robot: the robot@ factory case study. IEEE Revista Iberoamericana
de Tecnologias del Aprendizaje, 11(1):1–9, 2016.

[155] Jun Qian, Bin Zi, Daoming Wang, Yangang Ma, and Dan Zhang. The design
and development of an omni-directional mobile robot oriented to an intelligent
manufacturing system. Sensors, 17(9):2073, 2017.

[156] Amazon. Introducing amazon astro – household robot for home monitoring,
with alexa, 2021.

[157] Nexus 4wd mecanum wheel mobile robot on nexus
official site. https://www.nexusrobot.com/product/
4wd-mecanum-wheel-mobile-arduino-robotics-car-10011.html.

[158] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. Robot operating system 2: Design, architecture, and uses in the wild.
Science Robotics, 7(66):eabm6074, 2022.

[159] The robot operating system official site. https://www.ros.org/.

[160] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. Exploring the perfor-
mance of ros2. 2016.

[161] Changes between ros2 and ros1. https://design.ros2.org/articles/changes.html.

[162] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779–788, 2016.

[163] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector.
In European conference on computer vision, pages 21–37. Springer, 2016.

https://www.nexusrobot.com/product/4wd-mecanum-wheel-mobile-arduino-robotics-car-10011.html
https://www.nexusrobot.com/product/4wd-mecanum-wheel-mobile-arduino-robotics-car-10011.html
https://www.ros.org/
https://design.ros2.org/articles/changes.html

References 265

[164] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Openpose: realtime multi-person 2d pose estimation using part affinity fields.
IEEE transactions on pattern analysis and machine intelligence, 43(1):172–
186, 2019.

[165] George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros Gidaris, Jonathan
Tompson, and Kevin Murphy. Personlab: Person pose estimation and instance
segmentation with a bottom-up, part-based, geometric embedding model.
CoRR, abs/1803.08225, 2018.

[166] Alex Bewley, ZongYuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft.
Simple online and realtime tracking. CoRR, abs/1602.00763, 2016.

[167] Gabriel Skantze. Turn-taking in conversational systems and human-robot
interaction: a review. Computer Speech & Language, 67:101178, 2021.

[168] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical
nlp pipeline. arXiv preprint arXiv:1905.05950, 2019.

[169] Jawid Ahmad Baktash and Mursal Dawodi. Gpt-4: A review on advance-
ments and opportunities in natural language processing. arXiv preprint
arXiv:2305.03195, 2023.

[170] Axel Berg, Mark O’Connor, and Miguel Tairum Cruz. Keyword transformer:
A self-attention model for keyword spotting. arXiv preprint arXiv:2104.00769,
2021.

[171] Alexey Andreev and Kirill Chuvilin. Speech recognition for mobile linux
distrubitions in the case of aurora os. In 2021 29th Conference of Open
Innovations Association (FRUCT), pages 14–21. IEEE, 2021.

[172] Pete Warden. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209, 2018.

[173] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco,
Rhomni St John, Noah Constant, Mario Guajardo-Céspedes, Steve Yuan,
Chris Tar, et al. Universal sentence encoder. arXiv preprint arXiv:1803.11175,
2018.

[174] Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax Law, Noah Constant,
Gustavo Hernandez Abrego, Steve Yuan, Chris Tar, Yun-Hsuan Sung, et al.
Multilingual universal sentence encoder for semantic retrieval. arXiv preprint
arXiv:1907.04307, 2019.

[175] Zhaoyu Zhai, José Fernán Martínez, Victoria Beltran, and Néstor Lucas
Martínez. Decision support systems for agriculture 4.0: Survey and challenges.
Computers and Electronics in Agriculture, 170:105256, 2020.

[176] C Wouter Bac, Eldert J van Henten, Jochen Hemming, and Yael Edan. Har-
vesting robots for high-value crops: State-of-the-art review and challenges
ahead. Journal of Field Robotics, 31(6):888–911, 2014.

266 References

[177] Ron Berenstein, Ohad Ben Shahar, Amir Shapiro, and Yael Edan. Grape
clusters and foliage detection algorithms for autonomous selective vineyard
sprayer. Intelligent Service Robotics, 3(4):233–243, 2010.

[178] Deepak Deshmukh, Dilip Kumar Pratihar, Alok Kanti Deb, Hena Ray, and
Nabarun Bhattacharyya. Design and development of intelligent pesticide
spraying system for agricultural robot. In International Conference on Hybrid
Intelligent Systems, pages 157–170. Springer, 2020.

[179] GuoSheng Zhang, TongYu Xu, YouWen Tian, Han Xu, JiaYu Song, and Yubin
Lan. Assessment of rice leaf blast severity using hyperspectral imaging during
late vegetative growth. Australasian Plant Pathology, 49:571–578, 2020.

[180] Aijing Feng, Jianfeng Zhou, Earl D Vories, Kenneth A Sudduth, and Meina
Zhang. Yield estimation in cotton using uav-based multi-sensor imagery.
Biosystems Engineering, 193:101–114, 2020.

[181] Jayantha Katupitiya, Ray Eaton, and Tahir Yaqub. Systems engineering
approach to agricultural automation: new developments. In 2007 1st Annual
IEEE Systems Conference, pages 1–7. IEEE, 2007.

[182] David Kohanbash, Abhinav Valada, and George Kantor. Irrigation control
methods for wireless sensor network. In 2012 Dallas, Texas, July 29-August
1, 2012, page 1. American Society of Agricultural and Biological Engineers,
2012.

[183] Daniel Bigelow and Allison Borchers. Major uses of land in the united states,
2012. Economic Information Bulletin Number 178, (1476-2017-4340):69,
2017.

[184] Benoît Thuilot, Christophe Cariou, Lionel Cordesses, and Philippe Martinet.
Automatic guidance of a farm tractor along curved paths, using a unique cp-
dgps. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Expanding the Societal Role of Robotics in the the Next
Millennium (Cat. No. 01CH37180), volume 2, pages 674–679. IEEE, 2001.

[185] O. Ly, H. Gimbert, G. Passault, and G. Baron. A fully autonomous robot for
putting posts for trellising vineyard with centimetric accuracy. In 2015 IEEE
International Conference on Autonomous Robot Systems and Competitions,
pages 44–49, 2015.

[186] Stewart J Moorehead, Carl K Wellington, Brian J Gilmore, and Carlos Vallespi.
Automating orchards: A system of autonomous tractors for orchard mainte-
nance. In Proceedings of the IEEE International Conference of Intelligent
Robots and Systems, Workshop on Agricultural Robotics, 2012.

[187] Flavio Callegati, Alessandro Samorì, Roberto Tazzari, Nicola Mimmo, and
Lorenzo Marconi. Autonomous tracked agricultural ugv configuration and
navigation experimental results. In Workshop on Small UAVs for Precision
Agriculture, 2018.

References 267

[188] Sam Marden and Mark Whitty. Gps-free localisation and navigation of an
unmanned ground vehicle for yield forecasting in a vineyard. In Recent
Advances in Agricultural Robotics, International workshop collocated with
the 13th International Conference on Intelligent Autonomous Systems (IAS-
13), 2014.

[189] Md Shaha Nur Kabir, Ming-Zhang Song, Nam-Seok Sung, Sun-Ok Chung,
Yong-Joo Kim, Noboru Noguchi, and Soon-Jung Hong. Performance com-
parison of single and multi-gnss receivers under agricultural fields in korea.
Engineering in agriculture, environment and food, 9(1):27–35, 2016.

[190] André Aguiar, Filipe Santos, Luís Santos, and Armando Sousa. Monocular
visual odometry using fisheye lens cameras. In EPIA Conference on Artificial
Intelligence, pages 319–330. Springer, 2019.

[191] Shahzad Zaman, Lorenzo Comba, Alessandro Biglia, Davide Ricauda Ai-
monino, Paolo Barge, and Paolo Gay. Cost-effective visual odometry system
for vehicle motion control in agricultural environments. Computers and
Electronics in Agriculture, 162:82–94, 2019.

[192] Igor Nevliudov, Sergiy Novoselov, Oksana Sychova, and Serhii Tesliuk. De-
velopment of the architecture of the base platform agricultural robot for
determining the trajectory using the method of visual odometry. In 2021
IEEE XVIIth International Conference on the Perspective Technologies and
Methods in MEMS Design (MEMSTECH), pages 64–68. IEEE, 2021.

[193] Yue Ma, Wenqiang Zhang, Waqar S Qureshi, Chao Gao, Chunlong Zhang, and
Wei Li. Autonomous navigation for a wolfberry picking robot using visual
cues and fuzzy control. Information Processing in Agriculture, 8(1):15–26,
2021.

[194] Vittorio Mazzia, Aleem Khaliq, Francesco Salvetti, and Marcello Chiaberge.
Real-time apple detection system using embedded systems with hardware
accelerators: An edge ai application. IEEE Access, 8:9102–9114, 2020.

[195] Helizani Couto Bazame, José Paulo Molin, Daniel Althoff, and Maurício
Martello. Detection, classification, and mapping of coffee fruits during harvest
with computer vision. Computers and Electronics in Agriculture, 183:106066,
2021.

[196] Maryam Rahnemoonfar and Clay Sheppard. Deep count: fruit counting based
on deep simulated learning. Sensors, 17(4):905, 2017.

[197] Jinfan Xu, Jie Yang, Xingguo Xiong, Haifeng Li, Jingfeng Huang, KC Ting,
Yibin Ying, and Tao Lin. Towards interpreting multi-temporal deep learning
models in crop mapping. Remote Sensing of Environment, 264:112599, 2021.

[198] Diego Aghi, Vittorio Mazzia, and Marcello Chiaberge. Local motion planner
for autonomous navigation in vineyards with a rgb-d camera-based algorithm
and deep learning synergy. Machines, 8(2):27, 2020.

268 References

[199] Diego Aghi, Simone Cerrato, Vittorio Mazzia, and Marcello Chiaberge. Deep
semantic segmentation at the edge for autonomous navigation in vineyard
rows. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3421–3428. IEEE, 2021.

[200] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[201] Mostafa Sharifi and XiaoQi Chen. A novel vision based row guidance ap-
proach for navigation of agricultural mobile robots in orchards. In 2015 6th
International Conference on Automation, Robotics and Applications (ICARA),
pages 251–255, 2015.

[202] Josiah Radcliffe, Julie Cox, and Duke M. Bulanon. Machine vision for orchard
navigation. Computers in Industry, 98:165–171, 2018.

[203] Peichen Huang, Lixue Zhu, Zhigang Zhang, and Chenyu Yang. An end-to-end
learning-based row-following system for an agricultural robot in structured
apple orchards. Mathematical Problems in Engineering, 2021, 2021.

[204] Diego Aghi, Vittorio Mazzia, and Marcello Chiaberge. Autonomous naviga-
tion in vineyards with deep learning at the edge. In International Conference
on Robotics in Alpe-Adria Danube Region, pages 479–486. Springer, 2020.

[205] Md. Shaha Nur Kabir, Ming-Zhang Song, Nam-Seok Sung, Sun-Ok Chung,
Yong-Joo Kim, Noboru Noguchi, and Soon-Jung Hong. Performance com-
parison of single and multi-gnss receivers under agricultural fields in korea.
Engineering in Agriculture, Environment and Food, 9(1):27–35, 2016.

[206] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen,
Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasude-
van, et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 1314–1324, 2019.

[207] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7132–7141, 2018.

[208] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4510–4520, Los
Alamitos, CA, USA, jun 2018. IEEE Computer Society.

[209] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.
Rethinking atrous convolution for semantic image segmentation. ArXiv,
abs/1706.05587, 2017.

[210] Szilárd Aradi. Survey of deep reinforcement learning for motion planning
of autonomous vehicles. IEEE Transactions on Intelligent Transportation
Systems, 2020.

References 269

[211] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[212] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau,
and Rob Fergus. Improving sample efficiency in model-free reinforcement
learning from images. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 10674–10681, 2021.

[213] Giuseppe Riggio, Cesare Fantuzzi, and Cristian Secchi. A low-cost naviga-
tion strategy for yield estimation in vineyards. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 2200–2205. IEEE,
2018.

[214] Pietro Astolfi, Alessandro Gabrielli, Luca Bascetta, and Matteo Matteucci.
Vineyard autonomous navigation in the echord++ grape experiment. IFAC-
PapersOnLine, 51(11):704–709, 2018.

[215] Oscar C Barawid Jr, Akira Mizushima, Kazunobu Ishii, and Noboru Noguchi.
Development of an autonomous navigation system using a two-dimensional
laser scanner in an orchard application. Biosystems Engineering, 96(2):139–
149, 2007.

[216] Jurgen Zoto, Maria Angela Musci, Aleem Khaliq, Marcello Chiaberge, and
Irene Aicardi. Automatic path planning for unmanned ground vehicle using
uav imagery. In International Conference on Robotics in Alpe-Adria Danube
Region, pages 223–230. Springer, 2019.

[217] Ivan Vidović and Rudolf Scitovski. Center-based clustering for line detec-
tion and application to crop rows detection. Computers and electronics in
agriculture, 109:212–220, 2014.

[218] Lorenzo Comba, Alessandro Biglia, Davide Ricauda Aimonino, and Paolo
Gay. Unsupervised detection of vineyards by 3d point-cloud uav photogram-
metry for precision agriculture. Computers and Electronics in Agriculture,
155:84–95, 2018.

[219] Vittorio Mazzia, Francesco Salvetti, Diego Aghi, and Marcello Chiaberge.
Deepway: a deep learning waypoint estimator for global path generation.
Computers and Electronics in Agriculture, 184:106091, 2021.

[220] T Lei, C Luo, GE Jan, and Z Bi. Deep learning-based complete coverage
path planning with re-joint and obstacle fusion paradigm. Front. Robot. AI 9:
843816. doi: 10.3389/frobt, 2022.

[221] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996.

270 References

[222] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[223] Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in
autoencoder-based representation learning. arXiv preprint arXiv:1812.05069,
2018.

[224] James MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, pages 281–297. Oakland, CA, USA,
1967.

[225] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
A simple framework for contrastive learning of visual representations. In
International conference on machine learning, pages 1597–1607. PMLR,
2020.

[226] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised
feature learning via non-parametric instance discrimination. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
3733–3742, 2018.

[227] Aaron Van den Oord, Yazhe Li, Oriol Vinyals, et al. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2(3):4,
2018.

[228] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. The pascal visual object classes (voc) challenge.
International journal of computer vision, 88(2):303–338, 2010.

[229] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European conference on computer vision,
pages 740–755. Springer, 2014.

[230] Simone Cerrato, Diego Aghi, Vittorio Mazzia, Francesco Salvetti, and Mar-
cello Chiaberge. An adaptive row crops path generator with deep learning
synergy. In 2021 6th Asia-Pacific Conference on Intelligent Robot Systems
(ACIRS), pages 6–12. IEEE, 2021.

[231] Leslie Valiant. Probably Approximately Correct: Nature’s Algorithms for
Learning and Prospering in a Complex World. Basic Books (AZ), 2013.

[232] Dengxin Dai and Luc Van Gool. Dark model adaptation: Semantic image seg-
mentation from daytime to nighttime. In 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), pages 3819–3824. IEEE, 2018.

References 271

[233] Georg Volk, Stefan Müller, Alexander von Bernuth, Dennis Hospach, and
Oliver Bringmann. Towards robust cnn-based object detection through aug-
mentation with synthetic rain variations. In 2019 IEEE Intelligent Transporta-
tion Systems Conference (ITSC), pages 285–292. IEEE, 2019.

[234] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several
related classification tasks to a new unlabeled sample. Advances in neural
information processing systems, 24:2178–2186, 2011.

[235] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain gener-
alization via invariant feature representation. In International Conference on
Machine Learning, pages 10–18. PMLR, 2013.

[236] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri,
Preethi Jyothi, and Sunita Sarawagi. Generalizing across domains via cross-
gradient training. In International Conference on Learning Representations,
2018.

[237] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio
Murino, and Silvio Savarese. Generalizing to unseen domains via adversarial
data augmentation. In Advances in Neural Information Processing Systems,
volume 31, 2018.

[238] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-adversarial training of neural networks. The journal of machine
learning research, 17(1):2096–2030, 2016.

[239] Baochen Sun and Kate Saenko. Deep CORAL: Correlation alignment for
deep domain adaptation. In European conference on computer vision, pages
443–450. Springer, 2016.

[240] Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gianfranco Doretto.
Unified deep supervised domain adaptation and generalization. In Proceedings
of the IEEE international conference on computer vision, pages 5715–5725,
2017.

[241] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain gen-
eralization with adversarial feature learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5400–5409,
2018.

[242] Sentao Chen, Lei Wang, Zijie Hong, and Xiaowei Yang. Domain generaliza-
tion by joint-product distribution alignment. Pattern Recognition, 134:109086,
2023.

[243] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg:
Towards domain generalization using meta-regularization. Advances in Neural
Information Processing Systems, 31:998–1008, 2018.

272 References

[244] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Learning to
generalize: Meta-learning for domain generalization. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[245] Marvin Mengxin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta,
Sergey Levine, and Chelsea Finn. Adaptive risk minimization: A meta-
learning approach for tackling group shift. In International Conference on
Learning Representations, 2020.

[246] Silvia Bucci, Antonio D’Innocente, Yujun Liao, Fabio M. Carlucci, Barbara
Caputo, and Tatiana Tommasi. Self-supervised learning across domains. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(9):5516–5528,
2022.

[247] Isabela Albuquerque, Nikhil Naik, Junnan Li, Nitish Keskar, and Richard
Socher. Improving out-of-distribution generalization via multi-task self-
supervised pretraining. arXiv preprint arXiv:2003.13525, 2020.

[248] Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh,
and Sridha Sridharan. Correlation-aware adversarial domain adaptation and
generalization. Pattern Recognition, 100:107124, 2020.

[249] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang.
Distributionally robust neural networks. In International Conference on
Learning Representations, 2020.

[250] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-challenging
improves cross-domain generalization. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
II 16, pages 124–140. Springer, 2020.

[251] Soroosh Shahtalebi, Jean-Christophe Gagnon-Audet, Touraj Laleh, Mojtaba
Faramarzi, Kartik Ahuja, and Irina Rish. Sand-mask: An enhanced gradient
masking strategy for the discovery of invariances in domain generalization.
arXiv preprint arXiv:2106.02266, 2021.

[252] Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee.
Selfreg: Self-supervised contrastive regularization for domain generalization.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9619–9628, 2021.

[253] Mattia Segu, Alessio Tonioni, and Federico Tombari. Batch normalization
embeddings for deep domain generalization. Pattern Recognition, 135:109115,
2023.

[254] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization.
In International Conference on Learning Representations. Computer Vision
Foundation, 2021.

References 273

[255] Vladimir N Vapnik. An overview of statistical learning theory. IEEE transac-
tions on neural networks, 10(5):988–999, 1999.

[256] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Do-
main generalization: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

[257] Ross Wightman, Hugo Touvron, and Herve Jegou. Resnet strikes back:
An improved training procedure in timm. In NeurIPS 2021 Workshop on
ImageNet: Past, Present, and Future, 2021.

[258] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for
convolutional neural networks. In Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 6105–6114. PMLR, 2019.

[259] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. Training data-efficient image transformers
& distillation through attention. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 10347–10357. PMLR, 2021.

[260] Stéphane D’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio
Biroli, and Levent Sagun. Convit: Improving vision transformers with soft
convolutional inductive biases. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 2286–2296.
PMLR, 18–24 Jul 2021.

[261] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand
Joulin, Hervé Jégou, and Matthijs Douze. Levit: a vision transformer in
convnet’s clothing for faster inference. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 12259–12269, 2021.

[262] Chen Fang, Ye Xu, and Daniel N. Rockmore. Unbiased metric learning:
On the utilization of multiple datasets and web images for softening bias.
In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2013.

[263] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper,
broader and artier domain generalization. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), 2017.

[264] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman
Panchanathan. Deep hashing network for unsupervised domain adaptation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

274 References

[265] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita.
In Proceedings of the European Conference on Computer Vision (ECCV),
pages 456–473, 2018.

[266] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and
Bo Wang. Moment matching for multi-source domain adaptation. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV).
Computer Vision Foundation, 2019.

[267] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi.
Domain generalization for object recognition with multi-task autoencoders. In
Proceedings of the IEEE international conference on computer vision, pages
2551–2559, 2015.

[268] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. In-
variant risk minimization. arXiv preprint arXiv:1907.02893, 2019.

[269] Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Im-
prove unsupervised domain adaptation with mixup training. arXiv preprint
arXiv:2001.00677, 2020.

[270] Mathieu Chevalley, Charlotte Bunne, Andreas Krause, and Stefan Bauer.
Invariant causal mechanisms through distribution matching. arXiv preprint
arXiv:2206.11646, 2022.

[271] Yangjun Ruan, Yann Dubois, and Chris J. Maddison. Optimal representations
for covariate shift. In International Conference on Learning Representations,
2022.

[272] Rang Meng, Xianfeng Li, Weijie Chen, Shicai Yang, Jie Song, Xinchao Wang,
Lei Zhang, Mingli Song, Di Xie, and Shiliang Pu. Attention diversification
for domain generalization. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIV,
pages 322–340. Springer, 2022.

[273] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of machine learning research, 9(11), 2008.

[274] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the
IEEE international conference on computer vision, pages 618–626, 2017.

[275] Chengjuan Ren, Dae-Kyoo Kim, and Dongwon Jeong. A survey of deep learn-
ing in agriculture: techniques and their applications. Journal of Information
Processing Systems, 16(5):1015–1033, 2020.

[276] Zifei Luo, Wenzhu Yang, Yunfeng Yuan, Ruru Gou, and Xiaonan Li. Semantic
segmentation of agricultural images: A survey. Information Processing in
Agriculture, 2023.

References 275

[277] Somnath Mukhopadhyay, Munti Paul, Ramen Pal, and Debashis De. Tea
leaf disease detection using multi-objective image segmentation. Multimedia
Tools and Applications, 80:753–771, 2021.

[278] Hongbo Yuan, Jiajun Zhu, Qifan Wang, Man Cheng, and Zhenjiang Cai. An
improved deeplab v3+ deep learning network applied to the segmentation of
grape leaf black rot spots. Frontiers in Plant Science, 13, 2022.

[279] Ramesh Kestur, Avadesh Meduri, and Omkar Narasipura. Mangonet: A deep
semantic segmentation architecture for a method to detect and count mangoes
in an open orchard. Engineering Applications of Artificial Intelligence, 77:59–
69, 2019.

[280] Hongxing Peng, Chao Xue, Yuanyuan Shao, Keyin Chen, Juntao Xiong,
Zhihua Xie, and Liuhong Zhang. Semantic segmentation of litchi branches
using deeplabv3+ model. IEEE Access, 8:164546–164555, 2020.

[281] Ehsan Raei, Ata Akbari Asanjan, Mohammad Reza Nikoo, Mojtaba Sadegh,
Shokoufeh Pourshahabi, and Jan Franklin Adamowski. A deep learning
image segmentation model for agricultural irrigation system classification.
Computers and Electronics in Agriculture, 198:106977, 2022.

[282] Zhishuang Song, Zhitao Zhang, Shuqin Yang, Dianyuan Ding, and Jifeng
Ning. Identifying sunflower lodging based on image fusion and deep semantic
segmentation with uav remote sensing imaging. Computers and Electronics
in Agriculture, 179:105812, 2020.

[283] Melissa Mozifian, Amy Zhang, Joelle Pineau, and David Meger. Intervention
design for effective sim2real transfer. arXiv preprint arXiv:2012.02055, 2020.

[284] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim, Seungryong Kim,
and Jaegul Choo. Robustnet: Improving domain generalization in urban-
scene segmentation via instance selective whitening. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11580–11590, 2021.

[285] Suhyeon Lee, Hongje Seong, Seongwon Lee, and Euntai Kim. Wildnet: Learn-
ing domain generalized semantic segmentation from the wild. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9936–9946, 2022.

[286] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland,
Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen
Lo, Piotr Dollár, and Ross Girshick. Segment anything. arXiv:2304.02643,
2023.

[287] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two at once: En-
hancing learning and generalization capacities via ibn-net. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 464–479, 2018.

276 References

[288] Oren Nuriel, Sagie Benaim, and Lior Wolf. Permuted adain: Reducing the
bias towards global statistics in image classification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9482–9491, 2021.

[289] Yufei Wang, Haoliang Li, Lap-pui Chau, and Alex C Kot. Embracing the dark
knowledge: Domain generalization using regularized knowledge distillation.
In Proceedings of the 29th ACM International Conference on Multimedia,
pages 2595–2604, 2021.

[290] Kyungmoon Lee, Sungyeon Kim, and Suha Kwak. Cross-domain ensemble
distillation for domain generalization. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part XXV, pages 1–20. Springer, 2022.

[291] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model com-
pression. In Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 535–541, 2006.

[292] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[293] Changyong Shu, Yifan Liu, Jianfei Gao, Zheng Yan, and Chunhua Shen.
Channel-wise knowledge distillation for dense prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pages
5311–5320, October 2021.

[294] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101, 2017.

[295] Joshua D Rudd, Gary T Roberson, and John J Classen. Application of
satellite, unmanned aircraft system, and ground-based sensor data for precision
agriculture: A review. In 2017 ASABE Annual International Meeting, page 1.
American Society of Agricultural and Biological Engineers, 2017.

[296] Antonio Novelli, Manuel A Aguilar, Abderrahim Nemmaoui, Fernando J
Aguilar, and Eufemia Tarantino. Performance evaluation of object based
greenhouse detection from sentinel-2 msi and landsat 8 oli data: A case study
from almería (spain). International journal of applied earth observation and
geoinformation, 52:403–411, 2016.

[297] Aleem Khaliq, Vittorio Mazzia, and Marcello Chiaberge. Refining satellite
imagery by using uav imagery for vineyard environment: A cnn based ap-
proach. In 2019 IEEE International Workshop on Metrology for Agriculture
and Forestry (MetroAgriFor), pages 25–29. IEEE, 2019.

[298] Cristina Gomez, Joanne C White, and Michael A Wulder. Optical remotely
sensed time series data for land cover classification: A review. ISPRS Journal
of Photogrammetry and Remote Sensing, 116:55–72, 2016.

References 277

[299] Aleem Khaliq, Maria Angela Musci, and Marcello Chiaberge. Analyzing
relationship between maize height and spectral indices derived from remotely
sensed multispectral imagery. In 2018 IEEE Applied Imagery Pattern Recog-
nition Workshop (AIPR), pages 1–5. IEEE, 2018.

[300] George Büttner, Jan Feranec, Gabriel Jaffrain, László Mari, Gergely Maucha,
and Tomas Soukup. The corine land cover 2000 project. EARSeL eProceed-
ings, 3(3):331–346, 2004.

[301] Devis Tuia, Claudio Persello, and Lorenzo Bruzzone. Domain adaptation for
the classification of remote sensing data: An overview of recent advances.
IEEE geoscience and remote sensing magazine, 4(2):41–57, 2016.

[302] Jochem Verrelst, Luis Alonso, Juan Pablo Rivera Caicedo, José Moreno, and
Gustavo Camps-Valls. Gaussian process retrieval of chlorophyll content from
imaging spectroscopy data. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 6(2):867–874, 2012.

[303] Laurel Ballanti, Leonhard Blesius, Ellen Hines, and Bill Kruse. Tree species
classification using hyperspectral imagery: A comparison of two classifiers.
Remote Sensing, 8(6):445, 2016.

[304] Xin Huang, Sahara Ali, Sanjay Purushotham, Jianwu Wang, Chenxi Wang,
and Zhibo Zhang. Deep multi-sensor domain adaptation on active and passive
satellite remote sensing data. In 1st KDD Workshop on Deep Learning for
Spatiotemporal Data, Applications, and Systems (DeepSpatial 2020), 2020.

[305] Otávio AB Penatti, Keiller Nogueira, and Jefersson A Dos Santos. Do deep
features generalize from everyday objects to remote sensing and aerial scenes
domains? In Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, pages 44–51, 2015.

[306] Vittorio Mazzia, Aleem Khaliq, and Marcello Chiaberge. Improvement in
land cover and crop classification based on temporal features learning from
sentinel-2 data using recurrent-convolutional neural network (r-cnn). Applied
Sciences, 10(1):238, 2020.

[307] Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan Pang, Jing Huang,
Saikat Basu, Forest Hughes, Devis Tuia, and Ramesh Raskar. Deepglobe 2018:
A challenge to parse the earth through satellite images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 172–181, 2018.

[308] Chao Tian, Cong Li, and Jianping Shi. Dense fusion classmate network for
land cover classification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 192–196, 2018.

[309] Tzu-Sheng Kuo, Keng-Sen Tseng, Jia-Wei Yan, Yen-Cheng Liu, and Yu-
Chiang Frank Wang. Deep aggregation net for land cover classification.

278 References

In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 252–256, 2018.

[310] Liangpei Zhang, Lefei Zhang, and Bo Du. Deep learning for remote sensing
data: A technical tutorial on the state of the art. IEEE Geoscience and Remote
Sensing Magazine, 4(2):22–40, 2016.

[311] Haokui Zhang, Ying Li, Yuzhu Zhang, and Qiang Shen. Spectral-spatial
classification of hyperspectral imagery using a dual-channel convolutional
neural network. Remote sensing letters, 8(5):438–447, 2017.

[312] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. Advances in neural information processing systems, 27, 2014.

[313] Zhi He, Han Liu, Yiwen Wang, and Jie Hu. Generative adversarial networks-
based semi-supervised learning for hyperspectral image classification. Remote
Sensing, 9(10):1042, 2017.

[314] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey.
Neurocomputing, 312:135–153, 2018.

[315] Wen Ma, Zongxu Pan, Feng Yuan, and Bin Lei. Super-resolution of remote
sensing images via a dense residual generative adversarial network. Remote
Sensing, 11(21):2578, 2019.

[316] Nadir Mohamed Bengana and Janne Heikkila. Improving land cover segmen-
tation across satellites using domain adaptation. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2020.

[317] Sailesh Conjeti, Amin Katouzian, Abhijit Guha Roy, Loïc Peter, Debdoot
Sheet, Stephane Carlier, Andrew Laine, and Nassir Navab. Supervised domain
adaptation of decision forests: Transfer of models trained in vitro for in vivo
intravascular ultrasound tissue characterization. Medical image analysis,
32:1–17, 2016.

[318] Zhipeng Deng, Hao Sun, Shilin Zhou, and Kefeng Ji. Semi-supervised cross-
view scene model adaptation for remote sensing image classification. In 2016
IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
pages 2376–2379, 2016.

[319] Wei Liu and Finlin Su. A novel unsupervised adversarial domain adaptation
network for remotely sensed scene classification. International Journal of
Remote Sensing, 41(16):6099–6116, 2020.

[320] Bilel Benjdira, Yakoub Bazi, Anis Koubaa, and Kais Ouni. Unsupervised
domain adaptation using generative adversarial networks for semantic seg-
mentation of aerial images. Remote Sensing, 11(11):1369, 2019.

References 279

[321] Morvarid Karimpour, Shiva Noori Saray, Jafar Tahmoresnezhad, and Moham-
mad Pourmahmood Aghababa. Multi-source domain adaptation for image
classification. Machine Vision and Applications, 31(6):1–19, 2020.

[322] Kanchan Bahirat, Francesca Bovolo, Lorenzo Bruzzone, and Subhasis Chaud-
huri. A novel domain adaptation bayesian classifier for updating land-cover
maps with class differences in source and target domains. IEEE Transactions
on Geoscience and Remote Sensing, 50(7):2810–2826, 2011.

[323] Marc Rußwurm, Sébastien Lefèvre, and Marco Körner. Breizhcrops: A
satellite time series dataset for crop type identification. In Proceedings of the
International Conference on Machine Learning Time Series Workshop, 2019.

[324] Noel Gorelick, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau,
and Rebecca Moore. Google earth engine: Planetary-scale geospatial analysis
for everyone. Remote sensing of Environment, 202:18–27, 2017.

[325] Olivier Hagolle, Mireille Huc, David Villa Pascual, and Gerard Dedieu. A
multi-temporal and multi-spectral method to estimate aerosol optical thickness
over land, for the atmospheric correction of formosat-2, landsat, venµs and
sentinel-2 images. Remote Sensing, 7(3):2668–2691, 2015.

[326] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and
psychological measurement, 20(1):37–46, 1960.

[327] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf,
and Alexander Smola. A kernel two-sample test. The Journal of Machine
Learning Research, 13(1):723–773, 2012.

[328] Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training
generative neural networks via maximum mean discrepancy optimization.
arXiv preprint arXiv:1505.03906, 2015.

[329] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep
transfer learning with joint adaptation networks. In International conference
on machine learning, pages 2208–2217. PMLR, 2017.

[330] Raul de Queiroz Mendes, Eduardo Godinho Ribeiro, Nicolas dos Santos Rosa,
and Valdir Grassi Jr. On deep learning techniques to boost monocular depth
estimation for autonomous navigation. Robotics and Autonomous Systems,
136:103701, 2021.

[331] Priya Roy and Chandreyee Chowdhury. A survey of machine learning tech-
niques for indoor localization and navigation systems. Journal of Intelligent
& Robotic Systems, 101(3):1–34, 2021.

[332] Xuesu Xiao, Bo Liu, Garrett Warnell, and Peter Stone. Motion planning
and control for mobile robot navigation using machine learning: a survey.
Autonomous Robots, pages 1–29, 2022.

280 References

[333] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-
resolution using deep convolutional networks. IEEE transactions on pattern
analysis and machine intelligence, 38(2):295–307, 2015.

[334] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-
resolution using very deep convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1646–1654,
2016.

[335] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee.
Enhanced deep residual networks for single image super-resolution. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 136–144, 2017.

[336] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Resid-
ual dense network for image super-resolution. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2472–2481,
2018.

[337] Jie Liu, Jie Tang, and Gangshan Wu. Residual feature distillation network for
lightweight image super-resolution. In European Conference on Computer
Vision, pages 41–55. Springer, 2020.

[338] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu.
Image super-resolution using very deep residual channel attention networks.
In Proceedings of the European conference on computer vision (ECCV), pages
286–301, 2018.

[339] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-
order attention network for single image super-resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages
11065–11074, 2019.

[340] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping Yang, Shuzhen
Wang, Kaihao Zhang, Xiaochun Cao, and Haifeng Shen. Single image
super-resolution via a holistic attention network. In European conference on
computer vision, pages 191–207. Springer, 2020.

[341] Jiezhang Cao, Yawei Li, Kai Zhang, and Luc Van Gool. Video super-resolution
transformer. arXiv preprint arXiv:2106.06847, 2021.

[342] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua
Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. Pre-trained image
processing transformer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12299–12310, 2021.

[343] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and
Radu Timofte. Swinir: Image restoration using swin transformer. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages
1833–1844, 2021.

References 281

[344] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cun-
ningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz,
Zehan Wang, et al. Photo-realistic single image super-resolution using a
generative adversarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681–4690, 2017.

[345] Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and
Zhangyang Wang. Autogan-distiller: searching to compress generative ad-
versarial networks. In Proceedings of the 37th International Conference on
Machine Learning, pages 3292–3303, 2020.

[346] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Train-
ing real-world blind super-resolution with pure synthetic data. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 1905–
1914, 2021.

[347] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver
Wang. The unreasonable effectiveness of deep features as a perceptual met-
ric. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 586–595, 2018.

[348] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie-Line Alberi
Morel. Low-complexity single-image super-resolution based on nonnegative
neighbor embedding. In British Machine Vision Conference (BMVC), 2012.

[349] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review.
Proceedings of the IEEE, 107(8):1655–1674, 2019.

[350] Simone Angarano, Vittorio Mazzia, Francesco Salvetti, Giovanni Fantin,
and Marcello Chiaberge. Robust ultra-wideband range error mitigation with
deep learning at the edge. Engineering Applications of Artificial Intelligence,
102:104278, 2021.

[351] Di Liu, Hao Kong, Xiangzhong Luo, Weichen Liu, and Ravi Subramaniam.
Bringing ai to edge: From deep learning’s perspective. Neurocomputing,
2021.

[352] Zibin He, Tao Dai, Jian Lu, Yong Jiang, and Shu-Tao Xia. Fakd: Feature-
affinity based knowledge distillation for efficient image super-resolution. In
2020 IEEE International Conference on Image Processing (ICIP), pages
518–522. IEEE, 2020.

[353] Shinnosuke Ooyama, Huimin Lu, Tohru Kamiya, and Seiichi Serikawa. Un-
derwater image super-resolution using srcnn. In International Symposium
on Artificial Intelligence and Robotics 2021, volume 11884, pages 177–182.
SPIE, 2021.

[354] Md Jahidul Islam, Peigen Luo, and Junaed Sattar. Simultaneous enhancement
and super-resolution of underwater imagery for improved visual perception.

282 References

In Marc Toussaint, Antonio Bicchi, and Tucker Hermans, editors, Robotics,
Robotics: Science and Systems. MIT Press Journals, 2020.

[355] Ruoxi Wang, Dandan Zhang, Qingbiao Li, Xiao-Yun Zhou, and Benny Lo.
Real-time surgical environment enhancement for robot-assisted minimally
invasive surgery based on super-resolution. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 3434–3440. IEEE,
2021.

[356] Andrew Brodie and Nikhil Vasdev. The future of robotic surgery. The Annals
of The Royal College of Surgeons of England, 100(Supplement 7):4–13, 2018.

[357] Hyunjin Bae, Keunyoung Jang, and Yun-Kyu An. Deep super resolution
crack network (srcnet) for improving computer vision–based automated crack
detectability in in situ bridges. Structural Health Monitoring, 20(4):1428–
1442, 2021.

[358] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy. Esrgan: Enhanced super-resolution generative adver-
sarial networks. In The European Conference on Computer Vision Workshops
(ECCVW), September 2018.

[359] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. Real-time single image
and video super-resolution using an efficient sub-pixel convolutional neural
network. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[360] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and
checkerboard artifacts. Distill, 2016.

[361] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for
image restoration with neural networks. IEEE Transactions on computational
imaging, 3(1):47–57, 2016.

[362] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[363] Yiman Zhang, Hanting Chen, Xinghao Chen, Yiping Deng, Chunjing Xu, and
Yunhe Wang. Data-free knowledge distillation for image super-resolution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7852–7861, 2021.

[364] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization
and training of neural networks for efficient integer-arithmetic-only inference.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2018.

References 283

[365] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image
super-resolution: Dataset and study. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pages 126–135, 2017.

[366] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and
Lei Zhang. Ntire 2017 challenge on single image super-resolution: Methods
and results. In Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, pages 114–125, 2017.

[367] Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. Recovering realistic
texture in image super-resolution by deep spatial feature transform. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 606–615, 2018.

[368] Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-
up using sparse-representations. In International conference on curves and
surfaces, pages 711–730. Springer, 2010.

[369] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database
of human segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics. In Proceedings Eighth
IEEE International Conference on Computer Vision. ICCV 2001, volume 2,
pages 416–423. IEEE, 2001.

[370] Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa, Toshi-
hiko Yamasaki, and Kiyoharu Aizawa. Sketch-based manga retrieval using
manga109 dataset. Multimedia Tools and Applications, 76(20):21811–21838,
2017.

[371] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-
resolution from transformed self-exemplars. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5197–5206,
2015.

[372] Honggang Chen, Xiaohai He, Linbo Qing, Yuanyuan Wu, Chao Ren, Ray E
Sheriff, and Ce Zhu. Real-world single image super-resolution: A brief review.
Information Fusion, 79:124–145, 2022.

[373] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. Robot operating system 2: Design, architecture, and uses in the wild.
Science Robotics, 7(66):eabm6074, 2022.

[374] Partha Pratim Ray. Chatgpt: A comprehensive review on background, appli-
cations, key challenges, bias, ethics, limitations and future scope. Internet of
Things and Cyber-Physical Systems, 2023.

[375] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland,
Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen
Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4015–4026, 2023.

284 References

[376] Yuchen Cui, Scott Niekum, Abhinav Gupta, Vikash Kumar, and Aravind
Rajeswaran. Can foundation models perform zero-shot task specification for
robot manipulation? In Learning for dynamics and control conference, pages
893–905. PMLR, 2022.

[377] Jiange Yang, Wenhui Tan, Chuhao Jin, Bei Liu, Jianlong Fu, Ruihua Song,
and Limin Wang. Pave the way to grasp anything: Transferring foundation
models for universal pick-place robots. arXiv preprint arXiv:2306.05716,
2023.

[378] Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz, Kevin Black,
Noriaki Hirose, and Sergey Levine. Vint: A foundation model for visual
navigation. arXiv preprint arXiv:2306.14846, 2023.

	Contents
	Introduction
	Service robotics
	Contributions
	Thesis organization

	I Fundamentals
	1 Basics of Machine Learning
	1.1 Artificial Neural Networks
	1.1.1 The artificial neuron
	1.1.2 Multi-layer perceptron
	1.1.3 Activation functions
	1.1.4 Training Artificial Neural Networks
	1.1.5 Stochastic Gradient Descent
	1.1.6 The backpropagation algorithm
	1.1.7 Adam optimizer
	1.1.8 Regularization methods
	1.1.9 Convolutional Neural Networks
	1.1.10 Self-attention and Vision Transformer

	1.2 Optimized execution of ANN at the Edge

	2 Deep Reinforcement Learning
	2.1 Introduction to Reinforcement Learning
	2.1.1 Markov Decision Process

	2.2 Tabular methods
	2.2.1 Dynamic programming
	2.2.2 Monte Carlo Methods
	2.2.3 Temporal-Difference Learning
	2.2.4 SARSA: on-policy TD method
	2.2.5 Q-Learning: off-policy TD method

	2.3 Deep Reinforcement Learning
	2.3.1 Deep Q-Learning algorithm
	2.3.2 Actor-Critic architecture
	2.3.3 Deep Deterministic Policy Gradient
	2.3.4 TD3
	2.3.5 Soft Actor-Critic

	3 Autonomous Navigation of Mobile Robots
	3.1 Autonomous navigation: localization, planning and control
	3.2 Localization Approaches
	3.2.1 Kalman Filter Localization
	3.2.2 Robot model

	3.3 Local Planning: Dynamic Window Approach
	3.3.1 Velocity search space
	3.3.2 Optimization

	II Autonomous Robots for Indoor Social Assistance
	4 Adaptive social navigation with Deep Reinforcement Learning
	4.1 Methodology
	4.1.1 Social Force Window Planner
	4.1.2 Deep Reinforcement Learning framework
	4.1.3 SFM Adaptive Cost Approach
	4.1.4 Reward function
	4.1.5 Policy Neural Network and Training Design

	4.2 Experiments and Results
	4.2.1 Experimental settings
	4.2.2 Results

	5 Online Learning of Wheel Odometry Correction for Mobile Robots with Attention-based Neural Network
	5.1 Methodology
	5.1.1 Problem Formulation
	5.1.2 Neural Network Architecture
	5.1.3 Training Procedure

	5.2 Experiments and Results
	5.2.1 Experimental Setting
	5.2.2 Evaluation Metrics
	5.2.3 Quantitative Results
	5.2.4 Latency Evaluation

	6 Domestic assistance with an omidirectional service robot
	6.1 Assistive Service Robots
	6.2 Marvin robot design
	6.2.1 Sensors and computational resources

	6.3 Visual Perception for Person Monitoring
	6.4 Navigation System
	6.4.1 Omnidirectional Motion Planner and Obstacle Avoidance
	6.4.2 Person-focused Orientation Control

	6.5 Vocal Human-Robot Interface
	6.6 Navigation Experiments and Results
	6.6.1 Person-centered navigation
	6.6.2 Person following

	6.7 Experimental Demo

	III Autonomous Navigation for Precision Agriculture
	7 A Deep Learning Pipeline for Autonomous Navigation in Row-based Crops
	7.1 Semantic Segmentation-based control
	7.1.1 Methodology
	7.1.2 Experiments and Results

	7.2 Position-agnostic controller with Deep Reinforcement Learning
	7.2.1 Task Formulation
	7.2.2 DRL agent experiments

	8 Waypoint Generation in Row-based Crops with Deep Learning and Contrastive Clustering
	8.1 Methodology
	8.1.1 Backbone Design
	8.1.2 Waypoint Estimation
	8.1.3 Contrastive Clustering

	8.2 Experimental Setting
	8.2.1 Dataset Description
	8.2.2 Network Training

	8.3 Results
	8.3.1 Waypoint Estimation
	8.3.2 Waypoint Clustering
	8.3.3 Qualitative Results

	IV Generalization and Optimization of Deep Learning Models
	9 Back-to-Bones: a Domain Generalization Benchmark for Backbones
	9.1 Problem Framework
	9.2 Back-to-Bones
	9.2.1 Baseline Benchmark
	9.2.2 Model Introspection
	9.2.3 Domain Generalization Algorithms

	10 Crop Segmentation with Knowledge Distillation: Domain Generalization on the AgriSeg dataset
	10.1 Methodology
	10.1.1 Knowledge Distillation
	10.1.2 Ensemble Distillation

	10.2 Experimental Setting
	10.2.1 Dataset
	10.2.2 Training

	10.3 Results
	10.3.1 DG Benchmark
	10.3.2 Ablation Study

	11 Domain-Adversarial Vision Transformer for Land Crop Classification with Multi-Temporal Satellite Imagery
	11.1 Study Area and Data
	11.2 Methodology
	11.2.1 Domain-Adversarial Neural Networks
	11.2.2 Classification of Multi-Spectral Time Series with Self-Attention
	11.2.3 DANN for Land Cover and Crop Classification

	11.3 Experiments and Discussion
	11.3.1 Experimental Settings
	11.3.2 Maximum Mean Discrepancy
	11.3.3 Results and Applicability Study

	12 Optimized Single-Image Super-Resolution at the Edge with Knowledge Distillation
	12.1 Methodology
	12.1.1 Network Architecture
	12.1.2 Training Methodology
	12.1.3 Knowledge Distillation
	12.1.4 Model Interpolation
	12.1.5 Model Quantization

	12.2 Experiments
	12.2.1 Experimental Setting
	12.2.2 Real-time Performance
	12.2.3 Super-Resolution Results
	12.2.4 Application: Image Transmission for Mobile Robotics

	Conclusions
	Future Works

	References

