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A B S T R A C T

We analyze the effects of different data selling mechanisms of a monopolistic Data Broker (DB)
who sells consumer data to firms in a downstream market with free entry, where data can be
used for consumer price discrimination. We consider three possible data selling mechanisms,
namely auctions with and without reserve prices, and Take-It-Or-Leave-It offers, which exhibit
decreasing levels of DB’s bargaining power towards firms. We highlight the emergence of
an entry barrier effect in the downstream market, regardless of the data selling mechanism.
Moreover, we show that the auction-based selling mechanisms, and particularly the auction with
reserve prices, induce the DB to sell the lowest quantity of data, implying the lowest level of
consumer surplus. Conversely, under TIOLI, the DB floods the market for data, selling to all firms
data partitions that overlap over subsets of consumers. Imposing the sale of non-overlapping
partitions to all firms would improve consumer surplus and welfare.

. Introduction

The central role of consumer data, an essential input for firms due to the rising share of online retail sales (Cramer-Flood, 2023),
as prompted the rise of the Data Broker (DB) industry. DBs harvest consumer data from multiple sources, combine them into
eady-to-use information and sell them to downstream firms (FTC, 2014). The amount of data collected and traded is staggering.
racle, one of the largest consumer DBs, aggregates 3 billion user profiles from 15 million different websites, 1 billion mobile users,
illions of purchases from grocery chains and 1500 large retailers, credit reporting agencies including Visa and Mastercard, as well
s 700 million messages from social media, blogs, and consumer review sites, every day (Christl, 2017). Information sold by DBs is
sed by downstream firms to improve their targeting of consumers and adopt price discrimination strategies.

Despite aggregating detailed and sensitive information on a large share of the digital population,1 DBs do not acquire data from
ndividuals directly, relying instead on various sources such as public records, third-party transactions, and by monitoring online
ctivities, often without consumers’ awareness (ACCC, 2023). In this respect, they run a completely different business than online
latforms that directly interact with consumers, such as social media and search engines, with significant policy implications. In
ecent years, regulatory actions such as the European Digital Service Act, Digital Markets Act, and the Data Act have been adopted
o shape the market for data and ensure competitiveness. However, such regulations are targeted toward firms that directly gather
ata from consumers and only tangentially affect DBs, which are neither digital gatekeepers nor very large online platforms (Krämer
t al., 2023; Ruschemeier, 2022). DBs are thus outside of the current scope of digital policies, and information on their industry is
acking. To overcome this, the Australian Competition and Consumer Commission (ACCC) has recently started to investigate DBs’
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business practices, seeking more information about the mechanisms governing their data sales (ACCC, 2023). Many questions are
still unanswered. How do DBs use the data they collect? Under what terms and conditions (including price) do firms acquire DBs’
products and services? Is this done via tender, negotiated contracts, take-it-or-leave-it list prices, or other means? What are the
effects on consumer surplus? As of now, there is still little transparency and understanding about how DBs operate, the terms and
conditions of the data sale, and the policy implications of their business model.

In this paper, we study the role of different data selling strategies, namely Take-It-Or-Leave-It, auctions with or without reserve
rices, affect downstream entry and the related market outcomes, and in turn consumer surplus. Although most DBs do not publicly
tate their data selling strategies, some of these strategies have been observed online. Major DBs such as Acxiom and Experian offer
ome of their datasets at Take-It-Or-Leave-It prices on Amazon Web Services marketplace.2 Conversely, the online data marketplace

DataBroker.global allows sellers to either set posted prices, auction their datasets, or auction them with a reserve price.3 By focusing
on these three selling mechanisms, our results can usefully inform the policy debate of potential perils that can occur under specific
selling strategies.

To address these questions, we build a model where a monopolistic DB sells consumer data to a downstream Salop (1979) market
with free entry. The DB, who owns data about the exact location of all consumers in the downstream market, sells partitions of
his dataset about a subset of consumers to downstream firms, which use the data to operate first-degree price discrimination on
the identified consumers. We consider three possible data selling mechanisms, namely auctions with or without reserve prices, and
Take-It-Or-Leave-It (TIOLI) offers, and assume that the data sale occurs simultaneously with firm entry.

As the DB’s only source of revenues is the sale of data to firms, his optimal strategy is to maximize downstream firms’ profits,
which he extracts through the price of data. Downstream profit maximization requires the DB to trade off the three different effects
of data on downstream profits. First, more data leads firms to fiercely compete for the same customers, decreasing downstream
profits. Second, data allows firms to identify consumers and charge them with tailored prices, which extract consumer surplus and
thus increase downstream profits. Third, an increase in downstream competition leads to lower entry. As market concentration
increases, so do firms’ profits.

We obtain two main results. First, all three selling mechanisms entail the same level of downstream entry. Indeed, the DB
maximizes the third effect of data, reducing entry as much as possible by properly choosing the price and quantity of data. However,
among the firms that enter, the number firms that obtain data in equilibrium differs according to the selling mechanisms, and so
does the quantity of data sold. Under the auction mechanisms, the DB sells data to only a subset of firms. This strategy increases
firms’ willingness to pay for data, by threatening them of having to compete without data against informed rivals. Under TIOLI,
this threat is ineffective and he sells data to all entering firms. In terms of the quantity of data sold, under the auction with reserve
prices, the DB’s bargaining power is at its highest, and he can extract most of the firms’ profits by selling relatively small partitions
of data. As his bargaining power is reduced by first removing reserve prices and then the auction mechanism altogether, the DB
floods the downstream market with data to intensify downstream competition. This result extends those of Abrardi et al. (2024),
who, in a similar setting, focus instead on a scenario where the data sale occurs through TIOLI offers after firm entry. They find a
milder entry barrier effect of data relative to the setup of the present paper, where the data sale occurs at the entry stage. Moreover,
by comparing different selling mechanisms, we find that the TIOLI sale is suboptimal from the DB’s point of view, as he obtains
higher profits under auction-based selling mechanisms.

Second, we highlight how the presence of the DB always leads to consumer harm with respect to the benchmark case where
data are not available, especially under the auction mechanisms. This result depends on the trade-off between two opposite effects
of data on consumer surplus. On the one hand, data have a direct positive effect on consumers, as the firms’ competition over
identified consumers decreases downstream prices. On the other hand, the entry barrier effect indirectly caused by data increases the
downstream market concentration, ultimately harming consumers. While the second – negative – effect of data is constant across
selling mechanisms, as they entail the same level of entry in equilibrium, the first – positive – effect is milder under auctions, due
to the lower amount of data sold.

We then extend our baseline model along two main directions. First, we relax the assumption of a monopolistic DB, by reducing
his market power vis-à-vis downstream firms. Data brokering is a fragmented industry counting thousands of companies, dominated
by a few very large players who tend to specialize in specific market segments.4 Our results show that a lower DB’s market power
softens the entry barrier effect, thus benefiting consumers. Second, we allow firms to choose how much data to use, and target fewer
consumers than those identified by the data purchased. Indeed, the recent literature has highlighted nuanced strategic interactions
enabled by data, such as firms choosing to share data with their rivals (Choe et al., 2024) or consumers voluntarily disclosing data
to firms (Ali et al., 2022). Our results show that allowing firms to voluntarily limit their use of data entails a reduction of data
prices, which in turn increases entry and benefits consumers.

From a policy perspective, our analysis highlights how different selling mechanisms affect consumers. We show that consumers
are not indifferent between different selling mechanisms, despite the fact that they entail the same level of entry, and that a
policymaker can avoid consumer harm and increase total welfare (relative to the case in which data are absent) by regulating

2 See https://shorturl.at/aoW45 and https://shorturl.at/qxRY4
3 See https://www.databroker.global/help/selling-data
4 The most notable companies in the data brokering industry include Acxiom, Epsilon, and Oracle for consumer data, and Experian, Equifax, and TransUnion

s credit reporting agencies. Official data brokers registries currently exist only in Vermont and California and contained 540 companies in July 2021, but
ccording to recent estimates, there are approximately 4000 DBs worldwide. See https://privacyrights.org/resources/registered-data-brokers-united-states-2021
2

nd https://www.webfx.com/blog/internet/what-are-data-brokers-and-what-is-your-data-worth-infographic/

https://shorturl.at/aoW45
https://shorturl.at/qxRY4
https://www.databroker.global/help/selling-data
https://privacyrights.org/resources/registered-data-brokers-united-states-2021
https://www.webfx.com/blog/internet/what-are-data-brokers-and-what-is-your-data-worth-infographic/
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the data sale along two dimensions. First, the DB should sell its data to all entering firms, as this strategy leads to the same market
outcomes regardless of the selling mechanism chosen by the DB. Second, the DB should be required to sell data about all consumers,
and, at the same time, to limit the overlap between data partitions sold to different firms. Indeed, while allowing all consumers to
be reached through tailored offers increases their surplus by leveraging on the (positive) direct effect of data, the overlap between
partitions intensifies competition, reducing entry and ultimately causing consumer harm.

The remainder of the paper is organized as follows. In Section 2 we summarize the relevant related literature. In Section 3
e describe the model. In Section 4 we focus on downstream competition and prices. In Section 5 we find the DB’s equilibrium

trategy under the different selling mechanisms and describe the subsequent market outcomes. In Section 6 we extend the model
y introducing different degrees of the DB’s market power and allowing firms to choose how much data to use. In Section 7 we
iscuss the policy implications and the strategy that a policymaker can adopt to avoid consumer harm. Section 8 concludes.

. Related literature

Our work is related to two main strands of literature. First, we have a conspicuous literature on the effects of price discrimination
n horizontally differentiated markets. The seminal work of Thisse and Vives (1988) highlights how price discrimination introduces
wo opposing effects. On the one hand, we have a surplus extraction effect, as firms can extract more surplus from consumers by

offering them tailored prices. On the other hand, we have a competition effect, as the ability to price discriminate increases the
ompetitive pressure and makes firms’ pricing strategies more aggressive. A vast literature has analyzed the interplay between these
wo effects, both when data are exogenously available to firms (Bester & Petrakis, 1996; Chen et al., 2020; Liu & Serfes, 2004;
haffer & Zhang, 1995; Shy & Stenbacka, 2016; Taylor, 2003; Taylor & Wagman, 2014) or when firms obtain data by interacting
ith consumers (Bergemann & Bonatti, 2011; Hagiu & Wright, 2020; Villas-Boas, 2004).5

As far as we are aware, the closest work from this strand of literature to our analysis is Liu and Serfes (2005). In their analysis,
hey focus on a Salop model where firms exogenously have all consumer data and can operate third-degree price discrimination,
.e., consumers are split into a given number of equally-sized segments. Their analysis shows that the number of entering firms
xhibits a U-shaped curve with respect to the number of segments, i.e., entry is at its minimum when price discrimination is
mperfect. Our analysis complements this work by showing that, if data are instead sold by a DB, firm entry is minimized even
nder first-degree price discrimination, as the data price acts as a supplementary barrier to entry.

The second and more recent strand of literature focuses instead on strategic data sales by DBs when data are used for price
iscrimination. Braulin and Valletti (2016) and Montes et al. (2019) focus on a monopolistic DB who sells data regarding all
onsumers to a duopoly downstream market, and show that the DB maximizes his profits by exclusively selling data to one firm.
ounie et al. (2021, 2022) expand on this scenario by showing that the DB is better off by not selling all consumer information,
ut instead leaves some consumers unidentified to temper the competition effect. Their analysis shows that this result holds under
ifferent selling mechanisms.

The closest work to our analysis is Abrardi et al. (2024), who analyze a monopolistic DB who sells data to a downstream Salop
1979) model. Their results show that the data sale reduces firm entry, leading to consumer harm. This work expands on Abrardi
t al. (2024) in two fundamental ways. First, in our setting firm entry and the data sale occur simultaneously instead of sequentially.
his allows the DB to anticipate how his data selling strategy affects firm entry and, in turn, firms’ profits. Conversely, in Abrardi
t al. (2024), the DB treats the number of entering firms as given and does not internalize his effect on entry. Second, we compare
ultiple selling mechanisms to analyze if and how the DB’s selling strategy changes, and the related market outcomes. Moreover,
e also focus on the strategies that a policymaker can implement to nullify the consumer harm identified in Abrardi et al. (2024).

ndeed, the remedies proposed in our setting would also work in the case where firm entry and the data sale occur sequentially, as
he policymaker intervenes on the size of the data partitions.

. The model

etting and players. A monopolistic DB (he/him) has data regarding all the consumers in a downstream market, represented by
circular city à la Salop (1979). Consumers (she/her) are uniformly distributed on the circumference and normalized to 1, with

ocation indexed by 𝑥 ∈ [0, 1). Symmetric firms (it/its) with marginal cost equal to 0 enter the market by paying a fixed cost 𝐹 . Firms
are indexed by 𝑖 ∈ {0, 1, 2,… , 𝑛 − 1}, where 𝑛 is the number of entering firms. We assume sequential entry to avoid coordination
problems and ignore integer constraints on 𝑛.6 The DB sells partitions of his dataset to firms. Each partition of size 𝑑𝑖 is centered
on the location 𝑖

𝑛 . We assume that, after purchasing a partition 𝑑𝑖, firms locate at the center of that partition. For simplicity, the
osition of a generic firm 𝑖 is 𝑖

𝑛 . The partition allows firm 𝑖 to perform first-degree price discrimination on consumers located in
𝑖
𝑛 − 𝑑𝑖

2 ,
𝑖
𝑛 + 𝑑𝑖

2 ]. Note that, in our setting, data are not an essential input for firms to compete in the downstream market.7 Fig. 1
illustrates the downstream market populated by 𝑛 firms, in which each firm obtains a partition of (potentially different) size 𝑑𝑖.

5 For recent surveys regarding data markets, refer to Bergemann and Bonatti (2019), Goldfarb and Tucker (2019) and Pino (2022).
6 This approach is standard in the literature on firm entry, and has been recently implemented in Rhodes and Zhou (2022).
7 Indeed, as we show in the following sections, uninformed firms can enter and obtain positive profits.
3
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Fig. 1. Data partitions and identified consumers.

A firm 𝑖 offers location-specific tailored prices 𝑝𝑇𝑖 (𝑥) ≥ 0 to the consumer 𝑥 in the identified segment, and a basic price 𝑝𝐵𝑖 ≥ 0 to
unidentified consumers. A consumer located in 𝑥 purchasing from firm 𝑖 maximizes her utility

𝑈 (𝑥, 𝑖) = 𝑢 − 𝑝𝑖(𝑥) − 𝑡𝐷(𝑥, 𝑖),

where 𝑢 is the gross utility from consumption, 𝑝𝑖(𝑥) = {𝑝𝑇𝑖 (𝑥), 𝑝
𝐵
𝑖 } is either the tailored or basic price, depending on whether the

consumer is identified or not, respectively, 𝑡 > 0 is the transportation cost and 𝐷(𝑥, 𝑖) is the shortest arch between the consumer
and firm 𝑖 on the Salop circular city. The location of an indifferent consumer between firms 𝑖 and 𝑖+1 is 𝑥𝑖,𝑖+1, i.e., 𝑈

(

𝑥𝑖,𝑖+1, 𝑖
)

=
𝑈
(

𝑥𝑖,𝑖+1, 𝑖+1
)

.
Firms’ profits prior to paying for a data partition are equal to the integral of prices over their market share, and their expression

depends on whether a firm identifies only some of its consumers or all of them. If a generic firm 𝑖 does not identify all the consumers
it serves, its profits when buying data, denoted by the superscript 𝑊 , are

𝜋𝑊
𝑖 = ∫

𝑖
𝑛+

𝑑𝑖
2

𝑖
𝑛−

𝑑𝑖
2

𝑝T
𝑖 (𝑥) 𝑑𝑥 + 𝑝B

𝑖
(

𝑥𝑖,𝑖+1 − 𝑥𝑖−1,𝑖 − 𝑑𝑖
)

− 𝐹 , (1)

where the first term is the profit made on the identified consumers, and the second term is the profit obtained from unidentified
consumers. Conversely, if firm 𝑖 identifies all consumers it serves, its profits are

𝜋𝑊
𝑖 = ∫

𝑥𝑖,𝑖+1

𝑥𝑖−1,𝑖
𝑝T
𝑖 (𝑥) 𝑑𝑥 − 𝐹 , (2)

as all consumers receive tailored prices. Finally, if firm 𝑖 does not obtain a data partition, denoted with superscript 𝐿, its profits are

𝜋𝐿
𝑖 = 𝑝B

𝑖
(

𝑥𝑖,𝑖+1 − 𝑥𝑖−1,𝑖
)

− 𝐹 , (3)

as it does not identify any consumer.
Timing The timing of the model is as follows8:

Stage 1. The DB sells data, and firms choose whether to buy them and enter the market by paying the fixed cost 𝐹 .
Stage 2. Firms set basic prices 𝑝B

𝑖 for the unidentified consumers.
Stage 3. Firms set tailored prices 𝑝𝑖T(𝑥) for the identified consumers if they have obtained a partition.
Stage 4. Consumers purchase the product and profits are made.

8 The sequentiality of Stages 2 and 3 allows the existence of Pure Strategy Nash Equilibria and is supported by managerial practices (Bounie et al., 2021).
For example, the use of data results in more frequent price updates, allowing updated prices to be based on the rivals’ prices (Fudenberg & Villas-Boas, 2006).
See also Montes et al. (2019) for an analogous approach.
4
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Our focus on the case in which the entry decision and data sale occur simultaneously could represent emerging markets where
irms’ business model is based on data. An example could be the introduction of rental electric scooter platforms, which were rapidly
dopted in most metropolitan areas by consumers whose data were likely already available to DBs. In such a situation, companies
ould want to obtain consumer information as they enter the market to better profile their customer base and gain a competitive
dge against their rivals. In particular, the simultaneity of the data sale and firm entry allows the DB to anticipate how his selling
trategy affects firm entry and, in turn, his profits. This is different from the model proposed in Abrardi et al. (2024), in which the
B chooses his data selling strategy only after observing the number of entering firms. Thus, in this paper, the DB can strategically
se his data sale to purposely affect downstream market concentration.
ata sale We explore three different data selling mechanisms. First, the DB can propose Take-It-Or-Leave-It (TIOLI) offers, as in
brardi et al. (2024). The DB chooses a partition set 𝐏 = (𝑑0, 𝑑1,… , 𝑑𝑛−1), offering each partition at a price 𝑤𝑖. Then, each firm

independently and simultaneously chooses whether to purchase its respective partition.9
Second, as in Bounie et al. (2021), Braulin and Valletti (2016), Montes et al. (2019), the DB can sell data through auctions with

eserve prices (AR), as described by Jehiel and Moldovanu (2000). The DB chooses the partition set 𝐏 and sets up 𝑛 auctions. In
any auction 𝑖 ∈ {0,… , 𝑛 − 1}, the DB offers a partition 𝑑𝑖 and sets a reserve price 𝑣𝑖 equal to the highest Willingness To Pay (WTP)
for 𝑑𝑖 among all firms. In particular, firm 𝑖 has the highest valuation of partition 𝑑𝑖, as the partition is centered on its location.
The reserve price in auction 𝑖 is thus equal to the difference in firm 𝑖’s profits between winning and losing auction 𝑖, given 𝐏. The
vector of reserve prices is 𝐯 = (𝑣0, 𝑣1, 𝑣2,… , 𝑣𝑛−1) and both 𝐯 and 𝐏 are common knowledge. Similar to Bounie et al. (2021), the
DB declares the maximum number of auctions he fulfills, 𝑘, and only fulfills a subset 𝐉 of auctions in equilibrium.10 After observing
all firms’ bids, the DB chooses how many and which auctions he wants to fulfill. As some auctions may be unfulfilled, partitions
traded in equilibrium may differ from those initially offered in the auctions through 𝐏. We denote with 𝐏∗ the partition set traded
in equilibrium.

Third, we focus on auctions without reserve prices (AU), which decrease the DB’s bargaining power with respect to the previous
mechanism. When the DB cannot set reserve prices, a firm can win its auction simply by bidding above the valuations of the other
firms, which are lower than its own owing to their distance. This in turn reduces the price of data with respect to the auction with
reserve prices.11

Partition sets Abrardi et al. (2024) show that in a Salop model with symmetric firms and a monopolistic DB, firms never serve
consumers located after their direct rivals’ locations. Then, the downstream market can be seen as a concatenation of Hotelling
lines. To simplify the analysis, we assume the DB adopts and replicates a strategy across all lines in equilibrium. Given two adjacent
firms, the DB sells data to one or both.12 This results in the DB either selling partitions to all entering firms (𝐏∗

𝐀 = (𝐝𝐀,𝐝𝐀,… ,𝐝𝐀)),
possibly alternating between two different partition sizes, or same-sized partitions to every other entering firm, alternating between
informed and uninformed firms (𝐏∗

𝐇 = (𝐝𝐇, 𝟎,… ,𝐝𝐇, 𝟎)). We solve the game through backward induction. As a benchmark, we refer
to the standard Salop (1979) model, where the number of entering firms is 𝑛 =

√

𝑡
𝐹 and consumer surplus is 𝐶𝑆 = 𝑢 − 5

4

√

𝑡𝐹 .

. Downstream equilibrium

.1. Partition sets

Firm competition is influenced by the partition set offered by the DB under the various selling mechanisms. To streamline the
nalysis of downstream competition, the following Lemma derives some key characteristics of the partition sets.

emma 1. If the DB sells data to all firms, he always offers 𝐏𝐀 = (𝑑𝐴, 𝑑𝐴,… , 𝑑𝐴) regardless of the selling mechanism. If the DB sells data
o every other entering firm, he offers:

• 𝐏𝐓𝐈𝐎𝐋𝐈
𝐇 = (𝑑𝑇 𝐼𝑂𝐿𝐼

𝐻 , 0,… , 𝑑𝑇 𝐼𝑂𝐿𝐼
𝐻 , 0) under TIOLI;

• 𝐏𝐀𝐑
𝐇 = (𝑑𝐴𝑅𝐻 , 1,… , 𝑑𝐴𝑅𝐻 , 1) under AR, declares 𝑘 = 𝑛

2 + 1 and fulfills the 𝑛
2 auctions where he offers 𝑑𝐴𝑅𝐻 ;

• 𝐏𝐀𝐔
𝐇 = (𝑑𝐴𝑈𝐻 , 𝑑𝐴𝑈𝐻 ,… , 𝑑𝐴𝑈𝐻 , 𝑑𝐴𝑈𝐻 ) under AU, declares 𝑘 = 𝑛

2 + 1 and fulfills every other auction.

In equilibrium, firms always pay a data price equal to the difference in firm 𝑖’s profit between obtaining it (𝜋𝑊 ∗
𝑖 ) or not obtaining it (𝜋𝐿∗

𝑖 ).

Proof. See Appendix. ■

9 Under TIOLI, the DB solves the coordination problem that is typical of the Salop model. Indeed, once a firm obtains a partition, it locates at its center. By
ffering partitions centered on the locations 𝑖

𝑛
, the DB ensures that entering firms are equally spaced in the downstream market.

10 In a duopoly Hotelling setup, where each firm has only one rival as in Bounie et al. (2021), this strategy corresponds to declaring to fulfill exactly 𝑛
2

auctions. However, our model differs from the one in Bounie et al. (2021) as each firm has two direct rivals instead of one.
11 Under both auction mechanisms, each firm has the same ex-ante valuation for any partition, as they have not entered the market yet and thus have no

location assigned. Firms that win an auction will locate at the center of the partition they win. We instead assume that all losing firms enter sequentially in the
market as in Salop (1979), thus avoiding coordination problems.

12
5

We discard the case of the DB selling data to neither firm, as it would result in his profits being equal to zero.
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If the DB sells data to all firms in equilibrium, then the offered partition set 𝐏 must coincide with the equilibrium one 𝐏∗. Due to
irms’ symmetry, we find that the DB maximizes his profits by setting 𝑑𝐴 = 𝑑𝐴 = 𝑑𝐴. Regarding the sale to every other firm, under
IOLI the DB cannot withdraw any offers, and the partition set offered must again coincide with the equilibrium one. As for AR, the
B maximizes firms’ WTP for data. To do so, the DB sets positive reserve prices for the auctions he wants to fulfill in equilibrium
nd sets reserve prices equal to zero in the auctions he does not want to fulfill, in which he offers the whole dataset. Through this
trategy, the DB threatens a firm to sell the whole dataset to its direct rivals if the firm does not match the reserve price. Under
U, the absence of reserve prices implies that a firm wins an auction by beating all bids. To avoid underbidding, the DB prefers
ffering same-sized partitions in all auctions. In both cases, declaring 𝑘 = 𝑛

2 + 1 allows the DB to threaten any firm that, if it does
not win the auction for its partition, he can sell data to both its direct rivals. Having described the characteristics of the partition
sets offered by the DB under the three selling mechanisms, we now shift our attention toward firm competition.

4.2. Firms buy data

Let us focus on firm 𝑖 obtaining a partition 𝑑𝑖 ∈ {𝑑𝐴, 𝑑𝐻}. The indifferent consumers between firms 𝑖−1 and 𝑖, and between 𝑖 and
𝑖+1, are located in:

𝑥𝑖−1,𝑖 =
2𝑖 − 1
2𝑛

+
𝑝B
𝑖 − 𝑝B

𝑖−1
2𝑡

and 𝑥𝑖,𝑖+1 =
2𝑖 + 1
2𝑛

+
𝑝B
𝑖+1 − 𝑝B

𝑖

2𝑡
(4)

s firm 𝑖 obtains a data partition, it offers a tailored price 𝑝T
𝑖 (𝑥) to the identified consumers by matching the competitor’s basic price

n utility level:

𝑝T
𝑖 (𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑝B
𝑖−1 + 2𝑡𝑥 − 𝑡

𝑛 (2𝑖 − 1) for 𝑥 ∈ [ 𝑖𝑛 − 𝑑𝑖
2 ,

𝑖
𝑛 ]

𝑝B
𝑖+1 − 2𝑡𝑥 + 𝑡

𝑛 (2𝑖 + 1) for 𝑥 ∈ [ 𝑖𝑛 ,
𝑖
𝑛 + 𝑑𝑖

2 ]
(5)

By combining (1) with (A.20) and (A.21), we obtain

𝜋𝑊
𝑖 =

𝑑𝑖
2𝑛

(

2𝑡 + 𝑛𝑝𝐵𝑖−1 + 𝑛𝑝𝐵𝑖+1 − 𝑛𝑡𝑑𝑖
)

+ 𝑝𝐵𝑖

⎛

⎜

⎜

⎜

⎝

𝑛
(

𝑝𝐵𝑖+1 + 𝑝𝐵𝑖−1 − 2𝑝𝐵𝑖
)

+ 2𝑡

2𝑛𝑡
− 𝑑𝑖

⎞

⎟

⎟

⎟

⎠

− 𝐹 , (6)

here the first term is firm 𝑖’s profits obtained from the identified consumers, and the second term is the profit obtained from the
nidentified ones. Eq. (6) shows two effects of 𝑑𝑖. First, it determines the share of identified consumers, positively affecting the first
erm. Second, it also influences the profits made by firm 𝑖 on unidentified consumers, negatively affecting the second term.

If, instead, partition 𝑑𝑖 is sufficiently large so that firm 𝑖 identifies all consumers it serves, its profits when it buys data, prior to
aying for them, are as in (2). In this case, firm 𝑖’s basic price only affects its profits through the indifferent consumers’ locations

�̂�, as a lower basic price would expand firm 𝑖’s market share. Firms are thus incentivized to lower their basic prices as much as
ossible, i.e., they set them to zero. Moreover, once the data partition allows firm 𝑖 to identify all consumers up to the indifferent
ne, any additional data do not affect profits as they do not allow to poach additional consumers.

Finally, if firm 𝑖 does not buy data, it becomes uninformed and competes having 𝑑𝑖 = 0. By combining (3) with (A.20) and (A.21),
e obtain

𝜋L
𝑖 = 𝑝𝐵𝑖

⎛

⎜

⎜

⎜

⎝

𝑛
(

𝑝𝐵𝑖+1 + 𝑝𝐵𝑖−1 − 2𝑝𝐵𝑖
)

+ 2𝑡

2𝑛𝑡

⎞

⎟

⎟

⎟

⎠

− 𝐹 . (7)

We then find the firm’s reaction function on basic prices by obtaining the first-order condition of (6) and (7) with respect to 𝑝B
𝑖 :

𝑝B
𝑖(W) =

𝑡
2𝑛

−
𝑡𝑑𝑖
2

+
𝑝B
𝑖+1 + 𝑝B

𝑖−1
4

(8)

𝑝B
𝑖(L) =

𝑡
2𝑛

+
𝑝B
𝑖+1 + 𝑝B

𝑖−1
4

(9)

The reaction function in Eq. (8) presents an additional term with respect to the reaction function of the standard (Salop, 1979)
model, namely − 𝑡𝑑𝑖

2 . We conclude that data have two opposite effects on firms’ profits. On the one hand, data allow firms to target
onsumers with tailored prices and extract more surplus from them. This increase in profits is referred to in the literature assurplus

extraction effect of data (Thisse & Vives, 1988). However, acquiring more data leads to firm 𝑖 offering its basic price to consumers
who are on average farther from its location, requiring the firm to lower it. The reduction in profits stemming from the lower basic
price is referred to in the literature as the competition effect of data (Thisse & Vives, 1988).

To find the equilibrium basic prices, we solve the system of firms’ reaction functions. If the DB sells data to all firms, in
equilibrium all firms obtain a partition 𝑑𝐴. then all reaction functions are as in (8). Instead, if the DB sells data to every other
ntering firm, then the reaction function of firms that obtain 𝑑𝐻 are as in (8), whereas the reaction functions of uninformed firms

are as in (9). The following Lemma summarizes the effects of data on firms’ prices and profits in equilibrium.
6
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Lemma 2. Suppose firms buy data:

• If the DB sells data to all firms, firms’ equilibrium prices and profits are decreasing in 𝑑𝐴 for 0 < 𝑑𝐴 < 1
𝑛 , and constant otherwise.

• If the DB sells data to every other entering firm, all firms’ equilibrium basic prices are decreasing in 𝑑𝐻 for 0 < 𝑑𝐻 < 3
2𝑛 , and constant

otherwise. Uninformed firms’ equilibrium profits are decreasing in 𝑑𝐻 for 0 < 𝑑𝐻 < 3
2𝑛 , and constant otherwise. Informed firms’

equilibrium profits follow an inverse U-shaped curve in 𝑑𝐻 for 0 < 𝑑𝐻 < 3
2𝑛 , and constant otherwise.

Proof. See Appendix. ■

When all firms obtain data, the competition effect dominates the surplus extraction effect, leading to fiercer competition in the
downstream market and a decrease in firms’ profits. Due to firms’ symmetry, the indifferent consumers are all located equidistantly
from firms, i.e., at a distance of 1

2𝑛 from the two closest firms’ locations. Then, once 𝑑𝐴 = 1
𝑛 , firms identify all consumers they serve,

and additional data do not influence their equilibrium profits. Conversely, when half of the entering firms obtain data, informed
firms have an advantage over the uninformed ones. Data thus allow informed firms to expand their market shares. At first, the
market share expansion, together with the surplus extraction effect, dominates the competition effect of data, leading to higher
profits. However, as the partition size 𝑑𝐻 increases, informed firms can extract less profits from newly identified consumers, as they
are located farther from their locations. Then, after a threshold, informed firms’ profits start decreasing with respect to 𝑑𝐻 . Finally,
we find that data cannot completely overcome the positional advantage of firms. Indeed, consumers who are located too close to
uninformed firms cannot be poached by the informed ones, even if they offer tailored prices equal to zero. Then, for 𝑑𝐻 ≥ 3

2𝑛 , firms’
profits become constant.

4.3. Firms do not buy data

Having analyzed the case where firms buy data, let us focus instead on the case where a given firm 𝑖 does not obtain its respective
partition. As concluded in Lemma 1, the DB’s reaction to the firm’s refusal to obtain data depends on the selling mechanism. Under
TIOLI, if firm 𝑖 does not buy data, the DB cannot change the partitions offered to all other firms. Thus, under the sale to all firms,
firm 𝑖 becomes the only uninformed firm in the market. Under AU, if firm 𝑖 does not bid high enough to win its auction, then the
DB fulfills the auctions of firms 𝑖+ 1 and 𝑖− 1, that in turn obtain 𝑑𝐻 . Finally, under AR, if firm 𝑖 does not win its auction, then its
direct rivals obtain the whole dataset. The following Lemma summarizes the effects of the data partitions’ sizes on firm 𝑖’s prices
and profits.

Lemma 3. Suppose firm 𝑖 does not buy data:

• Under TIOLI and AU, firm 𝑖’s basic price and profits in equilibrium are decreasing in the partition sizes obtained by the rivals, and
become constant once 𝑑≠𝑖 ≥

3
2𝑛 .

• Under AR, firm 𝑖’s basic price and profits in equilibrium are constant in 𝑑≠𝑖 and weakly lower than under TIOLI and AU.

Proof. See Appendix. ■

Under TIOLI and AU, as firm 𝑖’s rivals obtain more data, they price more aggressively and expand their market shares, leading
to a decrease in firm 𝑖’s profits. However, as already described in Lemma 2, firm 𝑖 is always able to serve its closest consumers due
to its positional advantage, which implies its profits become constant if the rivals’ partitions are large enough. Conversely, under
AR, firm 𝑖’s direct rivals always obtain the whole dataset regardless of the partition size 𝑑𝐻 . As they identify all consumers they
serve, firm 𝑖’s direct rival always set their basic prices to zero, resulting in firm 𝑖’s equilibrium price and profits being constant with
espect to 𝑑𝐻 .

. DB’s profits, entry and welfare

Having analyzed downstream firms’ competition stage, we now focus on the DB’s selling strategies under the three selling
echanisms. Given a selling mechanism, the DB sets the equilibrium partition price equal to the difference in a firm’s profits between

btaining or not obtaining said partition. Under the sale to all firms, the DB solves the following maximization problem:

𝜋𝐷𝐵𝐴
= max

𝑑𝐴
𝑛
(

𝜋𝑊
𝑖 (𝐏𝐀) − 𝜋𝐿

𝑖 (𝐏𝐀)
)

(10)

𝑠.𝑡. 𝜋𝐿
𝑖 (𝐏𝐀) = 0,

here the constraint is the free entry condition. Conversely, as described in Lemma 1, the DB’s strategy changes under the three
elling mechanisms when he sells data to every other entering firm. By referring with 𝑆𝑀 = {𝑇 𝐼𝑂𝐿𝐼,𝐴𝑅,𝐴𝑈} to the specific selling
echanism, the DB solves the following maximization problem:

𝜋𝑆𝑀
𝐷𝐵𝐻

= max
𝑑𝑆𝑀𝐻

𝑛
2
(

𝜋𝑊
𝑖 (𝐏𝐒𝐌

𝐇 ) − 𝜋𝐿
𝑖 (𝐏

𝐒𝐌
𝐇 )

)

(11)

𝑠.𝑡. 𝜋𝐿
𝑖 (𝐏

𝐒𝐌
𝐇 ) = 0.

The following proposition describes the DB’s equilibrium strategies under the three selling mechanisms.
7
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Fig. 2. Number of entering firms as a function of the partition’s size.

Proposition 1. In equilibrium, the DB adopts the following strategies given the selling mechanism:

• Under TIOLI, the DB opts for the sale to all firms, and sets 𝑑𝑇 𝐼𝑂𝐿𝐼∗
𝐴 ≥ 3

2𝑛 ;
• Under AU, the DB opts for the sale to every other firm, and sets 𝑑𝐴𝑈∗

𝐻 ≥ 3
2𝑛 ;

• Under AR, the DB opts for the sale to every other firm and sets 𝑑𝐴𝑅∗

𝐻 = 6
7𝑛 .

The number of entering firms is always 𝑛∗ = 1
2

√

𝑡
𝐹 = �̃�

2 .

Proof. See Appendix. ■

To better understand the intuition behind the proposition, note that the DB’s profits are decreasing in the number of entering
firms. Intuitively, a higher number of firms implies fiercer downstream competition, reducing firms’ willingness to pay for data. In
turn, the number of entering firms is determined by firms’ profits after paying for data 𝜋𝐿

𝑖 : higher profits entail a higher firm entry.
Under both TIOLI and AU, 𝜋𝐿

𝑖 is decreasing in the partition’s size, as informed rivals price more aggressively. Conversely, under
AR, 𝜋𝐿

𝑖 is always minimized as, if firm 𝑖 chooses not to buy data, its direct rivals always obtain the whole dataset. The effects of
the partition’s size on firms’ profits also reflect on the number of entering firms, as we can see from Fig. 2: the number of entering
firms is decreasing in the partition’s size under TIOLI and AU, whereas it is constant under AR. This implies that the DB has the
incentive to increase the partition’s size under TIOLI and AU to reduce 𝜋𝐿

𝑖 and lower firm entry. Moreover, data have ambiguous
effects on the partitions’ prices, which are equal to 𝜋𝑊

𝑖 − 𝜋𝐿
𝑖 . Indeed, 𝜋𝑊

𝑖 can be positively or negatively affected by the partition’s
size, depending on the selling mechanism. Moreover, even if 𝜋𝑊

𝑖 is decreasing in the partition’s size, firms’ willingness to pay can
still increase as long as the negative effect on 𝜋𝐿

𝑖 is stronger.
To understand how the different selling mechanisms affect the data sale, let us refer to Figs. 3 and 4, which show how firms’

profits are influenced by the partition’s size.
Under TIOLI, the sale to all firms always dominates the sale to every other firm. This is due to the DB’s inability to change the

offer made to a firm conditional on another firm’s choice and is in line with the previous literature (Abrardi et al., 2024; Bounie
et al., 2022).13 To understand the intuition, suppose that a firm that is offered 𝑑𝑇 𝐼𝑂𝐿𝐼

𝐻 chooses not to buy data. Then, it will be
uninformed as it faces informed rivals. As competitive pressure is low, so is firms’ willingness to pay for data, and the DB opts for
the sale to all firms. Under the sale to all firms, increasing the partition size 𝑑𝐴 has three effects. First, firms’ profits when buying
data decrease, as the competition effect of data dominates the surplus extraction effect (solid line in Fig. 3). This occurs as firms engage
in price wars, dissipating profits. The strong competition effect thus reduces firms’ willingness to pay for data. Second, firms’ profits
when not buying data also decrease, as they face fiercer competition from their informed rivals (dashed line in Fig. 3). This effect
increases firms’ willingness to pay for data. Third, as firms’ profits when not buying data decrease, an increase in 𝑑𝐴 reduces the
number of entering firms. By reducing competition in the downstream market, this third effect increases firms’ willingness to pay
for data and, in turn, the DB’s profits. The trade-off between the first two effects is the same as in Abrardi et al. (2024): an increase
in the partition’s size decreases firms’ profits both when buying or not buying data, with ambiguous effects on the DB’s profits.
However, the third effect introduces an additional incentive for the DB to increase the partition size, as lower entry allows him to

13 The inability of the DB to change the offer made to a firm contingent on another firm’s response is due to the simultaneous nature of the TIOLI offers.
For an analysis of a monopolistic DB selling partitions through sequential bargaining, see Bounie et al. (2022).
8
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Fig. 3. Firm 𝑖’s profits under the sale to all firms.

Fig. 4. Firm 𝑖’s profits under the auction mechanisms.

increase the partitions’ prices. The analysis in Abrardi et al. (2024) highlighted how, depending on the number of entering firms,
the DB could either sell small or large partitions in equilibrium. Instead, by allowing the DB to anticipate the effects of his data sale
on entry, we find that in equilibrium the DB always prefers minimizing firm entry, which he achieves by setting 𝑑𝐴 ≥ 3

2𝑛∗ .

Under the auction mechanisms, the DB opts for the sale to every other firm instead. Under both auction mechanisms, the DB
offers a subset of partitions that are not traded in equilibrium, allowing him to simultaneously increase firms’ winning profits (𝜋𝑊 ∗

𝑖 )
and decrease firms’ losing profits (𝜋𝐿∗

𝑖 ), as shown in Fig. 4. Under AU, similarly to TIOLI, the entry barrier effect of data dominates
the surplus extraction and competition effects, and the DB sets 𝑑𝐴𝑈∗

𝐻 ≥ 3
2𝑛 to minimize entry. Instead, under AR, firms’ profits when

not buying data are always minimized, as we can see in Fig. 4. Indeed, regardless of 𝑑𝐴𝑅∗

𝐻 , a losing firm under AR always faces
direct rivals that obtain the whole dataset and thus exert the maximum competitive pressure. Then, the DB sets 𝑑𝐴𝑅∗

𝐻 to maximize
firms’ winning profits, as entry is always minimized.

Proposition 1 also highlights that if the data sale occurs simultaneously with firms’ entry, the DB always maximizes his entry
barrier effect. As his bargaining power is reduced, the DB floods the downstream market with data to reduce firms’ profits after
paying for data and, in turn, their entry.
9
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Having analyzed the DB’s equilibrium strategies, we now focus on the effects of the data sale on consumer surplus and welfare.
he surplus of consumers buying from firm 𝑖 is equal to the integral of consumers’ utility:

𝐶𝑆𝑖 = ∫

�̂�𝑖,𝑖+1

�̂�𝑖−1,𝑖
𝑈 (𝑥, 𝑖)𝑑𝑥. (12)

otal consumer surplus is the sum across all firms. Note that, as consumer surplus is computed in equilibrium, we need to separately
nalyze the cases of the sale to all firms and of the sale to every other firm. Under the sale to all firms, all firms buy data in
quilibrium, and additional data have no effect when 𝑑𝐴 ≥ 1

𝑛 (see Fig. 3). Moreover, as priorly described, the data partition size
sold by the DB 𝑑𝐴 is not influenced by the selling mechanism under the sale to all firms. Thus, we can express consumer surplus as

𝐶𝑆𝐴 =

⎧

⎪

⎨

⎪

⎩

𝑣 − 5𝑡
4𝑛 +

𝑛𝑡𝑑2𝐴
2 for 𝑑𝐴 ∈ [0, 1𝑛 )

𝑣 − 5𝑡
4𝑛𝐴

+ 𝑡
2𝑛 for 𝑑𝐴 ∈ [ 1𝑛 , 1].

(13)

Conversely, under the sale to every other firm, only one of every two firms obtains data in equilibrium, and additional data have
o effect when 𝑑𝐻 ≥ 3

2𝑛 (see Fig. 4). Then, consumer surplus is equal to

𝐶𝑆𝑆𝑀
𝐻 =

⎧

⎪

⎨

⎪

⎩

𝑣 − 5𝑡
4𝑛 +

𝑛𝑡𝑑𝑆𝑀
2

𝐻
9 for 𝑑𝑆𝑀𝐻 ∈ [0, 3

2𝑛 )

𝑣 − 5𝑡
4𝑛 + 𝑡

4𝑛 for 𝑑𝑆𝑀𝐻 ∈ [ 3
2𝑛 , 1],

(14)

Where 𝑆𝑀 = {𝑇 𝐼𝑂𝐿𝐼,𝐴𝑅,𝐴𝑈} is the selling mechanism adopted by the DB under the sale to half of the firms.
With regards to total welfare 𝑇𝑊 , we define it as the weighted sum of consumer surplus 𝐶𝑆 ∈

{

𝐶𝑆𝐴, 𝐶𝑆𝑆𝑀
𝐻

}

, firm profits and
he DB’ profits:

𝑇𝑊 = 𝐶𝑆 + 𝛼

(𝑛−1
∑

𝑖=0
(𝜋𝐿

𝑖 ) + 𝜋DB

)

, (15)

here 𝛼 ∈ [0, 1] is the weight assigned to industry profits in the welfare function, representing the lower weight a policymaker
ttributes to industry profits because of, for example, their international reach (Baron & Myerson, 1982). Moreover, in equilibrium,
𝐿∗
𝑖 = 0 by the free-entry condition. Recall that 𝐶𝑆 = 𝑇𝑊 = 𝑣 − 5

4

√

𝑡𝐹 are the consumer surplus and total welfare in the
standard Salop (1979) model, respectively. The following proposition summarizes the effects of the DB’s data sale on consumer
surplus and welfare under the three selling mechanisms.

Proposition 2. In equilibrium, both consumer surplus and total welfare are higher under TIOLI than under AU or AR. Moreover,
𝐶𝑆∗

𝐴 < 𝐶𝑆. There exists a threshold �̄� such that, iff 𝛼 ≥ �̄�, 𝑇𝑊 ∗
𝐴 ≥ 𝑇𝑊 .

roof. See Appendix. ■

As shown in (13) and (14), 𝐶𝑆 is a function of the number of entering firms and the amount of data sold in equilibrium. As the
umber of entering firms is the same across selling mechanisms, as concluded in Proposition 1, this variable does not influence the
esults. Instead, an increase in the quantity of data drive firms’ prices downwards, benefiting consumers. As the quantity of data
old is maximized under TIOLI, consumer surplus is maximized under this selling mechanism. However, consumers are harmed
ith respect to the standard Salop model. Indeed, the entry barrier effect posed by the DB’s data sale increases downstream market

oncentration, leading to higher prices and lower consumer utility.
With regard to total welfare, we find that it is maximized under TIOLI. Indeed, the data sale only transfers surplus between firms

nd the DB, and the only net losses of total welfare derive from the fixed entry cost 𝐹 and the transportation cost 𝑡. As previously
described, the number of entering firms is constant across selling mechanisms. Instead, transportation costs are minimized under
TIOLI, as all firms obtain data in equilibrium, leading to a symmetric outcome in which all consumers buy from the closest firm. We
also find that, if the weight 𝛼 of the industry profits in the welfare function is sufficiently high, total welfare is higher than in the
benchmark case.14 Indeed, the DB’s equilibrium strategy under all selling mechanisms solves the excessive entry problem identified
by Salop (1979). However, while being higher, total welfare is mostly appropriated by the DB, potentially raising redistributive
concerns from a policymaking point of view.

6. Extensions

The previous analysis highlighted how the TIOLI mechanism, while providing the maximum level of consumer surplus relative
to auctions, still makes consumers worse off relative to a situation in which a DB is absent and no data is sold, as in the standard
Salop model. The harm to consumers stems from the entry barrier effect of data, which leads to higher market concentration and,
in turn, higher prices. The entry barrier effect is particularly strong in our model due to the DB’s monopolistic position and to the
sale of the whole dataset, which intensifies firms’ competition and depletes their profit. In this section we extend our baseline model
by analyzing the role of the DB’s market power (in Section 6.1) and by assuming that firms may decide to use a subset of the data
purchased to soften competition (in Section 6.2).

14 In the Appendix, we show that total welfare increases iff 𝛼 ≥ 1 under the TIOLI selling mechanism.
10
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6.1. DB’s market power

In the baseline model, we assume that the DB is a monopolist, who is thus able to extract all of the firms’ willingness to pay for
ata. We now extend our model by analyzing how market outcomes change in response to a reduction of the DB’s market power.15

To do so, we introduce a parameter 𝜃 ∈ (0, 1], which measures the DB’s market power.16 Given a generic firm 𝑖 willingness to pay
for data, which is equal to 𝑤𝑖 = 𝜋𝑊

𝑖 −𝜋𝐿
𝑖 , we assume that the DB can only post a price equal to 𝜃𝑤𝑖. Such reduction in market power

ould stem from the presence of competing DBs, or the presence of other alternatives available to firms to obtain data analytics.
e focus on the equilibrium under the sale to all firms. Indeed, in the presence of competition, the threat posed to firms under the

ale to half of the firms would no longer be available, as those firms could instead buy data from a competing DB.
The following proposition describes the effects of 𝜃 on the DB’s equilibrium strategy and the subsequent market outcomes.

roposition 3. Under TIOLI, for any 𝜃 ∈ (0, 1], the DB’s equilibrium strategy is to offer 𝑑𝐴 ≥ 3
2𝑛 to all entering firms, and DB’s profits

are decreasing in 𝜃. Consumer surplus is increasing in 𝜃 and there exists a threshold �̄� such that, iff 𝜃 ≥ �̄�, 𝐶𝑆∗
𝐴 ≥ 𝐶𝑆. Total welfare is

decreasing in 𝜃 iff 𝛼 < 3
4 .

roof. See Appendix. ■

The main result of Proposition 3 is that a reduction in market power does not affect the DB’s equilibrium strategy. Indeed,
regardless of 𝜃, the DB always prefers to sell large data partitions to maximize competitive pressure in the downstream market and,
in turn, the entry barrier effect. Intuitively, the level of the DB’s market power proportionally scales down all of the DB’s profits as
a function of 𝑑𝐴, leaving his equilibrium strategy unaltered.

Looking at consumer surplus, the reduction in the DB’s market power softens the entry barrier effect, which in turn decreases
he prices posted by firms, thus benefiting consumers. In particular, a low enough 𝜃 allows the pro-competitive effect of data to
ominate the reduction in entry, leading to a better outcome for consumers when compared with the benchmark case where data
re absent.

Finally, we find that a lower level of DB’s market power can increase total welfare, provided that industry profits have a
ufficiently low weight in the welfare function. In such a case, the excessive entry that is typical of the Salop model is dominated
y the lower transportation cost paid by consumers, as more firms enter the market.

.2. Firms’ ability to use less data

In Section 5, we have shown how the DB has the incentive, under TIOLI, to sell large partitions to all entering firms to increase
ownstream competition and, in turn, the price of data. A question then naturally arises: do firms have the incentive to use all the
ata they purchased or would they rather prefer to only use a part of them, if given the choice? Indeed, using less data would lower
he competitive pressure firms face, benefiting their profits. At the same time, however, using less data when facing informed rivals
ould put a firm at a disadvantage and decrease its profits. In this Section we analyze this trade-off.

We focus on the equilibrium under TIOLI, in which the DB sells large partitions to all entering firms, for two reasons. First, under
IOLI firms obtain large partitions, so that allowing firms to strategically use only a part of the purchased data might have a high

mpact on their strategy. Second, as shown in Section 5, TIOLI is the selling mechanism under which consumers are less harmed
nd is thus the ideal starting point to understand whether the strategic use of data by firms can make the data sale beneficial for
onsumers. Moreover, many DBs adopt TIOLI sales online,17 making this case particularly interesting for its practical implications.

To analyze firms’ incentive to use fewer data than those purchased, we focus on the TIOLI equilibrium described in Section 5,
n which the DB offers 𝑑∗𝐴 ≥ 3

2𝑛 . Then, we allow firms to individually and simultaneously choose 𝑑𝐴,𝑖 ∈ [0, 𝑑∗𝐴]. The following
roposition describes firms’ equilibrium strategies and how they affect market outcomes.

roposition 4. Suppose firms can choose to use a subset 𝑑𝐴,𝑖 ≤ 𝑑∗𝐴 of the data they purchase. There exist only two equilibria. In the first
ne, all firms purchase data and choose 𝑑∗𝐴,𝑖 = 𝑑∗𝑙𝑜𝑤 < 1

𝑛 . In the second one, all firms purchase data and choose 𝑑∗𝐴,𝑖 = 𝑑∗ℎ𝑖𝑔ℎ ≥ 1
𝑛 .

roof. See Appendix. ■

Firms’ ability to choose how much data to use affects their strategies, generating a coordination game. To understand the
ntuition, let us focus on a generic firm 𝑖. Suppose that all of firm 𝑖’s rivals choose to use only a small subset of the acquired
artitions. Then, competitive pressure is low and firms charge positive basic prices, leading to higher profits with respect to those
btained in the baseline model. In such a situation, also firm 𝑖 has the incentive to use a small subset of the partition. Indeed, using

15 Although the assumption of a monopolistic DB might fit specific situations, where one DB has exclusive access to data relating to a specific consumer
egment, little is known regarding the concentration level in the DB industry (ACCC, 2023).
16 This approach allows us to simply yet effectively introduce a proxy for competition in the data industry, without modeling more complex interactions, such
s data complementarities, that would be outside the scope of the paper.
17 Large DBs such as Acxiom and Experian offer some of their datasets at posted prices on Amazon Web Services marketplace. See https://shorturl.at/aoW45
11
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all available data would induce a strategic response from its rivals, which would lower their basic prices in response to the increased
competitive pressure. This strategic response would reduce firm 𝑖’s profits, making the deviation unprofitable.

Conversely, if all of firm 𝑖’s rivals choose to use all available data, firm 𝑖 faces the highest level of competitive pressure. Then,
data become the only way for firm 𝑖 to defend its market share from the rivals’ aggressive pricing strategies. In particular, any
partition that allows firm 𝑖 to identify the consumer on which it has a positional advantage is an equilibrium, as it ensures that firm
𝑖 serves those consumers.

Having analyzed the two possible equilibria, we now describe how a change in firms’ strategies affects market outcomes. In
continuity with the equilibrium discussed in previous sections, in which firms use overlapping partitions, we focus on the equilibrium
where firms use the 𝑑∗ℎ𝑖𝑔ℎ amount of data.

Proposition 5. Consider the equilibrium in which firms use 𝑑∗ℎ𝑖𝑔ℎ data. In equilibrium, data partition prices are lower, entry is higher, and
𝑆∗ > 𝐶𝑆 with respect to the baseline model.

roof. See Appendix. ■

To understand the implication of firms’ ability to strategically choose how much data to use, it is useful to separately analyze
he cases where all firms buy data and where one firm chooses not to buy data. First, as described in Proposition 4, if all other firms
hoose to use a large subset of the partition, then firm 𝑖’s best response is to choose 𝑑𝑖,𝐴 = 𝑑∗ℎ𝑖𝑔ℎ ≥ 1

𝑛 , i.e., to offer tailored prices to
all consumers on which it has a positional advantage. Indeed, firm 𝑖 faces high competitive pressure from its direct rivals, who can
identify all consumers. Then, due to the threat of consumers being poached, firm 𝑖 chooses to defend its turf by offering tailored
prices to all the consumers it serves, even though such choice maximizes competitive pressure. Thus, if all firms purchase data, they
face a prisoner’s dilemma: even though they would be better off not using data, the threat posed by their rivals forces them into
using them.

Suppose instead that firm 𝑖 chooses not to purchase data. Then, its direct rivals 𝑖+1 and 𝑖−1 use all available data on the arches
they do not share with firm 𝑖, as they face informed firms on those arches. However, firms 𝑖+ 1 and 𝑖− 1 can choose the amount of
consumers they want to identify on the arch they share with firm 𝑖. We find that, in this subgame equilibrium, firms 𝑖+ 1 and 𝑖− 1
choose to leave some consumers unidentified on the arches they share with firm 𝑖 to temper competition with firm 𝑖 and extract
more profits.

The change in firms’ strategy directly impacts the data price. Indeed, if a firm chooses not to buy data, it faces a lower competitive
pressure with respect to the baseline model, resulting in a lower willingness to pay for data. DB’s profits thus decrease under firms’
strategic use of data, and entry increases. In particular, the reduction of the entry barrier effect is so strong that, in equilibrium,
consumer surplus is higher than in the standard Salop model, as opposed to the result described in Section 5. Thus, our analysis
shows that allowing firms to have agency over the amount of data they use can have positive effects on consumers.

7. Policy discussion

A central result of our analysis is that the DB’s data sale, by drastically reducing entry, leads to consumer harm. This finding is in
contrast with that obtained in most of the literature on price discrimination (e.g., the studies following the seminal paper by Thisse
& Vives, 1988), highlighting that price discrimination by symmetric firms benefits consumers. In this section, we analyze possible
policy interventions to avoid the consumer harm caused by the data sale. A first channel of policy intervention is the regulation
of the data price. By mandating a lower data price, a policymaker could redistribute profits from the DB towards firms, increasing
entry and, in turn, consumer surplus. However, implementing price regulation on data may be challenging in practice, due to the
elusive nature of the traded commodity.18 Other types of interventions have less obvious effects than direct price regulation and
deserve a deeper analysis. In what follows we allow a policymaker to regulate the selling mechanism and the quantity of data sold,
but not the prices posted by the DB. The following proposition describes the optimal size of data partitions and selling mechanisms
from a social point of view, denoted with superscript 𝑃 .

Proposition 6. For any 𝜃 ∈ [0, 1], consumer surplus is maximized under the sale to all firms with 𝑑𝑃 ∗

𝐴 = 1
𝑛 . This results in 𝐶𝑆𝑃 ∗ ≥ 𝐶𝑆

nd 𝑇𝑊 𝑃 ∗ ≥ 𝑇𝑊 . Total welfare is maximized with 𝑑𝑃 ∗

𝐴 = 1
𝑛 iff 𝛼 < ̄̄𝛼, and with 𝑑𝑃 ∗

𝐴 ≥ 3
2𝑛 otherwise.

Proof. See Appendix. ■

Our analysis highlights how a policymaker can obtain a Pareto improvement with respect to the benchmark Salop (1979) model
by regulating two features of the data sale. First, by imposing the sale to all firms, the regulator ensures that all firms can access
data regardless of the selling mechanism adopted by the DB. This, in turn, creates a leveled playing field in the downstream market,
as firms engage in price wars that benefit consumers. Second, by controlling the amount of data sold, the policymaker can strike
a balance between the negative entry barrier effect and the positive competition effect. To better understand the intuition, let us
refer to Fig. 5.

18 Two datasets of equal size might carry vastly different amounts of usable information. Moreover, the value of the information depends on the firm using it.
12
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Fig. 5. Consumer Surplus (CS) and Total Welfare (TW) as a function of 𝑑𝐴. 𝑡 = 10, 𝐹 = 0.1, 𝑢 = 5, 𝛼 = 0.6, 𝜃 = 1.

As already noted, for 𝑑𝐴 < 1
𝑛 , an increase in 𝑑𝐴 has two opposing effects on consumer surplus. On the one hand, the decrease

in prices given by the competition effect benefits consumers. On the other hand, the reduction in firms’ profits decreases entry,
harming consumers. When 𝑑𝐴 is small, identified consumers are located close to firms’ locations. Then, thanks to their positional
advantage, firms can extract most of the surplus from consumers, resulting in a weak competition effect. Thus, for low values of
𝑑𝐴, the entry barrier effect dominates the competition effect, and consumer surplus decreases. However, as 𝑑𝐴 increases, informed
consumers start being located farther from the firms’ locations, leading to a stronger competition effect that dominates over the
entry barrier effect. Notably, for 𝑑𝐴 = 1

𝑛 , consumer surplus reaches its maximum. Indeed, after this point, additional data does not
affect firms’ strategies in equilibrium, as they already identify all consumers they serve. However, additional data still affect the
firms’ willingness to pay for data, as they reduce firms’ profits when not buying a partition (dashed line in Fig. 3). Thus, after 𝑑𝐴 = 1

𝑛 ,
an increase in data does not affect the competition effect, whereas it increases the entry barrier effect, harming consumers. Setting
𝑑𝑃 ∗

𝐴 = 1
𝑛 thus limits the entry barrier effect, leading to the same level of consumer surplus of the standard Salop (1979) model if

𝜃 = 1.19 Intuitively, a decrease in the DB’s market power 𝜃 decreases the data price and, in turn, the entry barrier effect for any
level of 𝑑𝐴. Thus, although 𝜃 does not influence the regulator’s equilibrium choice, the increase in firm entry benefits consumers.
In particular, for any 𝜃 < 1, we find that consumers are better off under the presence of the DB.

With regard to total welfare we find that, if the weight of industry profits 𝛼 is low enough, welfare is maximized under the
same conditions that maximize consumer surplus, namely 𝑑𝑃 ∗

𝐴 = 1
𝑛 . However, for higher values of 𝛼, total welfare is maximized for

𝑑𝑃 ∗

𝐴 ≥ 3
2𝑛 , as it is increasing in 𝑑𝐴. Indeed, in such a case, the welfare loss given by the fixed entry cost is minimized, benefiting the

DB who appropriates most of the surplus.
Our analysis thus highlights two possible strategies for a policymaker. If a policymaker gives a sufficiently low weight to industry

profits, he should mandate that the DB sells data to all entering firms, and sell all available data, without however selling the same
data points to different firms. Indeed, mandating the sale of all data maximizes the (positive) direct effect of data, whereas banning
the sale of data about any given consumer to multiple firms mitigates the (negative) entry barrier effect of data. Instead, if a
policymaker gives a sufficiently high weight to industry profits, it is sufficient to mandate the sale of data to all firms.

8. Conclusions

Digital markets have been substantially growing over the years, prompting policymakers to intensify their focus on regulating
data markets both at the data collection stage and in the possible uses of data. Examples include the European GDPR, the Digital
Markets Act, the Digital Service Act, and the more recent Data Act. However, such regulations focus on firms that directly collect
data from consumers and only tangentially influence the DB industry, which is a cornerstone of the data markets.

Our analysis highlights how an unregulated DB’s data sale can indeed lead to consumer harm, especially if the DB is allowed to
sell data through a system of auctions. Such harm mainly stems from the entry barrier effect of data: as firms must obtain data to
remain competitive, they reduce their profits, leading to lower entry and a more concentrated downstream market.

However, we also show that the DB’s data sale, when properly regulated, can be Pareto improving. First, the policymaker should
enforce that all downstream firms can buy data, as it hinders the DB’s ability to extract surplus from firms and, in turn, decrease
entry. Second, by imposing the sale of all available data and simultaneously banning the sale of the same data points to multiple
firms, the policymaker can limit the entry barrier effect and maximize downstream firm competition, restoring the same level of
consumer surplus that is achieved under the Salop (1979) model and increasing total welfare. In our analysis, we have specifically
focused on the competitive effects of data, abstracting from the privacy trade-offs related to consumer data collection and use and
from explicitly modeling the strategic interaction between competing DBs. Promising avenues for future research could thus be

19 Our analysis abstracts from the possible privacy costs faced by consumers when their data are used for price discrimination. Intuitively, such a privacy
cost would lead the policymaker to reduce the quantity of data sold in the downstream market. For a comprehensive survey on the economics of privacy, see
Acquisti et al. (2016).
13
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focusing on the interactions between the privacy and competitive effects of data, to achieve a more comprehensive picture of the
trade-offs stemming from the use of data in online markets, and on the effects that competition in the DB industry, together with
data complementarities, can have on downstream firm entry.
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ppendix

roof of Lemma 1. The proof proceeds in three steps. In Step 1, we show that if the DB sells data to all firms, he offers a partition set
= (𝑑𝐴, 𝑑𝐴,… , 𝑑𝐴), regardless of the selling mechanism. In Step 2, we show that under the sale to all firms, the DB sets 𝑑𝐴 = 𝑑𝐴 = 𝑑𝐴.

n Step 3, we find the general partition set offered by the DB under the three selling mechanisms if in equilibrium he wants to sell
o half of the entering firms.
Step 1. Suppose that the DB sells to all firms in equilibrium under TIOLI, so that 𝐏∗

𝐓𝐈𝐎𝐋𝐈 = (𝑑𝐴, 𝑑𝐴,… , 𝑑𝐴). As under TIOLI each
irm independently and simultaneously chooses whether to purchase their respective partition, the DB cannot change the offers he
akes to one firm based on another firm’s response. Then, we must have 𝐏𝐓𝐈𝐎𝐋𝐈 = 𝐏∗

𝐓𝐈𝐎𝐋𝐈.
Suppose instead that the DB sells data to all firms under one of the auction mechanisms, i.e., 𝐏∗

𝐀𝐑 = 𝐏∗
𝐀𝐔 = (𝑑𝐴, 𝑑𝐴,… , 𝑑𝐴). Then,

he DB sets up 𝑛 auctions, with the aim of concluding all of them. Note that the DB cannot change the partitions he puts up for
uction based on firms’ bids, as he can only choose the number of auctions he wants to fulfill. Thus, the only way to obtain 𝐏∗

s to offer 𝐏 = 𝐏∗, and then concluding all of the auctions. This strategy corresponds to the one for TIOLI, implying that the DB’s
quilibrium strategy and market outcomes under the auction mechanisms are the same than under the TIOLI sale.
Step 2. Suppose the DB sets 𝑑 ≠ 𝑑, 𝑑 > 0, 𝑑 > 0. We show that this strategy is always dominated by a strategy where the DB sets

̂= 𝑑 = 𝑑𝐴 > 0. To do so, we solve the model under the first strategy. The DB offers a partition set 𝐏 =
(

𝑑, 𝑑, 𝑑,… , 𝑑
)

. Without loss
f generality, we focus on a generic firm 𝑖, to which the DB offers a partition 𝑑. The indifferent consumers between firms 𝑖, 𝑖+1 and
−1 can be obtained by equating utility levels, and they are:

𝑥𝑖−1,𝑖 =
2𝑖 − 1
2𝑛

+
𝑝B
𝑖 − 𝑝B

𝑖−1
2𝑡

and 𝑥𝑖,𝑖+1 =
2𝑖 + 1
2𝑛

+
𝑝B
𝑖+1 − 𝑝B

𝑖

2𝑡
(A.1)

Firm 𝑖 offers a tailored price 𝑝T
𝑖 (𝑥) to the identified consumers, matching the competitor’s offer in utility level. It sets a tailored price

for each arc where it competes, resulting in

𝑝T
𝑖 (𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑝B
𝑖−1 + 2𝑡𝑥 − 𝑡

𝑛 (2𝑖 − 1) for 𝑥 ∈ [ 𝑖𝑛 − 𝑑𝑖
2 ,

𝑖
𝑛 ]

𝑝B
𝑖+1 − 2𝑡𝑥 + 𝑡

𝑛 (2𝑖 + 1) for 𝑥 ∈ [ 𝑖𝑛 ,
𝑖
𝑛 + 𝑑𝑖

2 ]
(A.2)

Firm 𝑖’s profits are thus given by:

𝜋W
𝑖 (𝐏) = ∫

𝑖
𝑛

𝑖
𝑛−

𝑑
2

𝑝T
𝑖 (𝑥) 𝑑𝑥 + ∫

𝑖
𝑛+

𝑑
2

𝑖
𝑛

𝑝T
𝑖 (𝑥) 𝑑𝑥 + 𝑝B

𝑖 (𝐏)
(

𝑥𝑖,𝑖+1 − 𝑥𝑖−1,𝑖 − 𝑑
)

− 𝐹 (A.3)

Using the expression of the indifferent consumers from (A.1) and of the tailored prices in (A.2), we can rewrite the profits of the
generic informed firm 𝑖 in (A.3) as

𝜋W
𝑖 (𝐏) = 𝑑

2𝑛

(

2𝑡 + npB
𝑖−1 (𝐏) + npB

𝑖+1 (𝐏) − 𝑛𝑡𝑑
)

+ 𝑝B
𝑖 (𝐏)

⎛

⎜

⎜

⎜

⎝

𝑛
(

𝑝B
𝑖+1 (𝐏) + 𝑝B

𝑖−1 (𝐏) − 2𝑝B
𝑖 (𝐏)

)

+ 2𝑡

2𝑛𝑡
− 𝑑

⎞

⎟

⎟

⎟

⎠

− 𝐹 (A.4)

Similarly, the profits of its rival 𝑖+1 firm are

𝜋W (𝐏) = 𝑑 (

2𝑡 + 𝑛𝑝B (𝐏) + 𝑛𝑝B (𝐏) − 𝑛𝑡𝑑
)
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+ 𝑝B
𝑖+1 (𝐏)

⎛

⎜

⎜

⎜

⎝

𝑛
(

𝑝B
𝑖 (𝐏) + 𝑝B

𝑖+2 (𝐏) − 2𝑝B
𝑖+1 (𝐏)

)

+ 2𝑡

2𝑛𝑡
− 𝑑

⎞

⎟

⎟

⎟

⎠

− 𝐹 (A.5)

y taking the first-order condition of (A.4) with respect to 𝑝B
𝑖 (𝐏) and of (A.5) with respect to 𝑝B

𝑖+1(𝐏), we obtain firms’ reaction
function on basic prices

𝑝B
𝑖 (𝐏) =

𝑡
2𝑛

− 𝑡𝑑
2

+
𝑝B
𝑖+1 (𝐏) + 𝑝B

𝑖−1 (𝐏)
4

and

𝑝B
𝑖+1 (𝐏) =

𝑡
2𝑛

− 𝑡𝑑
2

+
𝑝B
𝑖 (𝐏) + 𝑝B

𝑖+2 (𝐏)
4

(A.6)

The system of Eqs. (A.6) for all𝑖 = 0,… , 𝑛−1 allows us to obtain the equilibrium basic prices and, by replacing them in (A.4), firm
’s profits. In matrix form we have 𝐀 ∗ 𝐩 = 𝐛, where 𝐩 is the price vector, and 𝐛 is the known terms vector. Assuming that the DB
ffers 𝑑 to even indexed firms, we obtain

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4 −1 … 0 0 0 … −1
−1 4 … 0 0 0 … 0
… … … … … … … …
0 0 … 4 −1 0 … 0
0 0 … −1 4 −1 … 0
0 0 … 0 −1 4 … 0
… … … … … … … …
−1 0 … 0 0 0 … 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∗

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑝B
0 (𝐏)
𝑝B
1 (𝐏)
…

𝑝B
𝑖−1 (𝐏)
𝑝B
𝑖 (𝐏)

𝑝B
𝑖+1 (𝐏)
…

𝑝B
𝑛−1 (𝐏)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2𝑡
𝑛 − 2𝑡𝑑
2𝑡
𝑛 − 2𝑡𝑑

…
2𝑡
𝑛 − 2𝑡𝑑
2𝑡
𝑛 − 2𝑡𝑑
2𝑡
𝑛 − 2𝑡𝑑
…

2𝑡
𝑛 − 2𝑡𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

atrix 𝐀 is circulant, tridiagonal and symmetric. The inverse of this type of matrix has been computed by Searle (1979). We obtain

𝐴−1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎0 𝑎1 … 𝑎𝑛−1
𝑎𝑛−1 𝑎0 … 𝑎𝑛−2
… … … …
𝑎1 𝑎2 … 𝑎0

⎤

⎥

⎥

⎥

⎥

⎦

here, in our specific case, 𝑎𝑗 = − 1
2
√

3
∗

( (

2+
√

3
)𝑗

1−
(

2+
√

3
)𝑛 −

(

2−
√

3
)𝑗

1−
(

2−
√

3
)𝑛

)

. A property of this type of matrix is that 𝑎𝑗 = 𝑎𝑛−𝑗 ∀𝑗 ≠ 0, 𝑛2 if 𝑛

s even. Moreover, in our particular case, ∑𝑛−1
𝑗=0 𝑎𝑗 =

1
2 . We can now write 𝐩 = 𝐀−𝟏 ∗ 𝐛. We obtain

⎡

⎢

⎢

⎢

⎢

⎣

𝑝0
𝑝1
…
𝑝𝑛−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑎0 𝑎1 … 𝑎𝑛−1
𝑎𝑛−1 𝑎0 … 𝑎𝑛−2
… … … …
𝑎1 𝑎2 … 𝑎0

⎤

⎥

⎥

⎥

⎥

⎦

∗

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2𝑡
𝑛 − 2𝑡𝑑
2𝑡
𝑛 − 2𝑡𝑑
…

2𝑡
𝑛 − 2𝑡𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Thus, we can write

𝑝B
𝑖 =

(

2𝑡
𝑛

∗
𝑛−1
∑

𝑗=0
𝑎𝑗

)

− 2𝑡

𝑛−2
2
∑

𝑗=0
𝑑𝑎2𝑗 − 2𝑡

𝑛−2
2
∑

𝑗=0
𝑑𝑎2𝑗+1

Since ∑𝑛−1
𝑗=0 𝑎𝑗 =

1
2 , we can simplify and obtain

𝑝B
𝑖 = 𝑡

𝑛
− 2𝑡

𝑛−2
2
∑

𝑗=0
𝑑𝑎2𝑗 − 2𝑡

𝑛−2
2
∑

𝑗=0
𝑑𝑎2𝑗+1

ue to the symmetry properties of the coefficients 𝑎𝑗 , we also obtain a similar form for 𝑝B
𝑖−1 and 𝑝B

𝑖−1:

𝑝B
𝑖−1 = 𝑝B

𝑖+1 =
𝑡
𝑛
− 2𝑡

𝑛−2
2
∑

𝑗=0
𝑑𝑎2𝑗 − 2𝑡

𝑛−2
2
∑

𝑗=0
𝑑𝑎2𝑗+1

e find that in our case ∑

𝑛−2
2

𝑗=0 𝑎2𝑗 =
1
3 and ∑

𝑛−2
2

𝑗=0 𝑎2𝑗+1 =
1
6 . Thus, we can rewrite basic prices as

𝑝B = 𝑡 − 2 𝑡𝑑 − 1 𝑡𝑑 and 𝑝B = 𝑝B = 𝑡 − 2 𝑡𝑑 − 1 𝑡𝑑 (A.7)
15
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By replacing the basic prices from (A.7) in firms’ profits functions (A.4) and (A.5), we obtain

𝜋W
𝑖 (𝐏) = 𝑡

9𝑛2
(

9 − 2𝑛
(

𝑛𝑑𝑑 + 𝑑
( 7
4
𝑛𝑑 − 3

)

− 𝑛𝑑2 + 3𝑑
))

− 𝐹 (A.8)

𝜋W
𝑖−1 (𝐏) = 𝜋W

𝑖 (𝐏) = 𝑡
9𝑛2

(

9 − 2𝑛
(

𝑛𝑑𝑑 + 𝑑
( 7
4
𝑛𝑑 − 3

)

− 𝑛𝑑2 + 3𝑑
))

− 𝐹 (A.9)

We now compute firms’ profits when they do not obtain their partition. Suppose that firm 𝑖 does not obtain its partition: as such,
at the equilibrium 𝑑𝑖 = 0. By imposing it in (A.4), we obtain that firm 𝑖’s profits are

𝜋L
𝑖 (𝐏) = 𝑝B

𝑖 (𝐏)
⎛

⎜

⎜

⎜

⎝

𝑛
(

𝑝B
𝑖+1 (𝐏) + 𝑝B

𝑖−1 (𝐏) − 2𝑝B
𝑖 (𝐏)

)

+ 2𝑡

2𝑛𝑡

⎞

⎟

⎟

⎟

⎠

− 𝐹 (A.10)

We can again compute firms’ basic prices by solving the n-equations system. The only difference from the already analyzed subgame
is that firm 𝑖’s known term has 𝑑𝑖 = 0 instead of 𝑑𝑖 = 𝑑. As such, we can compute the new basic prices by simply subtracting 𝑑𝑎𝑖−𝑗
from the basic prices 𝑝B

𝑗 computed in (A.7). Thus, we obtain

𝑝B
𝑖 = 𝑡

𝑛
− 2𝑡𝑑

(1
3
− 𝑎0

)

− 1
3
𝑡𝑑 and 𝑝B

𝑖−1 = 𝑝B
𝑖+1 =

𝑡
𝑛
− 2

3
𝑡𝑑 − 2𝑡𝑑

( 1
6
− 𝑎1

)

(A.11)

By replacing the basic prices of (A.11) in (A.10), we obtain

𝜋L
𝑖 (𝐏) =

𝑡
9𝑛2

(

6𝑎0𝑛𝑑 − 2𝑛𝑑 − 𝑛𝑑 + 3
)(

−6𝑎0𝑛𝑑 + 6𝑎1𝑛𝑑 + 𝑛𝑑 − 𝑛𝑑 + 3
)

− 𝐹 (A.12)

Following the same procedure, we obtain firm 𝑖+1’s profits in the subgame where it does not obtain data:

𝜋L
𝑖+1 (𝐏) =

𝑡
9𝑛2

(

6𝑎0𝑛𝑑 − 2𝑛𝑑 − 𝑛𝑑 + 3
)(

−6𝑎0𝑛𝑑 + 6𝑎1𝑛𝑑 + 𝑛𝑑 − 𝑛𝑑 + 3
)

− 𝐹 (A.13)

Finally, we compute DB’s profits. We can write them as

𝜋DB = 𝑛
2
(

𝜋W
𝑖 (𝐏) − 𝜋L

𝑖 (𝐏)
)

+ 𝑛
2
(

𝜋W
𝑖+1 (𝐏) − 𝜋L

𝑖+1 (𝐏)
)

(A.14)

Replacing firms’ profits from (A.12) and (A.13) and simplifying, we obtain

𝜋DB = 𝑡
3

(

6𝑛𝑎20
(

𝑑2 + 𝑑2
)

− 6𝑛𝑎0𝑎1
(

𝑑2 + 𝑑2
)

− 3𝑛𝑎0
(

𝑑2 + 𝑑2
)

+2𝑛𝑎1
(

𝑑2 + 𝑑2 + 𝑑𝑑
)

− 3𝑎1
(

𝑑 + 𝑑
)

− 𝑛
4

(

𝑑2 + 𝑑2
)

− 𝑛𝑑𝑑 + 3
2
𝑑 + 3

2
𝑑
)

(A.15)

By computing FOCs of (A.15) for both 𝑑 and 𝑑, we find that both partitions have the same effect on DB’s profits; to maximize them,
he DB would set 𝑑 = 𝑑. However, since 𝑑 ≠ 𝑑 by hypothesis, we find that setting 𝑑 ≠ 𝑑 is suboptimal for the DB.
Step 3. As in Step 1, the only strategy for the DB to sell 𝐏∗

𝐓𝐈𝐎𝐋𝐈 in equilibrium is to set 𝐏𝐓𝐈𝐎𝐋𝐈 = 𝐏∗
𝐓𝐈𝐎𝐋𝐈. Thus, the DB sets

𝐓𝐈𝐎𝐋𝐈
𝐇 = (𝑑𝑇 𝐼𝑂𝐿𝐼

𝐻 , 0,… , 𝑑𝑇 𝐼𝑂𝐿𝐼
𝐻 , 0). However, we prove that such a strategy is suboptimal for the DB. Abrardi et al. (2024) have

lready shown that in the same setting, except that the data sale occurs after firm entry, in equilibrium the DB opts for the sale to
ll firms under TIOLI. If the data sale and entry occur simultaneously, like in our model, the DB takes into account how his data
ale affects his profits, and maximizes them accordingly. Moreover, Abrardi et al. (2024) show that (i) the DB’s profits are inversely
roportional to the number of entering firms, (ii) the number of entering firms is directly proportional to their profits after paying
or data, and (iii) the firms’ profits after paying for data are decreasing with the total quantity of data sold in the downstream
arket. Then, to maximize his profits, the DB has an incentive to reduce firm entry, which he can do by selling more data in the
ownstream market. Then, we conclude that the timing of our model further exacerbates the advantages of selling to all firms than
o half of the firms under TIOLI.

With regards to AR, in equilibrium, the DB offers a partition set 𝐏∗
AR = (𝑑𝐻 , 0, 𝑑𝐻 , 0,… , 0). However, the DB can still set up an

uction for firms who will not obtain data in equilibrium, and then he does not fulfill them. We show that the DB offers the whole
ataset in these auctions, and thus the offered partition set is 𝐏AR = (𝑑𝐻 , 1, 𝑑𝐻 , 1,… , 1).

The DB’s profits are

𝜋DB(𝐏AR, 𝐉) =
∑

𝑖∈𝐉

(

𝜋W
𝑖 (𝐏AR) − 𝜋L

𝑖 (𝐏AR)
)

. (A.16)

Consider the set of data partitions {𝑑𝑗}𝑗∉𝐉. Since these partitions are offered in the auction, but are not actually sold in
quilibrium, then 𝜋W

𝑖 (𝐏AR) = 𝜋W
𝑖 (𝐏∗

AR) for all 𝑖 ∈ 𝐉, i.e., 𝜋W
𝑖 (𝐏AR) does not depend on {𝑑𝑗}𝑗∉𝐉. Hence, the DB chooses {𝑑𝑗}𝑗∉𝐉 so

s to minimize 𝜋L
𝑖 (𝐏AR), given that doing so does not affect 𝜋W

𝑖 (𝐏AR).
Firm 𝑖’s losing profits are

𝜋L
𝑖
(

𝐏AR
)

= 𝑝B
𝑖
(

𝐏AR
)

⎛

⎜

⎜

⎜

𝑛
(

𝑝B
𝑖+1

(

𝐏AR
)

+ 𝑝B
𝑖−1

(

𝐏AR
)

− 2𝑝B
𝑖
(

𝐏AR
)

)

+ 2𝑡

2𝑛𝑡

⎞

⎟

⎟

⎟

− 𝐹 . (A.17)
16
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Eq. (A.17), for any given 𝑝B
𝑖 , is minimized when both 𝑝B

𝑖−1(𝐏AR) and 𝑝B
𝑖+1(𝐏AR) are minimized, that is, due to the non-negative

onstraint on prices,

𝑝B
𝑖−1(𝐏AR) = 𝑝B

𝑖+1(𝐏AR) = 0.

This can be achieved by setting 𝑑𝑖−1 = 𝑑𝑖+1 = 1. In fact, focus on firm 𝑖 + 1. Then, its profit can be expressed as

𝜋W
𝑖+1(𝐏AR) = ∫

�̂�𝑖+1,𝑖+2

�̂�𝑖,𝑖+1
𝑝T
𝑖+1(𝑥) 𝑑𝑥 − 𝐹 . (A.18)

Firm 𝑖+1 chooses 𝑝B
𝑖+1(𝐏AR) so as to maximize (A.18). To this aim, note that function (A.18) is strictly decreasing in 𝑝B

𝑖+1(𝐏AR). In
act, 𝑝B

𝑖+1(𝐏AR) affects �̂�𝑖,𝑖+1 and �̂�𝑖+1,𝑖+2 but not 𝑝T
𝑖+1(𝐏AR) in (A.18). In particular, a decrease of 𝑝B

𝑖+1(𝐏AR) expands firm 𝑖+1’s market
hare by moving further away the two indifferent consumers. Given that function (A.18) is strictly decreasing in 𝑝B

𝑖+1(𝐏AR), then he
ets 𝑝B

𝑖+1(𝐏AR) = 0. The same argument holds for 𝑖 − 1 by symmetry.
With regard to AU, the DB can again offer a partition set 𝐏AU which is different from 𝐏∗

AU, as he can decide to not fulfill some
f the auctions he sets up. However, without reserve prices, firms can win their auctions by beating their rivals’ offers. Hereafter,
e prove that the DB offers a partition set 𝐏AU = (𝑑𝐻 , 𝑑𝐻 ,… , 𝑑𝐻 ).

The DB can offer a generic partition set 𝐏AU = (𝑑𝐻 , 𝑑1, 𝑑𝐻 , 𝑑3,… , 𝑑𝐻 , 𝑑𝑛−1). If firm 0 deviates, the DB would want to fulfill the
uctions where he offers 𝑑𝑛−1 and 𝑑1. As 𝑑𝑛−1 and 𝑑1 have the same effect on firm 0’s profits, the DB would set 𝑑𝑛−1 = 𝑑1. The same

holds for any deviating firm, and thus the DB sets 𝑑1 = 𝑑3 = ⋯ = 𝑑𝑛−1 = 𝑑. If no even-indexed firm deviates, in equilibrium the
DB fulfills the auctions where he offered 𝑑𝐻 . If one even-indexed firm deviates, the DB can instead fulfill all the auctions where he
offered 𝑑. Without loss of generality, we focus on firms 0 and 1. Firms’ willingness to pay for data are equal to

𝜋W
0
(

𝑑𝐻 , 0, 𝑑𝐻 , 0,… , 𝑑𝐻 , 0
)

− 𝜋L
0 (0, 𝑑, 0, 𝑑,… , 0, 𝑑)

and
𝜋W
1 (0, 𝑑, 0, 𝑑,… , 0, 𝑑) − 𝜋L

1 (𝑑𝐻 , 0, 𝑑𝐻 , 0,… , 𝑑𝐻 , 0).

Suppose that 𝑑 > 𝑑𝐻 (the opposite case is solved similarly): then it is straightforward to show that

𝜋W
1 (0, 𝑑, 0, 𝑑,… , 0, 𝑑) − 𝜋L

1 (𝑑𝐻 , 0, 𝑑𝐻 , 0,… , 𝑑𝐻 , )0 >

𝜋W
0
(

𝑑𝐻 , 0, 𝑑𝐻 , 0,… , 𝑑𝐻 , 0
)

− 𝜋L
0 (0, 𝑑, 0, 𝑑,… , 0, 𝑑),

that is, firm 1’s willingness to pay is higher than firm 0’s one. Because there are no reserve prices, firm 1 can win its auction by
offering firm 0’s willingness to pay plus 𝜀, where 𝜀 is an arbitrary small number. As such, the DB chooses 𝑑 as low as possible to
maximize firm 0’s willingness to pay and, in turn, firm 1’s: that is, he chooses 𝑑 = 𝑑𝐻 .

Proof of Lemma 2. We start our analysis from the sale to all firms. Suppose that the indifferent consumers are not identified. A
generic firm 𝑖’s profits are

𝜋W
𝑖 (𝐏𝐀) = ∫

𝑖
𝑛+

𝑑𝐴
2

𝑖
𝑛−

𝑑𝐴
2

𝑝T
𝑖 (𝑥) 𝑑𝑥 + 𝑝B

𝑖
(

𝑥𝑖,𝑖+1 − 𝑥𝑖−1,𝑖 − 𝑑𝐴
)

− 𝐹 , (A.19)

where

𝑥𝑖−1,𝑖 =
2𝑖 − 1
2𝑛

+
𝑝B
𝑖 − 𝑝B

𝑖−1
2𝑡

and 𝑥𝑖,𝑖+1 =
2𝑖 + 1
2𝑛

+
𝑝B
𝑖+1 − 𝑝B

𝑖

2𝑡
(A.20)

Are the indifferent consumer locations, and

𝑝T
𝑖 (𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑝B
𝑖−1 + 2𝑡𝑥 − 𝑡

𝑛 (2𝑖 − 1) for 𝑥 ∈ [ 𝑖𝑛 − 𝑑𝑖
2 ,

𝑖
𝑛 ]

𝑝B
𝑖+1 − 2𝑡𝑥 + 𝑡

𝑛 (2𝑖 + 1) for 𝑥 ∈ [ 𝑖𝑛 ,
𝑖
𝑛 + 𝑑𝑖

2 ]
(A.21)

Are the tailored prices set by firm 𝑖 to match the direct rivals’ basic prices, adjusted for the transportation cost.
By computing FOC of (A.19) with respect to 𝑝𝐵𝑖 , we find

4𝑝B
𝑖 − 𝑝B

𝑖−1 − 𝑝B
𝑖+1 =

2𝑡
𝑛

− 2𝑡𝑑𝐴,

𝑖 ∈ {0,… , 𝑛 − 1}. The firms’ equilibrium basic prices are obtained by solving the system composed by the above 𝑛 equations. The
system in matricial form is expressed by 𝐀 ∗ 𝐩 = 𝐛, where 𝐩 is the vector containing basic prices, and 𝐛 is the vector containing the
known terms:
17
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w

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4 −1 … 0 0 0 … −1
−1 4 … 0 0 0 … 0
… … … … … … … …
0 0 … 4 −1 0 … 0
0 0 … −1 4 −1 … 0
0 0 … 0 −1 4 … 0
… … … … … … … …
−1 0 … 0 0 0 … 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∗

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑝B
0
𝑝B
1
…
𝑝B
𝑖−1
𝑝B
𝑖

𝑝B
𝑖+1
…
𝑝B
𝑛−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2𝑡
𝑛 − 2𝑡𝑑𝐴
2𝑡
𝑛 − 2𝑡𝑑𝐴

…
2𝑡
𝑛 − 2𝑡𝑑𝐴
2𝑡
𝑛 − 2𝑡𝑑𝐴
2𝑡
𝑛 − 2𝑡𝑑𝐴

…
2𝑡
𝑛 − 2𝑡𝑑𝑛−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Matrix 𝐀 is circulant, tridiagonal and symmetric. Given a general circulant tridiagonal matrix of form 𝐌 = (𝑎, 𝑏, 0, 0,… , 0, 𝑐),
where 𝑎, 𝑏, 𝑐 express the non-null elements of the first line, the general expression of its inverse is provided by Searle (1979), and it
is given by

𝐀−1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎0 𝑎1 … 𝑎𝑛−1
𝑎𝑛−1 𝑎0 … 𝑎𝑛−2
… … … …
𝑎1 𝑎2 … 𝑎0

⎤

⎥

⎥

⎥

⎥

⎦

here 𝑎𝑗 = 𝑧1𝑧2
𝑏(𝑧1−𝑧2)

(

𝑧𝑗1
1−𝑧𝑛1

−
𝑧𝑗2

1−𝑧𝑛2

)

and 𝑧1, 𝑧2 =
√

−𝑎±(𝑎2−4𝑏𝑐)
2𝑐 . In our case, as 𝑎 = 4, 𝑏 = −1 and 𝑐 = −1, we obtain that

𝑎𝑗 = − 1
2
√

3

( (

2+
√

3
)𝑗

1−
(

2+
√

3
)𝑛 −

(

2−
√

3
)𝑗

1−
(

2−
√

3
)𝑛

)

.

Using 𝐀−1, we obtain the equilibrium basic prices through 𝐩 = 𝐀−𝟏 ∗ 𝐛:

⎡

⎢

⎢

⎢

⎢

⎣

𝑝B∗
0

𝑝B∗
1
…
𝑝B∗
𝑛−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑎0 𝑎1 … 𝑎𝑛−1
𝑎𝑛−1 𝑎0 … 𝑎𝑛−2
… … … …
𝑎1 𝑎2 … 𝑎0

⎤

⎥

⎥

⎥

⎥

⎦

∗

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2𝑡
𝑛 − 2𝑡𝑑𝐴
2𝑡
𝑛 − 2𝑡𝑑𝐴

…
2𝑡
𝑛 − 2𝑡𝑑𝐴

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(A.22)

Thus, equilibrium basic prices are

𝑝B∗
𝑖 =

(

2𝑡
𝑛

∗
𝑛−1
∑

𝑗=0
𝑎𝑗

)

− 2𝑡
𝑛−1
∑

𝑗=0
𝑑𝐴𝑎𝑗 . (A.23)

A useful property of the matrix 𝐀−𝟏 in our framework is that ∑𝑛−1
𝑗=0 𝑎𝑗 =

1
2 , so that (A.23) can be simplified as

𝑝B∗
𝑖 (𝐏𝐀) =

𝑡
𝑛
− 𝑡𝑑𝐴 (A.24)

As all basic prices are equal, indifferent consumers are located in the middle between firms’ locations, i.e., �̂�𝑖,𝑖+1 = 2𝑖+1
2𝑛 . By

substituting the equilibrium prices in (A.19), we obtain firms’ profits under non-overlapping partitions:

𝜋𝑊 ∗
𝑖 (𝐏𝐀) =

𝑡
𝑛2

− 𝑡𝑑2

2
− 𝐹 . (A.25)

Firms identify all consumers they serve when 𝑖
𝑛 + 𝑑

2 ≥ �̂�𝑖,𝑖+1, which we can rewrite as 𝑑 ≥ 1
𝑛 . In this case, firm 𝑖’s profits are

𝜋W
𝑖 (𝐏𝐀) = ∫

𝑥𝑖,𝑖+1

𝑥𝑖−1,𝑖
𝑝T
𝑖 (𝑥) 𝑑𝑥 − 𝐹 . (A.26)

Each firm’s best strategy is then to minimize 𝑝𝐵𝑖 to try and expand its market share. Then, all firms set 𝑝𝐵∗𝑖 = 0, and we obtain

𝜋𝑊 ∗
𝑖 (𝐏𝐀) =

𝑡
2𝑛2

− 𝐹 . (A.27)

Let us now consider the sale to half of the firms under AR and AU. As in equilibrium the DB offers the same partition set, where
half of the firms are informed, this step of the analysis is the same for both mechanisms. Without loss of generality, we focus on
the AR case, but the same applies for the AU case.

In equilibrium, the DB sells a partition set 𝐏∗
AR = (𝑑, 0, 𝑑, 0,… , 0). Suppose that all firms who can obtain a partition of size 𝑑AR

centered on their location win their respective auctions, and that firm 𝑖 is one of those. By following the same procedure as in Step
3, equilibrium basic prices are

𝑝B∗
i

(

𝐏∗
AR

)

= 𝑡
𝑛
− 2𝑡𝑑AR

⎛

⎜

⎜

𝑎0 + 𝑎 𝑛
2
+ 2

𝑛
4−1
∑

𝑎2𝑗
⎞

⎟

⎟

= 𝑡
𝑛
− 2

3
𝑡𝑑AR (A.28)
18

⎝

𝑗=1
⎠
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P
f

f

and

𝑝B∗
𝑖+1

(

𝐏∗
AR

)

= 𝑝B∗
𝑖−1

(

𝐏∗
AR

)

= 𝑡
𝑛
− 1

3
𝑡𝑑AR. (A.29)

Substituting (A.28) and (A.29) in (A.20), we obtain the indifferent consumers’ locations:

𝑥𝑖−1,𝑖 =
2𝑖 − 1
2𝑛

−
𝑑AR
6

and 𝑥𝑖,𝑖+1 =
2𝑖 + 1
2𝑛

+
𝑑AR
6

. (A.30)

We can compute firm 𝑖’s profits by substituting (A.28), (A.29) and (A.30) in (A.19), obtaining

𝜋W∗
𝑖

(

𝐏∗
AR

)

= 𝑡
𝑛2

+
2𝑑AR𝑡
3𝑛

−
7𝑡𝑑2AR
18

− 𝐹 . (A.31)

Similarly, firm 𝑖+1’s profits are

𝜋L∗
𝑖+1

(

𝐏∗
AR

)

= 𝑡
𝑛2

−
2𝑑AR𝑡
3𝑛

+
𝑡𝑑2AR
9

− 𝐹 . (A.32)

We now focus on the case where winning firms only serve identified consumers. By comparing 𝑖
𝑛 + 𝑑AR

2 and �̂�𝑖,𝑖+1, we find that
firms only serve identified consumers when

𝑑H ≥ 3
2𝑛

. (A.33)

When (A.33) holds, firm 𝑖 sets its basic price equal to 0 and its profits are given by (A.18). We find 𝑝B∗
𝑖+1

(

𝐏∗
AR

)

by solving the FOCs of

(A.17) with 𝑝B*
𝑖+2

(

𝐏∗
AR

)

= 𝑝B
𝑖

(

𝐏∗
AR

)

= 0, obtaining 𝑝B∗
𝑖+1

(

𝐏∗
AR

)

= 𝑡
2𝑛 . The same logic applies to firm 𝑖−1 by symmetry. By substituting

he basic prices in the profits functions, we obtain

𝜋W∗
𝑖

(

𝐏∗
AR

)

= 9𝑡
8𝑛2

− 𝐹 and 𝜋L∗
𝑖+1

(

𝐏∗
AR

)

= 𝑡
4𝑛2

− 𝐹 .

roof of Lemma 3. The proof proceeds in two steps. First, we focus on firms’ losing profits under the sale to all firms. Second, we
ocus on firms’ losing profits under AR and AU.
Step 1. We now focus on the subgame in which firm 𝑖 does not buy data. Its profits are then

𝜋L
𝑖 (𝐏𝐀) = 𝑝B

𝑖
(

𝑥𝑖,𝑖+1 − 𝑥𝑖−1,𝑖
)

− 𝐹 , (A.34)

while all other firms’ profits are as in (A.19). We have to consider three separate cases: i) all informed firms serve both identified
and unidentified consumers, ii) all informed firms except firm 𝑖’s direct rivals only serve identified consumers and iii) all informed
firms only serve identified consumers.

(i) When firm 𝑖 does not buy data, it becomes the only uninformed firm in the market, and its profits are

𝜋L
𝑖 (𝐏𝐀) = 𝑝B

𝑖
(

𝑥𝑖,𝑖+1 − 𝑥𝑖−1,𝑖
)

− 𝐹 . (A.35)

To find equilibrium prices, we again solve the system of FOCs. The only difference with respect to the previous case is that the
𝑖th component of vector 𝐛 becomes 2𝑡

𝑛 . We thus obtain

𝑝B L∗
𝑖

(

𝐏𝐀
)

= 𝑡
𝑛
− 𝑡𝑑𝐴 + 2𝑡𝑑𝐴𝑎0 and 𝑝B L∗

𝑖−𝑗
(

𝐏𝐀
)

= 𝑝B L∗
𝑖+𝑗

(

𝐏𝐀
)

= 𝑡
𝑛
− 𝑡𝑑𝐴 + 2𝑡𝑑𝐴𝑎𝑗 . (A.36)

By substituting (A.36) in (A.35), we find

𝜋L∗
𝑖

(

𝐏𝐀
)

=
( 𝑡
𝑛
− 𝑡𝑑𝐴 + 2𝑡𝑑𝐴𝑎0

)(

2𝑑𝐴
(

𝑎1 − 𝑎0
)

+ 1
𝑛

)

− 𝐹 . (A.37)

From (A.36), we know that informed firms set different equilibrium basic prices, depending on their distance from firm 𝑖. In
particular, basic prices are higher, the closer a firm is to firm 𝑖. Let us focus on the indifferent consumer between firms 𝑖 − 2 and
𝑖 − 1. Using (A.36), we obtain

𝑥𝑖−2,𝑖−1 =
2𝑖 − 3
2𝑛

+ 𝑑(𝑎1 − 𝑎2).

Firm 𝑖−2 can identify consumers up to 𝑖−2
𝑛 + 𝑑

2 . Then, if

𝑑 ≥ 𝑑1 ≡
1

2𝑛( 12 + 𝑎1 − 𝑎2)
,

firm 𝑖−2 only serves identified consumers and sets its basic price equal to 0. As (𝑎𝑗 −𝑎𝑗+1) decreases with 𝑗, all other informed firms
except 𝑖+1 and 𝑖−1 also set their basic prices equal to 0. Thus, this case only holds as long as 𝑑 < 𝑑1.

(ii) Without loss of generality, we focus on firms 𝑖−1 and 𝑖. If 𝑑 ≥ 𝑑1, firm 𝑖−1 identifies all consumers on the arch it shares with
irm 𝑖−2, whereas it still serves some unidentified consumers on the arch it shares with firm 𝑖. We can write firm 𝑖 − 1’s profits as

𝜋W
𝑖−1

(

𝐏𝐀
)

= ∫

𝑖−1
𝑛

𝑝T
𝑖−1,𝑖−2(𝑥) 𝑑𝑥 + ∫

𝑖−1
𝑛 + 𝑑𝐴

2

𝑖−1
𝑝T
𝑖−1,𝑖(𝑥) 𝑑𝑥
19

𝑥𝑖−2,𝑖−1 𝑛
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w
D
𝑑
p

+ 𝑝B
𝑖−1

(

𝐏𝐀
)

(

𝑥𝑖−1,𝑖 −
𝑖 − 1
𝑛

−
𝑑𝐴
2

)

− 𝐹 . (A.38)

Firm 𝑖’s profits are given by (A.35). The FOCs of (A.38) and (A.35) give us the equilibrium basic prices:

𝑝B∗
𝑖−1

(

𝐏𝐀
)

=
𝑡
(

3 − 2𝑛𝑑𝐴
)

5𝑛
and 𝑝B L∗

𝑖
(

𝐏𝐀
)

=
𝑡
(

4 − 𝑛𝑑𝐴
)

5𝑛
. (A.39)

Substituting (A.39) into (A.35), we obtain

𝜋L∗
𝑖

(

𝐏𝐀
)

=
𝑡(𝑛𝑑𝐴 − 4)2

25𝑛2
− 𝐹 . (A.40)

From (A.39), informed firms set positive basic prices as long as 𝑑𝐴 < 3
2𝑛 . After this threshold, firms 𝑖 − 1 and 𝑖 + 1 identify all the

consumers they serve, and thus set their equilibrium basic prices equal to zero.
(iii) Suppose 𝑑𝐴 ≥ 3

2𝑛 . Then, firms 𝑖 + 1 and 𝑖 − 1 identify all the consumers they serve, and set their basic prices equal to zero.
n turn, firm 𝑖’s profits are given by (A.35), and only depend on its basic price. The FOC of (A.35) with respect to 𝑝𝐵𝑖 and imposing
𝐵
𝑖+1 = 𝑝𝐵𝑖−1 = 0 leads to

𝑝B∗
𝑖

(

𝐏𝐀
)

= 𝑡
2𝑛

and 𝜋L∗
𝑖

(

𝐏𝐀
)

= 𝑡
4𝑛2

− 𝐹 . (A.41)

Step 2.
Suppose that firm 𝑖 loses its auction under AR. As the DB can fulfill up to 𝑘 = 𝑛

2 + 1 auctions, he can now fulfill both firm 𝑖 + 1
and 𝑖 − 1’s auctions, that thus obtain the whole dataset. This subgame is the same as the case where firm 𝑖 wins the auction and
𝑑AR ≥ 3

2𝑛 . As such, firm 𝑖’s basic price and profits are equal to firm 𝑖 + 1’s ones in the previous subgame, leading to

𝑝B∗
𝑖

(

𝐏AR
)

= 𝑡
2𝑛

and 𝜋L∗
𝑖

(

𝐏AR
)

= 𝑡
4𝑛2

− 𝐹 .

With regard to AU, when firm 𝑖 loses its auction, its basic price and profits are the same as firm 𝑖+1’s in the auction with reserve
prices when firm 𝑖 wins its auction (see (A.32)).

Proof of Proposition 1. The proof proceeds in three steps. In Step 1, we solve the game when the DB sells data to all entering
firms, which corresponds to the equilibrium under TIOLI. In Step 2, we assess the DB’s strategy under auction with reserve prices
(AR). In Step 3, we assess the DB’s strategy under auction without reserve prices (AU).

Step 1. The DB solves the following maximization problem

max
𝑑𝐴

𝜋𝐷𝐵(𝐏𝐀) = 𝑛
(

𝜋W∗
𝑖

(

𝐏𝐀
)

− 𝜋L∗
𝑖

(

𝐏𝐀
))

(A.42)

𝑠.𝑡. 𝜋𝐿∗
𝑖 (𝐏𝐀) = 0.

By combining the expressions for 𝜋W∗
𝑖 (𝐏𝐀) (in (A.28) and (A.29)) and 𝜋L∗

𝑖 (𝐏𝐀) (in (A.37), (A.40) and (A.41)) above, we obtain
the function of DB’s profits:

max
𝑑𝐴

𝜋DB =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑛
(

𝑡
𝑛2

−
𝑡𝑑2𝐴
2 −

(

𝑡
𝑛 − 𝑡𝑑𝐴 + 2𝑡𝑑𝐴𝑎0

)(

2𝑑𝐴
(

𝑎1 − 𝑎0
)

+ 1
𝑛

)

)

for 𝑑𝐴 < 𝑑1

𝑛
(

𝑡
𝑛2

−
𝑡𝑑2𝐴
2 − 𝑡(𝑛𝑑𝐴−4)2

25𝑛2

)

for 𝑑1 ≤ 𝑑𝐴 < 1
𝑛

𝑛
(

𝑡
2𝑛2

− 𝑡(𝑛𝑑𝐴−4)2
25𝑛2

)

for 1
𝑛 ≤ 𝑑𝐴 < 3

2𝑛

𝑛
(

𝑡
4𝑛2

)

for 𝑑𝐴 ≥ 3
2𝑛 ,

(A.43)

which is continuous in 𝑑𝐴.
First, we show that the strategies where the DB sets 𝑑1 ≤ 𝑑𝐴 < 3

2𝑛 are always dominated by the strategy where the DB sets
𝑑𝐴 ≥ 3

2𝑛 . DB’s profits are given by firms’ willingness to pay times the number of entering firms. The DB chooses his strategy by
nticipating how 𝑑𝐴 influences firm entry and, in turn, his profits. From the FOC of DB’s profits, they are decreasing in 𝑛. Firm

entry is determined by firms’ profits when losing, and is minimized for 𝑑𝐴 ≥ 3
2𝑛 . Thus, strategies where 𝑑1 ≤ 𝑑𝐴 < 3

2𝑛 can only be
dominant if they allow to extract more surplus from individual firms. Suppose that 𝑛 is given. By computing the FOC of the second
part with respect to 𝑑𝐴, we find that it is monotonically decreasing in 𝑑𝐴 over its domain. By computing the FOC of the third part

ith respect to 𝑑𝐴, we find that it is monotonically increasing in 𝑑𝐴 over its domain. Thus, as the DB’s profits are continuous, the
B profits in the fourth part are constant and higher than those in the third one. Finally, by comparing DB’s profits for 𝑑𝐴 = 𝑑1 and
𝐴 ≥ 3

2𝑛 , we find that DB’s profits are maximized for 𝑑𝐴 ≥ 3
2𝑛 if 𝑛 is given. As the reduction in entry further improves this strategy’s

rofitability, we conclude that in equilibrium the DB either sells 𝑑𝐴 < 𝑑1 or 𝑑𝐴 ≥ 3
2𝑛 .

Second, we show that the strategy where the DB sets 𝑑𝐴 ≥ 3
2𝑛 always dominates the one where he sets 𝑑𝐴 ≤ 𝑑1. We refer to the

DB setting 𝑑𝐴 ≥ 3
2𝑛 as 𝑑high, whereas we refer to the DB setting 𝑑𝐴 < 𝑑1 as 𝑑low. When the DB sets 𝑑𝐴 ≥ 3

2𝑛 , he maximizes

𝜋DB(𝐏∗ 𝑑high ) = 𝑡 𝑠.𝑡. 𝑡 − 𝐹 ≥ 0. (A.44)
20

𝐀 4𝑛 4𝑛2



Telecommunications Policy 48 (2024) 102813L. Abrardi et al.

a
t

By binding the constraint we obtain

𝑛∗𝑑high
= 1

2

√

𝑡
𝐹
. (A.45)

By replacing (A.45) in (A.44) we obtain

𝜋DB(𝐏∗
𝐀
𝑑high ) = 1

2

√

𝑡𝐹 . (A.46)

When the DB sets 𝑑 = 𝑑low, he maximizes

𝜋DB(𝐏∗
𝐀
𝑑low ) = 𝑡

(

𝑑low
(

1 − 2𝑎1
)

− 𝑛
𝑑2low
2

(

1 + 4
(

1 − 2𝑎0
) (

𝑎0 − 𝑎1
))

)

𝑠.𝑡.
( 𝑡
𝑛
− 𝑡𝑑low + 2𝑡𝑑low𝑎𝑜

)(

2𝑑low
(

𝑎1 − 𝑎0
)

+ 1
𝑛

)

− 𝐹 ≥ 0. (A.47)

We want to show that

𝜋DB(𝐏𝐀
𝑑low ) < 𝜋DB(𝐏𝐀

𝑑high ), (A.48)

for all relevant values of 𝑑low, 𝑡 and 𝐹 . In particular, we recall that 0 ≤ 𝑑low < 1
𝑛 , 𝑡 > 0, 𝐹 > 0, 𝑡 > 𝐹 . It is useful to express 𝐹

𝑡 = 𝑘,
with 0 < 𝑘 < 1. We can rewrite (A.48) as

2𝑑low
(

1 − 2𝑎1
)

− 𝑛𝑑2low
(

1 + 4
(

1 − 2𝑎0
) (

𝑎0 − 𝑎1
))

<
√

𝑘. (A.49)

To solve (A.49), we bind the constraint in (A.47), find the number of entering firms and substitute it in (A.49). The constraint in
(A.47) has no explicit solution. We thus want to find an approximated solution of 𝑛 that overestimates the left-side of (A.49). By
showing that the left side is smaller than the right side even after the round ups, we prove that also the original inequality holds.

The number of entering firms is given by binding the constraint in (A.47):

𝜋𝑖
L(𝐏𝐀

𝑑low ) =
( 𝑡
𝑛
− 𝑡𝑑low + 2𝑡𝑑low𝑎𝑜

)(

2𝑑low
(

𝑎1 − 𝑎0
)

+ 1
𝑛

)

− 𝐹 = 0. (A.50)

By substituting the explicit forms of 𝑎0 and 𝑎1 in (A.50), we can rewrite it as

1
𝑛2

−
2𝑑low
√

3𝑛
𝑓 (𝑛) + 1

3
𝑑2low𝑓 (𝑛)

2 − 𝐹
𝑡
= 0, (A.51)

where

𝑓 (𝑛) =

(
√

3 − 1
)(

2 +
√

3
)𝑛

+
(

1 +
√

3
)(

2 −
√

3
)𝑛

− 2
√

3
(

2 +
√

3
)𝑛

+
(

2 −
√

3
)𝑛

− 2
. (A.52)

Although there is no explicit solution 𝑛(𝑑low), the expression is a second-order polynomial in 𝑑low: then, we can obtain an explicit
solution for 𝑑(𝑛). Solving (A.51) with respect to 𝑑 we obtain

𝑑∗1 (𝑛) =

√

3
(

𝑛
√

𝑘 + 1
)

𝑛𝑓 (𝑛)
and 𝑑∗2 (𝑛) = −

√

3
(

1 − 𝑛
√

𝑘
)

𝑛𝑓 (𝑛)
. (A.53)

From Salop (1979) we know that, if a DB is absent, the number of entering firms is 𝑛 =
√

𝑡
𝐹 . As such, our solution must satisfy

𝑑low

(

√

𝑡
𝐹

)

= 0, which gives us 𝑑low = 𝑑∗2 (𝑛). Having found 𝑑low(𝑛), we need to invert the function to obtain 𝑛(𝑑low). To do so, we

pproximate 𝑓 (𝑛) to find an explicit form of 𝑛(𝑑low). We recall that we want to round up 𝜋DB(𝐏𝐀
𝑑low ), which is inversely proportional

o 𝑛. As such, we need to round down 𝑛(𝑑low), which requires rounding up 𝑓 (𝑛). We find

𝑓 (𝑛) ≈ 0.6197 1.0489𝑛 − 1.0566
0.7806𝑛 − 0.4757

, (A.54)

which overestimates 𝑓 (𝑛) ∀ 𝑛 ≥ 2.
We can now substitute (A.53) in (A.51), obtaining

𝑛2
(

0.6197 + 1.0489𝑑low + 0.7806
√

3𝑘
)

− 𝑛
(

0.6197 ∗ 1.0566𝑑low + 0.7806
√

3 + 0.4757
√

3𝑘
)

+ 0.4757
√

3 = 0,

which has two solutions:

𝑛
(

𝑑low
)

=
0.66𝑑low + 0.4757

√

3𝑘 + 0.7806
√

3

1.3𝑑 + 1.56
√

3𝑘

±
1.31

√

−0.277
√

3
(

2.6𝑑low + 3.12
√

3𝑘
)

+
(

0.5𝑑low + 0.363
√

3𝑘 − 0.597
√

3
)2

√
.

21
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Given that 𝑛(0) =
√

𝑡
𝐹 =

√

1
𝑘 , the correct solution is the one with the positive sign. We have obtained 𝑛

(

𝑑low
)

rounded down, which
in turn rounds up 𝜋DB(𝐏𝐀

𝑑low ). Next, we round up the exponential terms present in the left side of (A.49) to increase it. We first
ocus on

(

1 − 2𝑎1
)

. This function is monotonically increasing in 𝑛, and its limit is

lim
𝑛→∞

(

1 − 2𝑎1
)

= 2 − 2
√

3
.

s
(

1 − 2𝑎1
)

increases the left side of (A.49), we approximate
(

1 − 2𝑎1
)

≈ 2 − 2
√

3
. (A.55)

Next, we focus on
(

1 + 4
(

1 − 2𝑎0
) (

𝑎0 − 𝑎1
))

. This function is monotonically increasing in n, and decreases the left side of (A.49).
We find

(

1 + 4
(

1 − 2𝑎0
) (

𝑎0 − 𝑎1
))

≈ 1.368𝑛 − 1
8𝑛 + 2

, (A.56)

which underestimates the function and thus overestimates the left-side of (A.49). By replacing (A.55) and (A.56) in (A.49) and
setting 𝑛 = 𝑛

(

𝑑low
)

we obtain
(

2 − 2
√

3

)

2𝑑low − 𝑛
(

𝑑low
)

𝑑2low

(

1.36
8𝑛

(

𝑑low
)

− 1

8𝑛
(

𝑑low
)

+ 2

)

−
√

𝑘 < 0, (A.57)

which is always satisfied for 0 < 𝑑low < 1
𝑛(𝑑low) , and 0 < 𝑘 < 1. Thus, the DB’s equilibrium strategy under TIOLI is setting

𝑇 𝐼𝑂𝐿𝐼∗
𝐴 ≥ 3

2𝑛∗ .

tep 2.
DB’s profits under AR can be computed as

max
𝑑AR

𝜋DB = 𝑛
2
(

𝜋W∗
𝑖

(

𝐏AR
)

− 𝜋L∗
𝑖

(

𝐏AR
))

, (A.58)

𝑠.𝑡. 𝜋𝐿∗
𝑖 (𝐏𝐀𝐑) = 0.

here

𝜋W∗
𝑖

(

𝐏AR
)

=

⎧

⎪

⎨

⎪

⎩

𝑡
𝑛2

+ 2𝑑AR𝑡
3𝑛 −

7𝑡𝑑2AR
18 − 𝐹 for 𝑑AR < 3

2𝑛
9𝑡
8𝑛2

− 𝐹 for 𝑑AR ≥ 3
2𝑛

𝜋L∗
𝑖

(

𝐏AR
)

= 𝑡
4𝑛2

− 𝐹 for 0 ≤ 𝑑AR ≤ 1.

(A.59)

We can rewrite DB’s profits by substituting (A.59) in (A.58), obtaining

max
𝑑AR

𝜋DB =

⎧

⎪

⎨

⎪

⎩

𝑛
2

(

3𝑡
4𝑛2

+ 2𝑑AR𝑡
3𝑛 −

7𝑡𝑑2AR
18

)

for 𝑑AR < 3
2𝑛

𝑛
2

(

7𝑡
8𝑛2

)

for 𝑑AR ≥ 3
2𝑛 .

When the DB sets 𝑑AR < 3
2𝑛 , the FOC of 𝜋DB gives 𝑑∗AR = 6

7𝑛 , resulting in profits equal to 𝜋∗
DB = 29𝑡

56𝑛 . Conversely, when the DB sets
AR ≥ 3

2𝑛 , then his profits are constant with respect to 𝑑AR and equal to 𝜋∗
DB = 7𝑡

16𝑛 . By comparing the two results, we find that the
DB maximizes his profits by setting 𝑑∗AR = 6

7𝑛 .20 The number of entering firms will be such that their profits after paying for entry
nd data are 0. We obtain the number of entering firms by solving the free-entry condition

𝜋L∗
𝑖

(

𝐏𝐇
)

= 𝑡
4𝑛2

− 𝐹 = 0,

rom which we find 𝑛∗AR = 1
2

√

𝑡
𝐹 . When the DB sells data to all firms, his profits are equal to 𝜋TIOLI∗

DB (𝐏TIOLI) = 𝑡
4𝑛 . By direct

omparison, we find that the DB prefers selling data to half of the entering firms.
Step 3. Under AU, the DB offers same-sized partitions in all the auctions. Without loss of generality, we focus our analysis on

irm 0.
Firm 0’s profits when winning and losing are the same as in Lemmas 2 and 3. Thus, DB’s profits are

max
𝑑AU

𝜋AU
DB =

{ 𝑑AU𝑡(8−3𝑑AU𝑛)
12 for 𝑑AU < 3

2𝑛
7𝑡
16𝑛 for 𝑑AU ≥ 3

2𝑛 ,
(A.60)

20 Note that, under AR, firms’ losing profits do not depend on 𝑑 , and thus the number of entering firms does not affect the DB’s strategy.
22
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given that

⎧

⎪

⎨

⎪

⎩

𝑡
𝑛2

− 2𝑑AU𝑡
3𝑛 +

td2AU
9 − 𝐹 ≥ 0 for 𝑑AU < 3

2𝑛
𝑡

4𝑛2
− 𝐹 ≥ 0 for 𝑑AU ≥ 3

2𝑛 .
(A.61)

When 𝑑AU < 3
2𝑛 , we obtain the number of entering firms by binding the first part of the piecewise function (A.61), obtaining

𝑛∗AU =
9
√

𝑡𝐹 − 3𝑑AU𝑡
9𝐹 − 𝑡𝑑2AU

. (A.62)

When 𝑑AU ≥ 3
2𝑛 , the number of entering firms is constant and given by binding the second part of the piecewise function (A.61),

btaining

𝑛∗AU = 1
2

√

𝑡
𝐹
. (A.63)

By substituting (A.62) and (A.63) in (A.60), we obtain

max
𝑑AU

𝜋AU
DB =

⎧

⎪

⎨

⎪

⎩

𝑑AU𝑡
(

72𝐹+𝑡𝑑2AU−27𝑑AU
√

𝑡𝐹
)

108𝐹−12𝑡𝑑2AU
for 𝑑AU < 3

2𝑛∗AU
7
8

√

𝑡𝐹 for 𝑑AU ≥ 3
2𝑛∗AU

.
(A.64)

Computing FOCs of (A.64) for 𝑑AU < 3
2𝑛∗AU

with respect to 𝑑AU, we find that DB’s profits are monotonically increasing in 𝑑AU. As

such, the DB sets 𝑑∗AU ≥ 3
2𝑛∗AU

and obtains profits

𝜋AU∗
DB = 7

8

√

𝑡𝐹 . (A.65)

As profits in (A.65) are higher than when selling data to all firms, in equilibrium the DB opts for selling to every other firm.

Proof of Proposition 2. The proof proceeds in two steps. In Step 1, we compute consumer surplus in equilibrium under the three
selling mechanisms. In Step 2, we instead compute total welfare.

Step 1. We start our analysis with TIOLI, where in equilibrium all consumers are identified. Without loss of generality, let us
focus on the arch between firms 𝑖 and 𝑖+1. The indifferent consumer in the middle of the arch is located in 2𝑖+1

2𝑛∗ . Firm 𝑖 serves all its
consumers in [ 𝑖

𝑛∗ ,
2𝑖+1
2𝑛∗ ] through its tailored price. Consumer surplus on this semi-arch is given by integrating consumer net utility

etween 𝑖
𝑛∗ and 2𝑖+1

2𝑛∗ . The total consumer surplus on all 2𝑛∗ semi-arches of the market is:

𝐶𝑆𝑇 𝐼𝑂𝐿𝐼∗ = 2𝑛∗
(

∫

2𝑖+1
2𝑛∗

𝑖
𝑛∗

𝑢 − 𝑝T∗
𝑖 (𝑥) − 𝑡

(

𝑥 − 𝑖
𝑛∗

)

𝑑𝑥

)

, (A.66)

where

𝑝T
𝑖 (𝑥) = −2𝑡𝑥 + 𝑡

𝑛∗
(2𝑖 + 1). (A.67)

By replacing (A.67) in (A.66) we obtain

𝐶𝑆𝑇 𝐼𝑂𝐿𝐼∗ = 𝑢 − 3𝑡
4𝑛∗

= 𝑢 − 3
2

√

𝑡𝐹 ,

.e. 𝐶𝑆𝑇 𝐼𝑂𝐿𝐼∗ < 𝐶𝑆 = 𝑢 − 5
4

√

𝑡𝐹 .
As for AR, Suppose that firm 𝑖 wins its auction in equilibrium: as such, firm 𝑖 and 𝑖 + 1 basic prices are given by (A.28) and

(A.29), with 𝑑∗AR = 6
7𝑛∗AR

. Firm 𝑖’s tailored price is 𝑝T∗
𝑖,𝑖+1(𝑥) = 𝑝B∗

𝑖+1

(

𝐏∗
AR

)

− 2𝑡𝑥 + 𝑡
𝑛∗AR

(2𝑖 + 1), and the indifferent consumer is located

in 𝑥∗𝑖,𝑖+1 =
2𝑖+1
2𝑛∗AR

+
𝑑∗AR
6 . Consumer surplus is thus equal to

𝐶𝑆 = 𝑛∗AR

⎛

⎜

⎜

⎝

∫

𝑖
𝑛∗AR

+
𝑑∗AR
2

𝑖
𝑛∗AR

𝑢 − 𝑝T∗
𝑖,𝑖+1(𝑥) − 𝑡

(

𝑥 − 𝑖
𝑛∗AR

)

𝑑𝑥 + ∫

𝑥∗ 𝑖,𝑖+1

𝑖
𝑛∗AR

+
𝑑∗AR
2

𝑢 − 𝑝B∗
𝑖

(

𝐏∗
AR

)

− 𝑡

(

𝑥 − 𝑖
𝑛∗AR

)

𝑑𝑥+∫

𝑖+1
𝑛∗AR

𝑥∗ 𝑖,𝑖+1
𝑢 − 𝑝B∗

𝑖+1
(

𝐏∗
AR

)

− 𝑡

(

𝑖 + 1
𝑛∗AR

− 𝑥

)

𝑑𝑥
⎞

⎟

⎟

⎠

. (A.68)

By substituting the prices and the indifferent consumer’s location in (A.68), we obtain

𝐶𝑆 = 𝑢 − 5𝑡
∗ +

nt𝑑∗AR
2

, (A.69)
23
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which we can rewrite as

𝐶𝑆 = 𝑢 − 229
98

√

𝑡𝐹 . (A.70)

Consumer surplus where data are absent is equal to 𝐶𝑆 = 𝑢 − 5𝑡
4𝑛 , with 𝑛 =

√

𝑡
𝐹 (Salop, 1979). This implies 𝐶𝑆 = 𝑢 − 5

4

√

𝑡𝐹 , which
s always higher than 𝐶𝑆 in (A.70).

Finally, with regard, to AU, we can use (A.68) to compute consumer surplus, as the difference between AR and AU with regard
o consumer surplus only lies in the quantity of data sold. By replacing 𝑑∗𝐴𝑈 in (A.68), we obtain

𝐶𝑆AU = 𝑢 − 5𝑡
4𝑛∗AU

+
𝑛∗AU𝑡𝑑

∗2
AU

9
. (A.71)

where 𝑛∗AU = 1
2

√

𝑡
𝐹 and 𝑑∗AU = 3

2𝑛∗AU
, as it is the limit case after which data exhaust their marginal effect. We can rewrite (A.71) as

𝐶𝑆AU = 𝑢 − 𝑡
𝑛∗AU

= 𝑢 − 2
√

𝑡𝐹 ,

which is lower than 𝐶𝑆.

Step 2.
To compute Total Welfare, we need to add consumer surplus, firms’ profits and the DB’s profits. Under TIOLI and AU, all firms

remaining profits after paying for data are equal to 𝜋𝐿∗
𝑖 = 𝑡

4𝑛∗2 . As all firms’ profits are equal, they are all dissipated by the entry
cost, and thus firms’ equilibrium total profits are equal to zero. First, suppose that 𝛼 = 0. Then, total welfare is equal to consumer
surplus, and we find that total welfare is always lower than in the benchmark case. Instead, suppose that 𝛼 = 1. Then, by adding
consumer surplus and the DB’s profits, we find

𝑇𝑊 𝑇 𝐼𝑂𝐿𝐼∗ = 𝑢 −
√

𝑡𝐹

𝑇𝑊 𝐴𝑈∗
= 𝑢 − 9

8

√

𝑡𝐹 ,

hich are both higher than 𝑇𝑊 . Then, by continuity, we conclude that under TIOLI and AU there exists an 𝛼𝑆𝑀∗ such that, if
𝛼 ≥ 𝛼𝑆𝑀∗ , then 𝑇𝑊 𝑆𝑀∗ ≥ 𝑇𝑊 . By simple calculations, 𝛼𝑇 𝐼𝑂𝐿𝐼∗ = 1

2 and 𝛼𝐴𝑈∗ = 15
16 .

Instead, under AR, firms’ losing profits are higher than firms’ winning profits after paying for data. We can write total firms’
equilibrium profits as21

𝜋∗
𝑓𝑖𝑟𝑚𝑠 =

𝑛∗

2
( 𝑡
4𝑛∗2

− 𝐹 ) + 𝑛∗

2
( 𝑡
𝑛∗2

−
2𝑑∗𝐴𝑅𝑡
3𝑛∗

+
𝑡𝑑∗2𝐴𝑅
9

− 𝐹 ). (A.72)

By replacing 𝑑∗𝐴𝑅 = 6
7𝑛∗ and 𝑛∗ = 1

2

√

𝑡
𝐹 , we obtain

𝜋∗
𝑓𝑖𝑟𝑚𝑠 =

43
196

√

𝑡𝐹 . (A.73)

We can thus write Total Welfare under AR as

𝑇𝑊 ∗
𝐴𝑅 = 𝑢 − 229

98

√

𝑡𝐹 + 𝛼
( 43
196

√

𝑡𝐹 + 29
28

√

𝑡𝐹
)

. (A.74)

By simple calculations, we find that if 𝛼 ≥ 𝛼∗𝐴𝑅 = 71
82 , then 𝑇𝑊 ∗

𝐴𝑅 ≥ 𝑇𝑊 .

roof of Proposition 3. To find how the market power level 𝜃 affects the DB’s equilibrium strategy, we rewrite DB’s profits as

max
𝑑𝐴

𝜋DB =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑛𝜃
(

𝑡
𝑛2

−
𝑡𝑑2𝐴
2 −

(

𝑡
𝑛 − 𝑡𝑑𝐴 + 2𝑡𝑑𝐴𝑎0

)(

2𝑑𝐴
(

𝑎1 − 𝑎0
)

+ 1
𝑛

)

)

for 𝑑𝐴 < 𝑑1

𝑛𝜃
(

𝑡
𝑛2

−
𝑡𝑑2𝐴
2 − 𝑡(𝑛𝑑𝐴−4)2

25𝑛2

)

for 𝑑1 ≤ 𝑑𝐴 < 1
𝑛

𝑛𝜃
(

𝑡
2𝑛2

− 𝑡(𝑛𝑑𝐴−4)2
25𝑛2

)

for 1
𝑛 ≤ 𝑑𝐴 < 3

2𝑛

𝑛𝜃
(

𝑡
4𝑛2

)

for 𝑑𝐴 ≥ 3
2𝑛 .

(A.75)

21 Note that, while firms’ losing profits are greater than zero, an increase of 𝑛 by one unit would always make them negative. Thus, the number of entering
24

osing firms is equal to the number of entering winning firms.
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Firms’ profits after paying for data are equal to 𝜋𝑊
𝑖 − 𝜃(𝜋𝑊

𝑖 − 𝜋𝐿
𝑖 ), which can be written as

𝜋𝑊
𝑖 − 𝜃(𝜋𝑊

𝑖 − 𝜋𝐿
𝑖 ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑡
𝑛2

−
𝑡𝑑2𝐴
2 − 𝜃

(

𝑡
𝑛2

−
𝑡𝑑2𝐴
2 −

(

𝑡
𝑛 − 𝑡𝑑𝐴 + 2𝑡𝑑𝐴𝑎0

)(

2𝑑𝐴
(

𝑎1 − 𝑎0
)

+ 1
𝑛

)

)

for 𝑑𝐴 < 𝑑1

𝑡
𝑛2

−
𝑡𝑑2𝐴
2 − 𝜃

(

𝑡
𝑛2

−
𝑡𝑑2𝐴
2 − 𝑡(𝑛𝑑𝐴−4)2

25𝑛2

)

for 𝑑1 ≤ 𝑑𝐴 < 1
𝑛

𝑡
2𝑛2

− 𝜃
(

𝑡
2𝑛2

− 𝑡(𝑛𝑑𝐴−4)2
25𝑛2

)

for 1
𝑛 ≤ 𝑑𝐴 < 3

2𝑛

𝑡
2𝑛2 − 𝜃

(

𝑡
4𝑛2

)

for 𝑑𝐴 ≥ 3
2𝑛 .

(A.76)

To find the DB’s equilibrium strategy, we find the number of entering firms as a function of 𝑑𝐴 by binding (A.76) to zero, and
then maximize the DB’s profits with respect to 𝑑𝐴. As for the previous proofs, we cannot find a closed-form solution for the number
of entering firms due to the exponential nature of 𝑎0 and 𝑎1. Thus, we follow the same approximation approach of previous proofs,
obtaining 𝑎0 ≈

1
2
√

3
and 𝑎1 ≈

2−
√

3
2
√

3
. Applying these approximations to (A.76) and solving for 𝑛 we obtain:

𝑛∗(𝑑𝐴) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

√

(

4
√

3𝑑𝐴𝜃𝑡−12𝑑𝐴𝜃𝑡
)2

−24𝑡
(

−4
√

3𝑑2𝐴𝜃𝑡+11𝑑
2
𝐴𝜃𝑡−3𝑑

2
𝐴𝑡−6𝐹

)

−12𝑑𝐴𝜃𝑡+4
√

3𝑑𝐴𝜃𝑡

2
(

−11𝑑2𝐴𝜃𝑡+4
√

3𝑑2𝐴𝜃𝑡+3𝑑
2
𝐴𝑡+6𝐹

) for 𝑑𝐴 < 𝑑∗1

8𝑑𝐴𝜃𝑡−5
√

2
√

11𝑑2𝐴𝜃
2𝑡2−36𝑑2𝐴𝜃𝑡

2+25𝑑2𝐴𝑡
2−18𝐹𝜃𝑡+50𝐹 𝑡

27𝑑2𝐴𝜃𝑡−25𝑑
2
𝐴𝑡−50𝐹

for 𝑑1 ≤ 𝑑𝐴 < 1
𝑛∗(𝑑𝐴)

8𝑑𝐴𝜃𝑡−5
√

2
√

𝑑2𝐴𝜃
2𝑡2−𝑑2𝐴𝜃𝑡

2+7𝐹𝜃𝑡+25𝐹 𝑡

2
(

𝑑2𝐴𝜃𝑡−25𝐹
) for 1

𝑛∗(𝑑𝐴)
≤ 𝑑𝐴 < 3

2𝑛∗(𝑑𝐴)
√

2𝑡−𝜃𝑡
2
√

𝐹
for 𝑑𝐴 ≥ 3

2𝑛∗𝑑𝐴
.

(A.77)

By replacing (A.77) in (A.75) and maximizing with respect to 𝑑𝐴, we find that the DB sets 𝑑∗𝐴 ≥ 3
2𝑛∗ irrespective of 𝜃. From (A.75)

it is also immediate that DB’s equilibrium profits are increasing in 𝜃.
With regard to consumer surplus, we can use the same formula obtained in the proof of Proposition 2, i.e., 𝐶𝑆∗ = 𝑢 − 3𝑡

4𝑛∗ , with

𝑛∗ =
√

2𝑡−𝜃𝑡
2
√

𝐹
. By comparing it with 𝐶𝑆 = 𝑢 − 5

4

√

𝑡𝐹 , we find that 𝐶𝑆∗ ≥ 𝐶𝑆 iff 𝜃 ≤ 14
25 .

With regard to total welfare, we compute it as 𝑇𝑊 ∗ = 𝛼𝜋∗
𝐷𝐵 + 𝐶𝑆∗. By deriving it with respect to 𝜃, we obtain

𝛿𝑇𝑊 ∗

𝛿𝜃
=

√

𝐹 𝑡2(𝛼𝜃 − 3)
4((𝜃 − 2)(−𝑡))3∕2

+
𝛼
√

𝐹 𝑡

2
√

(𝜃 − 2)(−𝑡)
, (A.78)

which is lower than zero iff 𝛼 < 3
4 .

roof of Proposition 4. The proof proceeds in two steps. First, we show that if partitions do not overlap, there exists a unique
equilibrium. Second, we show that if partitions do overlap, there exists another unique equilibrium.

Step 1. Suppose all firms buy data and choose to use a partition of size 𝑑𝐴,𝑖 <
1
𝑛 . Then, all firms’ profits are as in (A.19). However,

e now assume that each firm can individually choose their partition’s size 𝑑𝐴,𝑖. Following the same reasoning of Lemma 1, we obtain
hat equilibrium prices are equal to

𝑝B∗
𝑖 = 𝑡

𝑛
− 2𝑡

𝑛−1
∑

𝑗=0
𝑑𝐴,𝑖𝑎𝑗 . (A.79)

To proceed with the analysis, it is useful to isolate the terms 𝑑𝐴,𝑖 from the equilibrium basic prices of firms 𝑖, 𝑖 + 1 and 𝑖 − 1. We
obtain:

𝑝B∗
𝑖 = 𝑡

𝑛
− 2𝑡𝑑𝐴,𝑖𝑎0 − 2𝑡

𝑛−1
∑

𝑗=1
𝑑𝐴,𝑖𝑎𝑗 =

𝑡
𝑛
− 2𝑡𝑑𝐴,𝑖𝑎0 − 2𝑡ℎ, (A.80)

𝑝B∗
𝑖+1 =

𝑡
𝑛
− 2𝑡𝑑𝐴,𝑖𝑎1 − 2𝑡

𝑛−1
∑

𝑗=0,𝑗≠1
𝑑𝐴,𝑖𝑎𝑗 =

𝑡
𝑛
− 2𝑡𝑑𝐴,𝑖𝑎1 − 2𝑡𝑘, (A.81)

𝑝B∗
𝑖−1 =

𝑡
𝑛
− 2𝑡𝑑𝐴,𝑖𝑎1 − 2𝑡

𝑛−2
∑

𝑗=0,
𝑑𝐴,𝑖𝑎𝑗 =

𝑡
𝑛
− 2𝑡𝑑𝐴,𝑖𝑎1 − 2𝑡𝑙, (A.82)

where ℎ, 𝑘 and 𝑙 represent the sum of all the partitions which are not those of firm 𝑖. By replacing (A.80), (A.81) and (A.82) in
A.19) and maximizing for 𝑑𝐴,𝑖, we obtain

𝑑∗𝐴,𝑖 =
1 − 2𝑎1 + 2ℎ𝑛 − 8𝑎0ℎ𝑛 + 4𝑎1ℎ𝑛 − 𝑘𝑛 + 2𝑎0𝑘𝑛 − 𝑙𝑛 + 2𝑎0𝑙𝑛

2
. (A.83)
25

𝑛(1 − 4𝑎0 + 8𝑎0 + 4𝑎1 − 8𝑎0𝑎1)
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As the equilibrium partitions’ sizes used by firms are the same due to symmetry, we can replace ℎ + 𝑑𝐴,𝑖𝑎0 = 𝑑𝐴,𝑖
2 , 𝑘 + 𝑑𝐴,𝑖𝑎1 =

𝑙 + 𝑑𝐴,𝑖𝑎1 =
𝑑𝐴,𝑖
2 , and obtain

𝑑∗𝐴,𝑖 = 𝑑∗𝑙𝑜𝑤 =
1 − 2𝑎1

𝑛
, (A.84)

which is lower than 1
𝑛 .

Step 2.
Suppose that all firms purchase a partition 𝑑𝐴 ≥ 3

2𝑛 and choose to use all of them so that partitions overlap. We focus on a generic
irm 𝑖’s incentive to deviate from using all the data it purchased. As firms 𝑖 + 1 and 𝑖 − 1 can identify all the consumers they can
otentially serve, they offer all consumers tailored prices, as they allow them to extract all available surplus from consumers and
hus always outperform basic prices. Conversely, firm 𝑖 chooses the partition size 𝑑𝐴,𝑖 ∈ [0, 𝑑𝐴] it wants to use. Suppose firm 𝑖 offers
basic price to a consumer who is identified by firm 𝑖+ 1. Then, in order for that consumer to buy from firm 𝑖, we must have that
(𝑥, 𝑖) ≥ 𝑈 (𝑥, 𝑖+ 1), with 𝑝𝐵𝑖+1 = 0. Indeed, the only instance in which a basic price offer beats a tailored price offer is if the tailored
rice becomes negative, as the firm would prefer not to serve that consumer. We thus find the indifferent consumers’ location by
eplacing 𝑝𝐵𝑖+1 = 𝑝𝐵𝑖−1 = 0 in (A.20). By maximizing firm 𝑖’s profits with respect to 𝑝𝐵𝑖 , we find 𝑝𝐵𝑖 = 𝑡

2𝑛2 (1 − 𝑛𝑑). By replacing the
quilibrium basic prices in firm 𝑖’s profits (6), and maximizing with respect to 𝑑, we find that firm 𝑖’s profits are maximized for
ny 𝑑𝐴,𝑖 = 𝑑∗ℎ𝑖𝑔ℎ ≥ 1

𝑛 . This implies that firm 𝑖 has no incentive to deviate from using all data, as its profits are the same for any
𝑑𝐴,𝑖 = 𝑑∗ℎ𝑖𝑔ℎ ≥ 1

𝑛 .

Proof of Proposition 5. The proof proceeds in two steps. First, we show that, if a firm chooses not to purchase data, its direct
rivals choose to identify fewer consumers on the arch they share with the uninformed firm. Second, we compute consumer surplus
under the new equilibrium.

Step 1.
Suppose instead that firm 𝑖 does not purchase data, whereas all other firms obtain 𝑑𝐴 ≥ 3

2𝑛 . First, let us focus on firm 𝑖’s direct
rivals (𝑖 + 1 and 𝑖 − 1) and how they compete with their informed rivals (𝑖 + 2 and 𝑖 − 2). As both firms 𝑖 + 1 and 𝑖 + 2 can target all
consumers they serve, they only offer tailored prices on the arch they share, as described in Step 1. The same reasoning also applies
to firms 𝑖− 1 and 𝑖− 2. Conversely, on the arch they share with firm 𝑖, they can choose the amount of data 𝑑𝑖+1 and 𝑑𝑖−1 they want
to use.

As firm 𝑖’s direct rivals only offer their basic prices on the arch they share with firm 𝑖, we only focus on the profits they make
on said arch. We thus obtain:

𝜋𝑊
𝑖−1 =

𝑝𝐵𝑖−1 + 𝑑𝑖−1𝑡
2𝑛

−
2𝑝𝐵𝑖−1(𝑝

𝐵
𝑖−1 − 𝑝𝐵𝑖 ) + 2𝑑𝑖−1𝑡(𝑝𝐵𝑖−1 − 𝑝𝐵𝑖 ) + 𝑑2𝑖−1𝑡

2

4𝑡
− 𝐹 (A.85)

𝜋𝐿
𝑖 =

𝑝𝐵𝑖
𝑛

+
𝑝𝐵𝑖 (𝑝

𝐵
𝑖+1 − 2𝑝𝐵𝑖 + 𝑝𝐵𝑖−1) − 𝐹 (A.86)

𝜋𝑊
𝑖+1 =

𝑝𝐵𝑖+1 + 𝑑𝑖+1𝑡

2𝑛
−

2𝑝𝐵𝑖+1(𝑝
𝐵
𝑖+1 − 𝑝𝐵𝑖 ) + 2𝑑𝑖+1𝑡(𝑝𝐵𝑖+1 − 𝑝𝐵𝑖 ) + 𝑑2𝑖+1𝑡

2

4𝑡
− 𝐹 (A.87)

Note that, to remain consistent with the notation of the baseline model, 𝑑𝑖+1 and 𝑑𝑖−1 represent the amount of data used on both
rches. Thus, only a share of 𝑑𝑖+1

2 and 𝑑𝑖−1
2 are used on the arch shared with firm 𝑖.

Equilibrium basic prices are

𝑝𝐵
∗

𝑖−1 =
12𝑡 − 7𝑛𝑡𝑑𝑖−1 − 𝑛𝑡𝑑𝑖+1

12𝑛
, 𝑝𝐵

∗
𝑖 =

6𝑡 − 𝑛𝑡(𝑑𝑖−1 + 𝑑𝑖+1)
6𝑛

, 𝑝𝐵
∗

𝑖+1 =
12𝑡 − 7𝑛𝑡𝑑𝑖+1 − 𝑛𝑡𝑑𝑖−1

12𝑛
. (A.88)

Finally, by maximizing firms 𝑖 + 1 and 𝑖 − 1’s profits with respect to 𝑑𝑖+1 and 𝑑𝑖−1, we obtain 𝑑∗𝑖+1 = 𝑑∗𝑖−1 = 15
13𝑛 . Thus, firm 𝑖’s direct

ivals only identify a segment of length 15
26𝑛 on the arch they share with firm 𝑖. As this amount is lower than 𝑓𝑟𝑎𝑐34𝑛, we conclude

that firm 𝑖’s direct rivals would use less data than in the baseline model. The resulting firm 𝑖’s profits are

𝜋𝐿∗
𝑖 = 64𝑡

169𝑛2
− 𝐹 . (A.89)

As these profits are higher than in the baseline model, it is immediate to conclude that equilibrium partition prices are lower.

Step 2.
Firms’ strategic use of data changes their profits if they choose not to buy data and, in turn, the number of entering firms. We

obtain the equilibrium number of entering firms by binding (A.89) to zero, which results in

𝑛∗ = 8
13

√

𝑡
𝐹
, (A.90)

which is higher than the number of entering firms in the baseline model. With regard to consumer surplus, in equilibrium,
all consumers are served through tailored prices, and we can thus use the same expression as in the proof of Proposition 2,
i.e., 𝐶𝑆∗ = 𝑢 − 3𝑡 , with 𝑛∗ = 8

√

𝑡 . We thus obtain 𝐶𝑆∗ = 𝑢 − 39√𝑡𝐹 , which is always higher than 𝐶𝑆.
26

4𝑛∗ 13 𝐹 32
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Proof of Proposition 6. We analyze possible combinations of interventions by a policymaker. First, suppose that the policymaker
nly intervenes by imposing a selling mechanism on the DB. From the results of Proposition 2, the policymaker would impose the
IOLI mechanism, as it entails the highest level of consumer surplus and total welfare (regardless of 𝛼). Second, suppose that the

policymaker can also impose a cap on the maximum partition size that can be sold by the DB. To understand the effects of this cap
on consumer surplus and total welfare, it is useful to find DB’s profits and the number of entering firms as a function of 𝑑𝐴. DB’s
rofits as a function of 𝑑𝐴 are as in (A.43). With regard to the number of entering firms, we find it by binding to zero firms’ profits
fter paying for entry and data, which are equal to:

𝜋𝐿∗
𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑡
𝑛 − 𝑡𝑑𝐴 + 2𝑡𝑑𝐴𝑎0

)(

2𝑑𝐴
(

𝑎1 − 𝑎0
)

+ 1
𝑛

)

− 𝐹 for 𝑑𝐴 < 𝑑1
𝑡(𝑛𝑑𝐴−4)2

25𝑛2
− 𝐹 for 𝑑1 ≤ 𝑑𝐴 < 3

2𝑛
𝑡

4𝑛2
− 𝐹 for 𝑑𝐴 ≥ 3

2𝑛 .

(A.91)

By solving for 𝑛 (and applying the same approximation method used in the proof of Proposition 1 for the first part of 𝜋𝐿∗
𝑖 due to

lack of a closed form solution), we find:

𝑛𝑇 𝐼𝑂𝐿𝐼∗ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−3𝑑𝐴𝑡+
√

3𝑑𝐴𝑡+3
√

𝐹
√

𝑡
−4𝑑2𝐴𝑡+2

√

3𝑑2𝐴𝑡+3𝐹
for 𝑑𝐴 < 𝑑1(𝑛𝑇 𝐼𝑂𝐿𝐼∗ )

4
(

𝑑𝐴𝑡−5
√

𝐹
√

𝑡
)

𝑑2𝐴𝑡−25𝐹
for 𝑑1(𝑛𝑇 𝐼𝑂𝐿𝐼∗ ) ≤ 𝑑𝐴 < 3

2𝑛𝑇 𝐼𝑂𝐿𝐼∗

1
2

√

𝑡
𝐹 for 𝑑𝐴 ≥ 3

2𝑛𝑇 𝐼𝑂𝐿𝐼∗ .

(A.92)

Consumer surplus as a function of 𝑑𝐴 can be written as

𝐶𝑆𝑇 𝐼𝑂𝐿𝐼 =

⎧

⎪

⎨

⎪

⎩

𝑢 − 5𝑡
4𝑛𝑇 𝐼𝑂𝐿𝐼∗ +

𝑛𝑇 𝐼𝑂𝐿𝐼∗ 𝑡𝑑2𝐴
2 for 𝑑𝐴 < 1

𝑛𝑇 𝐼𝑂𝐿𝐼∗

𝑢 − 3
2

√

𝑡𝐹 for 𝑑𝐴 ≥ 1
𝑛𝑇 𝐼𝑂𝐿𝐼∗ .

(A.93)

By combining (A.92) and (A.93), we find that 𝐶𝑆𝑇 𝐼𝑂𝐿𝐼 is continuous in 𝑑𝐴, is decreasing in 𝑑𝐴 for 𝑑𝐴 < 𝑑1(𝑛𝑇 𝐼𝑂𝐿𝐼∗ ), increasing
in 𝑑𝐴 for 𝑑1(𝑛𝑇 𝐼𝑂𝐿𝐼∗ ) ≤ 𝑑𝐴 ≤ 1

𝑛𝑇 𝐼𝑂𝐿𝐼∗ , decreasing in 𝑑𝐴 for 1
𝑛𝑇 𝐼𝑂𝐿𝐼∗ < 𝑑𝐴 < 3

2𝑛𝑇 𝐼𝑂𝐿𝐼∗ and constant in 𝑑𝐴 for 𝑑𝐴 ≥ 3
2𝑛𝑇 𝐼𝑂𝐿𝐼∗ . Thus, it is

straightforward that consumer surplus has two local maxima in 𝑑𝐴 = 0, resulting in 𝑛𝑇 𝐼𝑂𝐿𝐼∗ =
√

𝑡
𝐹 and 𝑑𝐴 = 1

𝑛𝑇 𝐼𝑂𝐿𝐼∗ , resulting in

𝑛𝑇 𝐼𝑂𝐿𝐼∗ = 3
5

√

𝑡
𝐹 . The case of 𝑑𝐴 = 0 is the standard Salop model, where 𝐶𝑆 = 𝑢− 5

4

√

𝑡𝐹 . We also find that 𝐶𝑆(𝑑𝐴 = 1
𝑛𝑇 𝐼𝑂𝐿𝐼∗ ) = 𝐶𝑆.

However, from the proof of Proposition 1, we know that DB’s profits have a local maximum for 𝑑∗𝐴 < 𝑑1 <
1
𝑛 . Thus, if a policymaker

ould impose a maximum partition size, the DB would instead set 𝑑𝐴 = 𝑑∗𝐴 < 1
𝑛 . Thus, to achieve the desired outcome, the

policymaker should impose the DB must sell all available data, without selling the same data points to more than one firm. By
doing so, the policymaker can obtain the same consumer surplus as in the standard Salop model, and increase total welfare as
DB’s profits are positive (see (A.43)). With regards to the effects of 𝜃, we repeat the same analysis on 𝐶𝑆𝑇 𝐼𝑂𝐿𝐼 with the number
f entering firms in equilibrium as in (A.77), and again find that it is maximized for 𝑑∗𝐴 = 1

𝑛 and decreasing in 𝜃. Thus, any 𝜃 < 1
akes consumer surplus higher than in the benchmark case.

From a total welfare perspective, recall that under TIOLI all firms obtain symmetric partitions. Thus, transportation costs are
inimized and not influenced by 𝑑𝐴, as all consumers buy from the closest firm. Then, total welfare is only influenced by the fixed

ost of entry and the weight of industry profits 𝛼. Suppose 𝛼 = 0. Then, 𝑇𝑊 𝑇 𝐼𝑂𝐿𝐼∗ = 𝐶𝑆𝑇 𝐼𝑂𝐿𝐼∗ , and to maximize total welfare
he policymaker would set 𝑑𝑃𝐴 = 1

𝑛𝑇 𝐼𝑂𝐿𝐼∗ . Instead, suppose 𝛼 = 1. Then, the policymaker minimizes the number of entering firms by
setting 𝑑𝑃𝐴 ≥ 3

2𝑛𝑇 𝐼𝑂𝐿𝐼∗ . Thus, by continuity of the total welfare function with respect to 𝛼, we conclude that there exists a threshold
̄̄ such that, if 𝛼 < ̄̄𝛼, then setting 𝑑𝑃𝐴 = 1

𝑛𝑇 𝐼𝑂𝐿𝐼∗ also maximizes total welfare. Instead, if 𝛼 ≥ ̄̄𝛼, a policymaker that aims to maximize
total welfare sets 𝑑𝑃𝐴 ≥ 3

2𝑛𝑇 𝐼𝑂𝐿𝐼∗ .
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