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We explore the large-scale behavior of a stochastic model for nanoparticle growth in an

unusual parameter regime. This model encompasses two types of reactions: nucleation,

where n monomers aggregate to form a nanoparticle, and growth, where a nanoparticle

increases its size by consuming a monomer. Reverse reactions are disregarded. We delve

into a previously unexplored parameter regime. Specifically, we consider a scenario where

the growth rate of the first newly formed particle is of the same order of magnitude as the

nucleation rate, in contrast to the classical scenario where in the initial stage nucleation

dominates over growth.

In this regime, we investigate the final size distribution as the initial number of

monomers tends to infinity through extensive simulation studies utilizing state-of-the-art

stochastic simulation methods with an efficient implementation and supported by high-

performance computing infrastructure. We observe the emergence of a deterministic limit

for the particle’s final size density.

To scale up the initial number of monomers to approximate the magnitudes encountered

in real experiments, we introduce a novel approximation process aimed at faster simula-

tion. Remarkably, this approximating process yields a final size distribution that becomes

very close to that of the original process when the available monomers approach infinity.

Simulations of the approximating process further support the conjecture of the emergence

of a deterministic limit.
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I. INTRODUCTION

Nanoparticles, ranging in size from 1 to 1000 nanometers, hold immense potential in vari-

ous fields, including catalysis1, electronics2, medicine3, and environmental remediation4. Their

unique properties, stemming from their small size and large surface area-to-volume ratio, make

them particularly intriguing. Understanding the kinetics of nanoparticle formation and managing

their size distribution are essential steps to ensure optimal functionality and minimize potential

toxicity5 across diverse applications.

The process of nanoparticle formation shares similarities with established polymerization pro-

cesses. It can be explained by various models. The foundational framework for this kind of pro-

cess is the Smoluchowski model. It explains the stochastic motion of particles in a fluid, known as

Brownian motion, and provides a mathematical explanation for particle aggregation. In some cases

for the reversible case6,7, as well, which can be interpreted by both stochastically and determinis-

tically. The LaMer model offers a detailed explanation of the kinetics involved8,9 in nanoparticle

formation. According to this model, nanoparticle formation occurs through instantaneous nucle-

ation, followed by a series of growth steps facilitated by the addition of monomers.

The size distribution of isothermal crystallization processes through nucleation and growth can

also be described by the Johnson-Mehl-Avrami-Kolmogorov model, in which the rates of the two

reactions cannot change, the nuclei begin to grow at the same time10–12. It is also important to

mention the Finke-Watzky model13,14, which introduces the concept of a slow nucleation reaction

followed by a rapid autocatalytic growth step. This model has undergone further developments

employing mechanism-enabled population balance equations15,16. Beyond these classical models,

there are several other approaches in the literature, most of them take into account the thermody-

namic properties, as well, which are not spelled out here.

The Becker-Döring model is a mathematical model of aggregation and fragmentation that is

based on very similar steps. Its most common formulation is in terms of an infinite system of

ordinary differential equations17–19. By employing a coarsening step, the discrete space of the

particle sizes can be mapped to a continuous limit domain, and consequently the deterministic

Becker-Döring model converges to a transport partial differential equation named after Lifshitz-

Slyozov20,21.

Stochastic models are often considered more realistic, at least at small scales, since they can track

the random events of individual monomer attachments or detachments. A stochastic analog of
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the Becker-Döring model has been investigated22 and it has been shown that, at a large scale

and with suitably balanced reaction rates, it converges to the deterministic Becker-Döring limit.

This approach is based on a so-called classical scaling where in the first place only nucleation

occurs, and only after a large portion of the monomers has been spent in nucleations, the growths

start to take place. As a result, many particles are created with a distribution of the particle sizes

(measured in monomer units) that remains concentrated around low counts.

The convergence to a deterministic limit bears significant practical implications, implying that

even inherently stochastic phenomena can manifest as deterministic when observed at appropriate

scales. This facilitates investigation via a single experimental realization, obviating the need for

multiple repetitions.

In this paper, we introduce a stochastic Markov model of nanoparticle formation, once again re-

lying on nucleation and growth. Its convergence to a deterministic limit is well understood in the

so-called classical scaling, due to its strong similarity to the stochastic Becker-Döring model22.

Some of the latest results have derived some general explicit and approximated solutions for the

final average sizes of its deterministic limit23–26.

In real experiments of nanoparticles growth27–29, the final size of the particles can have a wide

range (typically from 1 to 100 nm, but up to 1000 is possible). Small nanoparticles (a few tens of

nanometers) are reasonably described by our model under the classical scaling. However, large

particles30 with diameters of 102− 103 nm, may incorporate a huge number of monomers. This

regime is hardly explainable under the classical scaling and the existence of a deterministic limit

size distribution is not guaranteed by the classical theory.

Assuming a novel scaling of the rate constants that has never been addressed before, such that

growths and nucleations are in a balanced competition from the ealiest moments, we provide

computational evidence that a deterministic limit size distribution still emerges. Moreover, this

distribution is compatible with the formation of the large nanoparticles mentioned above. In

particular, we investigate the model predictions through a simulation study that uses the most

advanced methods31,32 with an efficient implementation in the Julia programming language33 run

on a high-performance computing infrastructure.

Since the computational cost for this complex model remains a substantial limitation, the size of

the system cannot be raised to the order of magnitudes that would be realistic in any experimental

setting. To overcome this limitation, we develop an approximated model that can be simulated
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much faster and that appears to keep the same final size distribution when size of the system

grows very big. Utilizing this novel approximating process, we achieved notable enhancement

in the quantity of monomer units accessible, nearing levels anticipated in actual experimental

scenarios27–29, and further strengthens the computational evidence of convergence towards a de-

terministic limit.

A mathematical proof of the conjectured convergence and a tractable expression for the final

size distibution would be highly desirable, but are not adressed in this paper. We hope that our

contribution will stimulate further advancements in this direction.

II. THEORY AND COMPUTATIONAL DETAILS

A. The model

We model nanoparticle formation as a process comprising an nth-order nucleation step and

second-order irreversible growth steps. In the initial stage, a group of n monomer units comes

together to form a kinetically effective nucleus, which then continues to grow as one monomer

unit at a time is added to a single nanoparticle.

We define a stochastic model whose state is given by (x0,x1, . . . ,xN) where x0 refers the

monomer unit counts, while xi, i≥ 1 gives the counts of nanoparticles of size i. All of them evolve

according to the occurrence of the following reactions

nM ν−−→ Cn

Ck +M
Γ(k)γ−−−→ Ck+1 n≤ k ≤ N−1.

(1)

In the above equations, M denotes a monomer unit, while Ck represents a nanoparticle containing

exactly k monomer units in it, which we define as a particle of size k. Throughout the paper

particle sizes are always measured in monomer units, not directly in nanometers. The initial

number of monomer units is N. The stoichiometric vectors vk, where k = 0,1, . . . ,N − 1, are

N +1-dimensional vectors with

vk =


−ne1 + en+1 k = 0

0N+1 1≤ k ≤ n−1

−e1− ek+1 + ek+2 n≤ k ≤ N−1
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where 0N+1 ∈ RN+1 is the null vector, while ek ∈ RN+1 is a vector with the k-th component equal

to 1 and all other components equal to 0, and the stoichiometric matrix S ∈ R(N+1)×N is

S =
[
v0 v1 . . . vN−1

]
=



−n 0 · · · 0 −1 −1 −1 · · · −1 −1

0 0 · · · 0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...

0 0 · · · 0 0 0 0 · · · 0 0

+1 0 · · · 0 −1 0 0 · · · 0 0

0 0 · · · 0 +1 −1 0 · · · 0 0

0 0 · · · 0 0 +1 −1 · · · 0 0
...

...
...

...
...

...
...

...
...

...

0 0 · · · 0 0 0 0 · · · +1 −1

0 0 · · · 0 0 0 0 · · · 0 +1



. (2)

The dynamics proceeds according to a continuous-time Markov Chain X(t)= (X0(t),X1(t), . . . ,XN(t)),

with reaction rates

λ0(x0,x1, . . . ,xN) =ν
x0!

(x0−n)!
(3)

λk(x0,x1, . . . ,xN) =0 0 < k < n

λk(x0,x1, . . . ,xN) =γΓ(k)x0xk n≤ k ≤ N−1 (4)

with λ0(x0,x1, . . . ,xN) in (3) being the nucleation rate and λk(x0,x1, . . . ,xN) the rate at which

nanoparticles of size k are grown into particles of size k+ 1. The Markov model characterized

above allows for the following representation

X(t) = X(0)+
N−1

∑
k=0

vkYk

(∫ t

0
λk(X(s))ds

)
(5)

in terms of the independent unit rate Poisson processes Yk
34.

In the literature, different expressions for the function Γ(k) have been proposed. The most

popular choices are four. The mass kernel operates under the assumption that a nanoparticle’s

reactivity is directly proportional to its mass, which is described by the function Γ(k) = k. The

surface kernel considers the reactivity of a nanoparticle as being proportional to its surface area,

Γ(k) = k2/3. The Brownian kernel, based on the reactivity of a nanoparticle being proportional to
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its radius, Γ(k) = k1/3. The diffusion kernel assumes that a nanoparticle’s reactivity is independent

of its size which mirrors the size independence of the diffusion-controlled rate constant, where

their larger reactive cross-section offsets the lower mobility of larger particles. This constant

function is denoted by Γ(k) = 1, implying that all the particles grow at the same rate, regardless of

their dimension. In the context of this paper, we focus on the diffusion kernel alone.

Monomers are utilized in both the nucleation and growth processes, resulting in a continu-

ous decrease in the number of monomer units over time until it reaches zero. Once this point is

reached, no further reactions can occur, indicating that each particle created has attained its final

size. Consequently, the final size distribution emerges as a significant characteristic of the model

and is inherently random: distinct instances of the process yield varying final size distributions.

Computing the probability law of this final size distribution is exceedingly complex, and simula-

tions are the only feasible approach.

1. Deterministic limits under the classical scaling

The size distribution of the stochastic model described above is known to approach a deter-

ministic limit under a suitable scaling of the rate constants, known as classical scaling. This

convergence result is achieved by combining two classical findings. First, under the classical scal-

ing, the stochastic model converges to an infinite set of ordinary differential equations (ODEs)

known as the Becker and Döring equations22,35, which describe the concentrations of particles of

any given size. Second, the ODE system itself, once the particle sizes are binned and rescaled to

a continuum, converges to a deterministic distribution that satisfies a partial differential equation

(PDE) model known as the Lifshitz–Slyozov model20,36,37.

We do not intend to delve into a detailed mathematical exposition of the known theory here.

Rather, we aim to highlight that if the rate constants and initial conditions scale as

X(0)∼ N, ν ∼ 1
Nn−1 , γ ∼ 1

N
, (6)

when N → ∞, a deterministic limit size distribution is known to emerge, after rescaling the sizes

to the continuum. Under this so-called classical scaling, if we start with a monomer popula-

tion of size N, initially the nucleation rate (3) dominates the growth rates (4) until most of the

monomers are spent. However, the available monomers steadily decrease and so does the nucle-

ation rate, up to when the growth reactions will enter the competition allowing for the created
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particles to increase their size. Under such a scaling we expect to find a large number of particles

(order N) while the typical size is small (order 1). As mentioned in the Introduction, parameters

regimes corresponding to the the classical scaling seem to be compatible with the formation of

small nanoparticles with a size of a few tens of nanometers. Indeed, given that the diameter of a

monomer is of the order of 10−1 nm, such a small nanoparticle would consist of approximately

a hundred monomers along its diameter, resulting in a total of about 106 monomers incorporated

in its volume. Consequently, the number of monomers in such a particle would be negligible

compared to the initial number of available monomers, which could be around N = 1024.

2. An alternative scaling

As detailed in Section II A 1, the limiting behavior of the chemical reaction network (1) is

well-understood under the classical scaling. However, other regimes may also be of interest. In

particular, we explore the evolution of the nanoparticles’ final size when the initial conditions and

reaction rate constants scale as

X(0)∼ N, ν ∼ 1
Nn−1 , γ ∼ 1.

Under this condition, whenever the first particle is created, its growth rate (4) and the nucle-

ation rate (3) are both of order N. The competition between nucleation and growth starts earlier

compared to the classical scaling, and we expect to create less particles, that are grown to a larger

size. The largest diameter for a nanoparticle is of order 103 nm, which implies approximately 104

monomers along the diameter and 1012 in total. We aim to determine whether this scaling can

explain the formation of these large particles. Additionally, we address the specific question of

whether, under this regime, a deterministic limit for the final size distribution can still emerge. To

this end, we establish a simulation study outlined in Section II B.

B. Simulations

The investigation of large size stochastic models is most often unfeasible with probabilistic

techniques alone, making the use of numerical simulations unavoidable. Moreover, when the

size of the system gets very large even exact simulation methods are unable to cope with the

complexity of the system because of too long running time or of too heavy memory requirements.
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We quickly review in this section the state of the art methods (both exact and approximate) that

may be employed to simulate our model. We present them in a form that is tailored to our system

and tries to spare unnecessary resources.

1. Gillespie’s algorithm

Gillespie’s algorithm (or Stochastic Simulation Algorithm (SSA)) operates by simulating each

event of a continuous-time Markov chain that tracks the evolution of the process31,38,39. Consider

t as the current time and X(t) as the present state of the system. Let t + τ and r be respectively

the time at which the next reaction occurs and the index of the reaction firing at t + τ . The al-

gorithm generates τ from an exponential distribution with mean equal to the sum of all reaction

rates ∑
N−1
k=0 λk, while the index r is then simulated as a random variable with values 0,1, · · · ,N−1

and associated probabilities λ0(X(t))
∑

N−1
k=0 λk(X(t))

, λ1(X(t))
∑

N−1
k=0 λk(X(t))

, · · · , λN−1(X(t))
∑

N−1
k=0 λk(X(t))

. Consequently, the system’s

state is updated as X(t + τ) = X(t) + vr. Notably, if L represents the dimension of the largest

nanoparticle created up to time t, our chemical reaction network structure ensures Xk(t) = 0 and

λk(X(t)) = 0 for each k ≥ L+1. Given that the primary focus of this work is the final size distri-

bution of the nanoparticles, we are solely interested in determining the next reaction to fire, disre-

garding the temporal moment in which it fires. From a computational point of view, this allows us

to bypass the generation of τ , thereby accelerating the execution. For the same reason, since the

first reaction is for sure a nucleation, we can directly start to simulate with N−n monomers and 1

particle of size n. Algorithm 1 in the Appendix outlines the pseudo-code of Gillespie’s algorithm

tailored to our chemical reaction network.

2. Tau-leaping with post-leap checks

The tau-leaping method40 in many cases provides a significant computational speedup com-

pared to exact algorithms, while maintaining a high-quality approximation. However, in the

context of our model, a challenge arises with the original tau-leap method41, as it can lead to

physically unrealistic negative populations due to the unboundedness of the Poisson random vari-

able. To address this concern, we adopt an adaptive version of the tau-leap algorithm proposed by

Anderson32. This adaptive approach incorporates post-leap checks at each step, thereby prevent-

ing the exploration of infeasible states.
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Let t denote the absolute time of the system. Assume we know the current state X(t)= (X0(t),X1(t), . . . ,XN(t))

and the propensities vector λ = (λ0(X(t)), . . . ,λN(X(t))). Here, λ0(X(t)) denotes the rate func-

tion associated with the nucleation and λk(X(t)), with 1 ≤ k ≤ N− 1, is related with the growth

of a nanoparticle from dimension k to dimension k+1. To simplify the notation in the following

discussion, we drop the explicit dependence of the propensity scores on the state, denoting them

as λk. Additionally, let Yk, with k = 0, . . . ,N−1, be a unit rate Poisson process related to the k-th

reaction. Suppose we are aware of the internal time of each process, Tk(t) :=
∫ t

0 λk(X(s))ds, and of

its number of firings up to time t, Ck(t) :=Yk(Tk(t)). As in Gillespie’s algorithm described in Sec-

tion II B 1, let L denote the dimension of the largest nanoparticle created up to time t. Once more,

leveraging the structure of the chemical reaction network, for each k ≥ L+ 1, we have λk = 0,

Tk(t) = 0, and Ck(t) = 0. This observation yields a significant acceleration in computational time

by avoiding the computation of unnecessary quantities, as highlighted in Algorithm 2.

After adaptively determining τ , the algorithm32 proposes a new leap with τ and we are inter-

ested in the value of the Poisson processes {Yk}k=0,...,N−1 when the internal times are {Tk(t)+

λkτ}k=0,...,N−1. If we lack information about the state of the Poisson processes in the future, i.e.

we do not know Yk(T ) for T > Tk(t), the number of possible jumps of Yk in [Tk,Tk +λkτ] follows

a Poisson distribution with rate λkτ . Consequently the algorithm generates the corresponding

N independent Poisson random variables, J0, . . . ,JN−1, and set Yk(Tk(t)+ λkτ) = Ck(t)+ Jk, for

k = 0, . . . ,N−1. At this point, we must verify if all reactions satisfy the leap condition, i.e.

|S ·J| ≤


max(εX0(t)/g0,1)

max(εX1(t)/g1,1)
...

max(εXN(t)/gN ,1)

 (7)

where S is the stoichiometric matrix (2), J = [J0 J1 · · · JN−1]
t and gi := gi(Xi(t)) is a pre-

scribed function described by Anderson32. Note that the inequality in equation (7) is interpreted

component-wise, and the leap condition is deemed satisfied if the inequality is verified for each

component. In our scenario, gi(Xi(t)) = 2 for each i ≥ 1, whereas the value of g0 relies on the

9
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number n of monomers consumed during nucleation. Specifically,

g0(X0(t)) =


1 if n = 1

2+ 1
X0(t)−1 if n = 2

3+ 1
X0(t)−1 +

2
X0(t)−2 if n = 3

For our system (1), the leap condition presented in equation (7) translates to

∣∣∣∣∣−nJ0−
L

∑
k=1

Jk

∣∣∣∣∣≤max(εX0(t)/g0,1)

|−Jn + J0| ≤max(εXn(t)/2,1)

|−Ji + Ji−1| ≤max(εXi(t)/2,1) for i = n+1, . . . ,L

|JL| ≤max(εXL+1(t)/2,1)

(8)

If condition (7) is satisfied, the leap is accepted, we update the state of the system as

X(t + τ) = X(t)+S ·J

and we attempt the following update. Furthermore, if JL > 0, indicating the creation of a particle

with dimension L+1, we increment L by 1 accordingly. On the other hand, if the leap condition

fails to hold, the leap is rejected, and we try a new leap with a shorter time step. Specifically, we

reduce the time step value, selecting τ∗ = pτ , where p < 1. This subsequent attempt must account

for the information obtained previously, meaning that we need to consider that Yk(Tk(t)+λkτ) =

Ck(t)+Jk, to avoid altering the chain’s distribution. Theorem 3.1 in the original paper32 guarantees

that the conditional distribution of Yk (Tk(t)+λkτ∗)−Yk (Tk(t)) given that Yk (Tk(t)) = ck, and

Yk (Tk(t)+λkτ) = ck + jk is Binomial with number of trials jk and probability of success τ∗

τ
, for

any allowed value for the constants ck and jk.

Therefore, the value of the Poisson processes in Tk(t)+λkτ∗ are now simulated according to a

binomial distribution and the leap condition (7) is checked for the new leap. If the condition is not

met, the information we have just obtained is retained and employed to compute the value of the

Poisson processes with a shorter time step. Conversely, if the condition is satisfied, we accept the

update and adjust the state of the system accordingly.

It’s crucial to emphasize that when we reject a leap, we are solely storing information regarding

the future values of the Poisson processes Yk(Tk+λkτ), rather than the values of our chain X(t+τ).

Moreover, we may reject multiple leaps, leading to the storage of numerous different values of

10

https://doi.org/10.26434/chemrxiv-2024-wh3jv-v2 ORCID: https://orcid.org/0009-0008-8158-0049 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-wh3jv-v2
https://orcid.org/0009-0008-8158-0049
https://creativecommons.org/licenses/by-nc-nd/4.0/


Yk(T ). When we attempt a new leap at time T̃ , the newly proposed internal time may exceed

the last stored internal time, or it may fall between two stored internal times. In the former case,

the new value of Yk is derived from a Poisson random variable, while in the latter scenario, we

exploit the binomial distribution. This last distribution just relies on the value of Yk evaluated

at the largest internal time smaller than the newly proposed time. Consequently, after a leap is

accepted, all previous values of Yk can be discarded and will no longer influence the distribution

of subsequent leaps. Regarding the value of τ , it is updated not only when a leap is rejected, but

also when it is accepted, aiming to adapt the step size according to the behaviour of the system. In

particular

• if a leap is rejected, then we decrease τ , setting τ = τ p, for some p < 1;

• if a leap satisfies the leap condition (7) for ε (and therefore it is accepted), but it fails the

leap condition with 3
4ε , then we decrease τ , setting it equal to τ p∗, for some p∗ such that

p < p∗ < 1;

• if a leap satisfies the leap condition (7) both with ε and 3
4ε , we increase τ , setting τ = τq,

for some 0 < q < 1.

A pseudocode for this algorithm is presented in the Appendix.

III. RESULTS AND DISCUSSIONS

The existence of a deterministic limit under the alternative scaling (6) is investigated in several

numerical examples that use both exact and approximated simulation methods.

A. Exact simulation results

For N = 104,105,106,107, and 108, we simulate 6 trajectories of the process (5) with parame-

ters given by

n = 3, X(0) = Ne1, γ = 5, ν = 5 ·N1−n

Simulations are run until all monomers are consumed and we investigate the final size distribution.

We use the Gillespie algorithm introduced in Algorithm 1. The Julia code with our implementation

is available at https://github.com/elenasabbioni/nanoparticles.
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Three noteworthy patterns arise from the simulation outcomes, presented in Figure 1.

First, in all simulations, the final size of the nanoparticles is of order
√

N. Therefore, when

the sizes are adjusted by scaling them with
√

N, the resulting distributions span the same range,

regardless of the value of N or of the specific realization.

Moreover, regardless of the value of N, the counts of particles with any given final size are

consistently small, typically amounting to only a few units. Indeed, the typical final size is approx-

imately
√

N, while the number of available monomers is N. Consequently, the typical number of

particles formed before exhausting the monomers is also on the order of
√

N. These particles tend

to distribute across the entire range of available sizes, with a modest concentration in the most

probable region, which is found to be between 1.2 and 1.6 in units of
√

N.

Thirdly, we observe that for relatively low values of N (e.g., N = 104), there is a significant

variability across different realizations. However, as N increases, the final size distributions be-

come more and more similar to each other, suggesting the existence of a deterministic limiting

distribution as N approaches infinity.

To validate this hypothesis, it would be beneficial to increase N even further. However, in our

model the number of reactions increases with N, making the computational cost of the Gillespie

algorithm non-linear in N, as shown in Table I. Consequently, scaling up N to a higher order is not

feasible, even when the code is parallelized and runs on a high performance computing machine.

The just mentioned result that no particle will be grown to a size that is much larger than
√

N, allows us to set up a splitting of such a range of the effective particle sizes into bins whose

amplitude a is such that both the bin size and the number of bins that will be effectively filled

(about
√

N/a)) will tend to infinity, e.g. taking a = N
1
4 ). In this way we expect that at least

some of the bins will collect a number of particles that increases with N so that for N → ∞ a

non-negligible fraction of the created particles will accumulate in it. This process smoothens the

distribution of counts and helps averaging out the difference between the repetitions.

Figure 2 shows the effect of the binning with N = 108. Comparing Figures 1 and 2 we observe

an increased similarity between the realizations and a smoother resulting final size density. We are

therefore even more confident that the final size density is converging to a continuous deterministic

limit.
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FIG. 1: Final size distribution of the original process (5) with N = 104 (first row), N = 106

(second row), N = 108 (third row). Each column represents a different repetition of the

simulation. The results are obtained with the Gillespie’s algorithm. The plots present the number

of particles for each size, with the x-axis being scaled by
√

N to ensure that the sizes are

independent of N and remain comparable as we increase the initial number of monomers.
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FIG. 2: Final size distribution of the original process (5), after that the state space is binned, with

N = 108. The x-axis is scaled by
√

N.

B. Tau-leap simulation results

Due to the considerable computational expense associated with simulations using the Gille-

spie algorithm, it is natural to explore a tau-leap approximation, with the hope of being able to

simulate the process even when N is of a higher order of magnitude. As previously mentioned

in Section III A, the counts of nanoparticles of any given size consistently remain low. There-

fore, the basic version of the tau-leap algorithm41 is inadequate as it often yields negative counts.

However, the version of the algorithm that incorporates post-leap checks (cf. Section II B 2) the-
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N
Original process Approximated process

Gillespie Tau-leap Gillespie Tau-leap

104 1.51 1.98 1.19 1.84

106 518.69 225.43 18.52 1.95

108 417945.90 192641.70 65.42 2.76

1010 NA NA 3012.00 13.88

1012 NA NA 392339.12 194.09

1014 NA NA NA 2956.96

1015 NA NA NA 14081.16

TABLE I: Time (in seconds) required to simulate r = 6 trajectories of both the original process

(5) (columns 1 and 2) and the approximated process (columns 3 and 4) in parallel on a cluster

with 6 CPUs. The simulations are performed with different initial numbers of monomers N. In

instances where the simulation was not feasible, due to an impractical computational time, "NA"

values are incorporated into the table.

oretically addresses this issue, and thus, we have implemented the method in this improved form.

We begin the simulation study by reproducing the identical settings as previously outlined. This is

aimed at facilitating a comparison in both the quality of the approximation and the running time.

The quality of the approximation appears to be excellent, as the final size distributions obtained

from both methods are practically identical (figures not provided). However, the running times

haven’t decreased sufficiently to enable scaling by one order of magnitude more. Consequently,

the case with N = 109 still remains beyond reach. The limited speed improvement with the tau-

leap method is once more attributed to the prevalence of low counts. Negative numbers continue

to be suggested frequently and subsequently discarded due to failures in post-leap checks. This

phenomenon results in an additional overhead in each simulation step and a decrease in adaptive

step-size to values that are comparable to the waiting time for the next reaction, thereby nullifying

the advantage over an exact algorithm.
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C. An approximating process

As the tau-leap approximation fails to scale to higher orders of magnitude in N, we introduce a

new process designed for faster simulation, that we believe can exhibit approximatively the same

final size distributions as (5) when N → ∞. The concept revolves around employing a binned

version of the state space (following the construction detailed in Section III A, with bin amplitude

a) and defining a process that initiates particle nucleation in the first bin and subsequently grows

them into adjacent bins with rates crafted to emulate the dynamics of (5), particularly focusing on

the scenario of the diffusion kernel.

The i-th bin will then contain particles whose approximate size is ia and therefore a monomers

will be needed to grow a particle to the next bin. Upon nucleation, particles immediately at-

tain a size of a, necessitating once again a monomers for the reaction to proceed. Essentially,

monomers will consistently be consumed in batches of a units. Hence, for simplicity, we can re-

place monomers with larger objects of size a, referred to as a-mers. It’s worth noting that the size

of an a-mer will increase with N, yet it will remain negligible compared to the typical size
√

N of

a particle. This approach ensures that both nucleation reactions and growth processes consume an

a-mer. The initial number of a-mers will be ⌊N
a ⌋, increasing with N accordingly. Reactions will

then be formulated in terms of chemical species D and Bi, representing a-mers and particles in the

i-th bin, respectively. The corresponding chemical reaction network is

D ν−−→ B1

Bi +D
γ−−→ Bi+1 1≤ i≤ ⌊N

a
⌋−1.

with state vector denoted by
(

b0,b1, . . . ,b⌊N
a ⌋

)
, and the (non mass-action) rate functions

The simulations of the approximated process are conducted using both the Gillespie and tau-

leap methods whenever feasible (cf. Sections II B 1 and II B 2); the code is available at https:

//github.com/elenasabbioni/nanoparticles). It’s readily apparent from Table I that sig-

nificantly higher values of N can be explored with the approximated process due to reduced com-

putational costs. The binned state space is considerably smaller than the original, and the number

of growth reactions is also substantially diminished. Moreover, the computational advantage of

the tau-leap algorithm is consistent, as the number of particles in each bin is larger and no longer

causing failures of the post-leap checks.

In Figure 3, we present a comparison between the binned final size distributions obtained by
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simulating the original process (5) with N = 108 (the maximum achievable magnitude), depicted

using gray bars, alongside the size distribution obtained with the approximated process. To facili-

tate the comparison, for the approximated process, we replace the bars with lines that connect the

heights of the bars.

The accuracy of the approximation at moderate N, particularly at N = 108, is somewhat lacking,

especially in the right tail of the distribution. However, when scaling up to N = 1012, the final size

distribution of the approximated process starts to resemble the original one (although the right tail

remains imperfect), and the variability is significantly reduced.

Comparing the final sizes obtained by the Gillespie algorithm with N = 108 and N = 1012

reveals no distinguishable difference from those obtained using the tau-leap method. However, the

tau-leap method allows us to scale N up to three orders of magnitude more, up to 1015. Refer to

Table I to observe the speed when the tau-leap method is used.

At N = 1015, the final size density is nearly deterministic and perfectly aligns with that of the

original process, accompanied by a remarkable reduction in noise.

D. Conclusions

We investigated the existence of a deterministic limit for the final particle size distribution

of a stochastic model of nanoparticle growth under a scaling of the rate constants that was not

previously addressed. By advanced simulation methods, we have observed the emergence of a

deterministic limit for the particle size density as the initially available monomer units increase.

However, the computational cost of these simulations imposes a constraint on the magnitude of

monomer units that is significantly lower than realistic experimental conditions, hindering further

investigation. To overcome this limitation, we developed a novel approximating process capable

of significantly faster simulation while seemingly producing an equivalent limiting distribution.

Leveraging this new approximation method, we succeeded in significantly increasing the mag-

nitude of available monomer units, approaching levels expected in real experimental setups27–29,

thereby furnishing additional evidence of convergence toward a deterministic limit.

The findings presented in this paper set the stage for the mathematical proof of the existence of

a deterministic limit for the final size distribution of nanoparticles and the analytical description

of its density. Furthermore, there is potential interest in exploring the behavior of the stochastic

model under alternate kernels beyond diffusion kernels.
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FIG. 3: Final size density of the original process (5) (gray bars), after that the state space has

been binned, and final size density of the approximated process obtained with Gillespie (blue

line) and with tau-leap algorithm (red line). The simulation for the original process is conducted

with N = 108 in all three plots, while the approximated process is obtained with N = 108 (first

row), N = 1012 (second row) and N = 1015 (third row). The last row exclusively presents results

for the approximated process obtained through the tau-leap algorithm, due to limitations in

scaling up to this magnitude using the Gillespie method. The reported particle sizes are scaled by
√

N. To enhance the comparison of histograms with different binnings and numbers of particles,

the heights of the bars are scaled so that the area under each histogram is one.

The model we propose has further limitations: we do not consider reverse reactions, we neglect

the coalescence of nanoparticles, and we do not consider spatial effects like diffusion, capture

zones and large clusters interactions that are sometimes included in other models42,43. While

most of these effects would complicate the model to a too large extent, the addition of reverse

reactions, although not directly addressed in this paper, could be easily investigated using the
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same methodology and would likely not significantly change the conclusions. Mathematically

speaking, our model has many absorbing states: all those that are reached when all monomers

are consumed. Reverse reactions would remove the absorption, since monomers could also be

disaggregated from particles. This would make the model positive recurrent, and the concept

of a final size distribution would not be meaningful and would need to be replaced by that of a

stationary size distribution. When the purpose of the experiment is to create gold nanoparticles

from monomers, reverse reactions are forced to occur with a negligible rate and the stationary size

distribution would not differ significantly from our final one.
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Appendix: Pseudocodes

We present here the pseudocodes of the algorithm outlined in Section II B, starting with the

Gillespie’s algorithm, described in Algorithm 1.

For what concerns the tau-leap with post-leap checks we introduce here the necessary notation.

Let STk be the vector that stores the proposed internal times for reaction k, and SCk the one storing

the correspondent values of the Poisson process Yk, i.e. Yk(STk) = SCk. Algorithm 2 shows the
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Algorithm 1: Gillespie’s algorithm

X0← N−n, Xn = 1, Xi← 0 for i = 1, · · · ,N and i ̸= n ;

L← n ; /* Dimension of the largest nanoparticle that has been created */

λ0← νN!/(N−n)!, λk← 0 for k = 1, · · · ,N−1 ; /* No growth at the beginning, */

π := (π0,π1, · · · ,πN−1)← (1,0, · · · ,0);

while X0 > 0 do

Generate τ from Exponential with mean ∑
L
i=0 λi ; /* It can be avoided in our case */

for k = 0, · · · ,L do
πk← λk

∑
L
i=0 λi

Generate r as a discrete random variable with values 0,1, · · · ,N−1 and associated probabilities

π;

if r = 1 then

X0← X0−n ; /* Nucleation */

Xn← Xn +1;

else if r = n, · · · ,L then

X0← X0−1 ; /* Growth */

Xr← Xr−1;

Xr+1← Xr+1 +1;

if r = L then

L← L+1 ; /* Particles of dimension L+1 created */

λ0← νX0!/(X0−n)! ; /* Update rates */

λk← γX0Xk for k = 1, · · · ,L+1

initialization needed for the tau-leap with post leap checks, while Algorithm 3 presents the pseudo-

code for all the following steps.
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Algorithm 2: Initialization of tau-leap with post leap checks

X0← N−n, Xn = 1, Xi← 0 for i = 1, · · · ,N and i ̸= n ;

L← n ; /* Dimension of the largest nanoparticle that has already been

created, */

λ0← νN!/(N−n)!, λk← 0 for k = 1, . . . ,N−1, ; /* No growth at the beginning, */

Tk← 0, Ck← 0 for k = 0, . . . ,N−1;

STk← 0, SCk← 0;

Bk← 0 ; /* Position of the greatest internal time explored in previous

iterations */

rowk← 0 ; /* Position of the greatest internal time smaller than the one we

are proposing */

g0← g(X0), gi← 2 for i = 1, . . . ,N;

µ0←−nλ0, µn← λ0, µi← 0 for i ∈ {1, . . . ,N}\{n};

σ2
0 ← n2λ0, σ2

n ← λ0, σ2
i ← 0 for i ∈ {1, . . . ,N}\{n};

τ ←mini∈[0,N]

(
max(εXi/gi,1)

|µi| , max(εXi/gi,1)
2

σ2
i

)
;
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Algorithm 3: Tau-Leap with post-leap checks
Initialization as described in Algorithm 2;

while X0 > 0 do

for k = 1:(L + 1) do

Bk ← length(STk) ;

if Tk +λkτ ≥ STk[Bk] then

Jk ← Poisson(Tk +λkτ−STk[Bk])+SCk[Bk]−Ck ; /* Proposed internal time larger than all the

previously proposed internal times */

rowk ← Bk

else

Find 2≤ Ik ≤ Bk−1 s.t. STk[Ik−1]≤ Tk +λkτ ≤ STk[Ik] ;

r← Tk+λkτ−STk [Ik−1]
STk [Ik ]−STk [Ik−1] ;

Jk ← Bin(SCk[Ik]−SCk[Ik−1],r)+SCk[Ik−1]−Ck ; /* Proposed internal time between two previously

proposed times */

rowk ← Ik−1;

if leap-condition (8) holds then

for k = 1, . . . ,L do
Move all the rows of STk and SCk greater than rowk +1 up to positions 2, set first rows equal to Tk +λk and Ck + Jk

respectively;

Tk ← Tk +λkτ and Ck ←Ck + Jk;

t← t + τ ; /* Update absolute time */
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